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1. Introduction

Fractional calculus has garnered much attention in the last few years, leading to a concentration on
fractional calculus in applied mathematics, applied physics, mathematical biology, and engineering;
for example, see these works [3, 9, 10] and references therein. The Riemann-Liouville definition is
the most frequently employed [4, 16, 17, 26]. Since fractional differential equations are encountered
in many practical disciplines, this research area is now growing. Using the Mittag-Leffler function as
well as the generalized sine and cosine functions, the system of fractional differential equations has
been analytically solved. The fractional derivative operator used in this solution is of the Jumarie type;
see [33]. In [1, 4, 17, 20, 21, 24, 27, 31, 32, 34], numerous mathematicians have dealt with fractional
integrals that are barely different, like Hadamard, Caputo, Caputo-Fabrizio, AB, etc. In [36], fractional
derivatives models are produced by using fractional calculus in the constitutive relation. This generic
form made fractional derivatives models more adaptable and suited to represent the characteristics and
behavior of many materials or structures. In [35], the authors used the differential transform method to
offer approximate analytical solutions for systems of fractional differential equations. The fractional
derivative model is used to analyze significant viscoelastic beam deflection; see [30]. The solution
of systems with fractional differential equations, integral equations, and fractional calculus are some
of the mathematical applications of the Mittag-Leffler functions; see [24, 27]. Currently, there is a
great deal of literature available on their attributes and history because of all this effort, see [6, 7, 15].
Among the evaluations that have been conducted, the monograph by Gorenflo, Kilbas, Mainardi, and
Rogosin is particularly noteworthy, see [8, 11, 22, 25]. The LT used to solve linear fractional-order
differential equations, see [28]. In [23], authors have studied the exponential function-based solution
to a linear fractional differential equation with constant coefficients using the modified LT method. It
was explained how this method can convert a fractional problem into an ordinary one by using multiple
instances for fractional order. Lin and Lu in [29] presented some problems on oscillations of spring for
particular solutions of fractional differential equations using the Riemann-Liouville approach with the
Laplace transform.

In [12], authors proposed a novel fractional differential problem to explain the mechanical
oscillations of a simple system. Particularly, they analyzed the systems spring-damper and
mass-spring. To explain the motion of a linear oscillator using fractional derivatives with singular or
non-singular kernels. Zafar et al. have studied the fractional differential equation; see [5]. Our goal is
to study the dynamics of a fractional oscillator by replacing the second-order derivative and damping
term in the classical equation of a damped oscillator with fractional-order derivatives as defined by
Caputo and AB by using the Laplace transform method.

2. Preliminaries

In this section, we discuss several essential properties, definitions, and lemmas of fractional
calculus that will be important throughout the paper.

Definition 2.1. [2] A real function f (x), x > 0 is said to be in space Cµ, µ ∈ R if there exits a real
number p > µ, such that f (t) = tp f1(t), where f1(t) ∈ C(0,∞) and is said to be in the space Cn

µ if and
only if n ∈ Cµ, n ∈ N.

Definition 2.2. [17] The integral operator in the sense of Riemann-Liouville of order α > 0 for a
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function f ∈ Cµ, µ ≥ −1, is given by,

Iα f (t) =
1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, α > 0. (2.1)

The following are some aspects of the operator Iα, that are required in this case:
For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ ≥ −1,

IαIβ f (t) = Iα+β,

Iαtγ =
Γ(γ + 1)
Γ(γ + α + 1)

tα+γ.

Definition 2.3. [19] The fractional derivative in the Caputo sense for a function f (t) is given by

Dα f (t) = Im−αDm f (t), (2.2)

for each f ∈ Cm
−1,m − 1 < α ≤ m,m ∈ N, and t > 0.

The fractional integral operator of Riemann-Liouville is a linear operation, just like the integer-order
integration.

Iα
n∑

i=1

ci fi(t) =
n∑

i=1

ciIα fi(t),

where {ci}
n
i=1 ∈ R.

