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Abstract: Consider a tree graph G with edge set E(G). The notation dG(x) represents the degree of
vertex x in G. Let f be a symmetric real-valued function defined on the Cartesian square of the set
of all distinct elements of the degree sequence of G. A graphical edge-weight-function index for the
graph G, denoted by If(G), is defined as If(G) =

∑
st∈E(G) f(dG(s), dG(t)). This paper establishes the

best possible bounds for If(G) in terms of the order of G and parameter p, subject to specific conditions
on f. Here, p can be one of the following three graph parameters: (i) matching number, (ii) the count
of pendent vertices, and (iii) maximum degree. We also characterize all tree graphs that achieve these
bounds. The constraints considered for f are satisfied by several well-known indices. We specifically
illustrate our findings by applying them to the recently introduced Euler-Sombor index.

Keywords: topological index; graphical edge-weight-function index; Euler-Sombor index; tree
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1. Introduction

For foundational concepts in graph theory and chemical graph theory that are utilized in this paper
without explicit definitions, we refer the reader to the comprehensive texts such as [13, 16, 28] for
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general graph theory, and [19, 48, 50] for those specific to chemical graph theory. These references
offer detailed explanations and are essential for understanding the fundamental terms used herein.

A graph comprising n vertices is termed an n-order graph. The notation E(G) is used to denote the
edge set of a graph G, while V(G) represents its vertex set. For any vertex x ∈ V(G), the degree of x is
denoted as dG(x). A vertex with a degree of 1 is specifically termed a pendent vertex. A matching in
a graph is defined as a set of edges such that no two edges share a common vertex, ensuring they are
pairwise non-adjacent. When a matching consists of exactly ℓ edges, it is referred to as an ℓ-matching.
The concept of a maximum matching is one of the central concepts of this study; it is the largest
possible matching within a graph, and the number of edges in such a matching is called the matching
number of the graph.

A graph invariant is a fundamental characteristic of a graph that remains unchanged under any
isomorphism of the graph [28]. In the domain of chemical graph theory, the real-valued graph
invariants are often referred to as topological indices [19, 48, 50]. The study of topological indices is
primarily motivated by their significant utility in predicting various properties of chemical compounds,
as demonstrated in numerous studies such as [18, 19, 27, 30, 41].

Topological indices that are formulated in the following specific form have been categorized as
graphical edge-weight-function indices [32]:

If(G) =
∑

st∈E(G)

f(dG(s), dG(t)),

Here, f represents a real-valued symmetric function that is defined on the Cartesian square of the
set of all distinct elements within the degree sequence of the graph G. These indices have also
been investigated under the terminology “bond incident degree indices,” as observed in studies such
as [1,10,46,51]. We remark here that the class of graphical edge-weight-function indices is a subclass
of a broader class of particular topological indices known as degree-based topological indices [25].

Let us consider a tree graph T . The current study is focused on establishing the best possible
bounds for If(T ), expressed in terms of the order of T and a parameter p, subject to specific constraints
applied to the function f. The parameter p could be one of the following: (i) the matching number,
(ii) the number of pendent vertices, and (iii) the maximum degree. Furthermore, all tree graphs that
attain these bounds are thoroughly characterized. The constraints considered here for the function f
are satisfied by a considerable number of existing topological indices. To illustrate the applicability
of the obtained results, we focus on the Euler-Sombor (ES) index [45]. In this context, the index If
corresponds to the ES index when the function f is defined as f(a1, a2) =

√
a2

1 + a2
2 + a1a2. Hence,

ES (G) =
∑

st∈E(G)

√
d2

G(s) + d2
G(t) + dG(s)dG(t).

2. Preliminaries

This section consists of the foundational definitions, notations, and a selection of preliminary
lemmas that are needed for the discussions and proofs in the subsequent sections of this paper.

We denote the path graph with n vertices as Pn and the star graph with n vertices as S n. Given a
subset S ⊂ V(G), the graph obtained by removing all the vertices of S and their corresponding incident
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edges from G is denoted by G − S . In the case when S consists of a single vertex, say S = {x}, the
notation can be simplified to G − x for ease of reference.

An edge incident to a pendent vertex, i.e., a vertex of degree 1, is known as a pendent edge. The
maximum degree of a graph G is denoted by △. A non-trivial path P : z1z2 . . . zk in a graph G is said to
be a pendent path if min{dG(z1), dG(zk)} = 1, max{dG(z1), dG(zk)} ≥ 3 and dG(zi) when 2 ≤ i ≤ k − 1.

The open neighborhood of a vertex x ∈ V(G), denoted by NG(x), is defined as the set of vertices in
G that are adjacent to x. These vertices are referred to as the neighbors of x within the graph G.

Lemma 2.1. Define a function f by f(r1, r2) =
√

r2
1 + r2

2 + r1r2 on the Cartesian square of the set of
positive real numbers. Define ϑ(r1, r2) = f(r1, r2) − f(r1 − 1, r2) for r1 > 1 and r2 > 0. Then, for
i ∈ {1, 2},

∂

∂ri
(f(r1, r2)) > 0,

∂

∂r1
(ϑ(r1, r2)) > 0 and

∂

∂r2
(ϑ(r1, r2)) < 0.

Proof. We only prove the last two inequalities. Since the function ∂f
∂r1

(the partial derivative of f with
respect to r1) is strictly increasing in r1 and the function ∂f

∂r2
is strictly decreasing in r1, we have

∂

∂r1
(ϑ(r1, r2)) =

∂

∂r1
(f(r1, r2)) −

∂

∂r1
(f(r1 − 1, r2)) > 0 and

∂

∂r2
(ϑ(r1, r2)) =

∂

∂r2
(f(r1, r2)) −

∂

∂r2
(f(r1 − 1, r2)) < 0.

