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Abstract: This paper proposes a new family of robust non-parametric estimators for regression
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and tests on simulated and real data sets validate the efficiency and practicality of the approach.
Moreover, some of its asymptotic properties are discussed and demonstrated. Experimental studies
are conducted to compare this new approach with the Bernstein-Nadaraya-Watson estimator and the
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1. Introduction

Regression is the most frequently employed technique in nonparametric statistics to examine the
association between two variables X and Y . In this context, Y represents the response variable, while
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X is a random vector of predictors (covariates) that can assume values in the real number space R. The
regression function at a point x ∈ R is the conditional expectation of Y given X = x, denoted as

r(x) := E(Y |X = x).

Various techniques can be employed to estimate a regression function, including kernel estimators,
regression spline methods, and others. Nevertheless, these methods lack robustness as they are highly
susceptible to outliers. Given that outliers are commonly observed in various fields, such as finance, it
is essential to handle outliers properly to emphasize a dataset’s unique features. Robust regression is
a statistical technique used to address the issue of lack of robustness in regression models. It ensures
that the model remains stable and resistant to the influence of outliers.

Robust regression holds significant importance within the realm of statistics. It is employed
to overcome certain constraints of non-robust regression, specifically when the data exhibit
heteroscedasticity or include outliers. The earliest significant outcome in this field can be traced
back to Huber’s work in [1]. The regression estimation method mentioned has been extensively
researched. For empirical data, notable studies include Robinson [2], Collomb and Härdle [3], Boente
and Fraiman [4, 5], and Fan et al. [6] for earlier findings. Recent advancements and references can be
found in Laib and Ould-Saı̈d [7] and Boente and Rodriguez [8]. Traditional kernel estimators often
exhibit significant bias near boundaries because the kernel’s support can extend beyond them, resulting
in inaccurate estimates. Being supported on the entire interval, Bernstein estimators do not suffer from
this boundary bias, leading to more accurate estimations near the edges.

The Bernstein polynomial is widely acknowledged as a valuable tool for interpolating functions on
a closed interval, rendering it suitable for approximating density functions within that interval.

The use of Bernstein polynomials as density estimators for variables with finite support has been
proposed in several articles. Vitale [9] first introduced this concept, followed by Petrone [10, 11].
Further studies on this topic were conducted by Babu, et al. [12], Petrone and Wassermann [13] , and
Kakizawa [14].

Recently, Ouimet [15] studied some asymptotic properties of Bernstein cumulative distribution
function and density estimators on the d-dimensional simplex and studied their asymptotic normality
and uniform strong consistency. Belalia et al. [16] introduced a two-stage Bernstein estimator for
conditional distribution functions. Various other statistical topics related to the Bernstein estimator
have been treated ; for more references, see Ouimet [15]. Khardani [17] investigated various asymptotic
properties (bias, variance, mean squared error, asymptotic normality, uniform strong consistency) for
Bernstein estimators of quantiles and cumulative distribution functions when the variable of interest is
subject to random right-censoring.

It is essential to mention that several authors have devised Bernstein-based methodologies for
addressing non-parametric function estimation problems. Priestley and Chao [18] first proposed the
potential application of Bernstein polynomials for regression problems. Tenbusch [19] , Brown and
Chen [20], Choudhuri, Ghosal, and Roy [21], Chang, Hsiung, Wu, and Yang [22], Kakizawa [23],
and Slaoui and Jmaei [24] have all conducted research on various non-parametric function estimation
problems.

In this paper, our contribution is to find asymptotic expressions for the bias, variance, and mean
squared error (MSE) for the Bernstein robust regression function estimator defined in (2.4) and (2.3)
and also prove their asymptotic normality and convergence. We deduce the asymptotically optimal
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bandwidth parameter m using the expression for the MSE as well. The results provided by our
Bernstein approach for the robust regression function are better than those of the traditional kernel
estimators. In future work, using some kernels, such as Dirichlet, Wishart , and inverse Gaussian
kernels, and the robust function will be investigated in other spaces, such as the simplex, the space of
positive definite matrices, and half-spaces, etc.

The subsequent sections of the paper are structured in the following manner. In the next section,
we will introduce our model. Section 3 presents notations, assumptions, and investigates various
asymptotic properties of the proposed estimator. Section 4 presents a simulation study that evaluates
the proposed approach’s performance compared to the Bernstein-Nadaraya-Watson estimator and the
Nadaraya-Watson estimator. Section 5 discusses a real data application, while the proofs of the results
are provided in the Appendix.

2. Robust estimation with Bernstein polynomial

Let (X,Y), (X1,Y1) , . . . , (Xn,Yn) be independent, identically distributed pairs of random variables
with joint density function g(x, y), and let f denote the probability density of X, which is supported
on [0, 1]. Let x be a fixed element of R, and let ρ a real-valued Borel function that satisfies specific
regularity conditions outlined below. The robust method used to study the links between X and Y
belongs to the class of M-estimates introduced by Huber [1]. The robust nonparametric parameter
studied in this work, denoted by θx, is implicitly defined as the unique minimizer w.r.t. t of

r(x, t) := E(ρ(Y − t)|X = x), (2.1)

that is
θx = arg min

t∈R
r(x, t). (2.2)

This definition covers and includes many important nonparametric models, for example, ρ(t) = t2

yields the non-robust regression, ρ(t) = |t| leads to the conditional median function m(x) = med(Y |
X = x), and the α−th conditional quantile is obtained by setting ρ(t) = |t| + (2α − 1)(t). We return to
Stone [25] for other examples of the function ρ.

We utilize the techniques outlined in Vitale [9] and Leblanc [26, 27] for distribution and density
estimation. Additionally, we refer to the work of Slaoui [28] and Tenbusch [19, 29] for non-robust
regression. Our objective is to establish a Bernstein estimator for robust regression, defined as

θ̂x = arg min
t∈R

r̂n(x, t), (2.3)

with at a given point x ∈ [0, 1] such that f (x) , 0 and

r̂n(x, t) =

∑n
i=1 ρ(Yi − t)

∑mn−1
k=0 I

{
k

mn
<Xi≤

k+1
mn

}Bk(mn − 1, x)∑n
i=1

∑mn−1
k=0 I

{
k

mn
<Xi≤

k+1
mn

}Bk(mn − 1, x)
=

Nn(x, t)
fn(x)

, (2.4)

where Bk(m, x) =

(
m
k

)
xk(1 − x)m−k is the Bernstein polynomial of order m. This estimator can be

viewed as a generalization of the estimator proposed in Slaoui and Jmaei [28], with

Nn(x, t) =
mn

n

n∑
i=1

ρ(Yi − t)
mn−1∑
k=0

I{ k
mn
<Xi≤

k+1
mn

}Bk(mn − 1, x),
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where fn is Vitale’s estimator of the density f defined, for all x ∈ [0, 1], by

fn(x) =
mn

n

n∑
i=1

mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}Bk(mn − 1, x)

= mn

mn−1∑
k=0

{
Fn

(
k + 1
mn

)
− Fn

(
k

mn

)}
Bk(mn − 1, x),

(2.5)

with Fn, the empirical distribution function of the variable X.
This paper will use the following notations:

ψ(x) = (4πx(1 − x))−1/2,

∆1(x) =
1
2

[
(1 − 2x) f ′(x) + x(1 − x) f ′′(x)

]
,

∆2(x) =
1
2

{
(1 − 2x)

(
∂r
∂x

(x, t) f (x) + f ′(x)r(x, t)
)

+x(1 − x)
(
2 f ′(x)

∂r
∂x

(x, t) + f (x)
∂2r
∂x2 (x, t) + f ′′(x)r(x, t)

)}
,

∆(x) =
1
2

{
x(1 − x)

∂2r
∂x2 (x, t) +

[
(1 − 2x) + 2x(1 − x)

f ′(x)
f (x)

]
∂r
∂x

(x, t)
}
,

δ1 =

∫ 1

0
∆2(x)dx, δ2 =

∫ 1

0

Var[ρ(Y − t) | X = x]
f (x)

ψ(x)dx.

Moreover, we denote by o the pointwise bound in x (i.e., the error is not uniform in x ∈ [0, 1]).

Remark 2.1. Robust regression is advantageous in real data settings where outliers, non-normal
errors, or heteroscedasticity are present, making it a more flexible and resilient choice.

3. Assumptions and main results

To state our results, we will need to gather some assumptions to make reading our results easier. In
what follows, we will assume that the following assumptions hold:

Throughout the paper, C1,C2,C3 represent positive constants, while C denotes a generic constant
independent of n. Let I0 := {x ∈ [0, 1] : f (x) > 0} and S be a compact subset of I0.

H1: mn ≥ 2, mn −→
n→+∞

∞ and mn/n −→
n→+∞

0.

H2: g(s, t) is twice continuously differentiable with respect to s.

