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Abstract: The geometry processing of a point cloud 2-manifold (or point cloud surface) heavily
depends on the discretization of differential geometry properties such as Gaussian curvature, mean
curvature, principal curvature, and principal directions. Most of the existing algorithms indirectly
compute these differential geometry properties by seeking a local approximation surface or fitting
point clouds with certain polynomial functions and then applying the curvature formulas in classical
differential geometry. This paper initially proposed a new discretized Laplace-Beltrami operator by
applying an inherent distance parameter, which acts as the foundation for precisely estimating the
mean curvature. Subsequently, the estimated mean curvature was taken as a strong constraint condition
for estimating the Gaussian curvatures, principal curvatures, and principal directions by determining
an optimal ellipse. The proposed methods are mainly based on the heat kernel function and do not
require local surface reconstruction, thus belonging to truly mesh-free methods. We demonstrated the
correctness of the estimated curvatures in both analytic and non-analytic models. Various experiments
indicated that the proposed methods have high accuracy. As an exemplary application, we utilized the
mean curvature for detecting features of point clouds.
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1. Introduction

With the advancement of 3D acquisition technology, the point-based representation of complex
objects and environmental point clouds has been extensively utilized in various shape modeling,
graphical rendering, and engineering design and manufacturing applications, as cited in [1]. With
the growth of available data, significant attention has been given to analyzing the original point clouds.
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Due to the uncertainty of the exact shape represented by point clouds, curvature estimation,
including the two principal curvatures and their related directions, mean curvature and Gaussian
curvature, has numerous applications in computer aided design, computer graphics, and
other associated fields, and it involves many applications such as surface segmentation (as mentioned
in [2–4]), point cloud simplification [5], point cloud registration [6], surface reconstruction [7, 8], and
feature extraction [9,10]. More generally, a simple and accurate curvature estimation method for point
cloud surfaces would ensure reliable numerical behavior for a large number of applications, which is a
hot and challenging issue.

In this paper, we presented a series of differential geometry properties for point cloud surfaces
based on the heat kernel function. At the core of them is a novel mean curvature normal operator that
is based on the discrete Laplace-Beltrami operator derived from the heat kernel function. The proposed
method does not need to fit and interpolate point clouds as a local surface to indirectly approximate the
geometry properties of point clouds, and it does not need to rely on any local mesh or Voronoi-based
map. They only involve the coordinates of point cloud surfaces and are truly mesh-free methods.

1.1. Related works

Before delving into our contributions, we initially reviewed some previous work, confining our
exposition to discretization methods rather than surveying the numerous applications in which they are
employed. Surprisingly, though, these study topics have witnessed very distinct developments and we
reviewed the existing ones separately.

1.1.1. Curvature estimation on meshes

The estimation of curvature properties for the mesh surface have been studied for many years and
is a crucial topic [11]. The method commonly applied is to define a concept of curvature for meshes
and to study how well they approximate the actual curvature of the underlying surface. Taubin [12]
estimated the principal curvatures and directions of a triangular mesh surface based on the Euler
formulas. Chen [13] defined some intrinsic surface properties from triangular surface, which is based
on the Meusnier and Euler theorem. Dong [14] presented an algorithm to estimate principal curvatures
by simplifying the Chen’s method. A classical approximating strategy was presented by Meyer [15]
and they proposed a unified and consistent set of flexible operators to approximate important geometric
attributes, including normal vectors and curvatures (Gaussian, mean, and principal) on any triangular
mesh. Goldfeather [16] gave a cubic algorithm to approximate principal direction vectors on mesh
surfaces. Goes [17] constructed a class of discrete differential operators for arbitrary polygon mesh.
Based on the local approximation of mesh vertices and associated normals by a quadratic surface,
Makovnı́k [18] introduced a method to estimate the mean and Gaussian curvature and several related
quantities for a polygonal mesh.

1.1.2. Curvature estimation on point clouds

Recently, several methods have been put forward to estimate curvatures and feature information
on point cloud surfaces. These schemes can roughly be divided into two categories: Continuous
approximation and discrete estimates.