Definition 2.4. [18] The LT F(S ) for a function f (t) 0 < t < ∞, is defined as

F(s) = L{ f (t)} =
∫ ∞

0
f (t)e−stdt, (2.3)

provided the integral converges.

Definition 2.5. [11] (Generalized Mittag-Leffler function) The generalized Mittag-Leffler functions
are defined for α, β > 0 and z ∈ C,- as follows:

Eα,β(z) =
∞∑

n=0

zn

Γ(nα + β)
.

Where, Γ(.) is gamma function.
When β = 1, it is abbreviated as below:

Eα(z) = Eα,1(z) =
∞∑

n=0

zn

Γ(nα + 1)
.

Definition 2.6. [1, 13, 14] The AB fractional derivative in the framework of Liouville–Caputo (ABC)
is given as follows:

ABC
a Dαt f(t) =

B(α)
1 − α

∫ t

a
f (θ)Eα

[
−α(t − θ)α

(1 − α)

]
dθ, (2.4)

such that B(α) is a normalization function, and B(0) = B(1) = 1.
In addition to being very advantageous when applying the LT to solve various physical problems

with initial conditions, this definition will be useful in discussing real-world challenges.
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Definition 2.7. [1, 13, 14] The LT of the AB fractional derivative in the framework of
Liouville-Caputo (ABC) of f (t) is given as follows:

L
[

ABC
a Dαt f(t)

]
(s) =

B(α)
1 − α

L
[∫ t

a
f (θ)Eα

[
−α(t − θ)α

(1 − α)

]
dθ

]
(2.5)

=
B(α)
1 − α

[
sαL[ f (t)](s) − sα−1 f (0)α

s

]
+
α

1 − α
.

Consider f (t) to be a continuous function on [0,∞), which is of exponential order, that is, for some
c ∈ R and t > 0

sup
{
| f (t)|
ect

}
< ∞.

In this case, the LT exists for all s > c.
Herein, several useful properties of the LTs that are required for our study,

L{tβ} =
Γ(β + 1)

sβ+1 , β > −1,

L{ f n(t)} = snF(s) − sn−1 f (0) − sn−2 f́ (0) − .... − f (n−1)(0),

L{tn f n(t)} = (−1)nFn(s),

L
[∫ t

0
f (x)dx

]
=

F(s)
s
,

L
[∫ t

0
f (t − x)g(x)dx

]
= F(s)G(s).

Lemma 2.1. [28] The LT of the Riemann-Liouville fractional integral operator order α > 0 is as
follows:

L{Iα f (t)} =
F(s)
sα
. (2.6)

Lemma 2.2. [28] The LT of the Caputo fractional derivative for m−1 < α ≤ m,m ∈ N is given below

L{Dα f (t)} =
smF(s) − sm−1 f (0) − sm−2 f́ (0) − ... − f m−1 f (0)

sm−α . (2.7)

Furthermore, the inverse LT of F(s) is defined as,

L−1[F(s)] =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT
esxF(s)ds, (2.8)

where F(s) is defined for the real part of s ≥ σ, and σ is large enough.

Lemma 2.3. [28] For sα > |a|, a ∈ R and α, β > 0, one has the next inverse LT form:

L−1
[

sα−β

sα + a

]
= tβ−1Eα,β(−atα). (2.9)
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3. Main results

Herein, we look at the displacement problem for damped oscillations, forced oscillations (without
damping), free oscillations, and damped forced oscillations.

3.1. The Caputo fractional derivative case

Propsition 3.1. Assume a light spring has a fixed end at O and a mass m hanging from it at point
A as shown in Figure 1. Consider the elongation e = AB which is caused by the hanging mass in
equilibrium position. Due to the elasticity of the material of the spring, it has restoring force per unit
stretch of the spring. Then condition for the equilibrium position at point B is mg = T = ke.

Figure 1. Free oscillations.

