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1. Introduction

The problem of asymptotic p-stability or Lp-boundedness in the theory of stochastic systems is
studied in a lot of different works (see, e.g., [1–3, 6, 7, 14–19]). However, it cannot be said that this
problem has been studied sufficiently thoroughly. Here some new results are considered, obtained in
this direction, as well as one unsolved problem about the rate of fading on the infinity of stochastic
perturbations, at which the stability of the zero solution of the equation under consideration is saved.
This unsolved problem complements the series of recently published unsolved problems in stability
and optimal control theory of stochastic systems (see, e.g., [8–11] and references therein).

Let {Ω,F,P} be a complete probability space, {Ft}t≥0 be a nondecreasing family of sub-σ-algebras
of F, i.e., Fs ⊂ Ft for s < t, P{·} be the probability of an event enclosed in the braces, E be the
mathematical expectation, H2 be the space of F0-adapted stochastic processes φ(s), s ≤ 0, ∥φ∥0 =
sups≤0 |φ(s)|, ∥φ∥p1 = sups≤0 E|φ(s)|p, p > 0.

Following Gikhman and Skorokhod [4], let us consider the linear stochastic differential equation
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with delay

dx(t) = (Ax(t) + Bx(t − h))dt +
m∑

i=1

Ci(t)x(t)dwi(t) +
∫

G(t, u)x(t)ν̃(dt, du), t ≥ 0,

x(s) = ϕ(s) ∈ H2, s ∈ [−h, 0],

(1.1)

where x(t) ∈ Rn, A, B,Ci(t), and G(t, u) are n×n-matrices, h > 0, w1(t), ...,wm are mutually independent
standard Wiener processes, ν̃(t, A) = ν(t, A) − tΠ(A), ν(t, A) is the Poisson measure with Eν(t, A) =
tΠ(A) [4].

Consider a functional V(t, φ) : [0,∞) × H2 → R+ that can be represented in the form V(t, φ) =
V(t, φ(0), φ(s)), s < 0, and for φ = xt put [12]

Vφ(t, x) = V(t, φ) = V(t, xt) = V(t, x, x(t + s)),
x = φ(0) = x(t), s < 0.

(1.2)

Note that here and everywhere below x(t) denotes a value of the solution of the Eq (1.1) in the time
moment t, xt denotes a trajectory of the solution x(s) of the Eq (1.1) for s ≤ t.

Let D be the set of the functionals for which the function Vφ(t, x) defined by (1.2) has a continuous
derivative with respect to t and two continuous derivatives with respect to x. The generator L of the
Eq (1.1) is defined on the functionals from D and has the form [4, 12]

LV(t, xt) =
∂

∂t
Vφ(t, x(t)) + ∇V ′φ(t, x(t))(Ax(t) + Bx(t − h))

+
1
2

m∑
i=1

x′(t)C′i (t)∇
2Vφ(t, x(t))Ci(t)x(t)

+

∫
[Vφ(t, x(t) +G(t, u)x(t)) − Vφ(t, x(t))

− ∇V ′φ(t, x(t))G(t, u)x(t)]Π(du).

(1.3)

Definition 1.1. [12] The zero solution of the Eq (1.1) is called:
- p-stable, p > 0, if for each ε > 0 there exists a δ > 0 such that E|x(t, ϕ)|p < ε, t ≥ 0, provided that
∥ϕ∥

p
1 < δ;

- asymptotically p-stable if it is p-stable and lim
t→∞

E|x(t, ϕ)|p = 0 for each initial function ϕ;
- stable in probability if for any ε1 > 0 and ε2 > 0 there exists δ > 0, such that the solution x(t, ϕ) of
the Eq (1.1) satisfies the condition P{supt≥0 |x(t, ϕ)| > ε1/F0} < ε2 for any initial function ϕ such that
P{∥ϕ∥0 < δ} = 1.

Theorem 1.1. [12] Let there exist a functional V(t, φ) ∈ D, positive numbers c1, c2, c3 and p ≥ 2, such
that the following conditions hold:

EV(t, xt) ≥ c1E|x(t)|p, EV(0, ϕ) ≤ c2∥ϕ∥
p, ELV(t, xt) ≤ −c3E|x(t)|p, t ≥ 0. (1.4)

Then the zero solution of the Eq (1.1) is asymptotically p-stable.
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Theorem 1.2. [12] Let there exist a functional V(t, φ) ∈ D, positive numbers c1, c2, p, such that the
following conditions hold:

V(t, xt) ≥ c1|x(t)|p, V(0, ϕ) ≤ c2∥ϕ∥
p
0 , LV(t, xt) ≤ 0, t ≥ 0. (1.5)

Then the zero solution of the Eq (1.1) is stable in probability.

