
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(11): 32328–32365.
DOI:10.3934/math.20241551
Received: 17 September 2024
Revised: 30 October 2024
Accepted: 05 November 2024
Published: 15 November 2024

Research article

Novel linguistic q-rung orthopair fuzzy Aczel-Alsina aggregation operators
for group decision-making with applications

Ghous Ali1,*, Kholood Alsager2,* and Asad Ali1

1 Department of Mathematics, Division of Science & Technology, University of Education, Lahore,
Pakistan

2 Department of Mathematics, College of Science, Qasim University, Buraydah, Saudi Arabia

* Correspondence: Email: ghous.ali@ue.edu.pk, ksakr@qu.edu.sa.

Abstract: In this article, we presented two novel approaches for group decision-making (GDM) that
were derived from the initiated linguistic q-rung orthopair fuzzy Aczel-Alsina weighted arithmetic
(Lq-ROFAAWA) aggregation operator (AgOp) using linguistic q-rung orthopair fuzzy numbers (Lq-
ROFNs). To introduce these GDM techniques, we first defined new operational laws for Lq-ROFNs
based on Aczel-Alsina t-norm and t-conorm. The developed scalar multiplication and addition
operations of Lq-ROFNs addressed the limitations of operations when q = 1. The first proposed
GDM methodology assumed that both experts’ weights and attribute weights were fully known, while
the second technique assumed that both sets of weights were entirely unknown. We also discussed
properties of Lq-ROFNs under the Lq-ROFAAWA operators, such as idempotency, boundedness, and
monotonicity. Furthermore, we solved problems related to environmental and economic issues, such as
ranking countries by air pollution, selecting the best company for bank investments, and choosing the
best electric vehicle design. Finally, we validated the proposed GDM approaches using three validity
tests and performed a sensitivity analysis to compare them with preexisting models.
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1. Introduction

Nowadays, aggregation operators (AgOps) are playing a significant role as powerful mathematical
tools for combining various inputs into an output, considering the uncertainty associated with
these input values. When investigating environmental and economic issues, AgOps and their fuzzy
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extensions can help in finding solutions by integrating multiple vital factors and stakeholders’
preferences. The revolutionized concept of fuzzy set theory was launched by Zadeh [1] in 1965 as
a modification of crisp set theory. The fuzzy set theory has emerged as an effective mathematical tool
in decision science, catalyzing improvements in various fields by enhancing our capacity to model,
scrutinize, and control complicated systems involving uncertainty [2]. To date, numerous important
studies have been presented about collective decision-making using the combination of fuzzy set and
rough set [3]. For instance, Wang et al. [4] presented a hybrid decision-making model that addresses
uncertainty and relationships across criteria by combining rough fuzzy judgments with Choquet-like
integrals. Additionally, Wang and Zhang [5] proposed new methods of analysis for intuitionistic fuzzy
covering-based rough sets utilizing the intuitionistic fuzzy granular matrix. Due to the lack of a non-
membership part in fuzzy set theory, Atanassov [6] extended the study of fuzzy sets by adding a non-
membership function called intuitionistic fuzzy set (IFS), which can tackle non-membership degrees.
Later, Yager [7] extended the idea of IFSs and presented a new concept of Pythagorean fuzzy sets
that enlarge the space of input membership and non-membership values, but the sum of their square
is restricted by unity. Additionally, Yager [8] lifted this study to its peak by presenting the idea of
generalized or q-rung orthopair fuzzy sets (q-ROFSs) in which the sum of qth power of the membership
and non-membership values is bounded by 1.

The fuzzy sets, IFSs, Pythagorean fuzzy sets, and q-ROFSs are quantitative mathematical tools.
Besides, for the evaluation of alternatives in qualitative format, Zadeh [9] introduced the idea of
linguistic variables (LVs). For instance, to precisely estimate the structure of any house, the terms
extremely good, very good, good, fair, poor, etc. are used rather than numerical values. Following
the concept of LVs by Zadeh, Chen et al. [10] introduced the idea of linguistic IFSs for dealing with
linguistic IF numbers. To date, several significant studies have been reported for group decision-
making based on linguistic IF numbers and other uncertainty theories. The process of collective
decision-making in which a group of experts estimates the rank of given alternatives to choose the
most suitable alternative from a group of options is called group decision-making (GDM), which is
very significant in several fields [11]. For example, Akram et al. [12] introduced a GDM method
by the fusion of 2-tuple linguistic Fermatean fuzzy sets with traditional MULTIMOORA (Multiple
Objective Optimization on the basis of Ratio Analysis plus Full Multiplicative Form) technique, and
explored its application in urban quality management. Seikh and Mandal [13] presented an interval-
valued Fermatean fuzzy Dombi AgOps-based GDM method using the concepts of the PROMETHEE
II technique under SWARA (Step-wise Weight Assessment Ratio Analysis) method. Liu et al. [14]
integrated the evidence theory of Dempster-Shafer with linguistic IF numbers for GDM (see also, Yuan
et al. [15]). Gou et al. [16] improved the classical ORESTE (Organization, Rangement Et Synthese
De Donnes Relationnelles) method with linguistic preference orderings for GDM in medical domain.
Cheng et al. [17] presented a model for large-scale GDM. Seikh and Mandal [18, 19] introduced q-
ROF Archimedean and Frank AgOps and explored their applications in selecting the best site for a
software house and the best way for industrialization, respectively. Garg and Kumar [20] proposed an
AgOps-based GDM method using a possibility degree measure of linguistic IF numbers. Besides, Garg
and Kumar [21] introduced another AgOps-based GDM approach under the set-pair investigation of
linguistic IF numbers (see also, Garg et al. [22]). Kumar and Chen [23] proposed an improvement in
the linguistic interval-valued IF averaging AgOps and explored its application to GDM. Moreover,
Kumar and Chen [24] suggested an advanced multiple-criteria GDM method using linguistic IF
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averaging AgOps for handling linguistic IF information. Liu et al. [25] introduced an emergency
GDM method based on linguistic IF sets. Gou et al. [26] developed an improved VIKOR method
based on the probabilistic double hierarchy linguistic term set, and explored its applications in smart
healthcare domain. Tang and Meng [27] proposed linguistic IF Hamacher AgOps and studied their
application in GDM. Kumar and Chen [28] introduced a GDM approach based on Yager’s operation
for the aggregation of linguistic intuitionistic fuzzy information. Verma and Agarwal [29] developed
an AgOps-based generalized GDM approach under a linguistic interval-valued Pythagorean fuzzy
environment. Fahmi et al. [30] introduced a novel GDM method based on cubic linguistic hesitant
fuzzy AgOps. Kumar and Chen [31] suggested novel q-ROF Yager prioritized weighted arithmetic
AgOPs with their application in GDM. Cheng et al. [32] proposed a large-scale GDM model that
integrates risk attitudes by addressing the uncertainties in group decision environments.

After the successful production and implementation of various linguistic IF set-based AgOps, a
number of scholars were attracted to the study of linguistic q-ROFS-based AgOps [33]. For instance,
Lin et al. [34] introduced a powerful generalization of linguistic IF sets called linguistic q-ROFSs
(Lq-ROFSs) and their related properties. Liu et al. [35] proposed a novel GDM method using
power Bonferroni mean-based AgOps for the aggregation of Lq-ROFNs. Additionally, they [36]
introduced another GDM approach based on linguistic q-ROF power Muirhead mean AgOps using
the entropy weight strategy. Ranjan et al. [37] proposed novel Archimedean operations-based AgOps
using probabilistic linguistic q-ROFSs for GDM (see also Wang et al. [38]; Ali et al. [39]). Deb
et al. [40] developed linguistic q-ROF prioritized AgOps under Hamacher operations and explored
their applications to multiple attribute GDM. Liu et al. [41] established a new GDM model based on
linguistic q-ROF generalized point-weighted AgOps. Akram et al. [42] developed a novel framework
under Einstein’s operations for linguistic q-ROF numbers and solved certain daily life applications in
the mobile industry. Jana et al. [43] launched a new linguistic q-ROF Choquet integral method and
discussed the evaluation criteria of sustainable strategies for urban parcel delivery. Naz et al. [44]
presented a GDM model by incorporating power Muirhead mean operations for the aggregation of
2-tuple linguistic q-ROF information.

In the beginning of the 1980s, Aczel-Alsina t-norm (TN) and t-conorm (TCN) were first proposed
by Aczel and Alsina [45], which are updated versions of the algebraic TN and TCN, respectively.
Inspection of the literature reveals that more accurate decision-making is performed by the Aczel-
Alsina’s TN and TCN, in comparison to other TNs and TCNs. To justify this, Farahbod and
Efekhari [46] compared various TN operators for classification issues. Aczel-Alsina operators are
superior to the other operators due to the least error. Consequently, researchers have concentrated
on Aczel-Alsina TN and TCN-based AgOps for each of the theories mentioned above. For example,
Mahmood et al. [47] discussed the use of Aczel-Alsina TN and TCN-based AgOps in the bipolar
complex fuzzy environment and studied their application in choosing the optimal operating system
(see also, Mahmood and Ali [48]). Garg et al. [49] presented Choquet integral-based Aczel-Alsina
AgOps using interval-valued IFSs, and studied their application in decision-making. Liu et al. [50]
introduced prioritized AgOps using Aczel-Alsina TN and TCN operations for aggregating complex IF
information. Recently, Rehman et al. [51] initiated m-polar fuzzy Aczel-Alsina AgOps and investigated
their applications to identify suitable sites for wind power and desalination plants. Ali et al. [52]
established a novel decision-making method under Yager’s TN and TCN for the aggregation of m-
polar fuzzy information. Additionally, Ali et al. [53] presented a GDM strategy using Aczel-Alsina’s
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operations and IF soft information. For more contributions related Aczel-Alsina’s TN and TCN, the
readers are referred to [54, 55]. It can be easily observed that Lq-ROF information is not aggregated
using Aczel-Alsina’s operations to date. Motivated by all these concerns, in this study, we propose
two novel GDM approaches based on linguistic q-ROF sets with Aczel-Alsina TN and TCN that are
omitted in the literature.

The Following are our major motivations for this study:

1) In group decision-making (or GDM), Lq-ROFS-based models play a crucial role, as they allow
for linguistic assessments, enabling better management of the ambiguity and uncertainty inherent
in the information.

2) Compared to linguistic IFS theory, Lq-ROFSs provide greater flexibility in modeling uncertainty
and reluctance in decision-making. They improve the correctness of decisions made in
complicated situations by enabling wider representation of both membership and non-
membership degrees.

3) To achieve a more flexible and nuanced consensus, the Aczel-Alsina TN and TCN-based AgOps
are widely used in GDM [46, 48], which effectively balances a range of inputs by adjusting the
influence of extreme values. The accuracy of collective decisions is increased by its parametric
structure, which enables effortless changes between challenging and comfortable aggregation.

4) The aggregation of Lq-ROFNs is unattended using the exceptional aggregation features of Aczel-
Alsina TN and TCN. Motivated by these settings, two novel GDM methods are initiated by
combining the aggregation features of Aczel-Alsina TN and TCN with Lq-ROFSs.

Moreover, we investigate some limitations in Kumar and Chen’s [24] scalar multiplication and
addition operations of linguistic IF sets in some specific situations. Then, we suggest new addition and
scalar multiplication operations of Lq-ROFNs based on Aczel Alsina’s TN and TCN [45]. When q = 1,
the suggested addition and multiplication operations of Lq-ROFNs can overcome the deficiencies of
Kumar and Chen’s [24] multiplication and addition operations. For a more detailed review of AgOps
and GDM approaches, the readers are referred to [56].

The significant contributions of this study are given below:

1) A new kind of averaging weighted AgOps based on Aczel Alsina’s TN and TCN operations is
initiated for the aggregation of Lq-ROFNs.

2) Some basic properties of suggested AgOps are investigated.

3) Next, two novel GDM methodologies based on the suggested Aczel Alsina’s operations-based
AgOps are developed to solve decision-making problems. The first GDM approach considers
known weights in the aggregation process, while the second GDM method deals with unknown
weights of experts and attributes.

4) To validate the applicability scope of our suggested GDM method, five numerical examples are
solved using our suggested algorithms for each methodology.

5) Finally, to verify the authenticity and reliability of our proposed approach, a brief comparison is
depicted between the suggested and existing approaches, and between the different values of q.
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The remaining sections are structured as follows: In Section 2, we provide fundamental notions,
including the linguistic term set, linguistic q-ROFS, Aczel-Alsina TN, and TCN. In Section 3,
we develop some basic operations for linguistic q-ROFSs based on Aczel-Alsina TN and TCN.
Subsequently, based on these operations, the linguistic q-ROF Aczel-Alsina weighted averaging (Lq-
ROFAAWA) operators, along with their basic operations and properties, are presented in this section.
In Section 4, we propose two GDM approaches considering both known and unknown weights for
the aggregation of linguistic q-ROF numbers based on the initiated (Lq-ROFAAWA) operators and
successfully implementing them in different practical situations. Section 5 validates our introduced
approaches using existing tests and also compares them with certain preexisting methods. Finally, in
Section 6, we provide concluding arguments and future directions.

2. Preliminaries

In this section, we review some fundamental notions related to a linguistic term set, q-ROFSs,
and Aczel-Alsina TN and TCN. Further, we describe shortcomings in the multiplication and addition
operations presented by Kumar and Chen [28].