At any time t, let the position of mass be at P, where BP = x.
Consider the mathematical equation for the displacement of motion of mass m at any time t having

a system of single degrees of freedom given by,

CD2α
t x(t) + µ2x(t) = 0, X(0) = x0 and X́(0) = x1. (3.1)

Where
µ2 =

k
m
.

Taking LT of (3.1), we obtain,

s2X(s) − sX(0) − X́(0)
s2−α + µ2X(s) = 0.

sαX(s) − s−(1+α)x0 − sα−2x1 + µ
2X(s) = 0.(

sα + µ2
)

X(s) = s−(1+α)x0 + sα−2x1.

X(s) =
s−(1+α)x0

sα + µ2 +
s(α−2)x1

sα + µ2 . (3.2)
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Taking the inverse LT of (3.2), we obtain,

x(t) = t0x0Eα,1
(
−µ2t−α

)
+ x1tEα,2

(
µ2tα

)
.

Example. A 15 kg body is suspended from a spring. The spring will extend to 20 cm with a 25 kg
pull. After being drawn down to a location 25 cm below the static equilibrium, the body is released.
Calculate the displacement of the body from equilibrium at time t seconds, taking into account x(0) = 1
and x ´(0) = 2.

Considering that a 25 kg weight lift extends the spring by 0.2 m. 25 = T0 = k × e⇒ k = 125kg/m.
Also, 15 = TB = k × AB⇒ AB = TB

k = 0.12m.
It is now necessary to lower the weight to C, where BC = 25cm = 0.25m. When the weight is

released from C, let it be at P, where BP = x, at any time t seconds later. Here, µ2 = k
m = 81.667 ⇒

µ = 9.037.
Therefore, the displacement of the body at any time t is given by,

x(t) = t0Eα,1
(
81.667t−α

)
+ 2tEα,2 (81.667tα) .

3.1.1. Damped oscillations

Here, we study the mechanical system having damped oscillation.

Propsition 3.2. Considering the damping force proportional to velocity as shown in Figure 2, i.e.,
rCDαt x(t), the equation for the displacement of the motion of the mass m having a system of single
degrees of freedom is given by,

CD2α
t x(t) + 2λCDαt µ

2x(t) = 0, X(0) = x0 and X́(0) = x1. (3.3)

Where,
r
m
= 2λ and µ2 =

k
m
.

Figure 2. Damped oscillations.
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Taking LT of (3.3), we have,

sαX(s) − s−(1+α)X(0) − s(α−2) ´X(0) + 2λ
[

sX(s) − X(0)
s1−α

]
+ µ2X(s) = 0.

sαX(s) − s−(1+α)x0 − s(α−2)x1 + 2λsαX(s) − 2λs(α−1)x0 + µ
2X(s) = 0.

sαX(s) − s−(1+α)x0 − s(α−2)x1 + 2λsαX(s) − 2λs(α−1)x0 + µ
2X(s) = 0.(

sα + 2λsα + µ2
)

X(s) −
(
s−(1+α) − 2λs(α−1)

)
x0 − sα−2x1 = 0.(

sα + 2λsα + µ2
)

X(s) =
(
s−(1+α) − 2λs(α−1)

)
x0 + sα−2x1.

X(s) =
s−(1+α)x0

(1 + 2λ)sα + µ2 −
2λsα−1x0

(1 + 2λ)sα + µ2 +
sα−2x1

(1 + 2λ)sα + µ2 .

X(s) =
1

(1 + 2λ)

[
s−(1+α)

]
x0[

sα + µ2

(1+2λ)

] − 2λx0

(1 + 2λ)
sα−1[

sα + µ2

(1+2λ)

] + 1
(1 + 2λ)

sα−2[
sα + µ2

(1+2λ)

] x1. (3.4)

Taking the inverse LT of (3.4), we obtain,

x(t) =
1

(1 + 2λ)
x0t0Eα,1

[
−
µ2

1 + 2λ
t−α

]
−

2λx0t0

(1 + 2λ)
Eα,1

[
−
µ2tα

1 + 2λ

]
+

x1t
1 + 2λ

Eα,2

[
−
µ2

1 + 2λ
tα
]
.

