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1. Introduction

Recent years have seen an explosion in the study of fractional differential equations, with the goal
of improving the accuracy of simulating multiple complex occurrences. The literature contains a
variety of definitions for fractional derivatives. The Riemann Liouville-derivative, Caputo derivative,
Caputo Fabrizio-derivative, Jumarie’s modified Riemann Liouville-derivative, and Atangana Baleanu-
derivative are a few examples of derivatives. In many fields, such as physics, control theory, biology,
mathematical physics, applied mathematics, optics, and chemistry, fractional partial differential
equations (FPDEs) have found extensive use [1–5], and EDAM [6–10]. This work applies Atangana’s
beta-derivative to solve the fractional Phi-4 problem accurately in two trustworthy ways. The initial
integral approach [11,12] and the functional variable method [13,14] were the two different approaches.
Various techniques have been used to solve fractional partial differential equations (FPDEs) in specific
applications documented in scientific literature [15–21]. The format of this document is as follows:
Some basic definitions and features of Atangana’s beta-derivative solution are given in the second part.
A thorough examination of the functional variable approach and the first integral approach is given
in the third part [22–25]. Using particular approaches, the fourth section presents new and accurate
solutions to the fractional Phi-4 problem. This article concludes by providing a thorough presentation
of all of its results, making it the final section. Therefore, we employ the mEDAM technique in
this study to precisely ascertain the travelling wave solutions for the STFPHI-4 equation. The 1/G′-
expansion method has not yet been employed to obtain the answers, despite the Fisher KPP problem
having been solved using a number of numerical, approximative, and analytical ways [26].

Researchers employ EDAM, an improved version of mEDAM, to generate single solutions for
nonlinear partial differential equations (NFPDEs). This method converts the NFPDE into a NODE by
employing a wave transformation. We transform the zero-order differential equations (NODEs) into a
set of nonlinear algebraic equations by proposing a solution based on series. Through the utilisation of
tools like Maple, it is possible to identify families of solo solutions for this problem by utilising tools
like Maple. Soliton waves possess distinct characteristics. Propagating at a consistent velocity and
form, they exhibit self-reinforcing properties. This work used mEDAM to examine many families of
kink soliton solutions in order to explore the presence of kink soliton phenomena in STP4E.

2. Definition of Atanganas Beta-deravative

Definition 1. Let h : [0,∞)→ R be a function. Then, its fractional conformable derivative of h order
α is

Λ
0 Dα

t (g)(t) = lim
s→0

h(x + sx1−α) − h(x)
s

. (2.1)

Khalil and colleagues established the aforementioned theorem for fractional derivatives [27]. Still,
ordinary derivatives and conformable fractional derivatives have certain similarities. For example,
the derivative of the product and the quotient of two functions, respectively. Thus, mathematicians,
physicists, and engineers are now undertaking several investigations on conformable derivatives [28].
Definition 2. Atangana’s beta-deravative is as follows:

Λ
0 Dα

t (g)(t) = lim
s→0

g(t + s[t + 1
Γ(α) ]

1−α) − g(t)

s
. (2.2)
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Atangana’s derivative allows us to eliminate certain weak characteristics of the conformable
derivative. As an illustration, the derivative of a differentiable function is precisely 0 at the zero
points [29]. Simulations utilising the beta derivative provide a more precise representation of real-
world situations in applied mathematics and physics. Furthermore, this enables a more accurate
evaluation of the physical characteristics of the photographs. Due to the possession of the highest
inherent properties among the basic derivatives, Atangana’s derivative may be preferred. The beta
derivatives of Atangana exhibit various significant characteristics [30] as follows:

Let h , 0 and g are two functions differentiable with β-order and β ∈ (0, 1). Then,

Λ
0 Dα

x ag(x) + bh(x) =Λ0 Dα
x g(x)a +Λ0 Dα

x h(x)b, (2.3)

for a, b ∈ R.
For any d ∈ R

Λ
0 Dα

x d = 0, (2.4)

Λ
0 Dα

x [d]g(x)h(x) = h(x)[Λ0 Dα
x ] + g(x)[Dα

x h(x)], (2.5)

Λ
0 Dα

x
g(x)
h(x)

=
h(x)[Λ0 Dα

x g(x)] + g(x)[Dα
x h(x)]

h2(x)
. (2.6)

Using Eq (2.2),
Λ
0 Dα

x g(x) = (x +
1
Γ(α)

)1−αdg(x)
dx

, (2.7)

and

µ =
γ

α
(x +

1
Γ(α)

)α, (2.8)

where γ is a constant. Finally, we can write the following:

Λ
0 Dα

x g(µ) = γ
dg(µ)

dµ
. (2.9)

3. Operational procedure of EDAM

The aim of this section is to give a review of the EDAM. Examine the FPDE using the format
provided below [31]:

E(w,Dα
t w,Dβ

h1
w,Dγ

h2
w,wDβ

h1
w, . . .) = 0, 0 < α, β, γ ≤ 1, (3.1)

where w = w(t, h1, h2, h3, . . . , hn). Using the following procedures, (2.6) may be solved.
Step 1: First, the (3.1) is converted into a variable in the form w(t, h1, h2, h3, · · · , hn) = W(η), where η
denotes a function of t, h1, h2, h3, · · · , hn, and may be represented in a multitude of ways. This change
turns (3.1) into a NODE, which has the following structure:

F(W,W ′,WW ′, . . . ) = 0. (3.2)
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The primes in (3.2) present derivatives with regard to η. (3.2) maybe once or more times be
integrated.
Step 2: Then, we assume the following closed form solution to (3.2):

V(Ω) =
M∑

l=−M

s j(ζ(Ω)) j, (3.3)

here, s j represent parameters requiring approximations.

ζ′(Ω) = ln(Ξ)(κ + µζ(Ω) + υ(ζ(Ω))2), (3.4)

where κ, µ, υ are constants and Ξ > 0, Ξ , 1.
Step 3: When we investigate for the homogeneous balance between the greatest order derivative in
(3.2) and the most dominant nonlinear element, we find a positive integer M, which is stated in (3.3).
Step 4: Then, we investigate (2.7) or the equation that results from integrating (3.2) with (3.3), and
lastly, we combine all of the components in ζ(Ω) in the same order to get a polynomial in ζ(Ω). For all
s js and other parameters, if the coefficients of the consequent polynomial are set to zero, an algebraic
equation system is obtained.
Step 5: Before that, this system of nonlinear algebraic equations can be solved using Maple.
Step 6: (3.3) and its associated solution ζ(Ω) from (3.4), in combination with the unknown parameters,
are used to get the travelling wave solutions to (3.1). The families of travelling wave solutions that
appears below can be produced by utilising the general solution of (2.9).

Family. 1: For D < 0 and υ , 0, then we have

ζ1(Ω) = −
µ

2υ
+

√
−D tanΞ

(
1
2

√
−DΩ

)
2υ

,

ζ2(Ω) = −
µ

2υ
−

√
−D cotΞ

(
1
2

√
−DΩ

)
2υ

,

ζ3(Ω) = −
µ

2υ
+

√
−D

(
tanΞ

(√
−DΩ

)
+ sec℧

(√
−DΩ

))
2υ

,

ζ4(Ω) = −
µ

2υ
−

√
−D

(
cotΞ

(√
−DΩ

)
+ cscΞ

(√
−DΩ

))
2υ

,

and

ζ5(Ω) = −
µ

2υ
+

√
−D

(
tanΞ

(
1
4

√
−DΩ

)
− cotΞ

(
1
4

√
−DΩ

))
4υ

.

Family. 2: For D > 0 and υ , 0, then we have

ζ6(Ω) = −
µ

2υ
−

√
D tanhΞ

(
1
2

√
DΩ

)
2υ

,

ζ7(Ω) = −
µ

2υ
−

√
D cothΞ

(
1
2

√
DΩ

)
2υ

,
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ζ8(Ω) = −
µ

2υ
−

√
D

(
tanhΞ

(√
∆Ω

)
+ isechΞ

(√
DΩ

))
2υ

,

ζ9(Ω) = −
µ

2υ
−

√
D

(
cothΞ

(√
∆Ω

)
+ cschΞ

(√
DΩ

))
2υ

,

and

ζ10(Ω) = −
µ

2υ
−

√
D

(
tanhΞ

(
1
4

√
DΩ

)
− cothΞ

(
1
4

√
DΩ

))
4 f

.

Family. 3: For κυ > 0 and µ = 0,

ζ11(Ω) =
√
κ

υ
tanΞ

(√
κυΩ

)
,

ζ12(Ω) = −
√
κ

υ
cotΞ

(√
υΩ

)
,

ζ13(Ω) =
√
κ

υ

(
tanΞ

(
2
√
κυη

)
+ secΞ

(
2
√

dυΩ
))
,

ζ14(Ω) = −
√
κ

υ

(
cotΞ

(
2
√
κυΩ

)
+ cscΞ

(
2
√
κυΩ

))
,

and

ζ15(Ω) =
1
2

√
κ

υ

(
tanΞ

(
1
2
√
κυΩ

)
− cotΞ

(
1
2
√
κυΩ

))
.