H3: For q ∈ {0, 1, 2}, s 7→
∫
R

tqg(s, t)dt is a bounded function continuous at s = x.

H4: For q > 2, s 7→
∫
R
|t|−qg(s, t)dt is a bounded function.

H5: The function ρ(.) is a bounded, monotone, differentiable function. Its derivative is bounded.

H6: The functions r and f are continuous and admit twice continuous and bounded derivatives such
that | ∂r

∂x (x, t)| ≥ C > 0, ∀x ∈ R.
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H7: r(x, .) is of class C1 on [θx − τ, θx + τ] and satisfies inf[θx−τ,θx+τ]

∣∣∣∂r
∂t (x, .)

∣∣∣ > C3 and uniformly
continuous.

The assumptions we make are typical for this type of framework. Assumption (H1) is a technical
requirement imposed to make proofs more concise. Assumptions (H2)–(H4) are necessary conditions
for the estimation of the regression function in the couple (X,Y), as outlined in the works of
Nadaraya [30], Watson [31], and Slaoui and Jmaei [28]. These assumptions pertain to the regularity of
the density function. The condition (H5) controls the robustness properties of our model. It maintains
the same conditions on the function ρ′ as those provided by Collomb and Härdle [3] and Boente and
Rodriguez [8] in the multivariate case. Assumptions (H6) and (H7) deal with some regularity of the
function r(., .). Note that condition (H6) is used to get the asymptotic normality of our estimator, and
condition (H7) is somewhat less restrictive compared to that presented in the literature (see Boente and
Fraiman [32], L. Aı̈t Hennani, M.Lemdani, and E. Ould Saı̈d [33], Attouch et al. [34, 35]), needed for
the consistency result.

Proposition 3.1. Under Assumptions (H1)–(H5), and for x ∈ [0, 1] such that f (x) > 0, we have

E
[̂
rn(x, t)

]
− r(x, t) = ∆(x)m−1

n + o
(
m−1

n

)
, (3.1)

Var
[̂
rn(x, t)

]
=


m1/2

n
n E

[
(ρ(Y − t))2 | X = x

]
f (x)ψ(x) + ox

(
m3/2

n
n

)
for x ∈ (0, 1),

mn
n E

[
(ρ(Y − t))2 | X = x

]
f (x) + ox

(
mn
n

)
forx = 0, 1,

(3.2)

MS E
[̂
rn(x, t)

]
=

∆2(x)m−2
n +

m1/2
n
n

Var(ρ(Y−t)|X=x)
f (x) ψ(x) + o

(
m−2

n

)
+ ox

(
m1/2

n
n

)
if x ∈ (0, 1),

∆2(x)m−2
n + m

n
Var(ρ(Y−t)|X=x)

f (x) + o
(
m−2

n

)
+ ox

(
mn
n

)
if x = 0, 1.

(3.3)

To minimize the MS E of r̂n, for x ∈ [0, 1] such that f (x) > 0, the order mn must be equal to

mopt =


[

4∆2(x) f (x)
Var(ρ(Y−t)|X=x)ψ(x)

]2/5
n2/5 if x ∈ (0, 1),[

2∆2(x) f (x)
Var(ρ(Y−t)|X=x)

]1/3
n1/3 if x = 0, 1.

Then,

MS E
[̂
rn,mopt(x, t)

]
=

 5(∆(x))2/5(Var(ρ(Y−t)|X=x)ψ(x))4/5

(4 f (x))4/5 n−4/5 + o
(
n−4/5

)
if x ∈ (0, 1),

3(∆(x) Var(ρ(Y−t)|X=x))2/3

(2 f (x))2/3 n−2/3 + o
(
n−2/3

)
if x = 0, 1.

Theorem 3.1. Under conditions of Proposition 3.1, we have

θ̂x
P
−→

n→+∞
θx.

Proposition 3.2. Let Assumptions (H1)–(H7) hold.

1) For x ∈ (0, 1), we have:

i) If nm−5/2
n −→

n→+∞
c for some constant c ≥ 0, then

n1/2m−1/4
n

(̂
rn(x, t) − r(x, t)

) D
−→

n→+∞
N

(
√

c∆(x),
Var(ρ(Y − t) | X = x)

f (x)
ψ(x)

)
. (3.4)
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ii) If nm−5/2
n −→

n→+∞
∞, then

mn
(̂
rn(x, t) − r(x, t)

) P
−→

n→+∞
∆(x). (3.5)

2) For x = {0, 1}, we have:

i) If nm−3
n −→

n→+∞
c for some constant c ≥ 0, then√

n
m

(̂
rn(x, t) − r(x, t)

) D
−→

n→+∞
N

(
√

c∆(x),
Var(ρ(Y − t) | X = x)

f (x)

)
. (3.6)

ii) If nm−3
n −→

n→+∞
∞, then

mn
(̂
rn(x, t) − r(x, t)

) P
−→

n→+∞
∆(x), (3.7)

where
D
→

n→+∞
denotes the convergence in distribution, N the Gaussian distribution, and

P
→

n→+∞
the

convergence in probability.

Theorem 3.2. (The Mean Integrated Squared Error (MISE) of r̂n).
Let Assumptions (H1)–(H7) hold. Then, we have

MISE
(̂
rn
)

=
Λ1

m2
n

+ Λ2
m1/2

n

n
+ o

(
m1/2

n

n

)
+ o

(
m−2

n

)
. (3.8)

Hence, the asymptotically optimal choice of m is

mopt =

[
4Λ1

Λ2

]2/5

n2/5,

for which we get

MISE
(̂
rn,mopt

)
=

5Λ
1/5
1 Λ

4/5
2

44/5 n−4/5 + o
(
n−4/5

)
.

Theorem 3.3. Assume that (H1)–(H7) hold. If Γ(x, θx) = E
[
ρ′(Y − θx)| X = x

]
, 0, then θ̂x exists and

is unique with great probability, and we have:

i) when x ∈ (0, 1) and mn is chosen such that nm−5/2
n → 0, then

n1/2m−1/4
n (̂θx − θx)

D
−→ N

( √
c∆(x)

Γ(x, θx)
, σ2

1(x, θx)
)
,

ii) when x ∈ [0, 1] and mn is chosen such that nm−3
n → 0, then√

n
mn

(̂θx − θx)
D
−→ N

( √
c∆(x)

Γ(x, θx)
, σ2

2(x, θx)
)
,

where

σ2
1(x, θx) =

Var
[
ρ(Y − θx)| X = x

]
f (x)Γ2(x, θx)

ψ(x), σ2
2(x, θx) =

Var
[
ρ(Y − θx)| X = x

]
f (x)Γ2(x, θx)

,

D
→

n→+∞
denotes the convergence in distribution, and N the Gaussian distribution.

The following corollary directly follows from the previous theorem and provides the weak
convergence rate of the estimator θ̂x for x ∈ [0, 1], where f (x) > 0. This is specifically for the case
when mn is chosen such that nm−5/2

n → 0 for x ∈ (0, 1) and nm−3
n → 0 for x ∈ [0, 1].
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Corollary 3.1. When x ∈ (0, 1) and mn is chosen such that nm−5/2
n → 0, then

n1/2m−1/4
n (̂θx − θx)

D
−→ N

(
0, σ2

1(x, θx)
)
.

When x ∈ [0, 1] and mn is chosen such that nm−3
n → 0, then√

n
mn

(θ̂x − θx)
D
−→ N

(
0, σ2

2(x, θx)
)
,

where

σ2
1(x, θ) =

Var
[
ρ(Y − θx)| X = x

]
f (x)Γ2(x, θx)

ψ(x), σ2
2(x, θx) =

Var
[
ρ(Y − θx)| X = x

]
f (x)Γ2(x, θx)

.

4. Simulation and real data application

This section is divided into two parts: the first shows our estimate’s behavior for some particular
conditional regression functions, and the second deals with asymptotic normality.

4.1. Consistency

Consider the regression model
Y = r(X) + ε,

where ε ∼ N(0, 1).
A simulation was conducted to compare the proposed estimators θ̂x (robust Bernstein polynomial

estimator) with r̂BNW
n (x) (Bernstein-Nadaraya-Watson estimator) introduced by Slaoui and Jmaei [28]

and defined by

r̂BNW
n (x) =

∑n
i=1 Yi

∑mn−1
k=0 I

{
k

mn
<Xi≤

k+1
mn

}Bk(mn − 1, x)∑n
i=1

∑mn−1
k=0 I

{
k

mn
<Xi≤

k+1
mn

}Bk(mn − 1, x)
, (4.1)

where Bk(m, x) =

(
m
k

)
xk(1 − x)m−k is the Bernstein polynomial of order m, and r̂NW

n (x) (Nadaraya-

Watson estimator) is defined, for x ∈ R such that f (x) , 0, by

r̂NW
n (x) =

∑n
i=1 YiK( x−Xi

h )∑n
i=1 K( x−Xi

h )
, (4.2)

where K : R → R is a nonnegative, continuous, bounded function satisfying
∫
R

K(z)dz =

1,
∫
R

zK(z)dz = 1 and
∫
R

z2K(z)dz < ∞ and h = (hn) is a sequence of positive real numbers that
goes to zero.