Definition 2.1. [10, 21] Suppose L = {a0, a1, . . . , ah} is a linguistic term set (LTS) having an odd
cardinal number, here h is an even positive integer, and at is a reference value for the corresponding
linguistic variable.

The following characteristics hold for a LTS L = {a0, a1, ..., ah} where h is an even positive
integer [10, 21, 58]:

1) ¬(ak) = ah−k,

2) ak ≤ at ⇔ k ≤ t,

3) min(ak, at) = at ⇔ ak ≥ at,

4) max(ak, at) = ak ⇔ ak ≥ at.

Now, we define a continuous LTS (CLTS) L[0,h] as below [59]:

L[0,h] = {az | a0 ≤ az ≤ ah}, (2.1)

where h is an even positive integer.

Definition 2.2. [10] Suppose L[0,h] = {az | a0 ≤ az ≤ ah} is a CLTS, where h is an even positive integer
and supposeU = {u1, u2, ..., un} is a finite universal set. Then, the mathematical expression of linguistic
intuitionistic fuzzy set (LIFS)M inU is provided by

M = {⟨u, aξ(u), aη(u)⟩ | u ∈ U}, (2.2)

where aξ(u) and aη(u) represent the MD and NMD of object u ∈ M, respectively. Note that aξ(u), aη(u) ∈

L[0,h] and clearly the MD aξ(u) and NMD aη(u) satisfy the condition 0 ≤ ξ(u) + η(u) ≤ h.
The pair ⟨aξ(u), aη(u)⟩ in LIFS M = {⟨u, aξ(u), aη(u) | u ∈ U} denotes a LIFN. Let Γ[0,h] represent a

collection of LIFNs provided in the CLTS L[0,h] = {az | a0 ≤ az ≤ ah}, where h is an even positive
integer.
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Definition 2.3. [35] Suppose L[0,h] = {az | a0 ≤ az ≤ ah} is a CLTS, where h is an even positive integer
and supposeU = {u1, u2, ..., un} is a finite universal set. Then, the mathematical expression of linguistic
q-rung orthopair fuzzy set (Lq-ROFS) Q onU is given as:

Q = {⟨u, aξ(u), aη(u)⟩ | u ∈ U}, (2.3)

where aξ(u) and aη(u) are respectively denoted the MD and NMD of element u belong to the Lq-ROFS
Q, respectively. Here aξ(u), aη(u) ∈ L[0,h] that satisfy the conditions 0 ≤ ξ(u) ≤ h, 0 ≤ η(u) ≤ h and
0 ≤ (ξ(u))q + (η(u))q ≤ hq where q ≥ 1.

The pair ⟨aξ(u), aη(u)⟩ in Lq-ROFS Q = {⟨u, aξ(u), aη(u)⟩ | u ∈ U} denotes a linguistic q-ROF number
(Lq-ROFN). Let Γ[0,h] represent a set of Lq-ROFNs provided on the CLTS L[0,h] = {az | a0 ≤ az ≤ ah}

where h is an even positive integer. Let aπ(u) = a(hq−ξq−ηq)1/q , then the term aπ(u) is the hesitancy degree
(HD) of the element u being a member of the Lq-ROFS Q.

In the following, we recall the notions of score and accuracy functions for Lq-ROFNs.

Definition 2.4. [35] Given a CLTS L[0,h] = {az | a0 ≤ az ≤ ah} and an Lq-ROFN σ = (aξ, aη) and
(aξ, aη) ∈ L, then the value of score function of Lq-ROFN ⟨aξu , aηu⟩ is defined as:

D = a(
(hq+ηq−ξq)/2

)1/q ,
and the value of accuracy function is defined as:

J = a(ξq+ηq)1/q .

Then, the comparison of any two Lq-ROFNs σ1 and σ2 is defined as follows [35]:

1) IfD(σ1) ≥ D(σ2), then σ1 ≥ σ2, in other words the Lq-ROFN σ1 is considered to be superior to
the Lq-ROFN σ2.

2) IfD(σ1) = D(σ2), then their exact ranking is computed using the accuracy function as below:

(a) If J(σ1) > J(σ2) , then σ1 ≥ σ2,

(b) If J(σ1) = J(σ2), then σ1 = σ2.

Definition 2.5. [45] For λ ∈ [0,∞] and σ1, σ2 ∈ [0, 1], the Aczel-Alsina TN (AA − T N) T λ
A (σ1, σ2)

and Aczel-Alsina TCN (AA− TCN) SλA(σ1, σ2) are respectively given as:

T λ
A (σ1, σ2) =


Tdra(σ1, σ2), if λ = 0,
min(σ1, σ2), if λ = ∞,

1 − exp−((− logσ1)λ+(− logσ2)λ)
1
λ , otherwise.

SλA(σ1, σ2) =


Sdra(σ1, σ2), if λ = 0,
max(σ1, σ2), if λ = ∞,

1 − exp−((− log(1−σ1))λ+(− log(1−σ2))λ)
1
λ , otherwise.
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Definition 2.6. [24] Suppose σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩ and σ = ⟨aξ, aη⟩ be Lq-ROFNs, where
σ1, σ2, σ ∈ Γ[0,h] and h is an even positive integer. Kumar and Chen’s [24] scalar product and addition
operations of the Lq-ROFNs σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩ and σ = ⟨aξ, aη⟩ are defined as follows:

σ1

⊕
σ2 =

〈
a
h

(
q
√

1
ε (1−
∏2

i=1(1−ε( ξi
h

)q))
), a
h

(
q
√

(1− 1
ε (1−
∏2

i=1(1−ε(1−( ηi
h

)q))))
)〉,

ψσ =

〈
a
h

q
√

1
ε (1−(1−ε( ξ

h
)q)ψ)

, a
h

q
√

1− 1
ε (1−(1−ε(1−( η

h
)q))ψ)

〉
,

where ψ > 0 and 0 < ε < 1.

Some shortcomings of Kumar and Chen’s [28] addition and scalar multiplication operations are
shown in the following examples, respectively.

Example 2.1. Suppose σ1 = ⟨a7.5, a0.35⟩, and σ2 = ⟨a7.4, a0.5⟩ be Lq-ROFNs, where σ1, σ2 ∈ Γ[0,8] and
h = 8. By Kumar and Chen’s addition operation defined in Definition 2.6 of Lq-ROFNs σ1 = ⟨aξ1 , aη1⟩,
and σ2 = ⟨aξ2 , aη2⟩ with q=1 and ε = 0.99, we get

σ1

⊕
σ2 =

〈
a
h

(
q
√

1
ε (1−
∏2

i=1(1−ε( ξi
h

)q))
), a
h

(
q
√

(1− 1
ε (1−
∏2

i=1(1−ε(1−( ηi
h

)q))))
)〉.

σ1

⊕
σ2 =

〈
a

8
(

1
0.99 (1−(1−0.99( 7.5

8 ))(1−0.99( 7.4
8 ))))
),

a
8
(

(1− 1
0.99 (1−(1−0.99(1−(0.358)(1−0.99(1− 0.5

8 )))
)〉

=
〈
a8.03a−0.04

〉
.

The MD of accumulated Lq-ROFN
〈
a8.03, a−0.04

〉
with q = 1 is a8.03 > a8, which is not suitable

because the MD of this Lq-ROFN with q = 1 must be lies in the Γ[0,8] and the NMD of this Lq-
ROFN with q = 1 must be lies in the Γ[0,8] but a−0.04 < a0. Hence, the Kumar and Chen’s addition
operation [24] has the drawback that is observed in the above example.

Example 2.2. Suppose σ = ⟨a5.20, a1.60⟩ is a Lq-ROFN with q = 1, where σ ∈ Γ[0,8] and h = 8.
Now, the Kumar and Chen’s [24] scalar product operation defined in Definition 2.6 of Lq-ROFN with
q = 1, ψ = 5 and ε = 0.99 is defined as follows:

ψσ =

〈
a
h

q
√

1
ε (1−(1−ε( ξ

h
)q)ψ)

, a
h

q
√

1− 1
ε (1−(1−ε(1−( η

h
)q))ψ)

〉
,

ψσ =
〈
a8( 1

0.99 (1−(1−0.99( 5.20
8 ))5)), a8(1− 1

0.99 (1−(1−0.99(1−( 1.60
8 )))5))

〉
=
〈
a8.03, a−0.07

〉
.

The MD of accumulated Lq-ROFN
〈
a8.03, a−0.07

〉
with q = 1 is a8.03 > a8, which is not suitable

because the MD of this Lq-ROFN with q = 1 should be lies in the Γ[0,8] and the NMD of this Lq-ROFN
with q = 1 should be lies in the Γ[0,8] but a−0.07 < a0. Hence, Kumar and Chen’s [24] operation has
some drawbacks which are mentioned in the above example.
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3. Operations for Lq-ROFNs under Aczel Alsina’s TN and TCN

In this section, we first develop basic operations based on Aczel Alsina’s TN and TCN for Lq-
ROFNs, then, by applying them on Examples 2.1 and 2.2 as provided in previous section (see following
Examples 3.1 and 3.2), we verify that the proposed operations overcome the difficulties in Kumar and
Chen’s [24] scalar product and addition operations. Moreover, we present linguistic q-ROF Aczel-
Alsina weighted arithmetic AgOps with their basic properties.

Definition 3.1. Suppose σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩ and σ = ⟨aξ, aη⟩ are Lq-ROFNs, where
σ1, σ2, σ ∈ Γ[0,h] and h is an even positive integer. The suggested addition and scalar multiplication
operation of the Lq-ROFNs σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩ and σ = ⟨aξ, aη⟩ are defined as follows:

σ1

⊕
σ2 =

〈
a

h

(
q
√

(1−exp−((− log(1−(
ξσ1
h

)q))λ+(− log(1−(
ξσ2
h

)q))λ)1/λ))

),
a
h

(
exp−((− log(

ησ1
h

))λ+(− log(
ησ2
h

))λ)1/λ
)〉, (3.1)

σ1

⊗
σ2 =

〈
a
h

(
exp−((− log(

ξσ1
h

))λ+(− log(
ξσ2
h

))λ)1/λ
),

a
h

(
q
√

(1−exp−((− log(1−(
ησ1
h

)q))λ+(− log(1−(
ησ2
h

)q))λ)1/λ))

)〉, (3.2)

ψσ =

〈
a
h

q
√

1−exp−(ψ(− log(1−( ξσ
h

)q))λ)1/λ
, a
h(exp−(ψ(− log( ησ

h
))λ)1/λ )

〉
, (3.3)

σψ =

〈
a
h(exp−(ψ(− log( ξσ

h
))λ)1/λ )

, a
h

q
√

1−exp−(ψ(− log(1−( ησ
h

)q))λ)1/λ

〉
, (3.4)

where λ > 0 and ψ > 0.

Example 3.1. Let σ1 = ⟨7.50, 0.35⟩ and σ2 = ⟨7.40, 0.50⟩ be two Lq-ROFNs, where σ1, σ2 ∈ Γ[0,8].
Let λ = 2, and q = 1. Based on the suggested operations provided in Definition 3.1, we get

σ1

⊕
σ2 =

〈
a

h

(
q
√

(1−exp−((− log(1−(
ξσ1
h

)q))λ+(− log(1−(
ξσ2
h

)q))λ)1/λ))

),
a
h

(
exp−((− log(

ησ1
h

))λ+(− log(
ησ2
h

))λ)1/λ
)〉,

σ1

⊕
σ2 =

〈
a

8

(
(1−exp−((− log(1− 7.5

8 ))2+(− log(1− 7.4
8 )))2)1/2 )

),
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a
8

(
exp−
√

(− log( 0.35
8 ))2+(− log( 0.5

8 ))2
)〉,

=
〈
a7.82a0.12

〉
.

The above Example 3.1 shows that the suggested addition operation of Lq-ROFNs based on the
Aczel Alsina’s TN and TCN overcomes the deficiencies of addition operation proposed by Kumar and
Chen [24] for Lq-ROFNs in Example 2.1 with q = 1.

Example 3.2. Let σ = ⟨5.20, 1.60⟩ be a Lq-ROFN where σ ∈ Γ[0,8]. Let λ = 2, ψ = 5 and q = 1.
Using the suggested scalar multiplication operation given in Definition 3.1, we get

ψσ =

〈
a
h

q
√

1−exp−(ψ(− log(1−( ξσ
h

)q))λ)1/λ
, a
h(exp−(ψ(− log( ησ

h
))λ)1/λ )

〉
,

5σ =
〈
a

8(1−exp−(5(− log(1− 5.20
8 ))2)1/2 )

, a
h(exp−(5(− log( 1.60

8 ))2)1/2 )

〉
,

=
〈
a7.24, a0.21

〉
.

The above Example 3.2 shows that the suggested concept of scalar product with Lq-ROFNs based
on the Aczel Alsina’s TN and TCN overcomes the difficulties of Kumar and Chen’s [24] scalar product
of Lq-ROFNs as investigated in Example 2.2 with q = 1.

Theorem 3.1. Suppose σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩ and σ = ⟨aξ, aη⟩ are Lq-ROFNs with σ1, σ2, σ ∈

Γ[0,h] and h is an even positive integer. The suggested addition and scalar product of Lq-ROFkNs
defined in Definition 3.1 verify the following conditions:

1) σ1
⊕

σ2 = σ2
⊕

σ1,

2) ψ(σ1
⊕

σ2) = ψσ1
⊕

ψσ2,

3) (ψ1
⊕

ψ2)σ = ψ1σ
⊕

ψ2σ.