Continuous approximation: These methods are the simplest and give rise to plenty of references.
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Their first step typically is to reconstruct the point cloud surface into a continuous implicit or parametric
form and then compute curvature attributes with classical curvature formulas in differential geometry.
Douros [19] locally fitted the point cloud surface with an analytic representation described by quadric
surface patches and then assessed curvature properties at each point. Chen [20] first made use of an
implicit quadric surface to fit the point cloud data and then calculated the curvature according to the
curvature formulas of the implicit surface. Spek [21] presented a fast method by iteratively fitting
a parabolic quadric surface to compute principal curvatures from range images. Cheng [22] fitted
the point clouds into a parametric surface to study the point cloud simplification method. Based on
principal component analysis, Asao [23] fitted a quadratic hypersurface by minimizing the square
error. [24] selected 8 neighbors ring from a point cloud for each point and then they estimated the
surface curvatures by fitting the point cloud surface into a quadratic surface.

Discrete estimates: These schemes generally utilize a series of local neighbors of point clouds,
such as ball neighbors, K-neighbors, or Voronoi cell, to approximate the original point clouds. Based
on an analytic energy function in [25,26], Yang [27] directly computed Gasussian and mean curvatures
with the curvature formulas in [28] derived by an implicit function. Similarly, Tian [29] adopted the
same energy function and drew a similar conclusion as Yang [27]. Moreover, this energy function
referred to in [25,26] was also used by Miao [30] to roughly estimate the curvatures of discrete point
clouds. Zhang [31] presented a robust algorithm to estimate principal curvatures and his basic idea
was to locally fit each normal section circle. A more detailed introduction can be found in his other
study [32]. Wang [33] proposed two different curvature estimation methods with local differential
properties called the Voronoi method and MLS projection. Then, Yao [6] applied Wang’s method to
develop a point cloud registration algorithm. Based on the Voronoi cells, Quentin [34] presented an
efficient and robust method for extracting curvature information of point clouds. His method is integral
in nature and adopts convolved covariance matrices of Voronoi cells. Lachaud [35] estimated curvature
tensor information by generating random triangles. Based on the Weiangarten map, Cao [36] proposed
a direct and efficient method to estimate the curvature. He automatically acquired curvatures from the
Weingarten map with a least square fitting method. Lange [37] also presented a method for anisotropic
fairing of a point-sampled surface by applying an anisotropic geometric mean curvature flow.

1.2. Contributions

Our main intention is to deduce the geometrical properties of point cloud surfaces, including the
mean κM, Gaussian κG, two principal curvatures κ1,2, and two principal directions T1,2. Overall, our
main contributions can be subdivided into three aspects:

(i) A new discretized Laplace-Beltrami operator applying an inherent distance parameter for point
cloud surfaces is proposed. This operator serves as the basis for accurately estimating the
mean curvature.

(ii) We introduce a new computational method aimed at the area of point cloud surfaces. The provided
scheme does not rely on any mesh or Voronoi-based map and can simply transform the complex
problem of computing the area into solving a series of linear equations.

(iii) A strong constraint condition is introduced to estimate the principal curvatures and directions
by finding an optimal ellipse. The results are better than those in [31, 32] which do not have
any constraints.
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1.3. Outlines

The remainder of this paper is structured as follows: Based on the work in Appendix A, Section 2
illustrates the concrete contexts for estimating mean curvatures over a sampled point cloud surface, see
Algorithm 1. Section 3 mainly discusses a simple method to find two principal curvatures and related
principal directions by finding an optimal ellipse. The corresponding Gaussian curvature is acquired
instantly. Some pratical experimental cases are presented in Section 4 to demonstrate the efficiency
and accuracy of the proposed methods. Some important conclusions are drawn in Section 5.

2. Mean curvature

Our method for estimating the mean curvature can be purely depicted in term of the operations
carried out on the smooth point cloud surface M which is sampled by a series of points P =

{x1, x2, · · · , xn} and embedded within the Euclidean space R3. Let ∆ be the negative semi-definite
Laplace-Beltrami operator that acts on the differential real-valued functions f : M → R over the
point cloud surfaceM. The estimation of mean curvatures with the heat kernel functions involves the
following fundamental steps.

Algorithm 1 Mean curvature with heat kernel
1: Deduce the Laplace-Beltrami operator ∆pc with h.
2: Solve a linear system HA = b to compute the areaA.
3: Acquire the mean curvature κM(xi) = 1

2 ·
∥∥∥Kpc(xi)

∥∥∥.