Lemma 2.2. Consider the function f defined in Lemma 2.1. The function Φ defined as

Φ(r1) = f(r1, 2) + f(r1, 1) − f(r1 − 1, 1) + (r1 − 2) [f(r1, 2) − f(r1 − 1, 2)] , with r1 ≥ 2,

is strictly increasing.

Proof. By the definition of ϑ defined in Lemma 2.1, we have

Φ(r1) = f(r1, 2) + ϑ(r1, 1) + (r1 − 2)ϑ(r1, 2).

Now, because of Lemma 2.1, the derivative function Φ′ of Φ satisfies the following inequality chain:

Φ′(r1) >
∂

∂r1

(
ϑ(r1, 1) + (r1 − 2)ϑ(r1, 2)

)
> 0.

3. Fixed-order trees with a given matching number

For n ≥ 2ℓ ≥ 2, let Tn,ℓ denote the graph formed by subdividing ℓ−1 pendent edges of the (n−ℓ+1)-
order star graph S n−ℓ+1 (see Figure 1). Certainly, the graph Tn,ℓ has a matching number ℓ.

n − 2ℓ + 1 ℓ − 1

Figure 1. The tree Tn,ℓ.
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For a matching U in a graph G, a vertex x ∈ V(G) incident with a member of U is known as U-
saturated; particularly, if all the vertices of G are U-saturated, then U is called a perfect matching. We
remark that the graph T2ℓ,ℓ has a perfect matching for every ℓ ≥ 1.

Before proving the first main result of the current section, we recall the following known result:

Lemma 3.1. (See Lemmas 2.6 and 2.7 in [15]) Let G be an n-order tree.

(i) If G has a matching number ℓ such that 2ℓ = n ≥ 4, then there is a pendent edge in T incident
with a vertex having degree 2.

(ii) If 2 ≤ 2ℓ < n and if G contains at least one ℓ-matching, then G has an ℓ-matching U and a
pendent vertex w such that w is not incident with any member of U.

Theorem 3.1. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1. Let t ≥ 2 and r ≥ 1. If

(i) the function g defined as g(t, r) = f(t, r) − f(t − 1, r), is strictly decreasing in r, and

(ii) the function ℏ defined as ℏ(t) = f(t, 2) + f(t, 1) − f(t − 1, 1) + (t − 2) [f(t, 2) − f(t − 1, 2)] , is strictly
increasing,

then the inequality
If(G) ≤ f(ℓ, 1) + (ℓ − 1) [f(ℓ, 2) + f(1, 2)] (3.1)

is valid for every 2ℓ-order tree G with a matching number ℓ(≥ 1). The sufficient and necessary
condition for the equality in (3.1) to hold is that G � T2ℓ,ℓ (see Figure 1).

Proof. Set φ(ℓ) = f(ℓ, 1)+(ℓ−1) [f(ℓ, 2) + f(1, 2)]. The induction on ℓ will be used to prove the theorem.
The desired conclusion holds for ℓ ∈ {1, 2} because G � P2 when ℓ = 1 and G � P4 when ℓ = 2. This
starts the induction. Now, we assume that ℓ ≥ 3 and that the theorem holds for all 2(ℓ − 1)-order trees
with a matching number ℓ − 1. Next, we consider a 2ℓ-order tree G with a matching number ℓ(≥ 3).
Let U be the maximum matching of G. By using Lemma 3.1(i), we pick a pendent vertex u ∈ V(G)
adjacent to a vertex v of degree 2. Clearly, uv ∈ U. Since the tree G − {u, v} has order 2(ℓ − 1) and has
the matching number ℓ − 1, by inductive hypothesis it holds that

If(G − {u, v}) ≤ φ(ℓ − 1) (3.2)

with equality iff G � T2(ℓ−1),ℓ−1. Let w be the neighbor of v different from u. Note that the vertex w has
at most one pendent neighbor and that 2ℓ ≥ 6, and hence we have

2 ≤ dG(w) ≤ ℓ.

Let NG(w) = {w0(= v),w1, · · · ,wt−1}. Assume that the vertices wr+1, wr+2, · · · , wt−1 are non-pendent,
where r = 0 or 1, and dG(w1) = 1 if r = 1. By condition (i), we have

If(G) = If(G − {u, v}) + f(1, 2) + f(t, 2) + r[f(t, 1) − f(t − 1, 1)]

+

t−1∑
i=r+1

[f(t, dG(wi)) − f(t − 1, dG(wi))]
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≤ If(G − {u, v}) + f(1, 2) + f(t, 2) + r[f(t, 1) − f(t − 1, 1)]
+ (t − r − 1) [f(t, 2) − f(t − 1, 2)] . (3.3)

Since t ≥ 2, again by condition (i), we have

f(t, 1) − f(t − 1, 1) − [f(t, 2) − f(t − 1, 2)] > 0,

and hence (3.3) yields

If(G) ≤ If(G − {u, v}) + f(1, 2) + f(t, 2) + f(t, 1) − f(t − 1, 1) + (t − 2) [f(t, 2) − f(t − 1, 2)] . (3.4)

Now, by condition (ii), we have

f(t, 2) + f(t, 1) − f(t − 1, 1) + (t − 2) [f(t, 2) − f(t − 1, 2)]
≤f(ℓ, 2) + f(ℓ, 1) − f(ℓ − 1, 1) + (ℓ − 2) [f(ℓ, 2) − f(ℓ − 1, 2)] . (3.5)

From (3.2), (3.4), and (3.5), it follows that If(G) ≤ φ(ℓ) with equality iff the equalities in (3.2)–(3.5)
hold; that is, iff G − {u, v} � T2(ℓ−1),ℓ−1, dG(wr+1) = · · · = dG(wt−1) = 2, r = 1 and t = ℓ. Thus,
If(G) ≤ φ(ℓ) with equality iff G � T2ℓ,ℓ. This completes the induction and thence the proof.