Family. 4: For κυ < 0 and µ = 0, then we have

ζ16(Ω) = −
√
−
κ

υ
tanhΞ

(√
−κυΩ

)
,

ζ17(Ω) = −
√
−
κ

υ
cothΞ

(√
−κυΩ

)
,

ζ18(Ω) = −
√
−
κ

υ

(
tanhΞ

(
2
√
−κυΩ

)
+ isechΞ

(
2
√
−κυΩ

))
,

ζ19(Ω) = −
√
−
κ

υ

(
cothΞ

(
2
√
−κυΩ

)
+ cschΞ

(
2
√
−κυΩ

))
,

and

ζ20(Ω) = −
1
2

√
−
κ

υ

(
tanhΞ

(
1
2
√
−κυΩ

)
+ cothΞ

(
1
2
√
−κυΩ

))
.

Family. 5: For υ = κ and µ = 0, then we have

ζ21(Ω) = tanΞ (κΩ) ,

ζ22(Ω) = − cotΞ (κΩ) ,
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ζ23(Ω) = tanΞ (2 κΩ) + secΞ (2 κΩ) ,

ζ24(Ω) = − cotΞ (2 κΩ) + cscΞ (2 κΩ) ,

and

ζ25(Ω) =
1
2

tanΞ

(
1
2
κΩ

)
−

1
2

cotΞ

(
1
2
κΩ

)
.

Family. 6: For υ = −κ and µ = 0,
ζ26(Ω) = − tanhΞ (κΩ) ,

ζ27(Ω) = − cothΞ (κΩ) ,

ζ28(Ω) = − tanhΞ (2 κΩ) + isechΞ (2 κΩ) ,

ζ29(Ω) = − cothΞ (2 κΩ) + cschΞ (2 κΩ) ,

and

ζ30(Ω) = −
1
2

tanhΞ

(
1
2
κΩ

)
−

1
2

cothΞ

(
1
2
κΩ

)
.

Family. 7: For D = 0,

ζ31(Ω) = −2
κ (µΩ lnΞ + 2)
µ2 ln(Ξ)Ω

.

Family. 8: For υ = 0, µ = ς, and κ = nς (with n , 0), then we have

ζ32(Ω) = ΞςΩ − n.

Family. 9: For µ = υ = 0,
ζ33(Ω) = κΩ ln(Ξ).

Family. 10: For µ = κ = 0,

ζ34(Ω) = −
1

υΩ ln(Ξ)
.

Family. 11: For µ , 0, υ , 0, and κ = 0,

ζ35(Ω) = −
µ

υ (coshΞ (µΩ) − sinhΞ (µΩ) + 1)
,

and
ζ36(Ω) = −

µ (coshΞ (µΩ) + sinhΞ (µΩ))
υ (coshΞ (µΩ) + sinhΞ (µΩ) + 1)

.

Family. 12: For µ = ς, υ = nς (with n , 0), and κ = 0,

ζ37(Ω) =
ΞςΩ

1 − nΞςΩ
.

In the above solutions, D = µ2 − 4κυ. The generalised trigonometric and hyperbolic functions are
expressed as below:

sinΞ (Ω) =
ΞiΩ − Ξ−iΩ

2i
, cosΞ (Ω) =

ΞiΩ + Ξ−iΩ

2
,

secΞ (Ω) =
1

cosΞ (Ω)
, cscΞ (Ω) =

1
sinΞ (Ω)

,

tanΞ (Ω) =
sinΞ (Ω)
cosΞ (Ω)

, cotΞ (Ω) =
cosΞ (Ω)
sinΞ (Ω)

.
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Similarly,

sinh℧ (Ω) =
ΞΩ − Ξ−Ω

2
, coshΞ (η) =

℧Ω + Ξ−Ω

2
,

sechΞ (Ω) =
1

coshΞ (Ω)
, cschΞ (η) =

1
sinhΞ (Ω)

,

tanhΞ (Ω) =
sinhΞ (Ω)
coshΞ (Ω)

, cothΞ (Ω) =
coshΞ (Ω)
sinhΞ (Ω)

.

4. The space-time fractional Phi-4 equation

The conformable space-time fractional Phi-4 equation [32]:

Λ
0 D2α

t −
Λ
0 D2β

x + m2u + n3u = 0, 0 < α, β ≤ 1, (4.1)

Λ
0 Dα

t u indicates the Atangana’s conformable fractional derivative of u with respect to t of order α and
m, n are real constants. Using the following transformation:

u(x, t) = W(ζ), ζ =
l
β

(x +
1
Γ(β)

)β −
λ

α
(t +

1
Γ(α)

)α. (4.2)

Denote the transformation variable as ζ and the constants as l and λ. Formulation (4.2) transforms
into an ordinary differential equation, which in turn transforms equation (4.1) into the subsequent
nonlinear ordinary differential equation (ODE).