3.1. The suggested linguistic q-rung orthopair fuzzy Aczel-Alsina weighted arithmetic aggregation
operator of linguistic q-rung orthopair fuzzy numbers

Now, we introduce the Lq-ROFAAWA operator based on suggested addition and scalar product of
Lq-ROFNs.

Definition 3.2. Suppose σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩. . ., and σt = ⟨aξt , aηt⟩ are Lq-ROFNs, where
σ1, σ2, . . . , σt ∈ Γ[0,h] and h is an even positive integer. The suggested Lq-ROFAAWA AgOp is defined
as:

Lq − ROFAAWA(σ1, σ2, . . . , σt) = w1σ1

⊕
w2σ2

⊕
. . .
⊕
wtσt

=

〈
a
h

q
√

1−exp−(
∑t

r=1 wr (− log(1−(
ξσr
h

)q))λ)1/λ
, a
h exp−(

∑t
r=1 wr (− log(

ησr
h

))λ)1/λ

〉
,

(3.5)
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where wr represents the weight for each Lq-ROFN σt, wr ∈ [0, h], r = 1, 2, . . . , t, with
∑t

r=1wr = 1 and
λ > 0.

Theorem 3.2. The aggregated value of the Lq-ROFNs σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩. . ., σt = ⟨aξt , aηt⟩

using the suggested Lq-ROFAAWA AgOp defined in Eq (3.5) is a Lq-ROFN, where σ1, σ2, . . . , σt ∈

Γ[0,h].

Now, we discuss some basic notions based on suggested Lq-ROFAAWA AgOp as follows:

Theorem 3.3. (Idempotency). Suppose σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩. . ., σn = ⟨aξn , aηn⟩ are Lq-
ROFNs and w1,w2, . . . ,wn are the weights of Lq-ROFNs, respectively, and wr ∈ [0, h] where r =
1, 2, . . . , n with

∑n
r=1wr = 1. If σ1 = σ2 = . . . = σn = σ, then, Lq-ROFAAWA(σ1, σ2, . . . , σn) = σ.

Theorem 3.4. (Boundedness). Suppose σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩. . ., σn = ⟨aξn , aηn⟩ are
Lq-ROFNs, and let σ− = min{σ1, σ2, . . . , σn} and let σ+ = max{σ1, σ2, . . . , σn}. Then, σ− ≤
Lq−ROFAAWA(σ1, σ2, . . . , σn) ≤ σ+.

Theorem 3.5. (Monotonicity). Suppose σ1, σ2, . . . , σn and σ
′

1, σ
′

2, . . . , σ
′

n are Lq-ROFNs. If σr ≤ σ
′

r

where r = 1, 2, . . . , n. Then,

Lq − ROFAAWA(σ1, σ2, . . . , σn) ≤ Lq − ROFAAWA(σ
′

1, σ
′

2, . . . , σ
′

n).

4. Two GDM methods based on the suggested Lq-ROFAAWA AgOp

This section provides two GDM approaches based on the suggested Lq-ROFAAWA AgOp. The first
recommended GDM approach assumes the condition that weights of experts and weights of attributes
are provided, and the other GDM model assumes the condition that weights of experts and weights of
attributes are not provided.

4.1. First GDM approach for completely known weights

The suggested first GDM method is based on the proposed Lq-ROFAAWA AgOp in which
weights of experts and weights of attributes are provided. Let R1,R2, . . . ,Rm be alternatives and
let S1,S2, . . . ,Sn be attributes where w1,w2, . . . ,wn are the weights of the attributes S1,S2, . . . ,Sn,
respectively with

∑n
l=1wl = 1 where l = 1, 2, . . . , n and wl ≥ 0. Suppose Ex1,Ex2, . . . ,Ext are experts

and let β1, β2, . . . , βt be the weights of the experts Ex1,Ex2, . . . ,Ext, respectively with
∑t

i=1 βi = 1,
where βi ≥ 0, i = 1, 2, . . . , t. Every expert Exi estimates alternative Rk related to attribute Sl to

construct the decision matrix D
′p =

(
ϖ
′p
kl

)
m×n

by the Lq-ROFN ϖ
′p
kl =

〈
a
ξ
′ p
kl
, a

η
′ p
kl

〉
as below:

S1 S2 . . . Sn

D
′p =

R1

R2
...

Rm


ϖ
′p
11 ϖ

p
12 · · · ϖ

′p
1n

ϖ
′p
21 ϖ

′p
22 · · · ϖ

′p
2n

...
...

. . .
...

ϖ
′p
m1 ϖ

′p
m2 · · · ϖ

′p
mn

 ,
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where p = 1, 2, . . . , t.

Step 1: First of all convert decision matrix D
′p =

(
ϖ
′p
kl

)
m×n
=

(〈
a
ξ
′ p
kl
, a

η
′ p
kl

〉)
m×n

into the new-decision

matrix Dp =

(
ϖ

p
kl

)
m×n
=

(〈
aξp

kl
, aηp

kl

〉)
m×n

as given below:

ϖ
p
kl =


〈
a
ξ
′ p
kl
, a

η
′ p
kl

〉
, if Sl is a asset type,〈

a
ξ
′ p
kl
, a

η
′ p
kl

〉
, if Sl is a expense type,

(4.1)

where k = 1, 2, . . . ,m, l = 1, 2, . . . , n and p = 1, 2, . . . , t.
Step 2: Now using Eq (3.5), we accumulate the Lq-ROFNs ϖ1

kl, ϖ
2
kl,. . . , ϖt

kl defined in decision

matrices D1 =

(
ϖ1

kl

)
m×n

,D2 =

(
ϖ2

kl

)
m×n

, . . . ,Dt =

(
ϖt

kl

)
m×n

, respectively, where the accumulated Lq-

ROFN ϖkl for constructing the cumulative decision matrix D =
(
ϖkl

)
m×n
=

(〈
aξkl , aηkl

〉)
m×n

by applying

the suggested Lq-ROFAAWA AgOp are given as:

ϖkl = Lq − ROFAAWA(ϖ1
kl, ϖ

2
kl, . . . , ϖ

t
kl),

=

〈
a

h

q

√√√√√
1−exp

−

(∑t
i=1 βi

(
−log(1−(

ξ
′ p
kl
h

)q)
)λ)1/λ , a

h exp
−

(∑t
i=1 βi

(
−log(

η
′ p
kl
h

)
)λ)1/λ
〉
, (4.2)

where k = 1, 2, . . . ,m, l = 1, 2, . . . , n and p = 1, 2, . . . , t with λ > 0.
Step 3: By the Lq-ROFAAWA AgOp, accumulate the Lq-ROFNs ϖk1, ϖk2, . . . , ϖkn defined in kth row

of cumulative decision matrixD =
(
ϖkl

)
m×n
=

(〈
aξkl , aηkl

〉)
m×n

to get the overall accumulated Lq-ROFN

ϖk = ⟨aξk , aηk

〉
of alternative Rk, which is calculated by the following formula:

ϖk =

〈
a

h

q

√√√√√
1−exp

−

(∑n
l=1 wl

(
−log(1−(

ξkl
h

)q)
)λ)1/λ , a

h exp
−

(∑n
l=1 wl

(
−log(

ηkl
h

)
)λ)1/λ
〉
, (4.3)

where k = 1, 2, . . . ,m and λ > 0.
Step 4: Next, we compute the ranking value Y(ϖk) of the overall accumulated Lq-ROFNs of
corresponding alternative Rk using the formula given below:

Y(ϖk) =
1
h

(h −
πk

2
)(ξk +

πk

2
), (4.4)

where πk = (hq − ξq − ηq)1/q and k = 1, 2, . . . ,m.
Step 5: By comparing the ranking valuesY(ϖ1),Y(ϖ2), . . . ,Y(ϖk) of the alternatives R1,R2, . . . , Rk,
the larger ranking value Y(ϖk) gives the better ranking order (RO) of the corresponding alternative
Rk. If the ranking values of alternatives Rx and Ry are the same, i.e., Y(ϖx) = Y(ϖy), then calculate
the values of accuracy function J(ϖx) and J(ϖy) using Definition 2.4. The larger accuracy value
represents the better RO of alternative Rk. If Y(ϖx) = Y(ϖy) and J(ϖx) = J(ϖy), then the
alternatives Rx and Ry have the same ROs.
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In the following three examples, we verify the applicability of our first suggested GDM method
based on Lq-ROFNs.

Example 4.1. Air pollution is a crucial environmental issue that poses serious risks to human health,
climate, and the ecosystems. Air pollution contains harmful substances in the atmosphere from
different sources, including agriculture, vehicle exhaust, and industrial emissions. It substantially
impacts health, leading to cardiovascular issues, premature death, and respiratory diseases, specifically
among vulnerable populations like the elderly and children. Combatting air pollution needs stricter
emission regulations, increased public transportation use, and cleaner technologies. A coordinated
effort among individuals, industries, and governments is compulsory to create a healthier environment.
Suppose that the government of Pakistan wants to rank the most air-polluted areas/cities of the country
to make some rules or to announce public holidays in the cities where the situation is very severe. For
this crucial task, the Government of Pakistan hired a group of experts Ex1,Ex2,Ex3, and Ex4 to evaluate
all the alternatives concerning significant parameters. Consider the alternatives representing different
cities of Pakistan, and the attributes that serve as the factors that increase the concentration of air
pollution. The alternativesR1 (Karachi), R2 (Lahore), R3 (Faisalabad), andR4 (Sarghoda) are estimated
by experts Ex1,Ex2,Ex3, and Ex4 over the attributesS1,S2,S3,S4, andS5. The attributesS1,S2,S3,S4,
and S5 represent the burning of fossil fuels, increase in factories, transportation, agricultural practices,
and power plants, respectively, where w = {w1(0.25),w2(0.20),w3(0.15),w4(0.18),w5(0.22)} are
weights allocated to attributes, and β1 = 0.25, β2 = 0.30, β3 = 0.20, and β4 = 0.25 are
the weights of experts. The experts estimate every alternative Rk using the Lq-ROFNs ϖ

′p
kl on

the basis of LTS = {a0=very hazardous, a1= hazardous, a2= very unhealthy, a3=unhealthy, a4=
unhealthy for easily affected groups, a5= moderate, a6= good, a7= very good, a8= extremely good}

in relation to attribute Sl to create decision-matrices D
′1 =

(
ϖ
′1
kl

)
4×5
,D

′2 =

(
ϖ
′2
kl

)
4×5
,D

′3 =

(
ϖ
′3
kl

)
4×5
,

and D
′4 =

(
ϖ
′4
kl

)
4×5

, which are given as follows:

S1 S2 S3 S4 S5

D
′1 =

R1

R2

R3

R4


⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a4, a3⟩ ⟨a7, a1⟩ ⟨a5, a2⟩

⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a7, a1⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a3, a4⟩

⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩

 ,
S1 S2 S3 S4 S5

D
′2 =

R1

R2

R3

R4


⟨a7, a1⟩ ⟨a4, a4⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a3, a5⟩

⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a7, a1⟩ ⟨a5, a3⟩ ⟨a4, a4⟩

⟨a6, a2⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a5, a3⟩

 ,
S1 S2 S3 S4 S5

D
′3 =

R1

R2

R3

R4


⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a3, a4⟩ ⟨a7, a1⟩ ⟨a5, a2⟩

⟨a7, a2⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a1⟩

⟨a5, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a3, a1⟩

⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a5, a2⟩ ⟨a4, a4⟩

 ,
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S1 S2 S3 S4 S5

D
′4 =

R1

R2

R3

R4


⟨a5, a3⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a4, a2⟩

⟨a6, a1⟩ ⟨a7, a1⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩

⟨a5, a2⟩ ⟨a3, a4⟩ ⟨a6, a2⟩ ⟨a3, a3⟩ ⟨a5, a2⟩

⟨a4, a3⟩ ⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a6, a2⟩ ⟨a5, a2⟩

 .
Now, we utilize the suggested first GDM method as below:

Step 1: Since all the attributes are asset type, we get the new-decision matrices D1 =

(
ϖ1

kl

)
4×5
=(〈

aξ1
kl
, aη′1kl

〉)
4×5

, D2 =

(
ϖ2

kl

)
4×5
=

(〈
aξ2

kl
, aη′2kl

〉)
4×5

, D3 =

(
ϖ3

kl

)
4×5
=

(〈
aξ3

kl
, aη′3kl

〉)
4×5

, and D4 =

(
ϖ4

kl

)
4×5
=(〈

aξ4
kl
, aη′4kl

〉)
4×5
.