When using the estimator r̂NW
n (x), we choose the Gaussian kernel K(x) = (2π)−1/2 exp

(
−x2/2

)
and

the bandwidth equal to (hn) = m−1
n .

We consider three sample sizes n = 20, n = 100, and n = 500, four regression functions

Yi = −2Xi + 5 + εi linear case,
Yi = 2X2

i − 1 + εi parabolic case,

Yi = sin
(
3
2

Xi

)
+ εi sine case,

Yi = exp (2Xi − 3) + εi exponential case,
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and three densities of X: the truncated standard normal densityN[0,1](0, 1) (X ∈ [0, 1]), the exponential
density Exp(2) (X ∈ [0,∞)), and the standard normal densityN(0, 1) (X ∈ (−∞,∞)). It is also possible
to use the transformations X̃ = X

1+X or X̃ = 1
2 + 1

π
tan−1(X) to cover the cases of random variables X

with support R+ and R, respectively. These transformations allow for the application of Bernstein
polynomials to smooth the empirical distribution function.

The simulation consists of four parts. In the first three parts, the estimators are compared by their
average integrated squared error AIS E. Every AIS E is calculated by a Monte-Carlo simulation with
N = 1000 repetitions of sample size n,

AIS E =
1
N

N∑
k=1

ISE [r̄k] ,

where r̄k is the estimator (̂θx or r̂BNW
n (x) or r̂NW

n (x)) computed from the kth sample, and

ISE [r̄k] =

∫ 1

0
{r̄(x) − r(x)}2dx.

According to Figures 1–4, it is evident that the robust Bernstein polynomial estimation converges
when n is large. This is observed in all cases.
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Figure 1. Prediction: linear case.
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0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

n =  20 

x

r(
x)

real r

Robust BP

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

n =  100 

x

r(
x)

real r

Robust BP

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

n =  500 

x

r(
x)

real r

Robust BP

Figure 3. Prediction: sine case.
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Figure 4. Prediction: exponential case.
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The AIS E of three estimators is graphed in Figure 5 for different parameter values ranging
from 1 to 200. The estimators are evaluated for two sample sizes, n = 20 and n = 500. The
outcomes are highly comparable when outlier values are not present. Nevertheless, the analysis of
Tables 1–4 demonstrates that both the kernel estimator and the Bernstein-Nadaraya-Watson estimator
exhibit significant sensitivity towards outlier values. This heightened sensitivity leads to substantial
inaccuracies in predictions. In contrast, our robust Bernstein polynomial estimator consistently sustains
its performance irrespective of the quantity of outlier values.

Table 1. AIS E: linear case.

Density Outlier n = 20 n = 100 n = 500
of X rate r̂BNW

n (x) θ̂x r̂NW
n (x) r̂BNW

n (x) θ̂x r̂NW
n (x) r̂BNW

n (x) θ̂x r̂NW
n (x)

0.00% 0.37777 0.38362 0.37289 0.0386 0.04134 0.0333 0.01564 0.01684 0.00896
(a) 0.05% 598.916 3.57632 690.548 678.998 2.20528 668.378 674.569 0.18818 692.737

N[0,1](0, 1) 0.10% 3016.57 5.65957 3000.05 2620.97 3.16347 2593.3 2676.12 0.23244 2682.89
0.25% 16083.1 14.182 15878.1 15896.3 6.29712 15930.6 16447.1 1.74161 16344.1

0.00% 0.35574 0.35578 0.35517 0.05012 0.05283 0.03747 0.01611 0.01549 0.00794
(b) 0.05% 748.855 4.2097 819.161 689.539 1.90398 692.123 683.571 0.21493 644.829

Exp(2) 0.10% 2408.65 5.93149 2284.35 2501.28 3.57741 2432.78 2681.96 0.31808 2586
0.25% 16174.5 21.0217 16094.6 16228.2 6.62117 16834.3 17422.6 1.89746 17294.2

0.00% 0.3345 0.33847 0.31945 0.05094 0.04832 0.03983 0.01667 0.01593 0.00886
(c) 0.05% 770.807 4.51064 822.317 675.495 2.05097 665.198 698.8 0.15089 656.339
N(0, 1) 0.10% 2746.52 7.79586 2559.23 2436.1 3.05173 2393.47 2497.94 0.24955 2503.83

0.25% 19178.1 18.1898 18006 16413.5 8.0909 16893.9 17372.6 1.75941 17495.9

Table 2. AIS E: parabolic case.

Density Outlier n = 20 n = 100 n = 500
of X rate r̂BNW

n (x) θ̂x r̂NW
n (x) r̂BNW

n (x) θ̂x r̂NW
n (x) r̂BNW

n (x) θ̂x r̂NW
n (x)

0.00% 1.48199 1.48019 1.47376 0.16874 0.25191 0.10863 0.04375 0.05576 0.02462
(a) 0.05% 29.1125 2.49147 29.3273 14.8531 0.74622 16.0768 15.7507 1.66571 22.1559

N[0,1](0, 1) 0.10% 64.0281 2.90274 73.1002 53.5638 0.91596 49.9706 98.0555 0.90805 67.9633
0.25% 393.474 6.88132 326.212 1050.14 3.46544 700.888 1100.17 0.99655 751.459

0.00% 1.39141 1.47957 1.33418 0.17829 0.22055 0.11882 0.05203 0.05178 0.02936
(b) 0.05% 25.489 2.38298 28.3225 13.7623 0.54491 14.1639 31.6953 1.13268 11.5467

Exp(2) 0.10% 71.5908 2.58522 75.7357 50.8943 1.02112 58.2273 114.747 1.50033 54.9639
0.25% 355.306 6.60588 289.937 867.431 2.26394 454.397 1327.96 0.47757 835.553

0.00% 0.98856 1.05261 0.97223 0.16172 0.18081 0.09312 0.03957 0.04478 0.02101
(c) 0.05% 25.528 2.25141 32.5343 22.6682 0.5839 15.2797 24.7481 1.48634 15.3258
N(0, 1) 0.10% 61.7528 2.64854 85.8806 75.1123 1.22781 45.4987 111.539 1.81279 64.8843

0.25% 469.185 9.35168 398.637 692.756 3.46427 642.386 1131.51 0.6867 526.238
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Table 3. AIS E: sine case.

Density Outlier n = 20 n = 100 n = 500
of X rate r̂BNW

n (x) θ̂x r̂NW
n (x) r̂BNW

n (x) θ̂x r̂NW
n (x) r̂BNW

n (x) θ̂x r̂NW
n (x)

0.00% 0.13301 0.12525 0.1154 0.01527 0.01522 0.01269 0.00414 0.00436 0.00316
(a) 0.05% 19.3998 0.28717 20.5557 12.0525 0.12604 10.3004 9.47988 0.1339 8.91102

N[0,1](0, 1) 0.10% 58.565 0.52241 49.1399 33.1922 0.23475 34.4606 38.2786 0.16123 43.7728
0.25% 294.817 2.25567 177.939 266.142 0.54954 210.994 249.554 0.30488 273.319

0.00% 0.14836 0.15054 0.12541 0.01324 0.0144 0.01196 0.0055 0.00545 0.00438
(b) 0.05% 18.8191 0.2807 25.6982 10.7864 0.14311 9.74908 10.5176 0.18333 9.51805

Exp(2) 0.10% 55.1011 0.45925 48.4941 44.8719 0.18583 33.2084 40.9161 0.17936 39.3012
0.25% 234.994 1.24542 189.692 251.89 0.60327 234.829 261.372 0.34955 285.042

0.00% 0.13021 0.14029 0.12257 0.01506 0.01511 0.01375 0.00442 0.00442 0.00328
(c) 0.05% 23.6259 0.28918 22.6131 12.1443 0.10116 10.529 9.82171 0.15066 9.71418
N(0, 1) 0.10% 56.098 0.4286 55.5514 36.7151 0.22296 36.6241 35.7651 0.1501 40.4612

0.25% 247.54 1.20312 237.361 224.049 0.50768 235.812 246.816 0.30212 276.141

Table 4. AIS E: exponential case.