Let us commence by considering the approximation of the Laplace-Beltrami operator ∆pc for the
fixed heat diffuse time t over the point cloud surfaceM. A sufficiently differentiable function u(x, t)
satisfies the heat equation if

∂

∂t
u(x, t) + ∆u(x, t) = 0. (2.1)

Given an initial heat distribution u(x, 0) = f (x), the heat distribution [38–40]

u(x, t) = Ht f (x) =

∫
R2

f (y)Ht(x, y)dy

is the solution of the heat equation at heat diffuse time t, where the heat kernel function is usually taken
as a Gaussian function [41]:

Ht(x, y) = (4πt)−1 · e−
‖x−y‖2

4t . (2.2)

Subsequently, an approximating operator which has been proved to approximate the actual Laplace-
Beltrami operator is constructed [42]:

∆ f (x) = lim
t→0
−

1
t

(4πt)−1
∫
R2

e−
‖x−y‖2

4t f (y)dy − f (x)(4πt)−1
∫
R2

e−
‖x−y‖2

4t dy

 . (2.3)

Based on the formula dx j = 1
A(M)A(x j) and Theorem 3.1 in [42], we discretized the above expression

using a series of neighbor points over a point cloud surface M with the empirical version of the
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integrals involved:

∆pc f (x) =
1

4πt2

∑
j∈B(x)

e−
‖x−x j‖

2

4t
(

f (x) − f (x j)
)
A(x j), (2.4)

where B(x) is the Ball neighbor of the point x ∈ P, it satisfies

Br(x) = {q ∈ P |
∥∥∥x − q

∥∥∥ ≤ r},

where r = α · h(3.5 ≤ α ≤ 4.5) is the ball radius (see Figure 1) and it usually remains constant for
all points p ∈ P to ensure that the Laplace-Beltrami operator ∆pc is symmetric. Additionally, h is
an inherent distance parameter for a given point cloud surface and it will be further discussed in the
subsequent subsection. The above approximating operator also can be rewritten into a matrix form

∆pc f (x) = Lt
pc · f(x), (2.5)

where the matrix Lt
pc ∈ R

n×n is a Laplace matrix relative to the heat diffuse time t over a point cloud
surfaceM.

Figure 1. The heat kernel function Ht(x, y) within the two-dimensional problem domain
Br(xi) where there is a point cloud surfaceM.

2.1. Redefining the Laplace-Beltrami operator ∆pc with h

The key to the success of Algorithm 1 lies in finding a stable heat diffuse time t. Eq 2.3 indicates
that a smaller heat diffuse time t will yield a better approximation with respect to the Laplace-Beltrami
operator ∆pc and area A. However, decreasing the quantity of t does not necessarily enhance the
approximating accuracy for a fixed sampled point cloud surface M. Therefore, the motivation for
step 1 of Algorithm 1 is to search an optimal heat diffuse time t that is neither too large nor too small.
In practice, determining an optimal and stable t is difficult and we here propose a simple searching case
that works well, that is, t = mh2, where m > 0 is a constant and h is a distance parameter that is highly
sensitive to the distribution of the sampled point clouds P.
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Typically, to acquire a symmetric Laplace matrix Lt
pc, h is taken as the mean spacing distance

between all points and their nearest ones, which works well in performance for a point cloud surface
sampled uniformly and it can be seen as a global distance parameter, that is

h =
1
n

n∑
i=1

min
j∈B(x)
{
∥∥∥x − x j

∥∥∥}. (2.6)

But in practice, most of the sampled point cloud surfaces are non-uniform. In this situation, a
series of local and self-adaption parameters h for any x ∈ P are available, which are taken as the
linear combination of the spacing distance between their nearest point and farthest point among their
neighbors, that is

h = (1 − γ) min
j∈B(x)

{∥∥∥x − x j

∥∥∥} + γ max
j∈B(x)

{∥∥∥x − x j

∥∥∥} , (2.7)

where γ ∈ [0, 1] is a linear parameter. That means that the distance parameter h for different points
xi ∈ P does not necessarily have to been taken as the same value as in Eq 2.6. At this time, the K-
nearest neighbor is available and it surely causes a non-symmetric Laplace matrix Lt

pc. Fortunately,
this non-symmetric property does not affect the accuracy of Algorithm 1. Moreover, the experimented
and convincing constant m = 1

4 with a high accuracy is adopted (see Appendix A) and then the identity
concerning the heat diffuse time t and distance parameter h,

t =
1
4

h2, (2.8)

is available in all examples. Therefore, by discarding the unstable heat diffuse time t, we redefined
the approximating Laplace-Beltrami operator ∆pc f (x) in Eq 2.4 relative to the inherent and consistent
distance parameter h referred to in Eqs 2.6 and 2.7 for a given point cloud surfaceM:

∆h
pc f (x) =

4
πh4

∑
j∈B(x)

e−
‖x−x j‖

2

h2
(

f (x) − f (x j)
)
A j. (2.9)

Meanwhile, the rewritten form ∆h
pc generates a new Laplace matrix Lh

pc ∈ R
n×n and its symmetric

property depends on weather the global neighbors Br(x) and distance parameter h are searched.