3.1.2. Forced oscillations (without damping)

Here, we study the mechanical system having forced oscillation without damping.

Propsition 3.3. Forced oscillation is the motion that results when the spring’s support point vibrates
in response to an external periodic force as shown in Figure 3. Assuming the external periodic force to
be mPcos(nt), the equation for the displacement of motion of mass m having a system of single degrees
of freedom is given by,

CD2α
t x(t) + µ2x(t) = Pcosnt, X(0) = x0 and X́(0) = x1. (3.5)

Figure 3. Forced oscillations.
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Where,

µ2 =
k
m
.

Taking LT of (3.5), we obtain,

sαX(s) − s−(1+α)X(0) − sα−2X́(0) + µ2X(s) = P
s

s2 + n2 .(
sα + µ2

)
X(s) − s−(1+α)x0 − sα−2x1 = P

s
s2 + n2 .(

sα + µ2
)

X(s) = P
s

s2 + n2 + s−(1+α)x0 + sα−2x1.

X(s) = P
s(

s2 + n2) 1(
sα + µ2) + s−(1+α)x0

sα + µ2 +
sα−2x1

sα + µ2 . (3.6)

Taking the inverse LT of (3.6), we have,

x(t) = P
∫ t

0

[
cos [n(t − u)] tα−1Eα,α

[
−µ2tα

]]
du + t0x0Eα,1

[
−µ2t−α

]
+ x1tEα,2

[
−µ2tα

]
.

3.1.3. Damped forced oscillations

Here, we study the mechanical system having forced oscillation with damping.

Propsition 3.4. Considering the extra damping force proportional to velocity r dαx
dtα as shown in

Figure 4, the equation for the displacement of motion for mass m having a system of single degrees of
freedom is given by,

CD2α
t x(t) + 2λCDαt x(t) + µ2x(t) = Pcosnt, X(0) = x0 and X́(0) = x1. (3.7)

Where,
r
m
= 2λ and µ2 =

k
m
.

Figure 4. Damped forced oscillations.
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Taking LT of (3.7), we obtain,

sαX(s) − s−(1+α)X(0) − s(α−2)X́(0) + 2λ
[

sX(s) − X(0)
s1−α

]
+ µ2X(s) = P

s
s2 + n2 .

sαX(s) − s−(1+α)x0 − s(α−2)x1 + 2λsαX(s) − 2λs(α−1)x0 + µ
2X(s) = P

s
s2 + n2 .(

sα + 2λsα + µ2
)

X(s) = P
s

s2 + n2 + s−(1+α)x0 + sα−2x1 + 2λs(α−1)x0.

X(s) = P
s(

s2 + n2) 1[
sα(1 + 2λ) + µ2] + x0

s−(1+α)[
sα(1 + 2λ) + µ2]

+x1
sα−2[

sα(1 + 2λ) + µ2] + 2λx0
sα−1[

sα(1 + 2λ) + µ2] .
X(s) = P

s(
s2 + n2) 1

(1 + 2λ)
[
sα + µ2

(1+2λ)

] + x0

(1 + 2λ)
s−(1+α)[

sα + µ2

1+2λ

]
+

x1

(1 + 2λ)
sα−2[

sα + µ2

(1+2λ)

] + 2λ.x0

(1 + 2λ)
1[

sα + µ2

(1+2λ)

] (3.8)

Taking the inverse LT of (3.8), we obtain,

x(t) = P
1

(1 + 2λ)

∫ t

0

[
cos[n(t − u)]tα−1Eα,α

[
−

µ2

(1 + 2λ)tα

]]
du

+
x0

(1 + 2λ)
t0x0Eα,1

[
−
µ2

(1 + 2λ)
t−α

]
+

x1

(1 + 2λ)
tEα,2

[
−
µ2

(1 + 2λ)
tα
]
+

2λx0

(1 + 2λ)
t0Eα,1

[
−
µ2

(1 + 2λ)
tα
]
.