Density Outlier n = 20 n = 100 n = 500
of X rate r̂BNW

n (x) θ̂x r̂NW
n (x) r̂BNW

n (x) θ̂x r̂NW
n (x) r̂BNW

n (x) θ̂x r̂NW
n (x)

0.00% 0.74703 0.61209 0.56581 0.17137 0.17318 0.1214 0.10734 0.08411 0.01222
(a) 0.05% 1.98561 1.35548 1.86444 1.56581 0.60637 1.98072 5.36892 0.08762 3.43111

N[0,1](0, 1) 0.10% 5.07457 1.236 4.75581 7.88123 0.43664 7.38618 27.4856 0.11352 12.9594
0.25% 34.2112 2.53764 30.5081 141.657 1.78744 166.463 366.283 0.32839 243.809

0.00% 0.52866 0.5851 0.47474 0.10082 0.13134 0.05472 0.03985 0.07932 0.0121
(b) 0.05% 1.79819 1.06047 1.9109 1.31466 0.45844 1.7421 4.25689 0.07832 4.11877

Exp(2) 0.10% 3.47787 1.33077 4.26777 10.9025 0.44565 11.0732 46.7737 0.09391 31.0859
0.25% 66.6146 1.7682 51.3565 196.824 1.64135 113.157 351.074 0.30732 317.418

0.00% 0.74933 0.71865 0.5849 0.11883 0.19364 0.11473 0.10082 0.11145 0.01105
(c) 0.05% 1.20693 0.61275 1.51455 1.40167 0.15919 1.27418 7.52656 0.0597 3.79191
N(0, 1) 0.10% 3.85005 1.01982 3.50089 14.9906 0.41717 10.9088 39.9271 0.11825 36.1256

0.25% 26.8219 2.48908 25.5696 145.728 1.13974 123.627 422.568 0.33036 202.644
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Figure 5. AIS E over the respective parameters in [1, 200] for n = 20 and n = 500.

4.2. Asymptotic normality

The objective is to demonstrate the property of asymptotic normality in the context of the sine
regression model. The equation is

Yi = sin
(
3
2

Xi

)
+ εi.

Next, let r(x) be defined as the sine function with a coefficient of 3
2 . The data provided is the same

as in the previous subsection. The procedure consists of the following steps: We approximate the
regression function r(x) using θ̂x0 and compute the normalized deviation between this approximation
and the theoretical regression function (refer to Theorem 3.3) for x0 = 0, 0.5 and 1. Under this scheme,
we generate N separate sets of n samples that are not influenced by each other. Next, we analyze the
form of the estimated density (with normalized deviation) and compare it to the shape of the standard
normal density in the context of the sine regression model. The following figures and table present the
density of θ̂x0 as well as the p−value by the Shapiro-Wilk normality test. We examine various values
of n, specifically n = 20, n = 100, and n = 500.

Figures 6–8 and Table 5 demonstrate the advantageous characteristics of our asymptotic law
compared to the standard normal distribution.

Table 5. p−value by Shapiro-Wilk normality test.

n = 20 n = 100 n = 500

x0 = 0 0.0814 0.0968 0.1728
x0 = 0.5 0.5299 0.5734 0.6603
x0 = 1 0.0611 0.0702 0.0970
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Figure 6. Illustration of the asymptotic normal distribution for x0 = 0.
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Figure 7. Illustration of the asymptotic normal distribution for x0 = 0.5.
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Figure 8. Illustration of the asymptotic normal distribution for x0 = 1.
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5. Real data application

Air pollution significantly affects the lives of individuals in developed nations. The source of this
issue is increased levels of smoke produced by industries or vehicles, prompting authorities to search
for more efficient methods to regulate air quality in real-time. London is experiencing a significant
problem with air pollution exceeding legal and World Health Organisation limits. An example of this
is the incident in 2010 when air pollution caused various health problems in the city, leading to a
financial cost of around £3.7 billion.

This segment analyzes the mean daily levels of gases detected at the Marylebone Road monitoring
station in London. The dataset includes the average daily measurements recorded throughout 2022
for five important variables: Ozone (O3), Nitric Oxides (NO), Nitrogen Dioxide (NO2), Sulphur
Dioxide (S O2), and Particulate Matter (PM10). The main objective of our research is to determine
the most practical forecasting models for air pollutant concentration. The data used in this analysis
was obtained from the specified website: https://www.airqualityengland.co.uk/site/data?
site_id=MY1.

To ensure clarity, let us delineate the mathematical expression representing our prediction objective.
Let us consider predicting the daily air pollutant concentration, represented by the variable Y , for 365
days, denoted by X. Formally, we assume that the output variable Y and the input variable X are
connected by the following equation:

Yi = r (Xi) + εi for i ∈ {1, . . . , n}.

A dependable data-dependent rule for order selection is crucial when estimating an unknown regression
function in any practical scenario. A widely used and effective method is cross-validation:

CV(m) =
1
n

n∑
i=1

(Yi − r̄−i (Xi))2 ,

where r̄−i is the regression estimate without the data point (Xi,Yi).
In practice, choosing the right degree m for a Bernstein polynomial requires balancing between the

complexity of the model and how well it fits the data. A useful method for this is cross-validation,
where the dataset is divided into training and validation sets.

Then, the smoothing parameter is chosen by minimizing

CV(m) =
1
n

n∑
i=1

(Yi − r̄−i (Xi))2 .

For convenience, we assume that the minimum of days is 1 and the maximum is 365 (the day data are
such that mini (Xi) = 1 and maxi (Xi) = 365 ). Finally, we used the cross-validation method to obtain
the results in Figures 9–13 and Table 6.

AIMS Mathematics Volume 9, Issue 11, 32409–32441.
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Figure 9. Prediction: Ozone (O3) case.
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Figure 10. Prediction: Nitric Oxides (NO) case.
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Figure 11. Prediction: Nitrogen Dioxide (NO2) case.
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Figure 12. Prediction: Sulphur Dioxide (S O2) case.
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Figure 13. Prediction: Particulate Matter (PM10) case.

Based on the analysis of Figures 9 to 13, it is evident that the two estimators are nearly identical,
except for the scenario depicted in Figure 10. In this case, non-robust estimator r̂BNW

n (x) is found to be
sensitive to outliers, which provides evidence of the efficiency of our estimator.

Based on the information in Table 6, we can infer that the parameter m can be adjusted. It does not
need to be equal to n. Instead, we can choose a lower-degree polynomial to achieve a more favorable
outcome.

Table 6. m optimal for each case.

Ozone Nitric Oxides Nitrogen Dioxide Sulphur Dioxide Particulate Matter
r̂BNW

n (x) 181 169 197 197 197
θ̂x 121 149 101 173 181

AIMS Mathematics Volume 9, Issue 11, 32409–32441.
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6. Conclusions

In this paper, we proposed a new robust regression estimator based on the Bernstein polynomials.
Our contribution extends the work of Slaoui and Jmaei [28] to the case of robust regression. The
asymptotic properties of this estimator were established. Afterward, we validated the effectiveness of
the proposed method through a simulation study and applied it to real data on air pollution,

We found that, in all three models, the average ISE of our robust regression estimator θ̂x, defined
in 2.4, was the smallest. We also noted that the robust regression provided better results than the
non-robust method when outliers were present, in the sense that, even if the sample size increases,
the average ISE decrease. To conclude, the use of the robust regression estimator with Bernstein
polynomials successfully addressed the edge problem, yielding results comparable to those of non-
robust and Nadaraya-Watson estimators in the absence of outliers.

We believe our research provides a foundational step that can be further developed and expanded. It
sets the stage for future work to extend our robust regression estimator using the Bernstein polynomial
by considering the interest random variable to be truncated. We also plan to work on the robust
regression estimation using Lagrange polynomials.
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A. Appendix

In this section, we present proofs for the results in Section 3. First, we recall a series of results,
which are proven in Leblanc [26], linked to different sums of Bernstein polynomial, defined by

S mn(x) =

mn−1∑
k=0

B2
k(mn, x).

These results are given in the following lemma.

Lemma A.1. We have

(i) 0 ≤ S mn(x) ≤ 1,∀x ∈ [0, 1].

(ii) S mn(x) = m−1/2 [
ψ(x) + ox(1)

]
,∀x ∈ (0, 1).

(iii) S mn(0) = S mn(1) = 1.

(iv) Let g be any continuous function on [0, 1]. Then, m1/2
n

∫ 1

0
g(x)S mn(x)dx =

∫ 1

0
g(x)ψ(x)dx + o(1).

Proof. The proof of this lemma is in Leblanc [26] and Babu et al. [12]. �

A.1. Proof of Proposition 3.1

Lemma A.2.
E [Nn(x, t)] − N(x, t) = ∆2(x)m−1

n + o
(
m−1

n

)
. (A.1)

Proof.