2.2. Computation of area

The area A, an essential property in the discretized Laplace-Beltrami operator [15], is defined
based on the physical attributes associated with the underlying problem. In this paper, only the
coordinates of the sampled point clouds P are available and thus area must be estimated to make the
discretization process feasible. However, existing point-based Laplace-Beltrami operator techniques,
such as [43], resort to the local Voronoi map or tangent spaces at the sampled point clouds P as the
basic tool to acquire local areas. In contract, our method from step 2 of Algorithm 1 does not require
any auxiliary tool to compute each local areaAi aiming at point xi ∈ P, which makes it truly meshless.
The reasoning is to estimateAi(i = 1, 2, · · · , n) by solving an optimization problem of a linear system
derived from the unitary property [41] of heat kernel functions in Eq 2.2, that is∫

Ω

Ht(x, y)dy = 1.
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By utilizing the identity in Eq 2.8 and Appendix A, the above integral can be empirically discretized as

1
πh2

∑
j∈B(x)

e−
‖x−x j‖

2

h2 A j = 1.

More specifically, this property yields a linear system

HA = b,

for all points xi ∈ P, where Hi j = 1
πh2 e−

‖xi−x j‖
2

h2 ≥ 0 is an element of the matrix H relative to the neighbor
point x j of xi and bi = 1 is an element of the vector b. The rationality of applying this linear system to
approximate the actual local area can be referred to in Appendix A.

2.3. Mean curvature normal

In this subsection, we compute the integral of the mean curvature normal over the point cloud
surfaceM. From step 3 of Algorithm 1, we define an operator that maps a point x ∈ P to the vector

Kpc(x) = 2κM(x) · n(x),

where Kpc is the mean curvature normal operator and is also an approximation of the Laplace-Beltrami
operator for the point cloud surfaceM, and κM is the mean curvature. Based on the Laplacian ∆u,vx =

−xuu − xvv [44], it follows that ∫
AM

Kpc(x)dA =

∫
AM

∆u,vxdA.

We intended to discretize the interval of the mean curvature normal operator Kpc. By considering
Eq 2.9, a pratical discretization at a point xi ∈ P is defined by

Kpc(xi) =
4
πh4

∑
j∈B(xi)

e−
‖xi−x j‖

2

h2 (xi − x j)A j. (2.10)

Based on this formula, we can easily compute the mean curvature κM by taking half of the magnitude
of this last expression, which is

κM(xi) =
1
2
·
∥∥∥Kpc(xi)

∥∥∥ , (2.11)

where the sign of mean curvature κM is determined by the directions of the mean curvature normal Kpc

and normal vector n. If Kpc · n > 0, the κM is taken as positive. On the contrary, it takes as negative.
For the normal vector n, principal component analysis (PCA) [45] is adopted in this paper.
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2.4. Mean curvature as a quadrature

To determine the two principal curvatures and directions at a point xi ∈ P, we first show the mean
curvature κM from Eqs 2.10 and 2.11, which can be interpreted as a quadrature of normal curvatures:

κM(xi) =
1
2

(2κM(xi)n) · n

=
1
2

Kpc(xi) · n

=
2
πh4

∑
j∈B(xi)

e−
‖xi−x j‖

2

h2 (xi − x j)A j · n

=
1
πh4

∑
j∈B(xi)

e−‖xi−x j‖
2

h2
∥∥∥(xi − x j)

∥∥∥2
A j

 · κN
i, j,

(2.12)

where κN
i, j is defined as

κN
i, j = 2

(xi − x j) · n∥∥∥xi − x j

∥∥∥2 .

The radius R of the osculating circle passing through two points xi and x j can be easily found with the
estimated mean curvature in Eq 2.12, see Figure 2. Since we were obliged to have a right angle at the
neighbor point x j of xi, we have (xi − x j) · (xi − x j − 2Rn) = 0. This implies

R =

∥∥∥xi − x j

∥∥∥2

2(xi − x j) · n
.