λ2W ′′(ζ) − l2W ′′(ζ) + m2W(ζ) + nW3(ζ) = 0. (4.3)

By considering the uniform equilibrium between the W ′′ and W3 components in (4.3), we can
determine the equilibrium number M, which may be expressed as 2M = M + 3, indicating that N = 1.
The series solution for (4.3) may be obtained by substituting M = 1 [33].

W(Ω) =
1∑

i=−1

si(G(Ω))i. (4.4)

An equation in field G(Ω) is derived by substituting (4.4) into (4.3), and collecting any terms that
have the same orders as G(Ω). By assigning a value of zero to its coefficients, the expression may
be simplified into a series of nonlinear algebraic equations. The resulting problem is resolved using
Maple and yields two classes of solutions:
Case 1.

l =

√
λ2 (ln (Ξ))2 ζ2 − 4 λ2 (ln (Ξ))2 υ κ − 2 m2

D
(ln (Ξ))−1 , λ = λ,

d−1 = −2
mκ

√
−n (D)

, d0 =

√
−

1
n (D)

µm, d1 = 0.

(4.5)
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Case 2.

l =

√
λ2 (ln (Ξ))2 ζ2 − 4 λ2 (ln (Ξ))2 υ κ − 2 m2

D
(ln (Ξ))−1 , λ = λ,

d−1 = 0, d0 = −
mµ
√
−n (D)

, d1 = −2

√
−

1
n (D)

mυ.

(4.6)

Using Eq (4.5) and the matching solution of (3.4), we can obtain the following families of kink
soliton solutions, assuming Case 1 [34].
Family. 1.1: When D < 0, υ , 0, we have,

W1,1(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
+

1
2

√
−D tanΞ

(
1
2

√
−DΩ

)
υ


−1

−

√
−

1
n (D)

µm,

(4.7)

W1,2(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
−

1
2

√
−D cotΞ

(
1
2

√
−DΩ

)
υ


−1

−

√
−

1
n (D)

µm,

(4.8)

W1,3(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
+

1
2

√
−D

(
tanΞ

(√
−DΩ

)
±

(
secΞ

(√
−DΩ

)))
υ


−1

−

√
−

1
n (D)

µm,

(4.9)

W1,4(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
+

1
2

√
−D

(
cotΞ

(√
−DΩ

)
±

(
cscΞ

(√
−DΩ

)))
υ


−1

−

√
−

1
n (D)

µm,

(4.10)

and

W1,5(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
+

1
4

√
−D

(
tanΞ

(
1
4

√
−DΩ

)
− cotΞ

(
1/4
√
−DΩ

))
υ


−1

−

√
−

1
n (D)

µm.

(4.11)
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Family. 1.2: When D > 0, υ , 0, then we have

W1,6(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
−

1
2

√
D tanhΞ

(
1
2

√
−∆Ω

)
υ


−1

−

√
−

1
n (D)

µm,

(4.12)

W1,7(x, t) = −2 mκ
1

√
−n (D)

−1
2
ζ

υ
−

1
2

√
D cothΞ

(
1
2

√
−DΩ

)
υ


−1

+

√
−

1
n (D)

µm, (4.13)

W1,8(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
+

1
2

√
D

(
tanh

(√
−DΩ

)
±

(
sechΞ

(√
−DΩ

)))
υ


−1

−

√
−

1
n (D)

µm,

(4.14)

W1,9(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
+

1
2

√
D

(
cothΞ

(√
−DΩ

)
±

(
sechΞ

(√
−DΩ

)))
υ


−1

−

√
−

1
n (D)

µm,

(4.15)

W1,10(x, t) = −2 mκ
1

√
−n (D)

−1
2
µ

υ
−

1
4

√
D

(
tanhΞ

(
1/4
√

DΩ
)
− cothΞ

(
1
4

√
DΩ

))
υ


−1

−

√
−

1
n (D)

µm.