E [Nn(x, t)] = mnE

ρ(Y − t)
mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}Bk(mn − 1, x)


= mn

mn−1∑
k=0

∫ k+1
mn

k
mn

(∫
R

ρ(y − t)g(z, y)dy
)

dzBk(mn − 1, x)

= mn

mn−1∑
k=0

∫ k+1
mn

k
mn

r(z, t) f (z)dz

 Bk(mn − 1, x).
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Using a Taylor expansion, we have

r(z, t) f (z) =

[
r(x, t) + (z − x)

∂r
∂z

(x, t) +
(z − x)2

2
∂2r
∂z2 (x, t) + o

(
(z − x)2

)]
×

[
f (x) + (z − x) f ′(x) +

(z − x)2

2
f ′′(x) + o

(
(z − x)2

)]
=r(x, t) f (x) + (z − x)

[
∂r
∂z

(x, t) f (x) + r(x, t) f ′(x)
]

+
(z − x)2

2

[
∂2r
∂z2 (x, t) f (x) + f ′′(x)r(x, t) + 2

∂r
∂z

(x, t) f ′(x)
]

+ o
(
(z − x)2

)
,

and since N(x, t) = r(x, t) f (x), we obtain

E [Nn(x, t)] =r(x, t) f (x)mn

mn−1∑
k=0

(
k + 1
mn
−

k
mn

)
Bk(mn − 1, x) +

(
∂r
∂x

(x, t) f (x)

+ f ′(x)r(x, t)
) mn

2

mn−1∑
k=0


(
k + 1
mn
− x

)2

−

(
k

mn
− x

)2
 Bk(mn − 1, x)

+

(
f ′(x)

∂r
∂x

(x, t) + f (x)
∂2r
∂x2 (x, t) + f ′′(x)r(x, t)

)
mn

6

mn−1∑
k=0


(
k + 1
mn
− x

)3

−

(
k

mn
− x

)3
 Bk(mn − 1, x)

=N(x, t) +

(
∂r
∂x

(x, t) f (x) + f ′(x)r(x, t)
)

mn

2

mn−1∑
k=0

m−2
n (2k + 1 − 2mnx)Bk(mn − 1, x)

+

(
2 f ′(x)

∂r
∂x

(x, t) + f (x)
∂2r
∂x2 (x, t) + f ′′(x)r(x, t)

)
mn

6

mn−1∑
k=0

m−3
n

{
(k + 1 − mnx)2 + (k − mnx)2 + (k + 1 − mnx)(k − mnx)

}
Bk(mn − 1, x)[1 + o(1)]

=N(x, t) +

(
∂r
∂x

(x, t) f (x) + f ′(x)r(x, t)
)

m−1
n

2
{
2T1,mn−1(x) + (1 − 2x)T0,mn−1(x)

}
+

(
2 f ′(x)

∂r
∂x

(x, t) + f (x)
∂2r
∂x2 (x, t) +

∂2 f
∂x2 (x)r(x, t)

)
m−2

n

6

mn−1∑
k=0

{
3(k − mnx)2 + 3(k − mnx) + 1

}
Bk(mn − 1, x)[1 + o(1)]

=N(x, t) +

(
∂r
∂x

(x, t) f (x) + f ′(x)r(x, t)
)

m−1
n

2
{
2T1,mn−1(x) + (1 − 2x)T0,mn−1(x)

}
+

(
2 f ′(x)

∂r
∂x

(x, t) + f (x)
∂2r
∂x2 (x, t) + f ′′(x)r(x, t)

)
m−2

n

6

{
3T2,mn−1(x) + 3(1 − 2x)T1,mn−1(x) +

(
x2 − 3x + 1

)
T0,mn−1(x)

}
[1 + o(1)],
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where T j,mn−1(x) are the central moments of the Binomial distribution of order j ∈ N, defined as

T j,mn−1(x) =

mn−1∑
k=0

(k − mnx) jBk(mn − 1, x), ∀ j ∈ N.

Note that it is easy to obtain

T0,mn−1(x) = 1, T1,mn−1(x) = 0 T2,mn−1(x) = (mn − 1)x(1 − x).

Then, we have

E [Nn(x, t)] = N(x, t) + ∆2(x)m−1
n + o

(
m−1

n

)
. (A.2)

�

Lemma A.3. We have

Var [Nn(x, t)] =


m1/2

n
n E

[
(ρ(Y − t))2 | X = x

]
f (x)ψ(x) + ox

(
m3/2

n
n

)
for x ∈ (0, 1),

mn
n E

[
(ρ(Y − t))2 | X = x

]
f (x) + ox

(
mn
n

)
for x = 0, 1.

Proof. We have

Var [Nn(x, t)] = E
[
N2

n (x, t)
]
− E2 [Nn(x, t)] ,

where

N2
n (x, t) =

m2
n

n2

n∑
i=1

(ρ(Yi − t))2

mn−1∑
k=0

I{ k
mn
<Xi≤

k+1
mn

}
Bk(mn−1,x)

2

+
m2

n

n2

mn∑
i, j=1,i, j

ρ(Yi − t)ρ(Y j − t)

mn−1∑
k=0

I{ k
mn
<Xi≤

k+1
mn

}
Bk(mn−1,x)

 mn−1∑
k=0

I{ k
mn
<X j≤

k+1
mn

}
Bk(mn−1,x)

 .
So, we have

E
[
N2

n (x, t)
]

=
m2

n

n
E

(ρ(Y − t))2

mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}
Bk(mn−1,x)

2 +
m2

nn(n − 1)
n2 E2

mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}
Bk(mn−1,x)


=

mn

n
E

(ρ(Y − t))2

mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}
Bk(mn−1,x)

2 +

(
1 −

1
n

)
E2 [Nn(x, t)] ,
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and

Var [Nn(x, t)] =
m2

n

n
E

(ρ(Y − t))2

mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}
Bk(mn−1,x)

2 − 1
n
E2 [Nn(x, t)]

=
m2

n

n
E

(ρ(Y − t))2
mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}B2
k(mn − 1, x)

 − 1
n
E2 [Nn(x, t)]

=
m2

n

n

mn−1∑
k=0

∫ k+1
mn

k
mn

(∫
R

(ρ(y − t))2g(z, y)dy
)

dzB2
k(mn − 1, x) −

1
n
E2 [Nn(x, t)]

=
m2

n

n

mn−1∑
k=0

∫ k+1
mn

k
mn

E
[
(ρ(Y − t))2 | X = z

]
f (z)dz

 B2
k(mn − 1, x) −

1
n
E2 [Nn(x, t)]

=
mn

n
E

[
(ρ(Y − t))2 | X = x

]
f (x)S mn(x) −

1
n
E2 [Nn(x, t)] .

Using Lemma A.1 (ii) and (iii), we obtain

Var [Nn(x, t)] =


m1/2

n
n E

[
(ρ(Y − t))2 | X = x

]
f (x)ψ(x) + ox

(
m3/2

n
n

)
for x ∈ (0, 1),

mn
n E

[
(ρ(Y − t))2 | X = x

]
f (x) + ox

(
mn
n

)
for x = 0, 1.

(A.3)

�

Lemma A.4.

Cov ( fn(x),Nn(x, t)) =


m1/2

n
n r(x, t) f (x)ψ(x) + ox

(
m1/2

n
n

)
for x ∈ (0, 1),

mn
n r(x, t) f (x) + ox

(
mn
n

)
for x = 0, 1.

(A.4)

Proof. We have

Cov ( fn(x),Nn(x, t)) = E
[
fn(x)Nn(x, t)

]
− E

[
fn(x)

]
E [Nn(x, t)]

=
m2

n

n
E

ρ(Y − t)

mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}Bk(mn − 1, x)

2
+

n(n − 1)m2
n

n2 E2

ρ(Y − t)
mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}Bk(mn − 1, x)

 − E [
fn(x)

]
E [Nn(x, t)]

=
m2

n

n
E

ρ(Y − t)

mn−1∑
k=0

I{ k
mn
<X≤ k+1

mn

}Bk(mn − 1, x)

2 − 1
n
E

[
fn(x)

]
E [Nn(x, t)]

=
m2

n

n

mn−1∑
k=0

∫ k+1
mn

k
mn

(∫
R

ρ(y − t)g(z, y)dy
)

dzB2
k(mn − 1, x) −

1
n
E

[
fn(x)

]
E [Nn(x, t)]

=
mn

n
r(x, t) f (x)S m(x) −

1
n
E

[
fn(x)

]
E [Nn(x, t)] .
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Using Lemma A.1 (ii) and (iii), we get

Cov ( fn(x),Nn(x)) =


m1/2

n
n r(x) f (x)ψ(x) + ox

(
m1/2

n
n

)
for x ∈ (0, 1),

mn
n r(x) f (x) + ox

(
mn
n

)
for x = 0, 1.

(A.5)

To obtain the bias of r̂n(x, t), we let h(x, y) = u
v . Using a Taylor expansion, we have

h(u, v) =h (u0, v0) + [u − u0]
∂h
∂u

(u0, v0) + [v − v0]
∂h
∂v

(u0, v0)

+
1
2

{
[u − u0]2 ∂

2h
∂u2

(u0, v0) + [v − v0]2 ∂
2q
∂v2

(u0, v0)
}

+ 2 [u − u0] [v − v0]
∂2h
∂u∂v

(u0, v0)

+ o
(
‖(u − u0, v − v0)‖2

)
.