3.2. The Atangana-Baleanu fractional derivative case

3.2.1. Free oscillations

Here, we study the mechanical system having free oscillation.

Propsition 3.5. Considering the free oscillations of a system of single degrees of freedom given in
Figure 1, the mathematical equation for the displacement of motion of mass m at any time t is given by,

1
σ2(1−α)

ABC

a
D2α

t x(t) + µ2x(t) = 0, X(0) = x0 and X́(0) = x1. (3.9)

Where,

µ2 =
k
m
.

ABC
a D2α

t x(t) + ω2x(t) = 0,

where,
ω2 = µ2σ2(1−α).
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Taking LT of (3.9), we obtain,

B(α)2

(1 − α)2

 s2αX(s) − s(2α−1)X(0)(
sα + α

1−α

)2

 + µ2ω2X(s) = 0.

B(α)2

(1 − α)2

 s2αX(s)(
sα + α

1−α

)2

 − B(α)2

(1 − α)2

 s2α−1x0(
sα + α

1−α

)2

 + µ2ω2X(s) = 0.

 B(α)2

(1 − α)2

s2α(
sα + α

1−α

)2 + µ
2ω2

 X(s) =
B(α)2

(1 − α)2

 s2α−1x0(
sα + α

1−α

)2

 .[
B(α)2s2α + µ2ω2(1 − α)2

(
sα +

α

1 − α

)2
]

X(s) = B(α)2s2α−1x0.

X(s) =
B(α)2s2α−1x0

B(α)2s2α + µ2ω2(1 − α)2
(
sα + α

1−α

)2 .

X(s) =
B(α)2s2α−1x0[

B(α) + iωµ(1 − α)
] [

B(α) − iωµ(1 − α)
] 1[

sα + iωµ
B(α)+iωµ(1−α)

] [
sα − iωµ

B(α)−iωµ(1−α)

] . (3.10)

Taking the inverse LT of (3.10), we obtain,

x(t) =
B(α)2x0

B(α)2 + µ2ω2(1 − α)2

∫ t

0
(t − τ)α−1.

Eα,−α

[
iωµα

B(α) + iωµ(1 − α)

]
(t − τ)αταEα,α+1

[(
iωµα

B(α) − iωµ(1 − α)

)
tα
]

dτ.

3.2.2. Forced oscillations

Here, we study the mechanical system having forced oscillation.

Propsition 3.6. Assuming the system of forced oscillations given in Figure 3 has a single degree of
freedom and considering the external periodic force to be mPcos(nt), the equation for the displacement
of motion of mass m is given by,

ABC
a D2α

t + µ
2x = Pcos(nt), X(0) = x0 and X́(0) = x1. (3.11)

Where,

µ2 =
k
m
.

Taking LT of (3.11), we obtain,

B(α)2

(1 − α)2

 s2αX(s) − s2α−1X(0)(
sα + α

(1−α)

)2

 + µ2X(s) = P
s

s2 + n2 .
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B(α)2

(1 − α)2

 s2α(
sα + α

(1−α)

)2

 X(s) −
B(α)2

(1 − α)2

 s2α−1x0(
sα + α

(1−α)

)2


+

(1 − α)2
(
sα + α

(1−α)

)2
µ2X(s)

(1 − α)2
(
sα + α

(1−α)

)2 = P
s

s2 + n2 . B(α)2

(1 − α)2

s2α(
sα + α

(1−α)

)2 +
(1 − α)2

(
sα + α

(1−α)

)2

(1 − α)2
(
sα + α

(1−α)

)2

 x(s) = P
s

s2 + n2 +
B(α)2s2α−1x0

(1 − α)2
(
sα + α

(1−α)

)2 .