The next result’s proof is completely analogous to that of Theorem 3.1 and thus we omit it.

Theorem 3.2. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1. Let t ≥ 2 and r ≥ 1. If

(i) the function g defined as g(t, r) = f(t, r) − f(t − 1, r), is strictly increasing in r, and

(ii) the function ℏ defined as ℏ(t) = f(t, 2) + f(t, 1) − f(t − 1, 1) + (t − 2) [f(t, 2) − f(t − 1, 2)] , is strictly
decreasing,

then the inequality
If(G) ≥ f(ℓ, 1) + (ℓ − 1) [f(ℓ, 2) + f(1, 2) ] (3.6)

is valid for every 2ℓ-order tree G with a matching number ℓ(≥ 1). The sufficient and necessary
condition for the equality in (3.6) to hold is that G � T2ℓ,ℓ (see Figure 1).

Theorem 3.3. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1. Let t1 ≥ 2 and t2 ≥ 1. If

(i) the function g defined as g(t1, t2) = f(t1, t2) − f(t1 − 1, t2), is strictly decreasing in t2,

(ii) the function ℏ defined as ℏ(t1) = f(t1, 2) + f(t1, 1) − f(t1 − 1, 1) + (t1 − 2) [f(t1, 2) − f(t1 − 1, 2)] , is
strictly increasing, and

(iii) the function ϕ defined as ϕ(t1, t2) = f(t1, 1)+(t2−1)
(
f(t1, 1)−f(t1−1, 1)

)
+(t1−t2)

(
f(t1, 2)−f(t1−1, 2)

)
,

is strictly increasing in t1 for t1 ≥ t2 + 1,

then the inequality

If(G) ≤ (n − 2ℓ + 1) · f(n − ℓ, 1) + (ℓ − 1) [f(n − ℓ, 2) + f(1, 2)] (3.7)

is valid for every n-order tree G with a matching number ℓ(≥ 1). The sufficient and necessary condition
for the equality in (3.7) to hold is that G � Tn,ℓ (see Figure 1).
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Proof. For the case when ℓ = 1, the theorem obviously holds. In what follows, assume that ℓ ≥ 2. Take

Ψ(n, ℓ) = (n − 2ℓ + 1) · f(n − ℓ, 1) + (ℓ − 1) [f(n − ℓ, 2) + f(1, 2)] .

We prove the result by induction on n. If n = 2ℓ, then the result follows from Theorem 3.1. Suppose
that G is an n-order tree having matching number ℓ such that n > 2ℓ, provided that the result holds for
every (n − 1)-order tree with the matching number ℓ. By Lemma 3.1(ii), G has an ℓ-matching M and
a pendent vertex u such that u is not incident with any member of M, which implies that G − u is an
(n − 1)-order tree having matching number ℓ. Thus, by the inductive hypothesis, we have

If(G − u) ≤ Ψ(n − 1, ℓ) (3.8)

with equality iff G � Tn−1,ℓ. Let v be the unique neighbor of u. Since uv < M and because M is a
maximum matching in G, M must contain an edge incident with v. Thereby, the number of those edges
incident with v that do not belong to M is dG(v)− 1, which implies that dG(v)− 1 ≤ n− 1− |M|, that is,
dG(v) ≤ n − ℓ. Let r be the number of pendent neighbors of v in G. Certainly, 1 ≤ r ≤ dG(v) − 1. Since
at least r − 1 pendent neighbors of v are M-unsaturated and the number of M-unsaturated vertices of
G is n − 2|M|, we have r − 1 ≤ n − 2|M|, which implies that r ≤ n − 2ℓ + 1, i.e., the vertex v has at
most n − 2ℓ + 1 pendent neighbors. Let NG(v) = {v1(= u), v2, · · · , vr, vr+1, · · · , vs}, where the vertices
v1, · · · , vr are pendent and the vertices vr+1, · · · , vs are non-pendent. By condition (i), we have

If(G) = If(G − u) + f(s, 1) + (r − 1)[f(s, 1) − f(s − 1, 1)]

+

s∑
i=r+1

(
f(s, dG(vi)) − f(s − 1, dG(vi))

)
≤ If(G − u) + f(s, 1) + (r − 1)

(
f(s, 1) − f(s − 1, 1)

)
+ (s − r)

(
f(s, 2) − f(s − 1, 2)

)
. (3.9)

Since r + 1 ≤ s ≤ n − ℓ, by condition (iii), the inequality (3.9) yields

If(G) ≤ If(G − u) + f(n − ℓ − 1, 1) + r
(
f(n − ℓ, 1) − f(n − ℓ − 1, 1)

)
+ (n − ℓ − r)

(
f(n − ℓ, 2) − f(n − ℓ − 1, 2)

)
. (3.10)

Since n > 2ℓ ≥ 4 (which implies that n − ℓ > 2), by condition (i), we have

f(n − ℓ, 1) − f(n − ℓ − 1, 1) − [f(n − ℓ, 2) − f(n − ℓ − 1, 2)] > 0,

and hence, because of the inequality r ≤ n − 2ℓ + 1, the inequality (3.10) gives

If(G) ≤ If(G − u) + f(n − ℓ − 1, 1) + (n − 2ℓ + 1)
(
f(n − ℓ, 1) − f(n − ℓ − 1, 1)

)
+ (ℓ − 1)

(
f(n − ℓ, 2) − f(n − ℓ − 1, 2)

)
. (3.11)

Now, from (3.8) and (3.11), it follows that If(G) ≤ Ψ(n, ℓ). The equation If(G) = Ψ(n, ℓ) holds iff all
equalities in (3.8)–(3.11) hold; that is, iff G − u � Tn−1,ℓ, dG(vr+1) = · · · = dG(vs) = 2, s = n − ℓ and
r = n − 2ℓ + 1. In other words, the equation If(G) = Ψ(n, ℓ) holds iff G � Tn,ℓ.