Step 2: By the Eq (4.2), we accumulate the Lq-ROFNs ϖkl using the Lq-ROFNsl ϖ1
kl, ϖ

2
kl, ϖ

3
kl,

and ϖ4
kl that belongs to the decision matrices D1 =

(
ϖ1

kl

)
4×5
=

(〈
aξ1

kl
, aη′1kl

〉)
4×5

, D2 =

(
ϖ2

kl

)
4×5
=(〈

aξ2
kl
, aη′2kl

〉)
4×5

,D3 =

(
ϖ3

kl

)
4×5
=

(〈
aξ3

kl
, aη′3kl

〉)
4×5

, and D4 =

(
ϖ4

kl

)
4×5
=

(〈
aξ4

kl
, aη′4kl

〉)
4×5

to construct the

cumulative decision matrix D =
(
ϖkl

)
4×5
=

(〈
aξkl , aηkl

〉)
4×5

with k = 1, 2, . . . , 4 and l = 1, 2, . . . , 5 as

given below for q = 3:

S1 S2 S3 S4 S5

D =

R1

R2

R3

R4


⟨a6.67, a1.23⟩ ⟨a5.18, a2.76⟩ ⟨a6.21, a1.94⟩ ⟨a6.50, a1.19⟩ ⟨a4.54, a2.44⟩

⟨a6.68, a1.16⟩ ⟨a6.23, a1.32⟩ ⟨a6.35, a1.00⟩ ⟨a5.60, a2.00⟩ ⟨a6.22, a1.29⟩

⟨a5.39, a1.63⟩ ⟨a5.34, a1.91⟩ ⟨a6.72, a1.16⟩ ⟨a4.64, a2.08⟩ ⟨a4.24, a2.24⟩

⟨a5.59, a2.18⟩ ⟨a6.48, a1.29⟩ ⟨a4.65, a1.83⟩ ⟨a6.42, a1.32⟩ ⟨a4.69, a1.96⟩

 .
Step 3: Using Eq (4.3), we combine every accumulative Lq-ROFN ϖk = ⟨aξk , aηk⟩ of corresponding
alternative Rk, with k = 1, 2, 3, 4 that are: ϖ1 = ⟨a6.18, a1.74⟩, ϖ2 = ⟨a6.32, a1.42⟩, ϖ3 = ⟨a5.66, a1.80⟩, and
ϖ4 = ⟨a5.92, a1.75⟩.
Step 4: Next, by applying Eq (4.4), we calculate the ranking valuesY(ϖ1),Y(ϖ2),Y(ϖ3), andY(ϖ4),
which are Y(ϖ1) = 5.64, Y(ϖ2) = 5.76, Y(ϖ3) = 5.22, and Y(ϖ4) = 5.42.
Step 5: From Step 4, we see that Y(ϖ2) > Y(ϖ1) > Y(ϖ4) > Y(ϖ3), Hence, the more polluted city
out of Rk cities with k = 1, 2, 3, 4 is R2.

Example 4.2. In today’s interconnected world, marked by global unity and progress, students are
increasingly prioritizing obtaining education in foreign countries. However, they often encounter
various challenges in pursuing this path. Thus, finding a suitable foreign university for a student
involves various challenges. Some common problems include: Financial constraints, academic
requirements, language proficiency, and so on. To find a good foreign university, students seek
assistance from various experts, including educational consultants, career counselors, admissions
advisors, alumni networks, international student offices, standardized test prep centers, etc. Suppose
a student wants to get admission for higher studies in a suitable foreign university and to find best
option from the alternatives R1, R2, . . . , R6, the student takes services of different experts such
as Ex1,Ex2, . . . ,Ex6. Consider the favorable attributes are S1 (Academic Reputation), S2 (Faculty
Expertise), S3 (Research Opportunities), S4 (Financial Aid), S5 (Innovation), S6 (Student Services),
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and S7 (Cost), with the help of experts Ex1, Ex2,. . . , and Ex6. Suppose the attributes S1, S2, . . .,
S7 having weights w = {w1(0.20),w2(0.15),w3(0.05),w4(0.03),w5(0.12),w6(0.32),w7(0.13)}
and the experts’ weights are β1 = 0.13, β2 = 0.20, β3 = 0.25, β4 = 0.10, β5 = 0.17,
β6 = 0.15. The experts estimate each alternative Rk through the Lq-ROFNs ϖ

′p
kl on the basis

of LTS = {a0 = extremely poor, a1 = very poor, a2 = poor, a3 = slightly poor, a4 = fair, a5 =
slightly good, a6 = good, a7 = very good, a8 = extremely good} in relation to each attribute Sl to create

the decision-matrices D
′1 =

(
ϖ
′1
kl

)
6×7
,D

′2 =

(
ϖ
′2
kl

)
6×7
,D

′3 =

(
ϖ
′3
kl

)
6×7
,D

′4 =

(
ϖ
′4
kl

)
6×7
,D

′5 =

(
ϖ
′5
kl

)
6×7
,

and D
′6 =

(
ϖ
′6
kl

)
6×7

that is given as follows:

S1 S2 S3 S4 S5 S6 S7

D
′1 =

R1

R2

R3

R4

R5

R6



⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a5, a1⟩ ⟨a4, a4⟩ ⟨a7, a1⟩

⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a3, a2⟩

⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a4, a3⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a3⟩

⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a4⟩ ⟨a5, a1⟩ ⟨a5, a3⟩ ⟨a5, a1⟩ ⟨a5, a3⟩

⟨a5, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a1⟩ ⟨a3, a2⟩ ⟨a5, a2⟩ ⟨a4, a3⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′2 =

R1

R2

R3

R4

R5

R6



⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a4, a4⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a7, a1⟩ ⟨a5, a2⟩

⟨a4, a1⟩ ⟨a6, a3⟩ ⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a4, a4⟩ ⟨a6, a1⟩ ⟨a4, a1⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a5, a1⟩

⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a5, a2⟩ ⟨a4, a2⟩ ⟨a5, a3⟩

⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a3⟩ ⟨a5, a1⟩ ⟨a4, a3⟩

⟨a5, a2⟩ ⟨a4, a2⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′3 =

R1

R2

R3

R4

R5

R6



⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a2⟩

⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a1⟩ ⟨a5, a2⟩

⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a3, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a6, a2⟩

⟨a4, a2⟩ ⟨a5, a2⟩ ⟨a4, a1⟩ ⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a5, a3⟩

⟨a4, a2⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a3, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩

⟨a4, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a3, a2⟩ ⟨a6, a2⟩ ⟨a5, a3⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′4 =

R1

R2

R3

R4

R5

R6



⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a5⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a2⟩

⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a5, a1⟩

⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a3, a2⟩

⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a7, a1⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩

⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩


,
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S1 S2 S3 S4 S5 S6 S7

D
′5 =

R1

R2

R3

R4

R5

R6



⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a5, a1⟩

⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a5⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a2⟩

⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a3, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a6, a2⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a5, a1⟩

⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′6 =

R1

R2

R3

R4

R5

R6



⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a3⟩

⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩

⟨a5, a1⟩ ⟨a6, a1⟩ ⟨a4, a2⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a4, a1⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩

⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a5, a1⟩


.

Now, we again utilize the suggested first GDM method to solve this example as below:

Step 1: Since all the attributes are asset type, so, we get the new-decision matrices as: D1 =

(
ϖ1

kl

)
6×7
=(〈

aξ1
kl
, aη′1kl

〉)
6×7

, D2 =

(
ϖ2

kl

)
6×7
=

(〈
aξ2

kl
, aη′2kl

〉)
6×7

, D3 =

(
ϖ3

kl

)
6×7
=

(〈
aξ3

kl
, aη′3kl

〉)
6×7

, D4 =

(
ϖ4

kl

)
6×7
=(〈

aξ4
kl
, aη′4kl

〉)
6×7

, D5 =

(
ϖ5

kl

)
6×7
=

(〈
aξ5

kl
, aη′5kl

〉)
6×7

and D6 =

(
ϖ6

kl

)
6×7
=

(〈
aξ6

kl
, aη′6kl

〉)
6×7
.

Step 2: Using the Eq (4.2) we accumulate the Lq-ROFNs ϖkl by the Lq-ROFNs ϖ1
kl, ϖ

2
kl, ϖ

3
kl, ϖ

4
kl, ϖ

5
kl

and ϖ6
kl that belongs to the decision matrices D1 =

(
ϖ1

kl

)
6×7
=

(〈
aξ1

kl
, aη′1kl

〉)
6×7

, D2 =

(
ϖ2

kl

)
6×7
=(〈

aξ2
kl
, aη′2kl

〉)
6×7

, D3 =

(
ϖ3

kl

)
6×7
=

(〈
aξ3

kl
, aη′3kl

〉)
6×7

, D4 =

(
ϖ4

kl

)
6×7
=

(〈
aξ4

kl
, aη′4kl

〉)
6×7

, D5 =

(
ϖ5

kl

)
6×7
=(〈

aξ5
kl
, aη′5kl

〉)
6×7

, and D6 =

(
ϖ6

kl

)
6×7
=

(〈
aξ6

kl
, aη′6kl

〉)
6×7

to construct the cumulative decision matrix

D =
(
ϖkl

)
6×7
=

(〈
aξkl , aηkl

〉)
6×7

with k = 1, 2, . . . 6, and l = 1, 2, . . . 7 as given below for q = 3:

S1 S2 S3 S4 S5 S6 S7

D =

R1

R2

R3

R4

R5

R6



⟨a6.08, a1.42⟩ ⟨a5.95, a1.25⟩ ⟨a5.02, a2.27⟩ ⟨a6.02, a1.23⟩ ⟨a5.45, a1.50⟩ ⟨a6.12, a1.34⟩ ⟨a4.67, a1.90⟩

⟨a5.00, a1.33⟩ ⟨a5.60, a2.11⟩ ⟨a5.99, a1.26⟩ ⟨a4.69, a1.45⟩ ⟨a5.55, a1.59⟩ ⟨a5.37, a1.45⟩ ⟨a5.68, a1.29⟩

⟨a5.91, a1.51⟩ ⟨a5.06, a1.88⟩ ⟨a5.54, a1.23⟩ ⟨a5.43, a1.78⟩ ⟨a6.31, a1.30⟩ ⟨a4.72, a1.23⟩ ⟨a5.45, a1.51⟩

⟨a6.04, a1.16⟩ ⟨a5.53, a2.12⟩ ⟨a5.36, a1.88⟩ ⟨a6.27, a1.00⟩ ⟨a5.23, a2.12⟩ ⟨a5.14, a1.48⟩ ⟨a5.66, a2.03⟩

⟨a5.11, a1.43⟩ ⟨a6.39, a1.55⟩ ⟨a4.96, a3.06⟩ ⟨a5.84, a1.18⟩ ⟨a4.90, a2.74⟩ ⟨a5.39, a1.29⟩ ⟨a4.37, a3.00⟩

⟨a5.30, a1.41⟩ ⟨a5.38, a1.70⟩ ⟨a5.61, a1.97⟩ ⟨a6.34, a1.12⟩ ⟨a4.81, a1.64⟩ ⟨a5.39, a2.00⟩ ⟨a5.41, a1.65⟩


.

Step 3: By applying Eq (4.3), we combine each accumulative Lq-ROFN ϖk = ⟨aξk , aηk⟩ of respective
alternative Rk, with k = 1, 2, . . . , 6 that are: ϖ1 = ⟨a5.87, a1.45⟩, ϖ2 = ⟨a5.44, a1.49⟩, ϖ3 = ⟨a5.56, a1.43⟩,
ϖ4 = ⟨a5.58, a1.60⟩, ϖ5 = ⟨a5.52, a1.67⟩, and ϖ6 = ⟨a5.38, a1.70⟩.

Step 4: Further, using Eq (4.4), we calculate the ranking valuesY(ϖ1),Y(ϖ2),Y(ϖ3),Y(ϖ4),Y(ϖ5)
and Y(ϖ6) that are provided as: Y(ϖ1) = 5.38, Y(ϖ2) = 5.06, Y(ϖ3) = 5.14, Y(ϖ4) = 5.16,
Y(ϖ5) = 5.12, and Y(ϖ6) = 5.02.
Step 5: From previous Step, we observe that Y(ϖ1) > Y(ϖ4) > Y(ϖ3) > Y(ϖ5) > Y(ϖ2) > Y(ϖ6).
Thus, the best university out of all universities Rk with k = 1, 2, . . . , 6 is R1.
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Example 4.3. These days, banks strategically invest in diverse businesses as a means to mitigate losses.
However, selecting the right businesses is no easy task. To address this challenge and safeguard
their interests, banks rely on the opinions and evaluation reports of various experts. These experts
specialize in the specific fields in which the bank intends to invest. Their insights provide crucial
guidance, allowing the bank to make well-informed decisions, minimize risks, and enhance the overall
effectiveness of their investment strategies. Consider a bank ABC wants to put money into a most
profitable factory from different factories like a car factory (R1), a food factory (R2), a computer
factory (R3) and an arms factory (R4). For this crucial task, the experts Ex1,Ex3, and Ex3 evaluate
the alternatives R1,R2,R3, and R4 under the attributes of benefit related such as S1 (analysis of risk),
S2(development analysis), S3(sociopolitical influence analysis), and S4(analysis of environmental
effect). The weights of attributes are w = {w1(0.30),w2(0.10),w3(0.20),w4(0.40)} and weights of
experts are β1 = 0.243, β2 = 0.514, and β3 = 0.243. The experts estimate every alternative Rk using
Lq-ROFNs ϖ

′p
kl on the grounds of LT S = {a0 = extremely poor, a1 = very poor, a2 = poor, a3 =

slightly poor, a4 = fair, a5 = slightly good, a6 = good, a7 = very good, a8 = extremely good} in relation

to each attribute Sl to create decision-matrices D
′1 =

(
ϖ
′1
kl

)
4×5
,D

′2 =

(
ϖ
′2
kl

)
4×5

, and D
′3 =

(
ϖ
′3
kl

)
4×5
,

which are given as follows:

S1 S2 S3 S4

D
′1 =

R1

R2

R3

R4


⟨a6, a1⟩ ⟨a3, a1⟩ ⟨a3, a3⟩ ⟨a1, a6⟩

⟨a3, a4⟩ ⟨a3, a4⟩ ⟨a2, a5⟩ ⟨a2, a4⟩

⟨a1, a3⟩ ⟨a2, a3⟩ ⟨a3, a2⟩ ⟨a6, a1⟩

⟨a6, a2⟩ ⟨a4, a3⟩ ⟨a5, a1⟩ ⟨a7, a1⟩

 ,
S1 S2 S3 S4

D
′2 =

R1

R2

R3

R4


⟨a3, a2⟩ ⟨a4, a1⟩ ⟨a3, a4⟩ ⟨a2, a3⟩

⟨a5, a2⟩ ⟨a2, a1⟩ ⟨a3, a4⟩ ⟨a2, a5⟩

⟨a2, a3⟩ ⟨a3, a3⟩ ⟨a1, a2⟩ ⟨a3, a3⟩

⟨a5, a2⟩ ⟨a3, a3⟩ ⟨a5, a2⟩ ⟨a4, a1⟩

 ,
S1 S2 S3 S4

D
′3 =

R1

R2

R3

R4


⟨a3, a3⟩ ⟨a3, a5⟩ ⟨a6, a1⟩ ⟨a2, a6⟩

⟨a3, a2⟩ ⟨a2, a4⟩ ⟨a2, a1⟩ ⟨a3, a4⟩

⟨a6, a1⟩ ⟨a2, a5⟩ ⟨a3, a4⟩ ⟨a1, a3⟩

⟨a5, a1⟩ ⟨a4, a4⟩ ⟨a6, a2⟩ ⟨a5, a2⟩

 .
We now repeat the suggested first GDM method on this example as below:

Step 1: Since all the attributes are asset type, we get the new-decision matrices D1 =

(
ϖ1

kl

)
4×4
=(〈

aξ1
kl
, aη′1kl

〉)
4×4

, D2 =

(
ϖ2

kl

)
4×4
=

(〈
aξ2

kl
, aη′2kl

〉)
4×4

, D3 =

(
ϖ3

kl

)
4×4
=

(〈
aξ3

kl
, aη′3kl

〉)
4×4

, and D4 =

(
ϖ4

kl

)
4×4
=(〈

aξ4
kl
, aη′4kl

〉)
4×4

.

Step 2: From Eq (4.2), we accumulate Lq-ROFNs ϖkl using the Lq-ROFNs ϖ1
kl, ϖ

2
kl, ϖ

3
kl, and ϖ4

kl that

belongs to the decision matrices D1 =

(
ϖ1

kl

)
4×4
=

(〈
aξ1

kl
, aη′1kl

〉)
4×4

, D2 =

(
ϖ2

kl

)
4×4
=

(〈
aξ2

kl
, aη′2kl

〉)
4×4

,
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D3 =

(
ϖ3

kl

)
4×4
=

(〈
aξ3

kl
, aη′3kl

〉)
4×4

, and D4 =

(
ϖkkl4

)
4×4
=

(〈
aξ4

kl
, aη′4kl

〉)
4×4

. to construct the cumulative

decision matrix D =
(
ϖkl

)
4×4
=

(〈
aξkl , aηklk

〉)
4×4

with k = 1, 2, . . . 4 and l = 1, 2, . . . 4 that is given

below for q = 3:

S1 S2 S3 S4

D =

R1

R2

R3

R4


⟨a4.97, a1.78⟩ ⟨a3.68, a1.37⟩ ⟨a4.97, a2.32⟩ ⟨a1.90, a3.86⟩

⟨a4.55, a2.29⟩ ⟨a2.47, a1.67⟩ ⟨a2.72, a2.50⟩ ⟨a2.47, a4.44⟩

⟨a4.95, a2.11⟩ ⟨a2.72, a3.31⟩ ⟨a2.67, a2.29⟩ ⟨a4.96, a2.11⟩

⟨a5.38, a1.64⟩ ⟨a3.66, a3.19⟩ ⟨a5.38, a1.64⟩ ⟨a6.06, a1.23⟩

 .
Step 3: Using Eq (4.3), we combine every accumulative Lq-ROFN ϖk = ⟨aξk , aηk⟩ of corresponding
alternative Rk with k = 1, 2, . . . , 4 are ϖ1 = ⟨a4.50, a2.34⟩, ϖ2 = ⟨a3.81, a2.77⟩, ϖ3 = ⟨a4.71, a2.22⟩, and
ϖ4 = ⟨a5.68, a1.52⟩.
Step 4: Next, by Eq (4.4), we calculate the ranking values Y(ϖ1), Y(ϖ2), Y(ϖ3), and Y(ϖ4) that are:
Y(ϖ1) = 4.44, Y(ϖ2) = 4.03, Y(ϖ3) = 4.57, and Y(ϖ4) = 5.23.
Step 5: From preceding Step, we see that Y(ϖ4) > Y(ϖ3) > Y(ϖ1) > Y(ϖ2). Hence, the best
business out of all businesses Rk with k = 1, 2, . . . , 4 is R4.

4.2. Second GDM approach for completely unknown weights

This subsection is devoted to designing the second GDM approach based on the suggested Lq-
ROFAAWA AgOp with the completely unknown weights of the experts and attributes.

Let R1,R2, . . . ,Rm be alternatives and let S1,S2, . . . ,Sn be attributes. Suppose Ex1,Ex2, . . . ,Ext are
experts and every expert Exi estimate each alternative Rk regarding each attribute Sl to construct the

decision matrix D
′p =

(
ϖ
′p
kl

)
m×n

using Lq-ROFN ϖ
′p
kl =

〈
a
ξ
′ p
kl
, a

η
′ p
kl

〉
as below:

S1 S2 . . . Sn

D
′p =

R1

R2
...

Rm


ϖ
′p
11 ϖ

p
12 · · · ϖ

′p
1n

ϖ
′p
21 ϖ

′p
22 · · · ϖ

′p
2n

...
...

. . .
...

ϖ
′p
m1 ϖ

′p
m2 · · · ϖ

′p
mn

 ,

where p = 1, 2, . . . , t.

Step 1: First of all covert each decision matrixD
′p =

(
ϖ
′p
kl

)
m×n
=

(〈
a
ξ
′ p
kl
, a

η
′ p
kl

〉)
m×n

into the new-decision

matrix Dp =

(
ϖ

p
kl

)
m×n
=

(〈
aξp

kl
, a

η
′ p
kl

〉)
m×n

as given below:

ϖ
p
kl =


〈
a
ξ
′ p
kl
, a

η
′ p
kl

〉
, if Sl is an asset type,〈

a
ξ
′ p
kl
, a

η
′ p
kl

〉
, if Sl is an expense type,

(4.5)

here k = 1, 2, . . . ,m, l = 1, 2, . . . , n and p = 1, 2, . . . , t.
Step 2: The entropy ςp of the decision-maker Exi is calculated using the Lq-ROFNs provided in the
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new-decision matrix Dp =

(
ϖ

p
kl

)
m×n
=

(〈
aξp

kl
, aηp

kl

〉)
m×n

as below:

ςp =
1

mn

m∑
k=1

n∑
l=1

{
1 −

1
h2

(ξp
kl − η

p
kl)(ξ

p
kl + η

p
kl)
}
,

(4.6)

where k = 1, 2, . . . ,m, l = 1, 2, . . . , n and p = 1, 2, . . . , t.
Next, the weights βp of experts Exi are calculated as:

βp =
ςp∑t

p=1 ς
p
, (4.7)

where βp ∈ [0, 1] and
∑t

p=1 βp = 1.
Step 3: Further, we accumulate the Lq-ROFNs ϖ1

kl, ϖ
2
kl,. . . , ϖt

kl given in decision matrices

D1 =

(
ϖ1

kl

)
m×n

,D2 =

(
ϖ2

kl

)
m×n

, . . . ,Dt =

(
ϖt

kl

)
m×n

, respectively, by applying the suggested Lq-

ROFAAWA AgOp in the form of an accumulated Lq-ROFN ϖkl that is helpful in the construction of

cumulative decision matrix D =
(
ϖkl

)
m×n
=

(〈
aξkl , aηkl

〉)
m×n

, where

ϖkl = Lq − ROFAAWA(ϖ1
kl, ϖ

2
kl, . . . , ϖ

t
kl),

=

〈
a

h

q

√√√√√
1−exp

−

(∑t
p=1 βp

(
−log(1−(

ξ
′ p
kl
h

)q)
)λ)1/λ , a

h exp
−

(∑t
p=1 βp

(
−log(

η
′ p
kl
h

)
)λ)1/λ
〉
, (4.8)

where k = 1, 2, . . . ,m, l = 1, 2, . . . , n, and p = 1, 2, . . . , t with λ > 0.
Step 4: The entropy ςl of the attribute Sl is calculated using the Lq-ROFNs used in the non-decision

matrix Dp =

(
ϖ

p
kl

)
m×n
=

(〈
aξp

kl
, a

η
′ p
kl

〉)
m×n

as below:

ςl =
1
m

m∑
k=1

{
1 −

1
h2

(ξkl − ηkl)(ξkl + ηkl)
}
,

(4.9)

where k = 1, 2, . . . ,m and l = 1, 2, . . . , n.
The weights wl of attribute Sl are calculated by

wl =
ςl∑n

l=1 ςl
,

(4.10)

where wl ∈ [0, 1] and
∑n

l=1wl = 1.
Step 5: Using the following formula of Lq-ROFAAWA AgOp, we accumulate the Lq-ROFNs
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ϖk1, ϖk2, . . . , ϖkn given in kth row of cumulative decision matrix D =
(
ϖkl

)
m×n
=

(〈
aξkl , aηkl

〉)
m×n

to obtain the overall accumulated Lq-ROFN ϖk = ⟨aξk , aηk⟩ of alternative Rk.

ϖk =

〈
a

h

q

√√√√√
1−exp

−

(∑n
l=1 wl

(
−log(1−(

ξkl
h

)q)
)λ)1/λ , a

h exp
−

(∑n
l=1 wl

(
−log(

ηkl
h

)
)λ)1/λ
〉
, (4.11)

where k = 1, 2, . . . ,m and λ > 0.
Step 6: We now find the ranking value Y(ϖk) of corresponding alternative Rk using the overall
accumulated Lq-ROFNs as follows:

Y(ϖk) =
1
h

(h −
πk

2
)(ξk +

πk

2
), (4.12)

where πk = (hq − ξq − ηq)1/q and k = 1, 2, . . . ,m.
Step 7: At last, by comparing the ranking values Y(ϖ1),Y(ϖ2), . . . ,Y(ϖk) of the alternatives
R1,R2, . . . ,Rk, respectively, find the larger ranking value Y(ϖk) that gives the better RO of the
corresponding alternative Rk. If the ranking values of alternatives Rx and Ry are same, i.e., Y(ϖx) =
Y(ϖy), then calculate the values of accuracy function J(ϖx) and J(ϖy). The larger accuracy value
represents the better RO. For two or more alternatives, if Y(ϖx) = Y(ϖy) and J(ϖx) = J(ϖy), then
the alternatives Rx and Ry have the same ROs.

In the following, we apply the developed second GDM method on three examples.