Below conditions of asymptotic p-stability for some particular cases of the Eq (1.1) are presented
in the hope that the currently unsolved problem of obtaining the best conditions on the rate of fading
stochastic perturbations for asymptotic p-stability of the zero solution of the Eq (1.1) in the general
case will attract the attention of potential readers.

2. Some particular cases

2.1. The case p = 2

Theorem 2.1. Let there exist positive definite n × n-matrices P, R, and the function ρ(t), such that the
following inequalities hold:

m∑
i=1

C′i (t)PCi(t) +
∫

G′(t, u)PG(t, u)Π(du) ≤ ρ(t)P,

Φ =

[
A′P + PA + R PB

B′P −R

]
< 0,

∫ ∞

0
ρ(t)dt < ∞.

(2.1)

Then the zero solution of the Eq (1.1) is asymptotically mean square stable.

The proof of Theorem 2.1 is presented in [11] (in the case m = 1), where via the general method
of Lyapunov functional construction [5, 12, 13] it is shown that the Lyapunov functional V(t, xt) =
V1(t, x(t)) + V2(t, xt) with

V1(t, x(t)) = γ(t)x′(t)Px(t), V2(t, xt) =
∫ t

t−h
γ(s + h)x′(s)Rx(s)ds, γ(t) = e−

∫ t
0 ρ(s)ds, (2.2)

satisfies the conditions of Theorem 1.1 with p = 2.

2.2. The case B = 0, G(t, u) = 0

Theorem 2.2. Let there exists a positive definite n × n-matrix P and the function ρ(t) such that the
following inequalities hold:

PA + A′P < 0,
m∑

i=1

C′i (t)PCi(t) ≤ ρ(t)P,
∫ ∞

0
ρ(s)ds < ∞. (2.3)

Then the zero solution of the Eq (1.1) is asymptotically p-stable for p ≥ 2.

Proof. Via (1.3) for the function

V(t, x) = γ(t)(x′Px)p/2, γ(t) = e−q
∫ t

0 ρ(s)ds, q =
1
2

p(p − 1), (2.4)
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we have
LV(t, x(t)) =γ(t)

[
− qρ(t)(x′(t)Px(t))p/2 +

p
2

(x′(t)Px(t))p/2−12x′(t)PAx(t)

+
p
2

(p − 2)(x′(t)Px(t))p/2−2
m∑

i=1

(x′(t)PCi(t)x(t))2

+
p
2

(x′(t)Px(t))p/2−1
m∑

i=1

x′(t)C′i (t)PCi(t)x(t)
]
.

Via the inequality (a′b)2 ≤ (a′a)(b′b) with a = P0.5x(t), b = P0.5Ci(t)x(t), we obtain

(x′(t)PCi(t)x(t))2 ≤ (x′(t)Px(t))(x′(t)C′i (t)PCi(t)x(t)).

From here (2.4), (2.3), and 2x′(t)PAx(t) = x′(t)(PA + A′P)x(t), it follows that

LV(t, x(t)) ≤γ(t)(x′(t)Px(t))p/2−1
[
− qρ(t)(x′(t)Px(t))

+
p
2

x′(t)(PA + A′P)x(t) + q
m∑

i=1

(x′(t)C′i (t)PCi(t)x(t))
]

≤
p
2
γ(t)(x′(t)Px(t))p/2−1x′(t)(PA + A′P)x(t)

≤
p
2
γ(∞)(x′(t)Px(t))p/2−1x′(t)(PA + A′P)x(t)

≤
p
2
γ(∞)λmin|x(t)|p−2x′(t)(PA + A′P)x(t) ≤ −c|x(t)|p,

(2.5)

where λmin > 0 is a minimal eigenvalue of the matrix P and c > 0.
Via Theorem 1.1, it means that the zero solution of the Eq (1.1) in the case B = 0, G(t, u) = 0, is

asymptotically p-stable. The proof is completed. □

2.3. Scalar case

Consider the Eq (1.1) in the scalar case:

A = −a < 0, B = b, Ci(t) = ci(t), G(t, u) = g(t, u). (2.6)

Lemma 2.1. [13] Arbitrary positive numbers a, b, α, β, γ satisfy the inequality

aαbβ ≤
α

α + β
aα+βγβ +

β

α + β
bα+βγ−α. (2.7)

Equality is reached for γ = ba−1.