Then, we have

u
v

=
u0

v0
+

1
v0

(u − u0) −
u0

v2
0

(v − v0) +
u0

v3
0

(v − v0)2
−

1
v2

0

(u − u0) (v − v0) + o
(
(u − u0)2 + (v − v0)2

)
.

We set (u, v) = (Nn(x, t), fn(x)) and (u0, v0) = (N(x, t), f (x)). Therefore, we infer that

Nn(x, t)
fn(x)

=
N(x, t)

f (x)
+

1
f (x)

(Nn(x, t) − N(x, t)) −
N(x, t)
f (x)2

( fn(x) − f (x)(x))

+
N(x, t)
f (x)3

( fn(x) − f (x))2
−

1
f (x)2

(Nn(x, t) − N(x, t)) ( fn(x) − f (x)))

+ o
(
(Nn(x, t) − N(x, t))2 + ( fn(x) − f (x))2

)
.

r̂n(x, t) =r(x, t) +
1

f (x)
(Nn(x, t) − N(x, t)) −

r(x, t)
f (x)

( fn(x) − f (x))

+
r(x, t)
f (x)2

( fn(x) − f (x))2
−

1
f (x)2

(Nn(x, t) − N(x, t)) ( fn(x) − f (x))

+ o
(
(Nn(x, t) − N(x, t))2 + ( fn(x) − f (x))2

)
.

Hence, we set (u, v) = ( fn(x),Nn(x, t)) and (u0, v0) = ( f (x),N(x, t)) to obtain

r̂n(x, t) =r(x, t) −
r(x, t)
f (x)

( fn(x) − f (x)) +
1

f (x)
(Nn(x, t) − N(x, t))

+
r(x, t)
{ f (x)}2

( fn(x) − f (x))2
−

1
{ f (x)}2

( fn(x) − f (x)) (Nn(x, t) − N(x, t))

+ o
(
( fn(x) − f (x))2 + ( fn(x) − f (x)) (Nn(x, t) − N(x, t))

)
.

Then,

E
[̂
rn(x, t)

]
=r(x, t) −

r(x, t)
f (x)

(
E

[
fn(x)

]
− f (x)

)
+

1
f (x)

(E [Nn(x, t)] − N(x, t))

+
r(x, t)
{ f (x)}2

(
E

[
fn(x)

]
− f (x)

)2
−

1
{ f (x)}2

E
[
( fn(x) − f (x)) (Nn(x, t) − N(x, t))

]
+ o

(
E

[
( fn(x) − f (x))2

]
+ E

[
( fn(x) − f (x)) (Nn(x, t) − N(x, t))

])
.
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Use Vitale’s estimator fn, we get

E
[
fn(x)

]
= f (x) +

∆1(x)
mn

+ o
(
m−1

n

)
, ∀x ∈ [0, 1] (A.6)

and

Var
[
fn(x)

]
=


m1/2

n
n f (x)ψ(x) + ox

(
m1/2

n
n

)
for x ∈ (0, 1),

mn
n f (x) + ox

(
mn
n

)
for x = 0, 1.

(A.7)

To obtain (3.1) of Proposition 3.1, we use (A.6) and (A.2) to obtain

E
[̂
rn(x, t)

]
= r(x, t) +

(
1

f (x)
∆2(x) −

r(x, t)
f (x)

∆1(x)
)

m−1
n + o

(
m−1

n

)
= r(x, t) + ∆(x)m−1

n + o
(
m−1

n

)
, ∀x ∈ [0, 1].

Now for the variance of r̂n(x, t), we have

Var
(̂
rn(x, t)

)
= Var

(
r(x, t) −

r(x, t)
f (x)

( fn(x) − f (x)) +
1

f (x)
(Nn(x, t) − N(x, t))

)
[1 + o(1)],

which ensures that

Var
(̂
rn(x, t)

) {r2(x, t)
f 2(x)

Var ( fn(x)) +
1

f 2(x)
Var (Nn(x, t)) − 2

r(x, t)
f 2(x)

Cov (Nn(x, t), fn(x))
}

[1 + o(1)].

So, for x = (0, 1), we have f ,

Var
[̂
rn(x, t)

]
=

m1/2
n

n
Var(ρ(Y − t) | X = x)

f (x)
+ ox

(
m1/2

n

n

)
,

and, for x ∈ 0, 1, we have

Var
[̂
rn(x, t)

]
=

mn

n
Var(ρ(Y − t) | X = x)

f (x)
+ ox

(mn

n

)
,

which gives the proof of Proposition 3.1. �

A.2. Proof of Theorem 3.1

Without loss of generality we can suppose that ρ(Y − .) is increasing, with the decreasing case being
obtained by considering −ρ(Y − .). As ρ(Y − .) is increasing, then for all ε > 0,

r(x, θx. + ε) ≤ r(x, θx) ≤ r(x, θx − ε).

Proposition 3.1 shows that

r̂(x, t)
P
−→ r(x, t),

for all real t ∈ [θx − τ, θx + τ]. As r(x, θx) = 0, for sufficiently large n and for all ε ≤ τ, this implies

r̂(x, θx + ε) ≤ 0 ≤ r̂(x, θx − ε) in probability.
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Since r̂(x, θ̂x) = 0, and by the continuity of r̂(x,.) on [θx − τ, θx + τ], we deduce that

θx − ε ≤ θ̂x ≤ θx + ε in probability.

On the other hand, since θx and θ̂x are solutions of r(x, t) and r̂(x, t), respectively, then we have

r̂(x, θ̂x) = r(x, θx) = 0.

Under (H7), and by a Taylor expansion of r(x,.) of order one around θ̂x, we have

r̂(x, θ̂x) − r(x, θ̂x) = (θx − θ̂x)
∂r
∂t

(x, ξn) ,

where ξn is between θx and θ̂x. Hence,

|θx − θ̂x| ≤
1

| infx∈S
∂r
∂t (x, ξn) |

∣∣∣r̂(x, θ̂x) − r(x, θ̂x)
∣∣∣ ,

which yields

sup
x∈S
|θx − θ̂x| ≤

1
C3

sup
x∈S

∣∣∣r̂(x, θ̂x) − r(x, θ̂x)
∣∣∣

≤
1

C3
sup
x∈S

sup
t∈[θx−τ,θx+τ]

|r̂(x, t) − r(x, t)| ,

and the rest of the proof is a sequence of Proposition 3.1.

A.3. Proof of Proposition 3.2

From (2.4), we adopt the decomposition stated as

r̂n(x, t) − r(x, t) =
1

fn(x)
[
(Nn(x, t) − N(x, t)) − r(x, t) ( fn(x) − f (x))

]
=

1
fn(x)

[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x))))

]
+

1
fn(x)

[
(E (Nn(x, t)) − N(x, t)) − r(x, t) (E ( fn(x)) − f (x))

]
.

Lemma A.5. Under Assumptions (H1)–(H3), and for x ∈ [0, 1] such that f (x) > 0, we have

fn(x)
P
−→ f (x). (A.8)

Proof. We have by the results of Lemmas A.2 and A.3, that

E ( fn(x)) − f (x)→ 0,

and
Var ( fn(x))→ 0.

Hence,
fn(x)

P
−→ f (x), ∀ x ∈ (0, 1).

�
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Lemma A.6. Under Assumptions (H1)–(H4), and for x ∈ (0, 1) such that f (x) > 0, we have:

i) if mn is chosen such that nm−5/2
n → c for some constant c ≥ 0, then

n1/2m−1/4
n

fn(x)
[
(E (Nn(x, t)) − N(x, t)) − r(x, t) (E ( fn(x)) − f (x))

] P
−→
√

c∆(x), (A.9)

ii) if mn is chosen such that nm−5/2
n → ∞, then

mn

fn(x)
[
(E (Nn(x, t)) − N(x, t)) − r(x, t) (E ( fn(x)) − f (x))

] P
−→ ∆(x). (A.10)

Proof. By Lemmas A.2 and A.8, we have:

i) if nm−5/2
n → c for some constant c ≥ 0, then

n1/2m−1/4
n

fn(x)
[
(E (Nn(x, t)) − N(x, t)) − r(x, t) (E ( fn(x)) − f (x))

]
=

n1/2m−5/4
n (∆1(x) − r(x, t)∆2(x) + o(1))

fn(x)
P
→
√

c∆(x),

ii) if nm−5/2
n → ∞, then

mn

fn(x)
[
(E (Nn(x, t)) − N(x, t)) − r(x, t) (E ( fn(x)) − f (x))

]
=

(∆1(x) − r(x, t)∆2(x) + o(1))
fn(x)

P
→ ∆(x).

�

Lemma A.7. Under Assumptions (H1)–(H4), and for x ∈ (0, 1) such that f (x) > 0, we have

n1/2m−1/4
n

[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

] D
−→ N (0,Var(ρ(Y − t) | X = x) f (x)ψ(x)) .