Since the next result’s proof (which uses Theorem 3.2) is totally analogous to that of Theorem 3.3,
we omit it.
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Theorem 3.4. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1. Let t1 ≥ 2 and t2 ≥ 1. If

(i) the function g defined as g(t1, t2) = f(t1, t2) − f(t1 − 1, t2), is strictly increasing in t2,

(ii) the function ℏ defined as ℏ(t1) = f(t1, 2) + f(t1, 1) − f(t1 − 1, 1) + (t1 − 2) [f(t1, 2) − f(t1 − 1, 2)] , is
strictly decreasing, and

(iii) the function ϕ defined as ϕ(t1, t2) = f(t1, 1)+(t2−1)
(
f(t1, 1)−f(t1−1, 1)

)
+(t1−t2)

(
f(t1, 2)−f(t1−1, 2)

)
,

is strictly decreasing in t1 for t1 ≥ t2 + 1,

then the inequality

If(G) ≥ (n − 2ℓ + 1) · f(n − ℓ, 1) + (ℓ − 1) [f(n − ℓ, 2) + f(1, 2)] (3.12)

is valid for every n-order tree G with a matching number ℓ(≥ 1). The sufficient and necessary condition
for the equality in (3.12) to hold is that G � Tn,ℓ (see Figure 1).

Theorem 3.3 yields the next result about the ES index (whose definition is given in the introduction
section).

Corollary 3.1. Let G be an n-order tree with a matching number ℓ(≥ 1), where n ≥ 2ℓ. Then

ES (G) ≤ (n − 2ℓ + 1)
√

(n − ℓ)(n − ℓ + 1) + 1 + (ℓ − 1)
(√

(n − ℓ)(n − ℓ + 2) + 4 +
√

7
)
,

with equality iff G � Tn,ℓ.

Proof. We recall that If gives the ES index if we take f(a1, a2) =
√

a2
1 + a2

2 + a1a2. By Lemmas 2.1
and 2.2, all the conditions of Theorem 3.3 are satisfied for f. Hence, the required conclusion is obtained
from Theorem 3.3.

The topological index If corresponds to the harmonic index [11,23] or the Randić index [37,39,43]
or the sum-connectivity index [11,54], or the AG (arithmetic-geometric) index (for example, see [52]),
or the MMR (modified misbalance rodeg) index [36], or the SDD (symmetric division deg) index
[9, 49], or the sigma index [3, 24], or the RSO (Reduced-Sombor) index [26] if one takes f(a1, a2) =
2(a1 + a2)−1 or f(a1, a2) = (a1a2)−1/2 or f(a1, a2) = (a1 + a2)−1/2, or f(a1, a2) = (2

√
a1a2 )−1(a1 + a2),

or f(a1, a2) = (
√

a1 −
√

a2)2, or f(a1, a2) = (a1a2)−1(a2
1 + a2

2), or f(a1, a2) = (a1 − a2)2, or f(a1, a2) =√
(a1 − 1)2 + (a2 − 1)2, respectively.

Remark 3.1. We have verified that all the conditions of Theorem 3.3 are satisfied for the functions
associated with the AG, MMR, SDD, sigma, and RSO indices. For the RSO index, we verified that the
inequality g(t1, t2) < g(t1, 1) holds for t1 ≥ 2 and t2 > 1, the inequality ℏ(t1) > ℏ(2) holds for t1 > 2,
and the inequality ϕ(t1, t2) > ϕ(2, t2) holds for t1 ≥ t2 + 1 ≥ 2 and t1 > 2; then, we used the tool of
differentiation to verify the remaining cases (concerning the RSO index). Hence, Theorem 3.3 covers
these five indices. The corresponding result concerning the SDD index is already known (see [21]);
however, the corresponding results concerning the AG, sigma, RSO, and MMR indices are new (to the
best of the authors’ knowledge).
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Remark 3.2. We have verified that all the conditions of Theorem 3.4 are satisfied for the functions
associated with the harmonic, Randić, and sum-connectivity indices. Hence, Theorem 3.4 covers these
three indices. The special cases of Theorem 3.4 corresponding to these three indices are already known
in the literature; see [22, 34, 35]. Hence, Theorem 3.4 generalizes several existing results.

Remark 3.3. Since the sum of the independence number and matching number of any n-order tree (or
more generally, n-order bipartite graph) is n, Theorems 3.3 and 3.4 directly give bounds for n-order
trees with a given independence number. Therefore, these two theorems extend the recent study [46].

Remark 3.4. The topological index If corresponds to the Sombor (SO) index [26, 33, 42] when one

takes f(a1, a2) =
√

a2
1 + a2

2. In Corollary 3.1, we have seen that Theorem 3.3 directly provides an upper
bound on the ES index. Here, we remark that this theorem also implies that the inequality (3.7) is
valid for the SO index because it can be easily seen that Lemmas 2.1 and 2.2 also hold for the function
associated with the SO index. This special case of Theorem 3.3 concerning the SO index is already
known; see [17, 53].

Remark 3.5. The topological index If corresponds to the first Zagreb index or the second Zagreb
index (for example, see [12,14]), if one takes f(a1, a2) = a1+a2 or f(a1, a2) = a1a2, respectively. One of
the referees of the present paper asked to check whether Theorem 3.3 or Theorem 3.4 is applicable to
the Randić index and the Zagreb indices. We have already seen in Remark 3.2 that Theorem 3.4 covers
Randić index. On the other hand, although neither of the aforementioned two theorems is applicable
to either of the Zagreb indices, the conclusion of Theorem 3.3 remains true for these Zagreb indices;
see [31, 46, 47]. Therefore, it would be interesting to modify the conditions of Theorem 3.3 in such a
way that it covers additional indices, including the Zagreb indices.