Example 4.4. The selection of a mobile phone requires a complex decision-making exercise. The
users usually consider different features, including processing power, battery life, and camera
quality. Moreover, the operating system, and software updates are also crucial characteristics in
the selection procedure. There is another critical factor, i.e., budget constraints. The user’s reviews,
recommendations of experts, and brand reputation also assist the decision-making process. Consider a
user who wants to buy the best mobile phone from the alternatives R1, R2, R3, and R4, and the attributes
areS1 (camera quality), S2 (security alerts), S3 (innovation), S4 (reliability), andS5 (brand reputation),
which are estimated by the experts Ex1, Ex2, and Ex3. The experts estimate each alternative Rk using
Lq-ROFNs ϖ

′p
kl on the basis of LT S = {a0 = extremely poor, a1 = too poor a2 = very poor, a3 =

poor, a4 = fair, a5 = little poor, a6 = slightly good, a7 = good, a8 = very good, a9 = too good, a10 =

extremely good} in relation to attribute Sl to create decision-matrices D
′1 =

(
ϖ
′1
kl

)
6×7
,D

′2 =

(
ϖ
′2
kl

)
6×7
,

and D
′3 =

(
ϖ
′3
kl

)
6×7

that are given as below:

S1 S2 S3 S4 S5

D
′1 =

R1

R2

R3

R4


⟨a5, a4⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a4, a5⟩ ⟨a6, a3⟩

⟨a7, a2⟩ ⟨a3, a6⟩ ⟨a5, a3⟩ ⟨a3, a6⟩ ⟨a5, a4⟩

⟨a6, a3⟩ ⟨a4, a4⟩ ⟨a4, a5⟩ ⟨a5, a4⟩ ⟨a7, a2⟩

⟨a4, a4⟩ ⟨a6, a3⟩ ⟨a3, a6⟩ ⟨a7, a2⟩ ⟨a5, a4⟩

 ,
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S1 S2 S3 S4 S5

D
′2 =

R1

R2

R3

R4


⟨a6, a2⟩ ⟨a4, a5⟩ ⟨a6, a3⟩ ⟨a5, a3⟩ ⟨a6, a2⟩

⟨a5, a3⟩ ⟨a3, a6⟩ ⟨a5, a4⟩ ⟨a3, a6⟩ ⟨a5, a3⟩

⟨a4, a5⟩ ⟨a5, a4⟩ ⟨a7, a2⟩ ⟨a4, a4⟩ ⟨a4, a5⟩

⟨a3, a6⟩ ⟨a7, a2⟩ ⟨a5, a4⟩ ⟨a6, a3⟩ ⟨a3, a6⟩

 ,
S1 S2 S3 S4 S5

D
′3 =

R1

R2

R3

R4


⟨a3, a6⟩ ⟨a7, a2⟩ ⟨a5, a4⟩ ⟨a4, a4⟩ ⟨a4, a5⟩

⟨a4, a5⟩ ⟨a5, a4⟩ ⟨a7, a2⟩ ⟨a5, a4⟩ ⟨a6, a3⟩

⟨a7, a2⟩ ⟨a4, a4⟩ ⟨a4, a5⟩ ⟨a5, a4⟩ ⟨a7, a2⟩

⟨a5, a4⟩ ⟨a6, a3⟩ ⟨a3, a6⟩ ⟨a3, a6⟩ ⟨a7, a2⟩

 .
We now utilize the suggested second GDM method to solve this example as below:

Step 1: As we know all the attributes are asset type, we get the new-decision matrices

D1 =

(
ϖ1

kl

)
4×5
=

(〈
aξ1

kl
, aη′1kl

〉)
4×5

, D2 =

(
ϖ2

kl

)
4×5
=

(〈
aξ2

kl
, aη′2kl

〉)
4×5

, and D3 =

(
ϖ3

kl

)
4×5
=

(〈
aξ3

kl
, aη′3kl

〉)
4×5
.

Step 2: Using Eq (4.6), we get the entropies ς1, ς2, and ς3 of the experts Ex1,Ex2, and Ex3, respectively,
which are ς1 = 0.7925, ς2 = 0.7910, and ς3 = 0.7840. The weights of experts are calculated using Eq
(4.7) such that β1 = 0.3347, β2 = 0.3341 and β3 = 0.3312.
Step 3: By applying Eq (4.8), we find the accumulated Lq-ROFNs ϖkl from the Lq-ROFNs

ϖ1
kl, ϖ

2
kl, and ϖ3

kl belongs to the new-decision matrices D1 =

(
ϖ1

kl

)
4×5

=

(〈
aξ1

kl
, aη′1kl

〉)
4×5

,

D2 =

(
ϖ2

kl

)
4×5
=

(〈
aξ2

kl
, aη′2kl

〉)
4×5

, and D3 =

(
ϖ3

kl

)
4×5
=

(〈
aξ3

kl
, aη′3kl

〉)
4×5

to construct the cumulative

decision matrix D =
(
ϖkl

)
4×5
=

(〈
aξkl , aηkl

〉)
4×5

with k = 1, 2, . . . , 4, and l = 1, 2, . . . , 5 as below:

S1 S2 S3 S4 S5

D =

R1

R2

R3

R4


⟨a5.29, a3.29⟩ ⟨a6.09, a2.93⟩ ⟨a5.76, a2.79⟩ ⟨a4.47, a3.82⟩ ⟨a5.68, a3.37⟩

⟨a6.10, a2.93⟩ ⟨a4.25, a5.10⟩ ⟨a6.15, a2.79⟩ ⟨a4.25, a5.10⟩ ⟨a5.46, a3.56⟩

⟨a6.26, a2.93⟩ ⟨a4.47, a4.00⟩ ⟨a6.03, a3.36⟩ ⟨a4.77, a4.00⟩ ⟨a6.63, a2.65⟩

⟨a4.37, a4.47⟩ ⟨a6.46, a2.58⟩ ⟨a4.27, a5.16⟩ ⟨a6.26, a3.01⟩ ⟨a6.16, a3.30⟩

 .

Step 4: Using Eq (4.9), the entropies ς1, ς2, ς3, ς4, and ς5 of the attributes S1,S2,S3,S4, and S5 are
calculated as: ς1 = 0.81, ς2 = 0.85, ς3 = 0.82, ς4 = 0.91, and ς5 = 0.75. Moreover, the weights of
attributes w = {w1(0.20),w2(0.21),w3(0.19),w4(0.22),w5(0.18)} are computed by Eq (4.10).
Step 5: Next, from the Eq (4.11), we combine accumulated Lq-ROFNs ϖk = ⟨aξk , aηk⟩ of
corresponding alternative Rk, with k = 1, 2, 3, 4, which are given as ϖ1 = ⟨a5.59, a3.24⟩, ϖ2 =

⟨a5.55, a3,69⟩, ϖ3 = ⟨a5.91, a3.46⟩, and ϖ4 = ⟨a5.88, a3.47⟩.
Step 6: Using Eq (4.12), we calculate the ranking valuesY(ϖ1),Y(ϖ2),Y(ϖ3), andY(ϖ4) as follows:
Y(ϖ1) = 5.50, Y(ϖ2) = 5.49, Y(ϖ3) = 5.71, and Y(ϖ4) = 5.69.
Step 7: From Step 6, we see that Y(ϖ3) > Y(ϖ4) > Y(ϖ1) > Y(ϖ2), Hence, the best mobile phone
from the collection Rk with k = 1, 2, 3, 4 is R3.
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Example 4.5. Everyone can observe the rapid progress occurring globally in various fields. Similarly,
the car manufacturing industry is undergoing a transformative shift from conventional fuel to electronic
technology. The escalating concerns related to global warming, primarily fueled by high fuel
consumption, have led experts to believe that oil reserves may deplete in the coming years. This
realization has prompted car manufacturing companies to swiftly transition towards the production of
electric vehicles (EVs). The performance of electric vehicles depends on various factors, including
battery efficiency, charging infrastructure, and advancements in electric propulsion systems. This
paradigm shift reflects a collective effort to address environmental challenges and align with a
sustainable future. Assume that the Engineering Council of Pakistan is organizing a car exhibition
featuring a competition for electronic cars, where prizes will be awarded to the top three position
holders. To select the best designs, the services of Pakistan’s leading automobile experts will be
enlisted. Suppose R1, R2, R3, and R4 are the alternatives (samples) and the attributes are S1 (battery
performance), S2 (power and acceleration), S3 (design and aesthetics), S4 (charging infrastructure
compatibility), and S5 (energy efficiency), which are estimated by the experts Ex1, Ex2, and Ex3. The
experts estimate each alternative Rk in the form of Lq-ROFNs ϖ

′p
kl on the basis of LT S = {a0 =

extremely poor, a1 = very poor, a2 = poor, a3 = slightly poor, a4 = fair, a5 = good, a6 =
very good, a7 = too good, a8 = extremely good} regarding every attribute Sl to create decision-

matrices D
′1 =

(
ϖ
′1
kl

)
6×7
,D

′2 =

(
ϖ
′2
kl

)
6×7
, and D

′3 =

(
ϖ
′3
kl

)
6×7

, which are given as:

S1 S2 S3 S4 S5

D
′1 =

R1

R2

R3

R4


⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩ ⟨a3, a4⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a1⟩

⟨a8, a0⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩

⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a6, a1⟩

 ,
S1 S2 S3 S4 S5

D
′2 =

R1

R2

R3

R4


⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a6, a1⟩ ⟨a7, a1⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a2, a6⟩ ⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a5, a1⟩

⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a8, a0⟩ ⟨a4, a4⟩ ⟨a5, a2⟩

⟨a5, a2⟩ ⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a5, a3⟩

 ,
S1 S2 S3 S4 S5

D
′3 =

R1

R2

R3

R4


⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a7, a1⟩ ⟨a5, a3⟩ ⟨a6, a1⟩ ⟨a7, a1⟩ ⟨a4, a2⟩

⟨a6, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a4, a2⟩ ⟨a7, a1⟩

 .
We again utilize the proposed second GDM method on this example as below:

Step 1: Since all the attributes are asset type, we get the new-decision matrices D1 =

(
ϖ1

kl

)
4×5
=(〈

aξ1
kl
, aη′1kl

〉)
4×5

, D2 =

(
ϖ2

kl

)
4×5
=

(〈
aξ2

kl
, aη′2kl

〉)
4×5

, and D3 =

(
ϖ3

kl

)
4×5
=

(〈
aξ3

kl
, aη′3kl

〉)
4×5
.

Step 2: Using Eq (4.6), we get the entropies ς1, ς2, and ς3 of the experts Ex1,Ex2, and Ex3, respectively,
which are ς1 = 0.6161, ς2 = 0.6490, and ς3 = 0.5802. The weights of experts are find out by applying
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the Eq (4.7), which are provided by β1 = 0.34, β2 = 0.35, and β3 = 0.31.
Step 3: Based on Eq (4.8), we calculate the accumulated Lq-ROFNs ϖkl using the Lq-ROFNs

ϖ1
kl, ϖ

2
kl, and ϖ3

kl, which belongs to the decision matrices D1 =

(
ϖ1

kl

)
4×5
=

(〈
aξ1

kl
, aη′1kl

〉)
4×5

,

D2 =

(
ϖ2

kl

)
4×5
=

(〈
aξ2

kl
, aη′2kl

〉)
4×5

, and D3 =

(
ϖ3

kl

)
4×5
=

(〈
aξ3

kl
, aη′3kl

〉)
4×5

to construct the cumulative

decision matrix D =
(
ϖkl

)
4×5
=

(〈
aξkl , aηkl

〉)
4×5

with k = 1, 2, . . . , 4, and l = 1, 2, . . . , 5 as given below:

S1 S2 S3 S4 S5

D =

R1

R2

R3

R4


⟨a5.74, a2.37⟩ ⟨a6.24, a1.73⟩ ⟨a5.71, a1.00⟩ ⟨a6.31, a1.96⟩ ⟨a5.00, a2.00⟩

⟨a5.00, a1.00⟩ ⟨a3.74, a3.02⟩ ⟨a6.39, a1.23⟩ ⟨a4.77, a2.27⟩ ⟨a4.51, a1.31⟩

⟨a8.00, a0.00⟩ ⟨a5.00, a1.31⟩ ⟨a8.00, a0.00⟩ ⟨a6.36, a1.83⟩ ⟨a5.39, a1.52⟩

⟨a6.43, a1.23⟩ ⟨a5.78, a1.56⟩ ⟨a4.78, a1.30⟩ ⟨a5.27, a2.27⟩ ⟨a6.39, a1.35⟩

 .
Step 4: The entropies ς1, ς2, ς3, ς4, and ς5 of the attributes S1,S2,S3,S4, and S5 are respectively
calculated as ς1 = 0.39, ς2 = 0.63, ς3 = 0.39, ς4 = 0.56, and ς5 = 0.58 using the Eq (4.9). The weights
of attributes w = {w1(0.15),w2(0.25),w3(0.15),w4(0.22),w5(0.23)} are find out by applying the Eq
(4.10).
Step 5: Based on Eq (4.11), we combine the accumulated Lq-ROFNsϖk = ⟨aξk , aηk⟩ of each alternative
Rk with k = 1, 2, 3, 4, which are provided as ϖ1 = ⟨a5.96, a1.81⟩, ϖ2 = ⟨a5.26, a1.75⟩, ϖ3 = ⟨a8.00, a0.00⟩,
and ϖ4 = ⟨a5.97, a1.65⟩

Step 6: Next, using Eq (4.12), we calculate the ranking values Y(ϖ1), Y(ϖ2), Y(ϖ3), and Y(ϖ4) of
each object as follows: Y(ϖ1) = 5.43, Y(ϖ2) = 4.89, Y(ϖ3) = 8.00, and Y(ϖ4) = 5.42.
Step 7: From Step 6, we see that Y(ϖ3) > Y(ϖ1) > Y(ϖ4) > Y(ϖ2), Hence, the best car out of
collection Rk with k = 1, 2, 3, 4 is R3.

Figure 1. Flowchart diagram.
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The flowchart diagram shown in Figure 1 is suggested to the reader for a better understanding of
the process discussed in the above GDM methodologies.

5. Tests to check validity of the GDM methods

To estimate the authenticity of decision-making approaches, Wang and Triantaphyllou [38]
discussed three test criteria as below:
Test 1: In the case of an efficient GDM process, the rank of the optimal object is not affected by
changing the sub-optimal object by any bad object without altering the significance of corresponding
decision attribute.
Test 2: The transitive property must be held to get an effective decision making approach.
Test 3: If a GDM situation is divided into a sub-GDM parts, and applied the suggested GDM approach
to both scenarios, then the ranking of alternatives of sub-GDM problems should be same as the ranking
of alternatives as original GDM problem.