It further proves that κN
i, j is a normal curvature estimated in the direction of edge xix j. Therefore,

Eq 2.11 can be interpreted as a quadrature of normal curvature with weights wi j:

κM(xi) =
∑

j∈B(xi)

wi jκ
N
i j ,

where wi j = 1
πh4 e−

‖xi−x j‖
2

h2
∥∥∥xi − x j

∥∥∥2
A j is a weight function relative to the edge xix j.
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Figure 2. Osculating circle of edge xix j.

3. Principal curvature and Gaussian curvature

To calculate the two principal curvatures κ1,2 and their related principal directions T1,2 on a
sampled point cloud surfaceM, finding the optimal fitting ellipse is adopted in this paper, which has
been referred to in [12, 31, 32]. Since the mean curvatures κM have been accurately estimated in the
previous subsection, we can utilize the property of the mean curvatures involved, that is, κ1 + κ2 = 2κM,
as a strong constraint condition to solve the two eigenvalues and eigenvectors of a symmetric curvature
tensor matrix B. This matrix is composed of three unknown coefficients a, b, and c:

B =

(
a b
b c

)
.

According to the eigenvalue properties of matrices as shown in [46], it can be seen that κ1 + κ2 = a + c
and κ1 · κ2 = ac− b2. Moreover, the matrix B can be employed to estimate the normal curvatures in any
direction on the tangent plane T (xi), as seen in Figure 2. In other words, we have that

χT
i, jBχi, j = κN

i, j,

where χi, j ∈ R
2 is a unit vector relative to the projection Ti, j ∈ R

3 of the edge xix j on the tangent plane
T (xi), which is usually acquired by projecting all the points in B(x) onto the tangent plane T (xi):

Ti, j =
(x j − xi) − [(x j − xi) · n] · n∥∥∥(x j − xi) − [(xj − xi) · n] · n

∥∥∥ .
The three unknown coefficients a, b, and c in the matrix B can be found by minimizing the
error function

E(a, b, c) =
∑

j

wi j

(
χT

i jBχi j − κ
N
i j

)2
,
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along with three constraint conditions:
a + c = 2κM,

ac − b2 ≤ κ2
M,

ac − b2 ≥ −((min{κN
i j} − ε) − κM)2 + κ2

M,
(3.1)

where ε > 0 is a tiny constant. Subsequently, the two principal curvatures κ1,2 of a point xi ∈ P can
be directly acquired through the two eigenvalues of the tensor matrix B. Its two eigenvectors in 2D
typically correspond to the actual principal directions T1,2. Eventually, one can directly compute the
Gaussian curvature κG with the conventional differential geometry formula:

κG = κ1 · κ2.

4. Results and applications

Appendix A has already verified the validity of the mean curvatures with the heat kernel function
in some analytic models (like the Saddle, Arch, and Paraboloid) and all the results in Figures 3–6
show that the absolute errors of the mean curvatures κM and the areas A of the point cloud surfaces
M are lower than 1% in the case of m = 1/4. Therefore, unless otherwise specified, m = 1/4 will
be applied in all examples. Moreover, the linear parameter γ in Eq 2.7 belonging to 0.1 ∼ 0.5 will
work well in practice in terms of performance. The proposed method can also be adopted to compute
mean curvatures on some non-analytic models discretized by large-scale scan point clouds, as seen
in Figure 7.

AIMS Mathematics Volume 9, Issue 11, 32491–32513.
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(a) Sphere

(b) Torus

(c) Icosahedron

Figure 3. The area absolute errors of the point cloud surfaces M as a function of the
parameter m, where t = mh2. Each error curve corresponds to the model with a different
sampled density n. Note that in most cases, m = 1/4 approximates the optimal parameter
values and possesses an absolute error less than 1%.
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(a) m = 0.1 (b) m = 0.25

(c) m = 0.3 (d) m = 0.45

Figure 4. The visualization of the areaA on the Torus model with different parameters m.
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(a) Saddle: z =
x2−y2

16 (−4 ≤ x, y ≤ 4)

(b) Arch: z = − x2

10 (−4 ≤ x, y ≤ 4)

(c) Paraboloid: z =
−x2−y2

10 (−4 ≤ x, y ≤ 4)

Figure 5. The absolute errors of the mean curvatures of point cloud surfacesM as a function
relative to the parameter m, where t = mh2. Similar to Figure 3, m = 1/4 approximates the
optimal parameter values and possesses an absolute error below 1% in each error curve.
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(a) m = 0.1 (b) m = 0.25

(c) m = 0.3 (d) m = 0.45

Figure 6. The visualization of the mean curvature κM on the Sphere model with different
parameters m. Note that in a unit sphere case, the exact solutions of mean curvatures at every
points are −1 (see Example 4.1 in [28]).
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(a) Elephant (b) Head

Figure 7. Drawing mean curvatures on non-uniform models.