4. Fixed-order trees with a given number of pendent vertices

For 2 ≤ p ≤ n − 1, let Pn,p denote the tree obtained from the (n − p + 1)-order path Pn−p+1 by
attaching p − 1 pendent vertices to exactly one of the pendent vertices of Pn−p+1 (see Figure 2).

p − 1

n − p − 1

Figure 2. The tree Pn,p.

Theorem 4.1. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1. Let t ≥ 2 and r ≥ 1. If
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(i) the function g defined as g(t, r) = f(t, r) − f(t − 1, r), is strictly decreasing in r, and

(ii) the function ℏ defined as ℏ(t) = f(t, 1)+ (t−2) (f(t, 1) − f(t − 1, 1))+ (f(t, 2) − f(t − 1, 2)), is strictly
increasing,

then the inequality

If(G) ≤ f(2, 2) · (n − p − 2) + (p − 1)f(p, 1) + f(p, 2) + f(1, 2) (4.1)

is valid for every n-order tree G with p pendent vertices, provided that 2 ≤ p ≤ n − 2. The sufficient
and necessary condition for the equality in (4.1) to hold is that G � Pn,p (see Figure 2).

Proof. We use induction on n to prove the result. If n ∈ {4, 5} then G � Pn,p. Next, suppose that
n > 5. Assume that the theorem holds for all (n − 1)-order trees with p′ pendent vertices such that
2 ≤ p′ ≤ (n − 1) − 2.

Now, we assume that G has n order and p pendent vertices such that 2 ≤ p ≤ n − 2. Consider a
pendent edge xy ∈ E(G) with dG(x) > 1.
Case 1. The degree of x in G is at least 3.

Take NG(x) := {x1, x2, · · · , xdG(x)−1} \ {y} with dG(x1) ≥ dG(x2) ≥ · · · ≥ dG(xdG(x)−1). Note that
dG(x1) ≥ 2 because G is different from the star S n. In what follows, we also take dG(x) = ȷ. By using
condition (i), we have

If(G) = If(G − y) + f( ȷ, 1) +
ȷ−1∑
i=1

(f( ȷ, dG(xi)) − f( ȷ − 1, dG(xi)))

≤ If(G − y) + f( ȷ, 1) + ( ȷ − 2)
[
f( ȷ, 1) − f( ȷ − 1, 1)

]
+ f( ȷ, 2) − f( ȷ − 1, 2) (4.2)

with equality iff dG(x1) = 2 and dG(x2) = · · · = dG(x ȷ−1) = 1. Since the maximum degree of G cannot
be greater than p, we have ȷ ≤ p, and hence, by using condition (ii) in (4.2), we obtain

If(G) ≤ If(G − y) + f(p, 1) + (p − 2) (f(p, 1) − f(p − 1, 1)) + (f(p, 2) − f(p − 1, 2)) (4.3)

with equality iff dG(x1) = 2, dG(x2) = · · · = dG(x ȷ−1) = 1 and ȷ = p. In the considered case, we always
have p ≥ 3. Also, the graph G−y contains exactly p−1 pendent vertices. Since 2 ≤ p−1 ≤ (n−1)−2,
we can apply the inductive hypothesis, and hence we have

If(G − y) ≤ f(2, 2) · (n − p − 2) + (p − 2)f(p − 1, 1) + f(p − 1, 2) + f(1, 2), (4.4)

with equality iff G − y � Pn−1,p−1. Now, (4.1) follows from (4.3) and (4.4).

Case 2. The vertex x has degree 2 in G.
For p = n − 2, we have G � Pp+2,p. In what follows, suppose that p < n − 2. Let x′ ∈ NG(x) \ {y}.

Since n ≥ 6, the vertex x′ cannot be pendent, and hence, by condition (i), we have

If(G) = If(G − y) + f(1, 2) + f(2, dG(x′)) − f(1, dG(x′)) ≤ If(G − y) + f(2, 2),
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where the right equality holds iff dG(x′) = 2. In the considered case, G − y contains exactly p pendent
vertices. Since 2 ≤ p ≤ (n − 1) − 2, we can apply the inductive hypothesis, and hence, we have

If(G) ≤ If(G − y) + f(2, 2)

≤ f(2, 2) · (n − p − 3) + (p − 1)f(p, 1) + f(p, 2) + f(1, 2) + f(2, 2)

= f(2, 2) · (n − p − 2) + (p − 1)f(p, 1) + f(p, 2) + f(1, 2).

Certainly, the equation

If(G) = f(2, 2) · (n − p − 2) + (p − 1)f(p, 1) + f(p, 2) + f(1, 2)

holds iff dG(x′) = 2 and G − y � Pn−1,p; that is, iff G � Pn,p.
As the next result’s proof is totally similar to that of Theorem 4.1, we omit it.

Theorem 4.2. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1. Let t ≥ 2 and r ≥ 1. If

(i) the function g defined as g(t, r) = f(t, r) − f(t − 1, r), is strictly increasing in r, and

(ii) the function ℏ defined as ℏ(t) = f(t, 1)+ (t−2) (f(t, 1) − f(t − 1, 1))+ (f(t, 2) − f(t − 1, 2)), is strictly
decreasing,

then the inequality

If(G) ≥ f(2, 2) · (n − p − 2) + (p − 1)f(p, 1) + f(p, 2) + f(1, 2) (4.5)

is valid for every n-order tree G with p pendent vertices, provided that 2 ≤ p ≤ n − 2. The sufficient
and necessary condition for the equality in (4.5) to hold is that G � Pn,p (see Figure 2).

From Theorem 4.1, we have the next result about the ES index.

Corollary 4.1. If G is an n-order tree possessing p pendent vertices, provided that the inequality
2 ≤ p ≤ n − 2 holds, then

ES (G) ≤ 2
√

3 (n − p − 2) + (p − 1)
√

p2 + p + 1 +
√

p2 + 2p + 4 +
√

7,

with equality iff G � Pn,p (see Figure 2).