(4.16)

Family. 1.3: If µ = 0 and κυ > 0, then we have

W1,11(x, t) = −2 mκ
1

√
−n (D)

1√
κ
υ

(
tanΞ

(√
κ υΩ

))−1
, (4.17)

W1,12(x, t) = 2 mκ
1

√
−n (D)

1√
κ
υ

(
cotΞ

(√
κ υΩ

))−1
, (4.18)

W1,13(x, t) = −2 mκ
1

√
−n (D)

1√
κ
υ

(
tanΞ

(
2
√
κ υΩ

)
±

(
secΞ

(
2
√
κ υΩ

)))−1
, (4.19)

W1,14(x, t) = 2 mκ
1

√
−n (D)

1√
κ
υ

(
cotΞ

(
2
√
κ υΩ

)
±

(
cscΞ

(
2
√
κ υΩ

)))−1
, (4.20)

and

W1,15(x, t) = −4 mκ
1

√
−n (D)

1√
κ
υ

(
tanΞ

(
1
2
√
κ υΩ

)
− cotΞ

(
1
2
√
κ υΩ

))−1

. (4.21)
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Family. 1.4: When υκ < 0 and µ = 0, then we have

W1,16(x, t) = 2 mκ
1

√
−n (D)

1√
− κ
υ

(
tanhΞ

(√
−κ υΩ

))−1
, (4.22)

W1,17(x, t) = 2 mκ
1

√
−n (D)

1√
− κ
υ

(
cotΞ

(√
−κ υΩ

))−1
, (4.23)

W1,18(x, t) = 2 mκ
1

√
−n (D)

1√
− κ
υ

(
tanhΞ

(
2
√
−κ υΩ

)
±

(
isech

(
2
√
−κ υΩ

)))−1
, (4.24)

W1,19(x, t) = 2 mκ
1

√
−n (D)

1√
− κ
υ

(
cothΞ

(
2
√
−κ υΩ

)
±

(
cschΞ

(
2
√
−κ υΩ

)))−1
, (4.25)

and

W1,20(x, t) = 4 mκ
1

√
−n (D)

1√
− κ
υ

(
tanhΞ

(
1
2
√
−κ υΩ

)
+ cothΞ

(
1
2
√
−κ υΩ

))−1

. (4.26)

Family. 1.5: When υ = κ and µ = 0, then we have

W1,21(x, t) = −2
mκ

√
−n (D) tanΞ (κΩ)

, (4.27)

W1,22(x, t) = 2
mκ

√
−n (D)Ξ (ηΩ)

, (4.28)

W1,23(x, t) = −2
mκ

√
−n (D) (tanΞ (2 κΩ) ± (secΞ (2 κΩ)))

, (4.29)

W1,24(x, t) = −2
mκ

√
−n (D) (− cotΞ (2 κΩ) ± (cscΞ (2 κΩ)))

, (4.30)

and

W1,25(x, t) = −2
mκ

√
−n (D)

(
1
2 tanΞ

(
1
2κΩ

)
− 1

2 cotΞ
(

1
2κΩ

)) . (4.31)

Family. 1.6: When υ = −κ and µ = 0, then we have

w1,26(x, t) = 2
mκ

√
−n (D) tanhΞ (κΩ)

, (4.32)

W1,27(x, t) = 2
mκ

√
−n (D) cothΞ (κΩ)

, (4.33)

W1,28(x, t) = −2
mκ

√
−n (D) (− tanhΞ (2 κΩ) ± (isechΞ (2 κΩ)))

, (4.34)

W1,29(x, t) = −2
mκ

√
−n (D) (− cothΞ (2 κΩ) ± (cechΞ (2 κΩ)))

, (4.35)
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and

W1,30(x, t) = −2
mκ

√
−n (D)

(
−1

2 tanhΞ
(

1
2κΩ

)
− 1

2cothΞ
(

1
2κΩ

)) . (4.36)

Family. 1.7: When µ = ς, κ = τς(τ , 0), and υ = 0,

W1,31(x, t) = −2
mτ ς (τ , 0)

√
−n (D)

(
ΞςΩ − τ

) +
√
−

1
n (D)

ςm. (4.37)

Family. 1.8: When µ = υ = 0, then we have

W1,32(x, t) = −2
m

√
−n (D)Ωi ln (Ξ)

. (4.38)

Family. 1.9: When µ , 0, υ , 0, κ = 0,

w1,33(x, t) =

√
−

1
n (D)

µm, (4.39)

w1,34(x, t) =

√
−

1
n (D)

µm. (4.40)

Family. 1.10: When µ = ς, υ = τ, κ = 0,

w1,35(x, t) =

√
−

1
n (D)

ςm. (4.41)

Assuming Case 2, we have
Family. 2.1: When D < 0 υ , 0,

W2,1(x, t) = −2 mυ

−1
2
µ

υ
+

1
2

√
−D tanΞ

(
1
2

√
−DΩ

)
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm,

(4.42)