To further prove the validity of the proposed method with the heat kernel function, we tested
the Gaussian curvature κG, principal curvatures κ1,2, and their directions T1,2 on some analytic models
whose differential properties can be computed exactly with some ready-made curvature formulas. We
first sampled a torus function (

√
x2 + y2 − r2)2+z2 = r2

1 with r1 = 1 and r2 = 2.3701. It cannot be denied
that finding an optimal fitting ellipse directly to acquire the Gaussian curvature κG, principal curvatures
κ1,2, and principal directions T1,2, such as [12,31,32], is fairly robust. But we have provided the mean
curvatures κM with a relatively low absolute error (see Figures 5 and 6), which will be adopted to serve
as a strong constraint, that is κ1 + κ2 = 2κM (see Eq 3.1). This constraint is perfectly valid for smooth
surfaces, especially closed ones described by point clouds. Figures 8(b) and (c) show the visualized
cases for the Gaussian curvature and principal directions in the above sampled Torus model. For the
case in this research without the constraint in Eq 3.1, the principle is similar to [12,31,32]. Therefore,
the comparisions for non-constrained examples are ignored here. But for open ones, we sampled three
implicit surfaces and tested the principal directions in Figure 9. As expected, the computed and exact
directions match very closely away from the boundary of the point cloud surfaces. Near the boundary
of point cloud surfaces, the principal directions estimated by applying the heat kernel function follow
the edges of a surface. We here provide another error mechanism aimed at the principal directions T1,2:

E =

n∑
i=1

arccos
(
|χi·χ

∗
i |

‖χi‖·‖χ∗i ‖

)
n

. (4.1)

This mechanism is mainly obtained from the average included angle between the exact principal
direction χ∗ and the computed ones χ. Table 1 provides the estimating errors of the principal directions
χ1,2 concerning the methods that find an optimal fitting ellipse, which will infer our advantages of
possessing a strong constraint κ1 + κ2 = 2κM.
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Table 1. Average absolute errors (%) of principal directions using Eq 4.1.

Model Types n [31, 32] Ours

256 0.7854 0.0080
Arch 1024 0.7854 0.0041

4096 0.7854 0.0035
16384 0.7732 0.0031

256 0.7795 0.0114
Saddle 1024 0.7810 0.0098

4096 0.7796 0.0081
16384 0.7788 0.0068

256 0.8594 0.3735
Paraboloid 1024 0.8541 0.3203

4096 0.8578 0.3071
16384 0.8551 0.3038

(a) Mean curvatures κM (b) Gaussian curvatures κG (c) Principal directions T1,2

Figure 8. The visualization of curvatures with the heat kernel function on a point cloud
surfaceM.

(a) z =
x2−y2

16 (−4 ≤ x, y ≤ 4) (b) z = − x2

10 (−4 ≤ x, y ≤ 4) (c) z =
−x2−y2

10 (−4 ≤ x, y ≤ 4)

Figure 9. Implicit surfaces with exact (in blue) and estimated (in red) principal curvature
directions T1,2.
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Moreover, to demonstrate the advantages of the proposed methods, some classical schemes,
classified as continuous approximation and discrete estimates, respectively, are selected as our
comparators. Table 2 has already demonstrated with detail the comparisons of the average absolute
error for κM, κ1, and κG on implicit open cases referred to in Figure 9, such as the Arch, Saddle, and
Paraboloid models with different density n. Here, Eq 5.1 is applied. It is not difficult for us to find
that the proposed method in the heat kernel has a higher accuracy than the compared references. This
is because the references [27, 29] highly depend on a series of precise normal vectors and they should
constantly search for an “optimal” parameter µ in approximating the actual model curvatures. Usually,
finding a suitable µ is difficult. Besides, the references [31, 32] estimated the point cloud surface
properties by finding a fitting ellipse without any constraint. Therefore, they have a bad performance
even on some analytic models.