Proof. By Lemma 2.1, all the hypotheses of Theorem 4.1 hold for f(a1, a2) =
√

a2
1 + a2

2 + a1a2.
Therefore, we obtain the required conclusion from Theorem 4.1.

The index If corresponds to the ABC (atom-bond connectivity) index [4,20,40], or the ABS (atom-
bond sum-connectivity) index [6, 8, 38], or the MSDD (modified symmetric division deg) index [2],
if one takes f(a1, a2) =

√
(a1a2)−1(a1 + a2 − 2), or f(a1, a2) =

√
(a1 + a2)−1(a1 + a2 − 2), or f(a1, a2) =√

(2a1a2)−1(a2
1 + a2

2), respectively.

Remark 4.1. Since the constraints of Theorem 4.1 are satisfied for each of the functions associated
with the following topological indices, Theorem 4.1 holds for each of these topological indices: ABC
index, ABS index, AG index, MMR index, MSDD index, SDD index, sigma index, SO index, RSO
index (for the definitions of AG, MMR, SDD, sigma, and RSO indices, see the paragraph right before
Remark 3.1, while the definition of SO index is given in Remark 3.4).
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Remark 4.2. Since the constraints of Theorem 4.2 are satisfied for each of the functions associated
with the following topological indices, Theorem 4.2 covers each of these three topological indices:
Randić index, harmonic index, sum-connectivity index (the definitions of these three indices are given
in the paragraph right before Remark 3.1.)

5. Fixed-order trees with a given maximum degree

In this section, we attempt the problem of characterizing the graphs possessing the extremum values
of If among all fixed-order trees with a given maximum degree. We start with the following lemma:

Lemma 5.1. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1, such that

(i) f is strictly increasing in one variable (and hence in both variables because of symmetry),

(ii) the inequality f(x, 1) − f(2, 2) > 0 holds for x ≥ 3, and

(iii) the inequality (x − 1)[f(x, 2) − f(2, 2)] + (x − 2)[f(1, 2) − f(2, 2)] > 0 holds for x ≥ 3.

Over the class of all n-order trees with maximum degree △, let G be a tree possessing the minimum
value of If, where 3 ≤ △ ≤ n − 1. Then, G has no more than one vertex of degree at least 3.

Proof. Contrarily, suppose that G has more than one vertex of degree at least 3. We pick z ∈ V(G)
such that dG(z) = △. Among those vertices of G that have degrees at least 3, we choose y such that
the distance dG(y, z) between them is the maximum. Take dG(y) = ξ. Certainly, ξ ≥ 3 and y , z.
Let NG(y) = {y1, y2, . . . , yξ}, where yξ lies on the unique y − z path and it is possible that yξ = z. We
observe that y is the common end vertex of ξ − 1 pendent paths, and hence dG(yi) ∈ {1, 2} for every
i ∈ {1, 2, . . . , ξ − 1}.

Case 1. dG(yi) = 1 for every i ∈ {1, 2, . . . , ξ − 1}.
Define a new graph G⋆ such that V(G⋆) = V(G) and

E(G⋆) :=
(
E(G)\{yyi+1 : 1 ≤ i ≤ ξ − 2}

)
∪ {yiyi+1 : 1 ≤ i ≤ ξ − 2}.

Note that the maximum degree of G⋆ is △. By conditions (i) and (ii), we have

If(G) − If(G⋆) = f(ξ, dG(yξ)) − f(2, dG(yξ)) + f(ξ, 1) − f(2, 1) + (ξ − 2)[f(ξ, 1) − f(2, 2)] > 0,

a contradiction against the assumption that If(G) is minimum.

Case 2. dG(yi) = 1 and dG(y j) = 2 for some i, j ∈ {1, 2, . . . , ξ − 1}.
Without loss of generality, suppose dG(y1) = 1 and dG(y2) = 2. Let x ∈ V(G) be the pendent vertex

lying on the pendent path containing y2. Define G⋆⋆ such that V(G⋆⋆) = V(G) and

E(G⋆⋆) := (E(G)\{yy1}) ∪ {xy1}.

Again, by conditions (i) and (ii), we have

If(G) − If(G⋆⋆) =
ξ∑

i=2

[f(ξ, dG(yi)) − f(ξ − 1, dG(yi))] + f(ξ, 1) − f(2, 2)] > 0,
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a contradiction.

Case 3. dG(yi) = 2 for every i ∈ {1, 2, . . . , ξ − 1}.
Let r be the sum of the lengths of the ξ−1 pendent paths (in G) having y as the common end vertex.

Let G′ denote the graph generated from G by replacing these x− 1 pendent paths with exactly one path
of length r, attached at the vertex y. Certainly, the order and the maximum degree of G′ are n and △,
respectively. Also, we note that dG′(y) = 2. By condition (iii), we obtain

If(G) − If(G′) = f(ξ, dG(yξ)) − f(2, dG(yξ)) + (ξ − 1)[f(ξ, 2) − f(2, 2)]

+ (ξ − 2)[f(1, 2) − f(2, 2)]

> (ξ − 1)[f(ξ, 2) − f(2, 2)] + (ξ − 2)[f(1, 2) − f(2, 2)] > 0,

a contradiction again.
The topological index If corresponds to the ESO (elliptic-Sombor) index [29, 44], or the ZSO

(Zagreb-Sombor) index [7], or the ISI (inverse sum indeg) index [5, 49], if one takes f(a1, a2) = (a1 +

a2)
√

a2
1 + a2

2, or f(a1, a2) = (a1a2)
√

a2
1 + a2

2, or f(a1, a2) = (a1 + a2)−1a1a2, respectively.