W2,2(x, t) = −2 mυ

−1
2
µ

υ
−

1
2

√
−D cotΞ

(
1
2

√
−DΩ

)
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm,

(4.43)

W2,3(x, t) = −2 mυ

−1
2
µ

υ
+

1
2

√
−D

(
tanΞ

(√
−DΩ

)
±

(
secΞ

(√
−DΩ

)))
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm,

(4.44)
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W2,4(x, t) = −2 mυ

−1
2
µ

υ
+

1
2

√
−D

(
cotΞ

(√
−DΩ

)
±

(
cscΞ

(√
−DΩ

)))
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm,

(4.45)

W2,5(x, t) = −2 mυ

−1
2
µ

υ
+

1
4

√
−D

(
tanΞ

(
1
4

√
−DΩ

)
− cotΞ

(
1
4

√
−DΩ

))
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm.

(4.46)

Family. 2.2: When D > 0, υ , 0,

W2,6(x, t) = −2 mυ

−1
2
µ

υ
−

1
2

√
D tanhΞ

(
1
2

√
−∆Ω

)
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm,

(4.47)

W2,7(x, t) = −2 mυ

−1
2
µ

υ
−

1
2

√
D cothΞ

(
1
2

√
−DΩ

)
υ

 1
√
−n (D)

+

√
−

1
n (D)

µm,

(4.48)

W2,8(x, t) = −2 mυ

−1
2
µ

υ
+

1
2

√
D

(
tanhΞ

(√
−DΩ

)
±

(
sechΞ

(√
−DΩ

)))
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm,

(4.49)

W2,9(x, t) = −2 mυ

−1
2
µ

υ
+

1
2

√
D

(
cothΞ

(√
−DΩ

)
±

(
sechΞ

(√
−DΩ

)))
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm,

(4.50)

and

W2,10(x, t) = −2 mυ

−1
2
µ

υ
−

1
4

√
D

(
tanhΞ

(
1
4

√
DΩ

)
− cothΞ

(
1
4

√
DΩ

))
υ

 1
√
−n (D)

−

√
−

1
n (D)

µm.

(4.51)
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Family. 2.3: When κυ > 0 and µ = 0,

W2,11(x, t) = −2 mυ
√
κ

υ
tanΞ

(√
υ κΩ

) 1
√
−n (D)

, (4.52)

W2,12(x, t) = 2 mυ
√
κ

υ
cotΞ

(√
υ κΩ

) 1
√
−n (D)

, (4.53)

W2,13(x, t) = −2 mυ
√
κ

υ

(
tanΞ

(
2
√
υ κΩ

)
±

(
secΞ

(
2
√
υ κΩ

))) 1
√
−n (D)

, (4.54)

W2,14(x, t) = 2 mυ
√
κ

υ

(
cotΞ

(
2
√
υ κΩ

)
±

(
cscΞ

(
2
√
υ κΩ

))) 1
√
−n (D)

, (4.55)

and

W2,15(x, t) = −mυ
√
κ

υ

(
tanΞ

(
1
2
√
υ κΩ

)
− cotΞ

(
1
2
√
υ κΩ

))
1

√
−n (D)

. (4.56)

Family. 2.4: When υκ < 0 and µ = 0,

W2,16(x, t) = 2 mυ
√
−
κ

υ
tanh

(√
−υ κΩ

) 1
√
−n (D)

, (4.57)

W2,17(x, t) = 2 mυ
√
−
κ

υ
cothΞ

(√
−υ κΩ

) 1
√
−n (D)

, (4.58)

w2,18(x, t) = 2 mυ
√
−
κ

υ

(
tanhΞ

(
2
√
−υ κΩ

)
±

(
isechΞ

(
2
√
−υ κΩ

))) 1
√
−n (D)

, (4.59)

W2,19(x, t) = 2 mυ
√
−
κ

υ

(
cothΞ

(
2
√
−υ κΩ

)
±

(
cschΞ

(
2
√
−υ κΩ

))) 1
√
−n (D)

, (4.60)

and

W2,20(x, t) = mυ
√
−
κ

υ

(
tanhΞ

(
1
2
√
−υ κΩ

)
+ cothΞ

(
1
2
√
−υ κΩ

))
1

√
−n (D)

, (4.61)

Family. 2.5: When υ = κ and µ = 0,

W2,21(x, t) = −2
mκ tanΞ (κΩ)
√
−n (D)

, (4.62)

W2,22(x, t) = 2
mκ cotΞ (ηΩ)
√
−n (D)

, (4.63)

W2,23(x, t) = −2
mκ (tan (2 κ ψ) ± (secΞ (2 κΩ)))

