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Abstract: Given the application domains of soft set theory, such as decision-making processes, image
processing, machine learning, and data mining, it is natural to consider that this theory could be utilized
more effectively in encryption systems. A review of the literature reveals that soft set-based encryption
systems have been explored in a limited number of studies. This study seeks to develop a new approach
for soft sets in encryption systems by utilizing newly introduced algebraic and topological tools. In this
system, parties will be able to generate encryption keys independently using soft sets they determine
themselves rather than through prior mutual agreement. Additionally, the method of key generation
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alternative compared to existing soft set-based encryption systems.
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1. Introduction

Uncertainty, while referring to the state of having incomplete, ambiguous, or inconsistent
information about a system, situation, or event, is also regarded as a crucial element in understanding
the nature of systems and events. It can be articulated through mathematical and statistical models,
such as probability theory, which facilitate a quantitative assessment. One of the methods for
addressing these uncertainties is soft set theory, which is a generalization of classical set theory. One
of the most significant features of soft sets, first defined by Molodtsov [1], is their ability to address
uncertainty through a parametric approach. In the real world, often encountered incomplete or
ambiguous information cannot be adequately expressed by classical set theory; however, soft sets
provide the necessary flexibility to model such situations.

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241547


32233

While classical set theory provides a framework based on precise and clear definitions-where an
element either belongs to a set or does not-this binary structure proves inadequate when faced with
the complexities and uncertainties of real-world applications. For instance, if the quality of a product
is uncertain, classical set theory would classify it as either belonging to the high-quality product set
or, if it does not belong to that set, as a low-quality product. This strict categorization stems from
classical theory’s requirement for a clear determination of whether a product meets a specific quality
standard. However, in practice, a product’s quality typically exists along a spectrum, influenced by
various factors such as customer satisfaction, durability, price, functionality, and aesthetics. Such
uncertainties cannot be effectively addressed within the rigid binary framework of classical set theory.
Compared to the rigid definitions of classical sets, soft sets do not adhere to a binary membership
status; they permit variability in membership degrees based on different parameters. Thus, soft sets
offer a versatile mathematical tool for addressing uncertain and vaguely defined objects, thanks to the
flexibility of their inclusion degrees. Without restrictions on how objects are defined, researchers can
select any parameter forms they deem necessary. This capacity enables soft sets to facilitate
decision-making processes by organizing and structuring data while considering multiple criteria,
allowing users to evaluate alternatives more consciously. This characteristic significantly enhances the
decision-making process, making it more efficient and reliable in the presence of partial information.

Additionally, soft sets can be integrated with other mathematical theories and models, thereby
increasing their applicability in complex analyses. For example, in various industrial contexts,
incorporating game theory into decision-making processes related to system safety and reliability
analysis offers considerable advantages in managing uncertainty. Thus, by employing different
methodologies in tandem, it becomes possible to better manage uncertainties and enhance system
performance (Yazdi et al. [2], Li and Yazdi [3], and Zarei et al. [4]).

Soft sets, in addition to their advantages in handling uncertainty, can be represented in matrix
form. In this representation, the rows correspond to elements of the universe, while the columns
denote the parameters. Each entry in the matrix reflects the membership status of an element with
respect to a given parameter. This structure proves particularly useful in multi-parameter
decision-making processes. The matrix representation enables the straightforward evaluation of
multiple alternatives across various parameters and allows for efficient data processing through matrix
operations or comparisons, especially in high-dimensional datasets, thereby conserving time.
Additionally, the implementation of statistical and mathematical methods can be carried out more
effectively in a matrix format. The matrix structure also enhances the transmission of data to other
systems or stakeholders.

The basic operations and properties of soft sets were initially established by Maji et al. [5] and
later refined by Ali et al. [6]. Since then, the theory of soft sets has advanced significantly, with
extensive contributions from numerous mathematicians. The application of soft set theory extends
across various mathematical structures. Research has also explored algebraic structures derived from
soft sets, including soft groups, soft semirings, and soft rings. Recently, Alcantud et al. [7] presented a
comprehensive and detailed review of the current state of soft set theory.