X(s) = P
s(

s2 + n2) (1 − α)2
(
sα + α

1−α

)2[
B(α)2s2α + (1 − α)2

(
sα + α

(1−α)

)2
µ2

]
+

B(α)2s2α−1x0[
B(α)2s2α + (1 − α)2

(
sα + α

(1−α)

)2
µ2

] .
X(s) = P

[
(1 − α)2s2α + 2α(1 − α)sα + α2

]
[
B(α)2 + (1 − α)2] [s2α +

α2µ2

B(α)2+(1−α)2

] s(
s2 + n2)

+
B(α)2x0s2α−1[

B(α)2 + (1 − α)2] [s2α +
α2µ2

B(α)2+(1−α)2

] .
X(s) =

P[
B(α)2 + (1 − α)2] (1 − α)2s2α(

sα + iα2µ2

B(α)2+(1−α)2

) (
sα − iα2µ2

B(α)2−(1−α)2

) s(
s2 + n2)

+
P[

B(α)2 + (1 − α)2] 2αsα(1 − α)(
sα + iα2µ2

B(α)2+(1−α)2

) (
sα − iα2µ2

B(α)2−(1−α)2

) s(
s2 + n2)

+
P[

B(α)2 + (1 − α)2] α2(
sα + iα2µ2

B(α)2+(1−α)2

) (
sα − iα2µ2

B(α)2−(1−α)2

) s(
s2 + n2)

+
B(α)2x0[

B(α)2 + (1 − α)2] s2α−1(
sα + iα2µ2

B(α)2+(1−α)2

) (
sα − iα2µ2

B(α)2−(1−α)2

) . (3.12)

Taking the inverse LT of (3.12), we have,

x(t) =
P(1 − α)2[

B(α)2 + (1 − α)2] ∫ t

0

[
aEα,1 (aτα) + bEα,−1 (−bτα)

a + b

] 1 − sin
(
n2(t − τ)

)
n2

 τ−2dτ

+
P2α(1 − α)2[

B(α)2 + (1 − α)2] ∫ t

0

[
aEα,α (aτα) + bEα,α (−bτα)

a + b

] [
cos

(
n2(t − τ)

)]
τdτ

+
Pα2[

B(α)2 + (1 − α)2] ∫ t

0

[
aEα,2α (aτα) + bEα,2α (−bτα)

a + b

] [
cos

(
n2(t − τ)

)]
τ(2α−1)dτ

+
B(α)2x0[

B(α)2 + (1 − α)2] ∫ t

0

[
aEα,1 (aτα) + bEα,1 (−bτα)

a + b

]
dτ.
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3.2.3. Transient vibrations

The transient and steady states are the two states of motion in a system that is periodically excited.
In the majority of these situations, the steady state portion endures while the transient portion fades
away quickly. On the other hand, the system’s reaction is only transient when the excitation is not
of a periodic character, such as a shock pulse or transient excitation. Following the period of the
excitation, the system vibrates at its inherent frequency and amplitude, which vary according to the
kind and intensity of the stimulation. In these situation, the transient vibrations are significant. Rock
explosions, gunfires, parcels being loaded or unloaded by dumping them on hard floors, punching
operations, fast-moving cars slamming over potholes or road curbs, etc. are some real-world instances
of shock-excited transient vibrations. Response to an impulsive input. Let the damped spring of mass
m that is exposed to an impulse F̂δ(t) with a strength of F̂. Because the impulse works for such a short
period, it has the effect of giving the mass m’s initial velocity, which is given by

F̂ = mdv.

The symbol dv represents how the impulse F̂ affects the velocity change of mass m. Impulse gives
the stationary system a starting speed

dv =
F̂
m
.

The mass m at the equilibrium position experiences zero initial displacement due to the very short
impulse duration. Therefore, the initial conditions for the mass are specified as,

X(0) = 0 and ´X(0) =
F̂
m
.

Figure 5. Response to an impulsive input.

Propsition 3.7. The differential equation for the displacement of motion of mass m as shown in
Figure 5, when the forcing function has been taken to be zero since the impulse effectively gives only
the initial conditions is given by,

CD2α
t x(t) + 2ξωC

n Dαt x(t) + ω2
nx(t) = 0, (3.13)
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where
c
m
= 2ξωn and

k
m
= w2

n.