√
−n (D)

, (4.64)

W2,24(x, t) = −2
mκ (− cotΞ (2 κΩ) ± (cscΞ (2 κΩ)))

√
−n (D)

, (4.65)
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and

W2,25(x, t) = −2
mκ

√
−n (D)

(
1
2 tanΞ

(
1
2κΩ

)
− 1

2 cotΞ
(

1
2κΩ

)) . (4.66)

Family. 2.6: When ν = −η and µ = 0,

W2,26(x, t) = 2
mκ tanhΞ (κΩ)
√
−n (D)

, (4.67)

W2,27(x, t) = 2
mκ

√
−n (D) cothΞ (κΩ)

, (4.68)

W2,28(x, t) = −2
mκ (− tanhΞ (2 κΩ) ± (isechΞ (2 κΩ)))

√
−n (D)

, (4.69)

W2,29(x, t) = −2
mκ (− cothΞ (2 κΩ) ± (cechΞ (2 κΩ)))

√
−n (D)

, (4.70)

and

W2,30(x, t) = −2
mκ

(
−1

2 tanhΞ
(

1
2κΩ

)
− 1

2 cothΞ
(

1
2κΩ

))
√
−n (D)

. (4.71)

Family. 2.7: When µ = ς, κ = τς(τ , 0), and υ = 0,

W2,31(x, t) = −

√
−

1
n (D)

ςm. (4.72)

Family. 2.8: When µ = υ = 0,

W2,32(x, t) = −2
m

√
−n (D)Ω ln (Ξ)

. (4.73)

Family. 2.9: When µ , 0, υ , 0, κ = 0,

w2,33(x, t) = 2
mµ

√
−n (D) (cosh (µΩ) − sinh (µΩ) + 1)

−

√
−

1
n (D)

µm, (4.74)

w2,34(x, t) = 2
mµ (cosh (µΩ) + sinh (µΩ))

√
−n (D) (cosh (µΩ) + sinh (µΩ) + 1)

−

√
−

1
n (D)

µm. (4.75)

Family.2.10: When µ = ς, υ = τ, κ = 0,

w2,35(x, t) = 2
mτ ς ΞςΩ

√
−n (D)

(
1 − τΞςΩ

) −
√
−

1
n (D)

ςm. (4.76)
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5. Discussions

To the best of our knowledge, the usage of mEDAM with the STFP4E has not been verified in any
scientific paper. In order to generate wave structures in both 3D and contour forms, this study uses
the improved EDAM version, known as NEDAM, to generate graphical representations of the many
wave types seen in the system. Notably, our findings demonstrate the important existence of various
kink configurations, which are crucial for comprehending how physical processes are interrelated.Our
results are intended to improve understanding of soliton solutions associated with processes of temporal
evolution. According to the findings, kink soliton formations—which often display coherent structures
inside reaction-diffusion systems—can only be observed using the STFP4E framework.Key dynamics
are depicted in the figures: Figure 1 shows how solitons form, oscillate, and disperse in a nonlinear
medium. The spatial evolution of the soliton, highlighting compression and decay, is depicted in
Figure 2. Figure 4 shows how frequency influences wave intensity, exposing variances in strength,
while Figure 3 shows how the wave packet’s structure varies. The energy distribution at various
frequencies is shown in Figure 5, and the energy distribution and spatial evolution are combined in
Figure 6. Finally, Figure 7 illustrates the intensity and frequency changes of a wave as it moves across
space, and Figure 8 displays the concentration and dissipation of a laser beam. In conclusion, this study
shows how well NEDAM works to solve challenging issues in a variety of scientific domains while
also providing insightful information on the dynamics of nonlinear systems.The study’s conclusions
stand out due to the data’s unambiguous demonstration of the important inclusion of different types of
kink structures.

Figure 1. The three-dimensional and contour visuals of the 3-kink soliton solution w1,1 stated
in (20) are graphed for κ := 1, µ := .1, υ := 11, Xi := 1, β := .156, α = .155, n = 1,m =
.1.l = 1, λ = .1. While two-dimensional visual is simultaneously graphed for t = 0 and for
the same values of involved parameters.
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Figure 2. The three-dimensional and contour visuals of the 3-kink soliton solution w1,1 stated
in (21) are graphed for κ := 1, µ := .1, υ := 11, Xi := 1, β := .156, α = .155, n = 1,m =
.1.l = 1, λ = .1. While two-dimensional visual is simultaneously graphed for t = 0 and for
the same values of involved parameters.