Remark 5.1. Since the hypotheses of Lemma 5.1 are satisfied for each of the functions associated
with the following indices, Lemma 5.1 holds for these indices: ESO index, ZSO index, ISI index, first
Zagreb index, and second Zagreb index (the definitions of the first and second Zagreb indices are given
in Remark 3.5).

The next lemma’s proof is totally analogous to that of Lemma 5.1, and therefore we omit it.

Lemma 5.2. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1, such that

(i) f is strictly decreasing in one variable (and hence in both variables because of symmetry),

(ii) the inequality f(x, 1) − f(2, 2) < 0 holds for x ≥ 3, and

(iii) the inequality (x − 1)[f(x, 2) − f(2, 2)] + (x − 2)[f(1, 2) − f(2, 2)] < 0 holds for x ≥ 3.

Over the class of all n-order trees with maximum degree △, let G be a tree possessing the maximum
value of If, where 3 ≤ △ ≤ n − 1. Then G has no more than one vertex of degree at least 3.

For ⌊ n−1
2 ⌋ ≤ △ ≤ n − 1 with △ ≥ 3, denote by S ′n,△ the n-order tree having exactly one vertex of

degree greater than 2, which is the common end vertex of n − △ − 1 pendent paths of length 2 and
2△− n+ 1 pendent paths of length 1. For 3 ≤ △ ≤ ⌊ n−1

2 ⌋, denote by S ⋆n,△ the n-order tree having exactly
one vertex of degree greater than 2, which is the common end vertex of △ pendent paths of length at
least 2. The graphs S ′n,△ and S ⋆n,△ are depicted in Figure 3. We remark here that the graph S ′n,△ is similar
to the one shown in Figure 1.
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2△ − n + 1 n − △ − 1

△

Figure 3. The tree S ′n,△ (left) and the tree S ⋆n,△ (right).

Theorem 5.1. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1, such that

(i) f is strictly increasing in one variable (and hence in both variables because of symmetry),

(ii) the inequality f(x, 1) − f(2, 2) > 0 holds for x ≥ 3,

(iii) the inequality (x − 1)[f(x, 2) − f(2, 2)] + (x − 2)[f(1, 2) − f(2, 2)] > 0 holds for x ≥ 3, and

(iv) the inequality f(x, 1) − f(x, 2) + f(2, 2) − f(1, 2) > 0 holds for x ≥ 3.

Let G be an n-order tree of maximum degree △, where 3 ≤ △ ≤ n − 1.

(a) If ⌈ n−1
2 ⌉ ≤ △ ≤ n − 1, then

If(G) ≥ (n − △ − 1)
(
f(△, 2) + f(1, 2)

)
+ (2△ − n + 1) · f(△, 1),

with equality iff G � S ′n,△ (see Figure 3).

(b) If 3 ≤ △ ≤ ⌊ n−1
2 ⌋, then

If(G) ≥ (n − 2△ − 1) · f(2, 2) + △
(
f(△, 2) + f(1, 2)

)
,

with equality iff G � S ⋆n,△ (see Figure 3).

Proof. Over the class of all n-order trees with maximum degree △, let G∗ be a tree possessing the
minimum value of If, where 3 ≤ △ ≤ n − 1. Then,

If(G) ≥ If(G∗). (5.1)

By Lemma 5.1, G∗ has no more than one vertex of degree at least 3. Let z ∈ V(G∗) be the unique vertex
of maximum degree △. Let Z1,Z2, . . . ,Z△ be the pendent paths (in G∗) having the common vertex z.
For 1 ≤ i ≤ △, let |Zi| denote the length of the path Zi.

If |Zi| = 1 and |Z j| = t ≥ 3 for some i, j ∈ {1, 2, . . . ,△}, then by condition (iv) the new graph G∗∗

constructed from G∗ by replacing Zi and Z j with pendent paths Z′i and Z′j (having common end vertex z)
of lengths 2 and t − 1, respectively, satisfies

If(G∗) − If(G∗∗) = f(△, 1) − f(△, 2) + f(2, 2) − f(1, 2) > 0,

which is a contradiction to the definition of G∗. Therefore, we must have either |Zi| ≥ 2 for every
i ∈ {1, 2, . . . ,△}, or |Zi| ≤ 2 for every i ∈ {1, 2, . . . ,△}.
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(a) Since ⌈ n−1
2 ⌉ ≤ △ ≤ n−1, it holds that n ≤ 2△+1. We observe that |Zi| ≤ 2 for every i ∈ {1, 2, . . . ,△};

otherwise, if |Z j| ≥ 3 for some j ∈ {1, 2, . . . ,△} then |Zi| ≥ 2 for every i ∈ {1, 2, . . . ,△} \ { j},
and hence G∗ would then have at least 2△ + 2 vertices, which contradicts n ≤ 2△ + 1. Let k
denote the number of non-pendent neighbors of z. Then z has △ − k pendent neighbors. Hence,
n = (△ − k) + 2k + 1; that is, k = n − △ − 1. Consequently, G∗ � S ′n,△ and hence

If(G∗) = (n − △ − 1)
(
f(△, 2) + f(1, 2)

)
+ (2△ − n + 1) · f(△, 1),

which, together with (5.1), implies the desired result.

(b) Since 3 ≤ △ ≤ ⌊n−1
2 ⌋, it holds that n ≥ 2△ + 1. We observe that |Zi| ≥ 2 for every i ∈ {1, 2, . . . ,△};

otherwise, if |Z j| = 1 for some j ∈ {1, 2, . . . ,△} then |Zi| ≤ 2 for every i ∈ {1, 2, . . . ,△} \ { j}, and
hence G∗ would then have at most 2△ vertices, which contradicts n ≥ 2△ + 1. Thus, G∗ � S ⋆n,△
and hence

If(G∗) = (n − 2△ − 1) · f(2, 2) + △
(
f(△, 2) + f(1, 2)

)
,

which together with (5.1) implies the desired result.