(A.11)

Proof. We write

n1/2m−1/4
n

[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

]
=

n∑
i=1

(Li(x) − E (Li(x))) ,

where

Li(x) =
m3/4

n

n1/2
(ρ(yi − t) − r(x, t))

mn−1∑
k=0

I{ k
mn
<Xi≤

k+1
mn

}Bk (mn − 1, x) .

The proof of this lemma is based on the Lyapunov central limit theorem (FELLER, W. [36]) on
Li(x), i.e., it suffices to show, for some δ > 0, that∑n

i=1 E
[
|Li(x) − E [Li(x)]|2+δ

]
(
Var

[∑n
i=1 Li(x)

])(2+δ)/2 −→ 0. (A.12)
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Clearly,

Var

 n∑
i=1

Li(x)

 = nm−1/2
n Var

[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

]
= nm−1/2

n

[
Var (Nn(x, t)) + r2(x, t) Var ( fn(x)) − r(x, t) Cov (Nn(x, t), fn(x))

]
.

Hence,

Var

 n∑
i=1

Li(x)

 = Var
(
ρ(y − t)2|X = x

)
f (x)ψ(x) + o(1).

Therefore, to complete the proof of this lemma, it is enough to show that the numerator of (A.12)
converges to 0. For this, we use the Cr-inequality (cf. Loève [37], page 155) to show that

n∑
i=1

E
[
|Li(x) − E [Li(x)]|2+δ

]
≤ C1

n∑
i=1

E
[
|Li(x)|2+δ

]
+ C2

n∑
i=1

|E [Li(x)]|2+δ .

Recall that, because of Assumption (H4) and Lemma A.1 (ii), we have

n∑
i=1

E
[
|Li(x)|2+δ

]
= n−δ/2 (mn)

3
4 δ+

3
2

|ρ(Yi − t) − r(x, t)|2+δ

mn−1∑
k=0

I{ k
mn
<Xi≤

k+1
mn

}Bk (mn − 1, x)

2+δ
≤ n−δ/2 (mn)

3
4 δ+

3
2

mn−1∑
k=0

∫ k+1
mn

k
mn

(
21+δ

∫
R

|ρ(Y − t)|−(2+δ)g(z, y)dy

+21+δ|r(x, t)|2+δ
)

dzB2+δ
k (mn − 1, x)

≤ n−δ/2 (mn)
3
4 δ+

3
2

mn−1∑
k=0

C
mn

B2+δ
k (mn − 1, x)

≤ n−δ/2 (mn)
3
4 δ+

3
2 ×

C

m
3
2
n

≤ C

m
3
2
n

n


δ
2

→ 0.

Similarly, for the second term
(∑n

i=1 |E [Li(x)]|2+δ
)
, we get

n∑
i=1

|E [Li(x)]|2+δ
≤ C

m
3
2
n

n


δ
2

→ 0.

Finally, (A.9) in Lemma A.6, Lemma A.7, and Slutsky’s theorem complete the proof of part 3.4 of
Proposition 3.2. �

Now, if nm−5/2
n → ∞, we have

mn
[
(Nn(x, t) − E (N(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

]
=

(
n−1/2m5/4

n

)
n1/2m−1/4

n
[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

]
.

Since we have n−1/2m5/4
n → 0, A.10 in Lemma A.6, Lemma A.7, and Slutsky’s theorem complete

the proof of part 3.5. Proposition 3.2 follows from (A.11) when x ∈ {0, 1}.
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Lemma A.8. Under Assumptions (H1)–(H4), and for x ∈ {0, 1} such that f (x) > 0, we have:

i) if mn is chosen such that nm−3
n → c for some constant c ≥ 0, then

n1/2m−1/2
n

fn(x)
[
(E (Nn(x, t)) − N(x, t)) − r(x, t) (E ( fn(x)) − f (x))

] P
−→
√

c∆(x), (A.13)

ii) if mn is chosen such that nm−3
n → ∞, then

mn

fn(x)
[
(E (Nn(x, t)) − N(x, t))) − r(x, t) (E ( fn(x)) − f (x))

] P
−→ ∆(x). (A.14)

Proof. The proof of this lemma is analogous to Lemma A.6. �

Lemma A.9. Under Assumptions (H1)–(H4), and for x ∈ {0, 1} such that f (x) > 0, we have

n1/2m−1/2
n

[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

] D
−→ N (0,Var(ρ(Yi − t)) f (x)) . (A.15)

Proof. We write

n1/2m−1/2
n

[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

]
=

n∑
i=1

(Li(x) − E (Li(x))) ,

where

Li(x) :=
m1/2

n

n1/2
(ρ(Yi − t) − r(x, t))

mn−1∑
k=0

I{ k
mn
<Xi≤

k+1
mn

}Bk (mn − 1, x) .

The proof of this lemma is based on the Lyapounov central limit theorem (FELLER, W. [36]) on
Li(x). Clearly,

Var

 n∑
i=1

Li(x)

 = nm−1
n Var

[
(Nn(x, t) − E (Nn(x, t)))) − r(x, t) ( fn(x) − E ( fn(x))))

]
= nm−1

n

[
Var (Nn(x, t)) + r2(x, t) Var ( fn(x)) − 2r(x, t) Cov (Nn(x, t), fn(x))

]
.

Hence,

Var

 n∑
i=1

Li(x)

 = Var(ρ(Yi − t)) f (x) + o(1).

Therefore, to complete the proof of this lemma, we follow the same steps as in the proof Lemma
A.7, and find that

n∑
i=1

E
[
|Li(x) − E [Li(x)]|2+δ

]
≤

C

m
1
2
n

×

(mn

n

) δ
2
→ 0.

Finally, (A.13) in Lemma A.8, Lemma A.9, and Slutsky’s theorem complete the proof of part 3.6
of Proposition 3.2. Now, if nm−3

n → ∞, we have

mn
[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

]
=

(
n−1/2m3/2

n

)
n1/2m−1/2

n
[
(Nn(x, t) − E (Nn(x, t))) − r(x, t) ( fn(x) − E ( fn(x)))

]
.

Since we have n−1/2m3/2
n → 0, A.14 in Lemma A.8, Lemma A.9, and Slutsky’s theorem completes the

proof of part 3.7 of Proposition 3.2 follows from (A.15). �
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A.4. Proof of Theorem 3.2

First, we have∫ 1

0
Bias

(̂
rn(x, t)

)2 dx =

∫ 1

0

(
E

[̂
rn(x, t)

]
− r(x, t)

)2 dx =

∫ 1

0

∆2(x)
m2

n
+ o

(
1

m2
n

)
dx

=
δ1

m2
n

+ o
(

1
m2

n

)
.

Moreover, we have

Var
(̂
rn(x, t)

)
=

{
1

f 2(x)
Var (Nn(x, t)) +

r2(x, t)
f 2(x)

Var ( fn(x)) − 2
r(x, t)
f 2(x)

Cov (Nn(x, t), fn(x))
}

[1 + o(1)].

Then, ∫ 1

0
Var

(̂
rn(x, t)

)
dx =

{∫ 1

0

Var (Nn(x, t))
f 2(x)

dx +

∫ 1

0

r2(x, t) Var ( fn(x))
f 2(x)

dx

−2
∫ 1

0

r(x, t) Cov (Nn(x, t), fn(x))
f 2(x)

dx
}

[1 + o(1)].
(A.16)

First, we have

Var
[
fn(x)

]
=

1
n

[
Am(x) − f 2

m(x)
]
,

where f 2
m(x) = E2 [

fn(x)
]

= f 2(x) + O
(
m−1

n

)
, and

Am(x) = m2
n

mn−1∑
k=0

[
F

(
k + 1

m

)
− F

(
k
m

)]
B2

k(mn − 1, x)

= mn

[
f (x)S m−1(x) + O (Hm−1(x)) + O

(
m−1

)]
,

for x ∈ [0, 1] and mn ≥ 2, where

Hm(x) =

m∑
k=0

∣∣∣∣∣ k
m
− x

∣∣∣∣∣ B2
k (mn, x) = Ox

(
m−3/4

n

)
.

Note that this error term is not uniform. For this, we use the Cauchy-Schwarz inequality to write

Hmn(x) ≤

 mn∑
k=0

(
k

mn
− x

)2

Bk (mn, x)

1/2  mn∑
k=0

B3
k (mn, x)

1/2

≤

[
S mn(x)

4mn

]1/2

, (A.17)

for all mn ≥ 1 and x ∈ [0, 1], since 0 ≤ Bk (mn, x) ≤ 1 and
mn∑
k=0

(
k

mn
− x

)2

Bk (mn, x) =
x(1 − x)

mn
≤

1
4mn

.