First, we verify the reliability and authenticity of our suggested first GDM method by implementing
these test criteria to Example 4.2 as given in the previous section.
Test 1: For estimating the authenticity of our suggested first GDM technique using Test 1, we alternate
the sub-optimal object R3 in the provided decision matrices D

′1,D
′2,D

′3,D
′4,D

′5, and D
′6 of Example

4.2, which are estimated from the experts Exs, where s = 1, 2, 3, . . . , 6 as given below:

S1 S2 S3 S4 S5 S6 S7

D
′1 =

R1

R2

R3

R4

R5

R6



⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a5, a1⟩ ⟨a4, a4⟩ ⟨a7, a1⟩

⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a3, a2⟩

⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a4, a3⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a3⟩

⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a4⟩ ⟨a5, a1⟩ ⟨a5, a3⟩ ⟨a5, a1⟩ ⟨a5, a3⟩

⟨a5, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a1⟩ ⟨a3, a2⟩ ⟨a5, a2⟩ ⟨a4, a3⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′2 =

R1

R2

R3

R4

R5

R6



⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a4, a4⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a7, a1⟩ ⟨a5, a2⟩

⟨a4, a1⟩ ⟨a6, a3⟩ ⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a4, a4⟩ ⟨a6, a1⟩ ⟨a4, a1⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a5, a1⟩

⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a5, a2⟩ ⟨a4, a2⟩ ⟨a5, a3⟩

⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a3⟩ ⟨a5, a1⟩ ⟨a4, a3⟩

⟨a5, a2⟩ ⟨a4, a2⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′3 =

R1

R2

R3

R4

R5

R6



⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a2⟩

⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a1⟩ ⟨a5, a2⟩

⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a3, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a6, a2⟩

⟨a4, a2⟩ ⟨a5, a2⟩ ⟨a4, a1⟩ ⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a5, a3⟩

⟨a4, a2⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a3, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩

⟨a4, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a3, a2⟩ ⟨a6, a2⟩ ⟨a5, a3⟩


,
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S1 S2 S3 S4 S5 S6 S7

D
′4 =

R1

R2

R3

R4

R5

R6



⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a5⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a2⟩

⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a5, a1⟩

⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a3, a2⟩

⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a7, a1⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩

⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′5 =

R1

R2

R3

R4

R5

R6



⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a5, a1⟩

⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a5⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a2⟩

⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a3, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a6, a2⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a5, a1⟩

⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′6 =

R1

R2

R3

R4

R5

R6



⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a3⟩

⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩

⟨a5, a1⟩ ⟨a6, a1⟩ ⟨a4, a2⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a4, a1⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩

⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a5, a1⟩


.

The accumulated Lq-ROFNs of the bad alternative R
′

3 in the given decision making matrices
D
′1,D

′2,D
′3,D

′4,D
′5, and D

′6 are chosen arbitrary. Thus, the developed decision matrices are
D
′∗1,D

′∗2,D
′∗3,D

′∗4,D
′∗5, and D

′∗6 as below:

S1 S2 S3 S4 S5 S6 S7

D
′∗1 =

R1

R2

R
′

3
R4

R5

R6



⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a5, a1⟩ ⟨a4, a4⟩ ⟨a7, a1⟩

⟨a4, a2⟩ ⟨a5, a2⟩ ⟨a5, a1⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a2⟩ ⟨a4, a1⟩

⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a4, a3⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a3⟩

⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a4⟩ ⟨a5, a1⟩ ⟨a5, a3⟩ ⟨a5, a1⟩ ⟨a5, a3⟩

⟨a5, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a1⟩ ⟨a3, a2⟩ ⟨a5, a2⟩ ⟨a4, a3⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′∗2 =

R1

R2

R
′

3
R4

R5

R6



⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a4, a4⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a7, a1⟩ ⟨a5, a2⟩

⟨a4, a1⟩ ⟨a6, a3⟩ ⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a4, a4⟩ ⟨a6, a1⟩ ⟨a4, a1⟩

⟨a5, a3⟩ ⟨a4, a3⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a6, a1⟩

⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a5, a2⟩ ⟨a4, a2⟩ ⟨a5, a3⟩

⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a3⟩ ⟨a5, a1⟩ ⟨a4, a3⟩

⟨a5, a2⟩ ⟨a4, a2⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩


,
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S1 S2 S3 S4 S5 S6 S7

D
′∗3 =

R1

R2

R
′

3
R4

R5

R6



⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a2⟩

⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a1⟩ ⟨a5, a2⟩

⟨a3, a1⟩ ⟨a5, a2⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a4, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩

⟨a4, a2⟩ ⟨a5, a2⟩ ⟨a4, a1⟩ ⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a5, a3⟩

⟨a4, a2⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a3, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩

⟨a4, a2⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a3, a2⟩ ⟨a6, a2⟩ ⟨a5, a3⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′∗4 =

R1

R2

R
′

3
R4

R5

R6



⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a5⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a2⟩

⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a5, a1⟩

⟨a4, a2⟩ ⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩

⟨a6, a1⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a7, a1⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩

⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a7, a1⟩ ⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′∗5 =

R1

R2

R
′

3
R4

R5

R6



⟨a4, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a4, a1⟩ ⟨a5, a1⟩

⟨a4, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a5⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a4, a2⟩

⟨a5, a3⟩ ⟨a4, a3⟩ ⟨a6, a2⟩ ⟨a3, a2⟩ ⟨a5, a2⟩ ⟨a5, a1⟩ ⟨a7, a1⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a5, a1⟩

⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩


,

S1 S2 S3 S4 S5 S6 S7

D
′∗6 =

R1

R2

R
′

3
R4

R5

R6



⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a6, a1⟩ ⟨a5, a3⟩

⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩

⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a5, a3⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a3, a2⟩

⟨a5, a1⟩ ⟨a6, a2⟩ ⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a2⟩ ⟨a5, a2⟩ ⟨a5, a3⟩

⟨a5, a2⟩ ⟨a7, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a4, a4⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩ ⟨a4, a3⟩ ⟨a5, a2⟩ ⟨a5, a1⟩


.

The ranking values of Y(ϖ1), Y(ϖ2), Y(ϖ3), Y(ϖ4), Y(ϖ5), and Y(ϖ6) are calculated as
Y(ϖ1) = 5.38, Y(ϖ2) = 5.06, Y(ϖ3) = 5.23, Y(ϖ4) = 5.16, Y(ϖ5) = 5.12, and Y(ϖ6) = 5.02.
Next, by applying the suggested first GDM approach on the above determined decision matrices
D
′∗1,D

′∗2,D
′∗3,D

′∗4,D
′∗5, and D

′∗6. Clearly, Y(ϖ1) > Y(ϖ3) > Y(ϖ4) > Y(ϖ5) > Y(ϖ2) > Y(ϖ6).
So, the most suitable choice from all the other choices Rk with k = 1, 2, . . . , 6 is R1.Note that the object
R1 is the best alternative by applying the suggested first GDM approach on both the original decision
matrices and the substituted decision matrices. Hence, the suggested first GDM method verifies Test
Criterion 1.
Tests Criteria 2nd and 3rd: For investigating the authenticity of the first GDM method using 2nd
and 3rd test criteria, we divide the original GDM situation of Example 4.2 into three sub-GDM parts
where the objects are {R1,R3,R4,R5}, {R2,R3,R4,R5}, and {R3,R5,R2,R6}. Now, by employing the
suggested first GDM method on these sub-problems, we obtain the rankings as “R1 > R4 > R3 > R5”,
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“R4 > R3 > R5 > R2”, and “R3 > R5 > R2 > R6”. To verify the transitivity, these three rankings of
sub-GDM problems are merged, and the final ranking is provided by “R1 > R4 > R3 > R5,R2 > R6”,
which is similar to the ranking orders of alternatives R1,R2,R3,R4,R5 and R6 as determined in the
Example 4.2. Thus, the suggested 1st GDM method verifies the Tests Criteria 2nd and 3rd.

We are now ready to check the reliability of the suggested second GDM method.
Test 1: For estimating the authenticity of our suggested 1st GDM method with Test 1, we put a
substitute of the sub-optimal object R3 in the decision matrices D

′1,D
′2, and D

′3 of Example 4.5, so,
we get

S1 S2 S3 S4 S5

D
′1 =

R1

R2

R3

R4


⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩ ⟨a3, a4⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a1⟩

⟨a8, a0⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a6, a2⟩ ⟨a6, a1⟩

⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a6, a1⟩

 ,
S1 S2 S3 S4 S5

D
′2 =

R1

R2

R3

R4


⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a6, a1⟩ ⟨a7, a1⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a2, a6⟩ ⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a5, a1⟩

⟨a7, a1⟩ ⟨a5, a1⟩ ⟨a8, a0⟩ ⟨a4, a4⟩ ⟨a5, a2⟩

⟨a5, a2⟩ ⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a5, a3⟩

 ,
S1 S2 S3 S4 S5

D
′3 =

R1

R2

R3

R4


⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a7, a1⟩ ⟨a5, a3⟩ ⟨a6, a1⟩ ⟨a7, a1⟩ ⟨a4, a2⟩

⟨a6, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a4, a2⟩ ⟨a7, a1⟩

 .
The accumulated Lq-ROFNs of the bad alternative R

′

3 are chosen arbitrarily, and are respectively
inserted in the given matrices D

′1,D
′2, and D

′3. Thus, the computed decision matrices D
′∗1,D

′∗2, and
D
′∗3 are given as:

S1 S2 S3 S4 S5

D
′∗1 =

R1

R2

R3′

R4


⟨a6, a2⟩ ⟨a5, a3⟩ ⟨a4, a1⟩ ⟨a3, a4⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a5, a2⟩ ⟨a4, a1⟩

⟨a5, a2⟩ ⟨a5, a1⟩ ⟨a8, a0⟩ ⟨a4, a4⟩ ⟨a7, a1⟩

⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a4, a1⟩ ⟨a6, a2⟩ ⟨a6, a1⟩

 ,

S1 S2 S3 S4 S5

D
′∗2 =

R1

R2

R3′

R4


⟨a6, a2⟩ ⟨a4, a2⟩ ⟨a6, a1⟩ ⟨a7, a1⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a2, a6⟩ ⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a5, a1⟩

⟨a4, a3⟩ ⟨a5, a3⟩ ⟨a6, a1⟩ ⟨a8, a0⟩ ⟨a5, a2⟩

⟨a5, a2⟩ ⟨a6, a2⟩ ⟨a5, a1⟩ ⟨a4, a3⟩ ⟨a5, a3⟩

 ,
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S1 S2 S3 S4 S5

D
′∗3 =

R1

R2

R3′

R4


⟨a4, a4⟩ ⟨a7, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a5, a2⟩

⟨a5, a1⟩ ⟨a4, a2⟩ ⟨a7, a1⟩ ⟨a5, a2⟩ ⟨a4, a3⟩

⟨a5, a3⟩ ⟨a5, a2⟩ ⟨a4, a3⟩ ⟨a6, a1⟩ ⟨a6, a2⟩

⟨a6, a1⟩ ⟨a6, a1⟩ ⟨a5, a3⟩ ⟨a4, a2⟩ ⟨a7, a1⟩

 .
Consequently, by applying the suggested second GDM method on the above developed decision

matrices D
′∗1,D

′∗2, and D
′∗3, the ranking values Y(ϖ1), Y(ϖ2), Y(ϖ3), and Y(ϖ4) are calculated as:

Y(ϖ1) = 5.41, Y(ϖ2) = 4.94, Y(ϖ3) = 8.00, and Y(ϖ4) = 5.48. As Y(ϖ3) > Y(ϖ4) > Y(ϖ1) >
Y(ϖ2), so, the most suitable alternative from the alternatives Rk with k = 1, 2, . . . , 4 is R3. It can be
observed that the optimal object is R3 in both the original and transformed decision problems. Hence,
it is verified that the suggested second GDM method holds the requirements of Test Pattern 1.
Test Criteria 2nd and 3rd: To investigate the reliability of the second GDM method, we divide the
genuine GDM dilemma of Example 4.5 into three dependent GDM questions that include the objects
as: {R3,R2,R4}, {R3,R1,R4}, and {R2,R1,R4}. Next, by employing the suggested 2nd GDM method on
these sub-problems, we obtain the ranks as follows: ‘R3 > R4 > R2’, ‘R3 > R1 > R4’ and ‘R1 > R4 >

R2’. Further, we combine these determined ranks and find the final rankings as ‘R3 > R1 > R4 > R2’,
which is the same as computed in the Example 4.5, and thus, it showed the transitive property. Thus,
the suggested second GDM method verifies the Test Criteria 2nd and 3rd.

5.1. Discussion

In this section, we compare our suggested GDM methods with some approaches, including Kumar
and Chen’s GDM technique [24]. In addition, we investigate the effect of q in the Lq-ROFNs for
Example 4.3 as presented in the previous section.

One may verify from Table 1 that the optimal decision object is invariant in the case of the first
GDM method and preexisting approaches [10, 20, 24, 28, 40, 57], that is, R4. Moreover, there is a
minor change in the rankings of sub-optimal objects. In [60], a GDM method is presented based on
q-ROF numbers using Aczel-Alsina TN and TCN operations. The current study extended the method
introduced in [60] using linguistic terms, and proposed Lq-ROFAAWA operators. In certain situations,
Lq-ROFNs perform better than q-ROFNs for the following reason: Lq-ROFNs simplify the process for
decision-makers by representing uncertainty with linguistic terms (such as high, medium, and low),
making it easier to express preferences. In contrast, q-ROFNs rely on numerical information, which
can be more challenging for non-experts to interpret.
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Table 1. The comparison of suggested first GDM approach with some existing methods for
Example 4.3.