Since the heat kernel method in Algorithm 1 provides a mean curvature normal operator, it
basically provides a precise estimating method for mean curvatures, see Eq 2.11. This strategy can
also be used to detect sharp edges. In order to better understand the effect of edge sharpness on the
quality of feature detection, we sampled a folded square surface made of two planar rectangular patches
joined by a common edge, where the density of the point cloud is n = 961. Figure 10 illustrates that
feature estimation with the mean curvature is available in detecting sharp edges whose interior angle
is equal to 1◦. Our method is also applicable to large-scale scanning point clouds. As shown in
Figure 11, a comparison of different mean curvature methods for feature detection on a large-scale
scanning model (block model) is presented. It is not difficult to find that the proposed method also has
a good performance in the application of feature detection.

(a) 135◦ (b) 165◦ (c) 179◦

Figure 10. Estimated curvature feature with the mean curvature in Eq 2.11 on a folded square
for different interior angles.
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(a) [27, 29] (b) [31, 32] (c) Ours

Figure 11. Comparison of different mean curvature methods used for feature detection on a
large-scale scanning model (block model).

5. Conclusions

Based on the heat kernel function, geometry properties such as the Gaussian curvature κG, mean
curvature κM, principal curvature κ1,2, and their principal directions T1,2 for sampled point cloud
surfaces M are estimated. The proposed method does not need to locally approximate and fit the
point clouds and it should not apply any mesh or Voronoi-based map, which is a truly mesh-free
method. Experiments show that the provided curvature estimation method has higher accuracy than
the existing methods and has great potential in practical applications. In particular, the mean curvature
can be used to detect the features of point clouds even for very small interior angles. Although the
mean curvatures using the heat kernel function are accurate, the Gaussian curvature is still acquired
by finding an optimal ellipse. In the future, we would like to develop another new operator using the
Gauss-Bonnet theorem to derive the Gaussian curvature on point cloud surfaces.
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Appendix A: Choice of parameter m

To find an optimal heat diffuse time t for the point cloud surfaceM, we suggested representing the
heat diffuse time t as a quadratic function t = mh2 in relation to the distance parameter h that is closely
related to the sampled distribution of the point clouds themselves. Then, the problem of choosing a
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parameter t can be transformed into evaluating the constant m. This assessment criterion can also be
discovered in computing geodesic map with the heat method [47], which performs extremely well
in practice.

Influence of the constant m on areaA

To estimate an ideal m, an error evaluating mechanism with respect to illustrating absolute errors
of the areaA is defined first:

E =
|A − A∗|

A∗
× 100%,

where the symbol A∗ represents the exact solution and A is the area sum of the points in M. This
mechanism is suitable for point cloud surfaces M where the superficial area can be easily acquired,
which means that the given models have analytic equations, as see in Figure 4. Moreover, Figure 5
shows the visualization for the influences on the estimated area for different parameters m and it reveals
that m = 1/4 is applicable in computing the area for the point cloud surfaceM.

Influence of m on mean curvature κM

Our goal is to accurately compute the mean curvatures κM on the point cloud surfaces M first
and then we need to expand these results to estimate some extra key properties, such as the principal
curvatures κ1,2, the principal directions T1,2, and even the Gaussian curvature κG. Similar to the areaA,
the mean curvatures κM are sensitive to m. Therefore, we develop another error evaluating mechanism
aimed at the mean curvatures κM of the point cloud surfaces:

E =

n∑
i=1

∣∣∣|κi| −
∣∣∣κ∗i ∣∣∣∣∣∣

n
× 100%, (5.1)

where κi represents the estimated curvature of the point xi ∈ P and κ∗ is its related exact solution. This
mechanism can also be adopted to evaluate the Gaussian curvature κG, mean curvature κM, and two
principal curvature κ1,2.

Using some formulas in Example 4.1 in [28], some models with analytic mean curvatures, such
as the Saddle, Arch, and Paraboloid, are adopted to analyze the influence of the parameter m. Figure 5
illustrates some absolute error curves with respect to m and Figure 6 shows the visualization of mean
curvature κM with a different m on a unit sphere. All the experiments in this section suggest that
m = 1/4 is a continuously stable parameter for the pending function t = mh2 and it generates lower
errors in approximating the actual area sum and mean curvature, as seen in Figures 3–6. To sum
up, m = 1/4 is available and the inherent distant parameter h will replace the heat diffuse time t in
subsequent computations.
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