Then, starting from Eq (A.17) and applying Jensen’s inequality and Lemma A.1 (iv), we have∫ 1

0
g(x)Hmn(x)dx ≤

∫ 1

0
g(x)

[
S mn(x)

4mn

]1/2

dx ≤
[∫ 1

0
g(x)dx

]1/2 [
1

4m3/2
n

∫ 1

0
g(x)ψ(x)dx + o

(
m−3/2

n

)]1/2

= O
(
m−3/4

n

)
.
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Then, we infer that∫ 1

0
r2(x, t)

Var
[
fn(x)

]
{ f (x)}2

dx

=
1
n

∫ 1

0
r2(x, t)

Amn(x) − f 2
mn

(x)
{ f (x)}2

dx

=
1
n

[∫ 1

0
r2(x, t)

Amn(x)
{ f (x)}2

dx −
∫ 1

0
r2(x, t)

]
+ O

(
1

mn

)
=

mn

n

[∫ 1

0

r2(x, t)
{ f (x)}2

(
S mn−1(x) + O

(
Hmn−1(x)

)
+ O

(
m−1

n

))
dx

]
−

1
n

∫ 1

0
r2(x, t) + O

(
1

mn

)
=

mn

n

[∫ 1

0

r2(x, t)
f (x)

S mn−1(x)dx + O
(
m−3/4

n

)]
−

1
n

∫ 1

0
r2(x, t) + O

(
1

mn

)
,

and, using Lemma A.1 (iv), we have∫ 1

0
r2(x, t)

Var
[
fn(x)

]
{ f (x)}2

dx =
m1/2

n

n

∫ 1

0

r2(x, t)
f (x)

ψ(x)dx −
1
n

∫ 1

0
r2(x, t) + o

(
m1/2

n

n

)
+ O

(
1

mn

)
. (A.18)

Second, we have

Cov
[
fn(x),Nn(x, t)

]
=

1
n

m2
n

mn−1∑
k=0

∫ k+1
m

k
mn

r(z) f (x)dz

 B2
k(mn − 1, x) − E

[
fn(x)

]
E [Nn(x, t)]


=

m2
n

n

mn−1∑
k=0

∫ k+1
mn

k
mn

[r(x, t) f (x) + O(z − x)]dz

 B2
k(mn − 1, x) −

1
n

f (x)N(x, t) + O
(

1
mn

)
=

mn

n

[
r(x, t) f (x)S mn−1(x) + O

(
Hmn−1(x)

)
+ O

(
m−1

n

)]
−

1
n

f (x)N(x, t) + O
(

1
mn

)
.

Then, using the same argument for Hmn−1(x) as previously, we obtain∫ 1

0
r(x, t)

Cov
[
fn(x),Nn(x, t)

]
{ f (x)}2

dx

=
mn

n

[∫ 1

0

r2(x, t)
f (x)

S mn−1(x)dx + O
(
m−3/4

n

)]
−

1
n

∫ 1

0
r2(x, t) + O

(
1

mn

)
=

m1/2
n

n

∫ 1

0

r2(x, t)
f (x)

ψ(x)dx −
1
n

∫ 1

0
r2(x, t) + o

(
m1/2

n

n

)
+ O

(
1

mn

)
.

(A.19)

Third, we have

Var [Nn(x, t)]

=
m2

n

n

mn−1∑
k=0

∫ k+1
mn

k
mn

E
[
ρ(Y − t)2 | X = z

]
f (z)dz

 B2
k(mn − 1, x) −

1
n
E2 [Nn(x, t)]

=
m2

n

n

mn−1∑
k=0

∫ k+1
mn

k
mn

[
E

[
ρ(Y − t)2 | X = x

]
f (x) + O(z − x)

]
dz

 B2
k(mn − 1, x) −

1
n

N2(x, t) + O
(

1
mn

)
=

mn
n

[
E

[
ρ(Y − t)2 | X = x

]
f (x)S mn−1(x) + O

(
Hmn−1(x)

)
+ O

(
m−1

n.

)]
−

1
n

N2(x, t) + O
(

1
mn

)
.
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Then,

∫ 1

0

Var [Nn(x, t)]
{ f (x)}2

dx =
mn

n

∫ 1

0

E
[
ρ(Y − t)2 | X = x

]
f (x)

S mn−1(x)dx + O
(
m−3/4

n

)
−

1
n

∫ 1

0
r2(x, t) + O

(
1

mn

)
=

m1/2
n

n

∫ 1

0

E
[
ρ(Y − t)2 | X = x

]
f (x)

ψ(x)dx −
1
n

∫ 1

0
r2(x, t)

+ o
(
m1/2

n

n

)
+ O

(
1

mn

)
.

(A.20)

Finally, substituting (A.18), (A.19), and (A.20) into (A.16), we obtain

∫ 1

0
Var

[̂
rn(x, t)

]
dx =

∫ 1

0

E
[
ρ(Y − t)2 | X = x

]
f (x)

ψ(x)dx −
∫ 1

0

E2[ρ(Y − t) | X = x]
f (x)

ψ(x)dx

 m1/2
n

n

+ o
(
m1/2

n

n

)
=

∫ 1

0

E
[
ρ(Y − t)2 | X = x

]
− E2[ρ(Y − t) | X = x]

f (x)
ψ(x)dx

m1/2
n

n
+ o

(
m1/2

n

n

)
=

∫ 1

0

Var[ρ(Y − t) | X = x]
f (x)

ψ(x)dx
m1/2

n

n
+ o

(
m1/2

n

n

)
.

Then, we obtain

MISE
(̂
rn

)
=

∫ 1

0

{
Var

(̂
rn(x, t)

)
+ Bias2 (̂

rn(x, t)
)}

=
Λ1

m2
n

+ Λ2
m1/2

n

n
+ o

(
m1/2

n

n

)
+ o

(
m−2

n

)
.

A.5. Proof of Theorem 3.3

Using a Taylor expansion of order one around θ, we get

r̂(x, θ̂x) = r̂(x, θx) + (θ̂x − θx)
∂̂r
∂t

(x, ξn) ,

with ξn ∈ (θ̂x, θx). Because of the definition of θ̂, we have

θ̂x − θx =
−̂r(x, θx)
∂r̂
∂t (x, ξn)

.

We will prove that the numerator is asymptotically normal, whereas the denominator converges in
probability to Γ(x, θx); for that, we will use the following decompositions:
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i) When x ∈ (0, 1) and mn is chosen such that nm−5/2 → c, then

n1/2m−1/4
n (̂θx − θx) =

−n1/2m−1/4
n [̂r(x, θx) − r(x, θx)]

∂̂r
∂t (x, ξn)

.

ii) When x ∈ {0, 1} and mn is chosen such that nm−3 → c, then

n1/2m−1/2
n (̂θx − θx) =

−n1/2m−1/2
n [̂r(x, θx) − r(x, θx)]

∂̂r
∂t (x, ξn)

.

So, we state asymptotic normality by Slutsky’s Theorem, and by Proposition 3.2 with t = θ. We show
that the numerator suitably normalized is asymptotically normally distributed. Then, it suffices to show
that the denominator converges in probability to Γ(x, θx) (see Lemma A.10).

Lemma A.10. Under Assumptions (H1)–(H3), and for x ∈ [0, 1] where f (x) > 0, we have

∂̂r
∂t

(x, ξn)
P
−→ Γ(x, θx).

Proof. We explore the following decomposition:∣∣∣∣∣∣ ∂̂r
∂t

(x, ξn) − Γ(x, θx)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ ∂̂r
∂t

(x, ξn) −
∂̂r
∂t

(x, θx)

∣∣∣∣∣∣ +

∣∣∣∣∣∣ ∂̂r
∂t

(x, θx) − Γ(x, θx)

∣∣∣∣∣∣
≤J1(x) + J2(x).

(A.21)

For J1(x), we write

J1(x) ≤ sup
y∈[a,b]

∣∣∣∣∣∂ρ (y − ξn)
∂t

−
∂ρ(y − θx)

∂t

∣∣∣∣∣ mn

fn(x)n

n∑
i=1

m−1∑
k=0

I{ k
m<Xi≤

k+1
m }Bk(m−1,x).

Because ∂ρ(y−t)
∂t is continuous at θ uniformly, the use of Theorem 3.1 and the convergence in

probability of fn(x) to f (x) show that the first term of (A.21) converges in probability to 0. However,
the limit of the second term is obtained by evaluating, separately, the bias and the variance terms of
∂̂r
∂t (x, θx). Clearly, a similar argument to those invoked for proving (3.1) can be used to obtain that

∂̂r
∂t

(x, θx)→ Γ(x, θx) in probability.

�

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 11, 32409–32441.

https://creativecommons.org/licenses/by/4.0

	Introduction
	Robust estimation with Bernstein polynomial
	Assumptions and main results 
	Simulation and real data application
	Consistency
	Asymptotic normality

	Real data application
	Conclusions
	Appendix
	Proof of Proposition 3.1
	Proof of Theorem 3.1
	Proof of Proposition 3.2
	Proof of Theorem 3.2
	Proof of Theorem 3.3