1st-GDM method Ranking orders
Liu and Wang’s GDM technique [57] R4 > R3 > R2 > R1

Chen et al.’s GDM method [10] R4 > R3 > R1 > R2

Kumar and Chen’s GDM technique [24] R4 > R3 > R1 > R2

Garg and Kumar’s GDM method [20] R4 > R1 > R3 > R2

Nayana et al. GDM technique [40] R4 > R1 > R3 > R2

Kumar and Chen’s GDM method [28] R4 > R3 > R1 > R2

The suggested first GDM approach R4 > R3 > R1 > R2

Additionally, note that the parameter q in the Lq-ROFNs plays an important role in group decision
making problems. In the preceding section, a GDM problem is solved in Example 4.3 by considering
q = 3. Now, to examine the effect of q-rung parameter on this problem again, we solve for every q ∈
{1, 2, 4, 5, . . . , 10}, where Aczel-Alsina parameter is λ = 2 in the algorithmic process. The calculated
ranking value for each alternative is given in Table 2 for every q ∈ {1, 2, 3, . . . , 10}. From Table 2, it
is clear that the ranking values are changed for all q ∈ {1, 2, 3, . . . , 10}, but the overall ranking orders
are invariant, which yields a very interesting fact that the applicability scope of suggested approach for
GDM using Lq-ROFAAWA aggregation operator is higher than existing models, e.g., [24].

Table 2. Effect of parameter q on the ranking orders of alternatives with suggested Lq-
ROFAAWA operator on Example 4.3.

Parameter (q) Y(ϖ1) Y(ϖ2) Y(ϖ3) Y(ϖ4) Ranking orders (or ROs)
q = 1 4.08 3.60 4.21 5.50 R4 > R3 > R1 > R2

q = 2 4.39 4.01 4.54 4.76 R4 > R3 > R1 > R2

q = 3 4.44 4.03 4.57 5.23 R4 > R3 > R1 > R2

q = 4 4.45 4.04 4.56 5.12 R4 > R3 > R1 > R2

q = 5 4.51 4.11 4.60 5.10 R4 > R3 > R1 > R2

q = 6 4.75 4.30 4.82 5.31 R4 > R3 > R1 > R2

q = 7 4.71 4.27 4.77 5.23 R4 > R3 > R1 > R2

q = 8 4.65 4.22 4.71 5.14 R4 > R3 > R1 > R2

q = 9 4.73 4.29 4.78 5.22 R4 > R3 > R1 > R2

q = 10 4.69 4.27 4.75 5.18 R4 > R3 > R1 > R2

From Table 2, it can be observed that by varying the range of parameter q from 1 to 10, the ranking
order R4 > R3 > R1 > R2 remains the same (see also Figure 2). This does not imply that the approach
is generally insensitive. Sensitivity refers to the extent to which the output changes in response to
variations in the input. The ranking order is determined by the input information, while q serves as
a parameter. Additionally, it may indicate certain aspects of the proposed technique’s sensitivity, as
outlined below:
Robustness: If the approach is robust, it can yield consistent results even when the parameters are
changed. This may be a good thing as it suggests reliability.
System stability: Stability may be inherent in the system or data-set being evaluated. If the
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characteristics or criteria that influence the ranking remain dominant despite changes in q, the key
components of the ranking may remain robust and consistent across a range of q values. This would
suggest a stable and potentially well-functioning system.

Figure 2. Effect of parameter q on the object’s final score values with suggested Lq-
ROFAAWA operator on Example 4.3.

5.2. Limitations of the proposed methodologies

Like every preexisting GDM model, our proposed methodologies have their pros and cons. The
advantages are discussed in the previous sections, however, in this section, we will discuss certain
limitations of the developed methods that we identified during this study. The first limitation of the
presented work is the complexity in computations when dealing with large datasets. This limitation,
however, may be resolved with the utilization of mathematical software like MATLAB, MAPLE, etc.
The second limitation of the proposed study is its inefficiency in handling the neutral part of the data.

6. Conclusions and future directions

In this article, we developed two novel operations using Lq-ROFNs based on the Aczel-Alsina’s
t-conorm (TCN) and t-norm (TN), i.e., addition and scalar multiplication. These operations overcome
the flaws of Kumar and Chen’s addition and scalar product operations [24] of LIFNs. Moreover,
we have introduced the linguistic q-rung orthopair fuzzy Aczel-Alsina weighted arithmetic (Lq-
ROFAAWA) aggregation operator of Lq-ROFNs using presented addition and scalar multiplication
operations. Further, we have suggested two types of new group decision-making (GDM) techniques
based on the suggested Lq-ROFAAWA aggregation operator. The proposed first GDM method assumes
the condition that the weights of experts and weights of attributes are known completely. However, the
suggested second GDM method considers the condition that the weights of experts and the weights of
attributes are unknown. Moreover, we applied the suggested methodologies to different environmental
and economic real-world issues and successfully solved them, i.e., ranking of countries regarding air
pollution, selection of best company for bank to invest, and selection of best electric vehicle design.
In the end, we have validated our proposed GDM methods with three tests and compared them with
preexisting GDM methods.

AIMS Mathematics Volume 9, Issue 11, 32328–32365.



32357

Consequently, the suggested GDM techniques overcome the deficiencies in different recent works,
including Chen et al.’s GDM method [10], Kumar and Chen’s GDM technique [24], Garg and Kumar’s
GDM technique [20], Liu and Wang’s GDM technique [57], Tang and Meng’s GDM technique [27],
and Kumar and Chen’s GDM method [28] because they cannot differentiate the ranking positions
of objects. In future research, this study can be extended to different domains, such as Aczel-Alsina
operators based on linguistic fuzzy measurements and rough attributes as studied in [4]; approximation
of linguistic q-rung orthopair fuzzy information with covering-based rough sets using the concepts
presented in [5]; and Aczel-Alsina operators based on linguistic quasi-rung fuzzy sets as proposed
in [61, 62].
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A. Theorem 3.1

Proof. 1) Based on Definition 3.1, we get

σ1

⊕
σ2 =

〈
a

h

(
q
√

(1−exp−((− log(1−(
ξσ1
h

)q))λ+(− log(1−(
ξσ2
h

)q))λ)1/λ))

),
a
h

(
exp−((− log(

ησ1
h

))λ+(− log(
ησ2
h

))λ)1/λ
)〉,

=

〈
a

h

(
q
√

(1−exp−((− log(1−(
ξσ2
h

)q))λ+(− log(1−(
ξσ1
h

)q))λ)1/λ))

),
a
h

(
exp−((− log(

ησ2
h

))λ+(− log(
ησ1
h

))λ)1/λ
)〉,

= σ2

⊕
σ1,

where λ > 0.

2) Again using Definition 3.1, we have

ψ(σ1

⊕
σ2) =

〈
a

h

( q
√

(1−exp
−

(
ψ

(
(− log(1−(

ξσ1
h

)q))λ+(− log(1−(
ξσ2
h

)q))λ
))1/λ

)

),
a

h

(
exp
−

(
ψ

(
(− log(

ησ1
h

))λ+(− log(
ησ2
h

))λ
))1/λ )〉,
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=

〈
a

h

( q
√

(1−exp
−

(
ψ

(
−log(1−(

ξσ1
h

)q)
)λ
+ψ

(
−log(1−(

ξσ2
h

)q)
)λ)1/λ

)

),
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h

(
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−

(
ψ

(
−log(

ησ1
h

)
)λ
+ψ

(
−log(

ησ2
h

)
)λ)1/λ )〉,

= ψσ1

⊕
ψσ2,

where ψ > 0 and λ > 0.

3) Similarly, by Definition 3.1. We obtain:

(ψ1

⊕
ψ2)σ =

〈
a

h

q
√

1−exp
−

(
(ψ1+ψ2)
(
−log(1−( ξσ

h
)q)
)λ)1/λ ,

a

exp
−

(
(ψ1+ψ2)
(
−log( ησ

h
)
)λ)1/λ〉

=

〈
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h

q
√

1−exp
−

(
ψ1

(
−log(1−( ξσ

h
)q)
)λ
+ψ2
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−log(1−( ξσ

h
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)λ)1/λ ,

a
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(
(ψ1

(
−log( ησ

h
)
)λ
+ψ2

(
−log( ησ

h
)
)λ)1/λ〉

= ψ1σ
⊕

ψ2σ,

where ψ1 > 0, ψ2 > 0 and λ > 0.
□

B. Theorem 3.2

Proof. Suppose σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩. . ., and σt = ⟨aξt , aηt⟩ are Lq-ROFNs where
σ1, σ2, . . . , σt ∈ Γ[0,h] and h is an even positive integer. We show this result using the mathematical
induction principle as below:

1) When t = 2, we get,

w1σ1 =

〈
a

h

q
√

1−exp−(w1(− log(1−(
ξσ1
h

)q))λ)1/λ
, a

expw1(− log(
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〉
.

w2σ2 =
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)q))λ)1/λ
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ησ2
h

))λ)1/λ

〉
.

Lq − ROFAAWA(σ1, σ2) =
〈
a

h

q
√

1−exp−(w1(− log(1−(
ξσ1
h

)q))λ)1/λ
, a
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h

))λ)1/λ

〉
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〉
,
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=

〈
a

h
q
√

1−exp−(
∑2

r=1 wr (− log(1−(
ξσr
h

)q))λ)1/λ
, a

exp−(
∑2

r=1 wr (− log(
ησr
h

))λ)1/λ

〉
.

Thus, the aggregated value Lq-ROFAAWA(σ1, σ2) of Lq-ROFNs σ1 = ⟨aξ1 , aη1⟩ and σ2 =

⟨aξ2 , aη2⟩ using the suggested Lq-ROFAAWA AgOp defined in Eq (3.5) is a Lq-ROFN.

2) Suppose the aggregated value Lq-ROFAAWA(σ1, σ2, . . . , σk) of the Lq-ROFNs σ1 = ⟨aξ1 , aη1⟩,
σ2 = ⟨aξ2 , aη2⟩ . . ., and σk = ⟨aξk , aηk⟩ by applying the suggested Lq-ROFAAWA AgOp given in
Equation (3.5) is a Lq-ROFN for t = k, then

Lq − ROFAAWA(σ1, σ2, . . . , σk) = w1σ1

⊕
w2σ2

⊕
. . .
⊕
wkσk

=

〈
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1−exp−(
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ησr
h

))λ)1/λ

〉
.

Thus, the aggregated value of Lq-ROFAAWA(σ1, σ2, . . . , σk) of the σ1 = ⟨aξ1 , aη1⟩, σ2 =

⟨aξ2 , aη2⟩ . . ., and σk = ⟨aξk , aηk⟩ is a Lq-ROFN.

3) For t = k + 1, we get

Lq − ROFAAWA(σ1, σ2, . . . , σk+1) = w1σ1

⊕
w2σ2

⊕
. . .
⊕
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=
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exp−(
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ησr
h
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〉
.

Hence, the computed value of the Lq-ROFNs σ1 = ⟨aξ1 , aη1⟩, σ2 = ⟨aξ2 , aη2⟩. . ., σk+1 =

⟨aξk+1 , aηk+1⟩ using the suggested Lq-ROFAAWA AgOp defined in Eq (3.5) is a Lq-ROFN.

□

C. Theorem 3.3

Proof. As the weights of Lq-ROFNs σ1, σ2, . . . , σn are w1,w2, . . . ,wn, respectively, where wr ∈

[0, h], r = 1, 2, . . . , n with
∑n

r=1wr = 1. If σ1 = σ2 = . . . = σn = σ, then, we have

Lq − ROFAAWA(σ1, σ2, . . . , σn) = w1σ1

⊕
w2σ2

⊕
. . .
⊕
wnσn,
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= w1σ
⊕
w2σ
⊕

. . .
⊕
wnσ,

= σ(w1 + w2 + . . . + wn),
= σ.

□

D. Theorem 3.4

Proof. Since σ− = min{σ1, σ2, . . . , σn} and σ+ = max{σ1, σ2, . . . , σn}, by implementing the suggested
Lq-ROFAAWA AgOp, we obtain:

Lq − ROFAAWA(σ1, σ2, . . . , σn) =
n⊕

r=1

wrσr ≤

n⊕
r=1

wrσ+ = σ+

n∑
r=1

wr, (D.1)

Lq − ROFAAWA(σ1, σ2, . . . , σn) =
n⊕

r=1

wrσr ≥

n⊕
r=1

wrσ− = σ−

n∑
r=1

wr. (D.2)

By putting
∑n

r=1wr = 1 in both Eqs (D.1) and (D.2), we get σ− ≤ Lq−ROFAAWA(σ1, σ2, . . . , σn) ≤
σ+. □

E. Theorem 3.5

Proof. Using the suggested Lq-ROFAAWA AgOp, we get

Lq − ROFAAWA(σ1, σ2, . . . , σn) =
n⊕

r=1

wrσr,

Lq − ROFAAWA(σ
′

1, σ
′

2, . . . , σ
′

n) =
n⊕

r=1

wrσ
′

r,

since σr ≤ σ
′

r with r = 1, 2, . . . , n, and
∑n

r=1wr = 1, so,
⊕n

r=1wrσr ≤
⊕n

r=1wrσ
′

r. Therefore, we get
Lq−ROFAAWA(σ1, σ2, . . . , σn) ≤ Lq−ROFAAWA(σ

′

1, σ
′

2, . . . , σ
′

n). □
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