Corollary 5.1. Let G be an n-order tree of maximum degree △, where 3 ≤ △ ≤ n − 1.

(i) If ⌈ n−1
2 ⌉ ≤ △ ≤ n − 1, then

ES (G) ≥ (n − △ − 1)
(√
△2 + 2△ + 4 +

√
7
)
+ (2△ − n + 1)

√
△2 + △ + 1,

with equality iff G � S ′n,△ (see Figure 3).

(ii) If 3 ≤ △ ≤ ⌊ n−1
2 ⌋, then

ES (G) ≥ 2(n − 2△ − 1)
√

3 + △
(√
△2 + 2△ + 4 +

√
7
)
,

with equality iff G � S ⋆n,△ (see Figure 3).

Proof. Let f(x1, x2) =
√

x2
1 + x2

2 + x1x2 with x1 ≥ 1 and x2 ≥ 1. Since f is strictly increasing in both
x1 and x2, and because f(x, 1) − f(2, 2) > 0, (x − 1)[f(x, 2) − f(2, 2)] + (x − 2)[f(1, 2) − f(2, 2)] > 0 and
f(x, 1) − f(x, 2) + f(2, 2) − f(1, 2) > 0 for x ≥ 3, Theorem 5.1 provides the desired result.

Remark 5.2. Since all the conditions of Theorem 5.1 hold for each of the functions associated with
the following topological indices, Theorem 5.1 covers these indices: ABS index (for its definition, see
the paragraph right before Remark 4.1), SO index, and RSO index (for the definitions of SO and RSO
indices, see Remark 3.4 and the paragraph right before Remark 3.1, respectively).

The next result’s proof (which uses Lemma 5.2) is totally analogous to that of Theorem 5.1 and
therefore we omit it.

Theorem 5.2. Let f be a real-valued symmetric function defined on the Cartesian square of the set of
those real numbers that are greater than or equal to 1, such that

(i) f is strictly decreasing in one variable (and hence in both variables because of symmetry),
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(ii) the inequality f(x, 1) − f(2, 2) < 0 holds for x ≥ 3,

(iii) the inequality (x − 1)[f(x, 2) − f(2, 2)] + (x − 2)[f(1, 2) − f(2, 2)] < 0 holds for x ≥ 3, and

(iv) the inequality f(x, 1) − f(x, 2) + f(2, 2) − f(1, 2) < 0 holds for x ≥ 3.

Let G be an n-order tree of maximum degree △, where 3 ≤ △ ≤ n − 1.

(a) If ⌈ n−1
2 ⌉ ≤ △ ≤ n − 1, then

If(G) ≤ (n − △ − 1)
(
f(△, 2) + f(1, 2)

)
+ (2△ − n + 1) · f(△, 1),

with equality iff G � S ′n,△ (see Figure 3).

(b) If 3 ≤ △ ≤ ⌊ n−1
2 ⌋, then

If(G) ≤ (n − 2△ − 1) · f(2, 2) + △
(
f(△, 2) + f(1, 2)

)
,

with equality iff G � S ⋆n,△ (see Figure 3).

Remark 5.3. Since all the conditions of Theorem 5.2 hold for each of the functions associated with the
harmonic and sum-connectivity indices, Theorem 5.2 covers both of these indices, where the definitions
of the harmonic and sum-connectivity indices are given in the paragraph right before Remark 3.1.

6. Conclusions

In this paper, we have established the best possible bounds on the topological index If of trees in
terms of their order and parameter p, subject to specific constraints applied to the function f, where
p is one of the following: (i) the matching number, (ii) the number of pendent vertices, and (iii) the
maximum degree. We have also characterized all the trees that satisfy these bounds. The constraints
considered here for the function f are satisfied by a considerable number of existing topological indices.

In most of our main results, the text “strictly increasing” and “strictly decreasing” may be replaced
with “increasing” and “decreasing”, respectively, without affecting their conclusions; for instance,
Theorem 3.1. Also, in most of our results, the conditions may be replaced with simpler conditions;
for instance, condition (iii) of Theorem 3.3 can be replaced with the following condition in which
every sub-condition involves only one variable (and hence this condition may be considered simpler
than condition (iii) of Theorem 3.3): “the functions ϕ and ϕa defined as ϕ(t1) = f(t1, 1) and ϕa(t1) =
f(t1, a) − f(t1 − 1, a) with a ∈ {1, 2}, are differentiable such that

ϕ′ ≥ 0, ϕ′a ≥ 0, (6.1)

and the inequality
f(t1, 2) − f(t1 − 1, 2) ≥ 0 (6.2)

holds, provided that at least one of the inequalities in (6.1) and (6.2) is strict.” However, the number
of topological indices’ associated functions satisfying this simpler condition is strictly less than the
number of topological indices’ associated functions satisfying the condition (iii) of Theorem 3.3 (for
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example, the function associated with the sigma index does not satisfy (6.2) for t1 = 2, but the
mentioned function satisfies the condition (iii) of Theorem 3.3).

There are a considerable number of existing topological indices that do not generally satisfy the
conditions of our results, but the conclusions of these results still hold for such indices; for instance,
the conditions of Theorem 3.3 are not fully satisfied by either of the two Zagreb indices, but the
conclusion of Theorem 3.3 remains true for these Zagreb indices (see [31,46,47]). Therefore, it would
be interesting to modify the conditions of our results in such a way that they cover additional indices.
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that have maximum general Randić index, Discrete Math., 310 (2010), 2249–2257.
https://doi.org/10.1016/j.disc.2010.04.028

32. X. L. Li, D. N. Peng, Extremal problems for graphical function-indices and f -weighted adjacency
matrix, Discrete Math. Lett., 9 (2022), 57–66. https://doi.org/10.47443/dml.2021.s210

33. H. C. Liu, I. Gutman, L. H. You, Y. F. Huang, Sombor index: review of extremal results and
bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y
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