Figure 3. The three-dimensional and contour visuals of the 3-kink soliton solution w1,1 stated
in (25) are graphed for κ := 1, µ := .1, υ := 11, Xi := 1, β := .156, α = .155, n = 1,m =
.1.l = 1, λ = .1. While two-dimensional visual is simultaneously graphed for t = 0 and for
the same values of involved parameters.
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Figure 4. The three-dimensional and contour visuals of the 3-kink soliton solution w1,1 stated
in (26) are graphed for κ := .1, µ := 11, υ := .11, Xi := 1, β := .156, α = .155, n = 1,m =
.1.l = 1, λ = .1. While two-dimensional visual is simultaneously graphed for t = 0 and for
the same values of involved parameters.

Figure 5. The three-dimensional and contour visuals of the 3-kink soliton solution w1,1 stated
in (55) are graphed for κ := .11, µ := 2, υ := .1, Xi := 1, β := .156, α = .155, n = 1,m =
.1.l = .11, λ = .11. While two-dimensional visual is simultaneously graphed for t = 0 and
for the same values of involved parameters.
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Figure 6. The three-dimensional and contour visuals of the 3-kink soliton solution w1,1 stated
in (60) are graphed for κ := 1, µ := 11, υ := 1, Xi := 1, β := .156, α = .155, n = .1,m = .1.l =
.11, λ = .111. While two-dimensional visual is simultaneously graphed for t = 0 and for the
same values of involved parameters.

Figure 7. The three-dimensional and contour visuals of the 3-kink soliton solution w1,1 stated
in (61) are graphed for κ := 0, µ := 22, υ := 2, Xi := 1, β := 2, α = .55, n = .1,m = .1.l =
.2, λ = 1. While two-dimensional visual is simultaneously graphed for t = 0 and for the same
values of involved parameters.
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Figure 8. The three-dimensional and contour visuals of the 3-kink soliton solution w1,1 stated
in (75) are graphed for κ := 222, µ := 0, υ := 222, Xi := 1, β := 2, α = .5, n = 1,m = .1.l =
.11, λ = 1. While two-dimensional visual is simultaneously graphed for t = 0 and for the
same values of involved parameters.

6. Conclusions

This work investigates soliton propagation in STP4E by means of the mEDAM and ABD
techniques. We first correctly translate the equation into a nonlinear ordinary differential equation
(NODE), and then, we build families of soliton solutions for generalised exponential, hyperbolic,
trigonometric, and rational functions by assuming a series-form solution. Graphical representations
of the spreading behaviour of different soliton solutions can be produced using contour, 3D, and 2D
graphs. These results are very helpful in studying propagation processes and have applications in the
mathematics field. Without a doubt, the application of mEDAM greatly enhanced our comprehension
of soliton dynamics, nonlinear dynamics, and the connection between these and the STP4E. This
increases the likelihood that more research in these areas will be possible. On the other hand, when
there is an imbalance, the method becomes troublesome.

Author contributions

Ikram Ullah: conceptualization, methodology, writing-driginal draft; Muhammad Bilal, Aditi
Sharma, Shivam Bhardwaj: formal analysis, validation, software, visualization, review & editing;
Hasim Khan, Sunil Kumar Sharma: mathematical modeling, data curation, mathematics-related tasks,
writing-review & editing.

All authors have read and approved the final version of the manuscript for publication.

AIMS Mathematics Volume 9, Issue 11, 32674–32695.



32693

Acknowledgments

The author extends the appreciation to the Deanship of Postgraduate Studies and Scientific Research
at Majmaah University for funding this research work through the project number (ICR-2024-1378).
We also acknowledge Central South University China for its support through the TAS research
laboratory.

Conflict of interest

The authors declare no conflict of interest.

References

1. A. Khan, T. Abdeljawad, J. F. Gomez-Aguilar, H. Khan, Dynamical study of fractional
order mutualism parasitism food web module, Chaos Soliton. Fract., 134 (2020), 109685.
https://doi.org/10.1016/j.chaos.2020.109685

2. M. Aslam, R. Murtaza, T. Abdeljawad, G. U. Rahman, A. Khan, H. Khan, et al., A fractional
order HIV/AIDS epidemic model with Mittag-Leffler kernel, Adv. Differ. Equ., 2021 (2021), 107.
https://doi.org/10.1186/s13662-021-03264-5

3. H. Khan, Z. A. Khan, H. Tajadodi, A. Khan, Existence and data-dependence theorems
for fractional impulsive integro-differential system, Adv. Differ. Equ., 2020 (2020), 458.
https://doi.org/10.1186/s13662-020-02823-6
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28. R. Özarslan, Dünya bankası reel verileri İle gayri safi yurtiçi hasıla modeline conformable
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