Theorem 2.3. If a > |b| and the function

ρ(t) =
m∑

i=1

p(2p − 1)c2
i (t) +

∫
[(1 + g(t, u))2p − 1 − 2pg(t, u)]Π(du), p ≥ 1, (2.8)

satisfies the condition
∫ ∞

0
ρ(t)dt < ∞ then the zero solution of the Eq (1.1), (2.6) is asymptotically

2p-stable.

AIMS Mathematics Volume 9, Issue 11, 32571–32577.



32575

Proof. Via the generator (1.3) for the function V1(t, x) = γ(t)x2p, where γ(t) = e−
∫ t

0 ρ(s)ds and ρ(t) is
defined in (2.8), we have

LV1(t, x(t)) =γ(t)
[
− ρ(t)x2p(t) + 2px2p−1(t)(−ax(t) + bx(t − h))

+

m∑
i=1

p(2p − 1)c2
i (t)x2p(t)

+

∫
[(1 + g(t, u))2p − 1 − 2pg(t, u)]Π(du)x2p(t)

]
=γ(t)

[
2pbx2p−1(t)x(t − h) +

(
− 2pa − ρ(t) +

m∑
i=1

p(2p − 1)c2
i (t)

+

∫
[(1 + g(t, u))2p − 1 − 2pg(t, u)]Π(du)

)
x2p(t)

]
=γ(t)

[
2pbx2p−1(t)x(t − h) − 2pax2p(t)

]
.

Using (2.7), we obtain

2p|bx2p−1(t)x(t − h)| ≤ |b|[(2p − 1)x2p(t) + x2p(t − h)].

So,
LV1(t, x(t)) ≤γ(t)

[
|b|[(2p − 1)x2p(t) + x2p(t − h)] − 2pax2p(t)

]
=γ(t)

[
[2p(|b| − a) − |b|]x2p(t) + |b|x2p(t − h)

]
.

Using that γ(t + h) ≤ γ(t) and the additional functional V2(t, xt) = |b|
∫ t

t−h
γ(s + h)x2p(s)ds with

LV2(t, xt) = |b|
[
γ(t + h)x2p(t) − γ(t)x2p(t − h)

]
≤ γ(t)

[
|b|x2p(t) − |b|x2p(t − h)

]
,

for the functional V(t, xt) = V1(t, x(t)) + V2(t, xt), we obtain

LV(t, xt) ≤ − γ(t)2p(a − |b|)x2p(t) ≤ −cx2p(t), c = 2p(a − |b|)γ(∞) > 0. (2.9)

Via Theorem 1.1, it means that the zero solution of the Eq (1.1), (2.6) is asymptotically 2p-stable. The
proof is completed. □

Remark 2.1. Note that in the case of asymptotic mean square stability (p = 1), the function (2.8) takes
the form

ρ(t) =
m∑

i=1

c2
i (t) +

∫
g2(t, u)Π(du).

Remark 2.2. Via Theorem 1.2, from the conditions (2.5) and (2.9), it follows that by the condition
γ(∞) = 0, i.e.,

∫ ∞
0
ρ(t)dt = ∞, the zero solution of the Eq (1.1) is stable in probability, that is weaker

than asymptotic p-stability.
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Remark 2.3. (About an unsolved problem) Note that the condition
∫ ∞

0
ρ(t)dt < ∞ means that the

stochastic perturbations in the Eq (1.1) fade on the infinity quickly enough. This condition is essentially
used in the proofs of Theorems 2.1–2.3. By that, the following question appears: can this condition
be relaxed? Above it is shown that under the weaker condition

∫ ∞
0
ρ(t)dt = ∞ it is possible to prove

only weaker stability in probability. Is it possible under this weaker condition to prove asymptotic
p-moment stability—this problem remains unsolved until now. It is clear that this problem requires a
proof that is fundamentally different from the proofs of Theorems 2.1–2.3 and is currently an unsolved
problem. An interesting result might seem to be the statement that under the condition

∫ ∞
0
ρ(t)dt = ∞

asymptotic p-stability is impossible. But a simple example shows that this is not so. Really, it is well
known that the zero solution of the equation dx(t) = −ax(t)dt + σx(t)dw(t) is asymptotically mean
square stable if and only if 2a > σ2 [12], but for this equation ρ(t) = σ2 and therefore

∫ ∞
0
ρ(t)dt = ∞.

3. Conclusions

To readers attention an unsolved problem about the acceptable fade rate of stochastic perturbations
of the type of white noise and Poisson’s jumps for asymptotic p-stability of the solution of a stochastic
linear delay differential equation is proposed. It is shown that for some particular cases of the
considered equation, the proposed problem can be solved using the general method of Lyapunov
functionals construction. Whether to use the method of Lyapunov functionals construction or to find a
new way to solve the given unsolved problem is the choice of the potential readers.
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