Applying the LT of (3.13), we obtain,

sαX(s) − s(1+α)X(0) − s(α−2)X́(0) + 2ξωn

[
sX(s) − X(0)

s1−α

]
+ ω2

nX(s) = 0.

By applying the initial condition

sαX(s) − s(α−2) F̂
m
+ 2ξωnsαX(s) + ω2

nX(s) = 0.

[
sα + 2ξωnsα + ω2

n

]
X(s) = s(α−2) F̂

m
.

X(s) = s(α−2) F̂
m

1[
sα + 2ξωnsα + ω2

n
] .

X(s) =
F̂
m

s(α−2)[
sα(1 + 2ξωn) + ω2

n
] .

X(s) =
F̂

m(1 + 2ξωn)
s(α−2)[

sα + ω2
n

(1+2ξωn)

] .
X(s) =

F̂
m(1 + 2ξωn)

s(α−2)[
sα + ω2

n
(1+2ξωn)

] . (3.14)

Taking the inverse LT of (3.14), we have,

x(t) =
F̂

m(1 + 2ξωn)
tE(α, 2)

− ωn√
1 + 2ξωn

tα
 .

Response to a step input.

Propsition 3.8. Let a spring of mass m dashpot system and is subjected to a step force F0u(t) as shown
in Figure 6. Whenever the time is larger than or equal to zero, the magnitude of the force remains
constant at F0. The force is zero for t < 0. The differential equation of the motion of the mass at any
time t is given by,

CD2α
t x(t) + 2ξωC

n Dαt x(t) + ω2
nx(t) =

F0

m
u(t), X(0 = 0) and ´X(0) = 0. (3.15)

Where,
c
m
= 2ξωn and

k
m
= w2

n.
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Figure 6. Response to a step input.

Taking the LT of (3.15), we obtain,

sαX(s) − s(1+α)X(0) − s(α−2)X́(0) + 2ξωn

[
sX(s) − X(0)

s1−α

]
+ ω2

nX(s) =
F0

ms
.

As the second-order system exposed to a finite step cannot possess any initial velocity or displacement.
Hence, all initial conditions being assumed as zero in the equation stated above, we obtain,

sαX(s) + 2ξωnsαX(s) + ω2
nX(s) =

F0

ms
.

[
sα + 2ξωnsα + ω2

n

]
X(s) =

F0

ms
.

X(s) =
F0

ms
1[

sα + 2ξωnsα + ω2
n
] .

X(s) =
F0

m
1

(1 + 2ξωn)
1
s

1[
sα + ω2

n
(1+2ξωn)

] . (3.16)

Taking the inverse LT of (3.16), we have,

x(t) =
F0

m
1

(1 + 2ξωn)

∫ t

0
tα−1E(α,α)

− ωn√
(1 + 2ξωn)

tα
 dt.

4. Conclusions

In this research work, the result is obtained for the displacement of motion of mass m by solving
the fractional differential equations considering the system of single degrees of freedom of free
oscillations, forced oscillations, damped oscillations, and damped forced oscillations. The fractional
differential equations are considered for the problems of oscillations of spring using the Caputo and
AB fractional derivatives. Moreover, the obtained results are applied for the system of a single degree
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of freedom of the transient vibrations in which the initial conditions are taken in the form of impulse
function, which has very much importance in geography. On the other hand, the result is applied to
the system, which is subjected to a step force.

The solution of fractional differential equations formed for the different types of oscillations of
spring is obtained in the form of the Mittag-Leffler function Eα(Z) and the generalized Mittag-Leffler
function Eα,β(z). It has been found that the Laplace transform method is a powerful tool in applied
mathematics and engineering. It will allow us to transform fractional differential equations into
algebraic equations, and then by solving these algebraic equations, the unknown function by using the
inverse Laplace transform can be obtained.
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