The concept of soft topology, along with related topological notions, was introduced independently
by Çağman et al. [8] and Shabir and Naz [9]. To investigate and extend topological notions to soft
topologies, researchers have examined soft topological spaces in several areas: neighborhood
properties by Nazmul and Samanta [10], soft separation axioms by Hussain and Ahmad [11],
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Min [12], Terepeta [13], and Al-Shami and El-Shafei [14], soft continuity of mappings by Hazra
et al. [15], and Aygünoğlu and Aygün [16], and soft compactness by Aygünoğlu and Aygün [16], and
Zorlutuna et al. [17]. Further generalizations, such as soft metric spaces, have been defined and
studied by Das and Samanta [18]. Recent approaches to deriving soft topologies from classical
topologies have been explored by Terepeta [13], Al-Shami and Kocinac [19], Alcantud [20, 21], and
Matejdes [22]. Soft set theory demonstrates considerable potential for practical applications and
ongoing developments across various domains, particularly in decision-making. For example,
decision-making techniques utilizing N-soft sets, an extension of the soft set model, have been
proposed by Ali and Akram [23], Adeel et al. [24], and Alcantud et al. [25].

Throughout history, in numerous fields where the transfer of information has been crucial, it has
been evident that there is a need for a certain level of confidentiality to prevent unwanted parties
from understanding the transmitted information. In an increasingly digital world, cryptography, an
essential domain of information security, serves as the cornerstone for protecting data. It ensures
the confidentiality, integrity, and accuracy of information during its transmission across networks and
storage in databases. To achieve the desired level of confidentiality, numerous encryption systems
have been developed in parallel with advancements in technology. The process of transforming a
message into an unreadable form using a chosen method is called encryption, while the process of
applying the inverse operations used in encryption to recover the original message is referred to as
decryption. According to Kerckhoffs’ principles [26], which are desired for all encryption methods,
the encryption system used should be assumed to be known by everyone, and the system must be
practically unsolvable, even if not mathematically so.

The reliability of an encryption system lies in the key used. In encryption processes, two main
classes of encryption systems are utilized to achieve the desired security objectives: symmetric and
asymmetric encryption systems, each with distinct features and applications. Symmetric encryption
systems, often referred to as secret key encryption systems, rely on a single shared key for both the
encryption and decryption of data. This key must be kept confidential between communicating
parties, as anyone with access to the key can decipher the information. Notable examples of
symmetric algorithms include the Advanced Encryption Standard (AES), which is widely used for
securing sensitive data, and the Data Encryption Standard (DES), which has been largely phased out
due to its vulnerability to brute-force attacks. Symmetric encryption algorithms are highly efficient,
making them ideal for encrypting large volumes of data, such as ensuring the security of
communication channels or encrypting entire databases. However, a major challenge with symmetric
encryption systems is the secure distribution and management of keys, particularly in large-scale
systems where multiple parties need access to the keys.

Asymmetric encryption systems address the key distribution problems inherent in symmetric
encryption by using two mathematically related keys: a public key and a private key. The public key
can be freely distributed and used by anyone to encrypt messages intended for the key’s owner, while
the private key is kept secret and used to decrypt the messages. This key pair structure underpins
many modern security protocols. For instance, RSA, one of the oldest and most widely adopted
asymmetric encryption systems, was proposed by Rivest et al. [27], following the introduction of the
concept of trapdoor one-way functions by Diffie and Hellman [28]. Rabin [29] introduced a similar
public-key encryption system based on the integer factorization problem in 1979. Elliptic curve
cryptography (ECC) represents a newer approach to asymmetric encryption, offering equivalent
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security with smaller key sizes, thus becoming increasingly popular in resource-constrained
environments such as mobile devices and IoT applications. Other public-key encryption systems
based on different computational problems, such as the El Gamal encryption system, have also been
developed. Despite their advantages, asymmetric encryption systems are generally slower and require
more computational power compared to symmetric systems, which can be a limitation in some
scenarios.

Given that soft set theory has applications in areas such as decision-making processes, image
processing, machine learning, data mining, coding theory, group theory, and crystography, it is
reasonable to consider that this theory could be utilized more effectively in encryption systems (Adeel
et al. [24], Aktaş and Kalkan [30], Alcantud et al. [25], Ali et al. [23], Çağman and Enginoğlu [31],
Feng et al. [32], Kalkan [33], Liu et al. [34], Tripathy et al. [35]). A review of the literature indicates
that soft set-based encryption systems are extremely rare. This study will present a summary of the
relevant literature and a comparison of existing works and introduce a new soft set-based encryption
system to address the existing gap in the literature.

This study is organized as follows: Section 2 provides the concepts of soft sets and soft matrices,
detailing existing soft set-based encryption systems and their characteristics. Section 3 introduces the
operators to be used in the proposed encryption system and outlines the foundational principles of the
developed theory. The subsequent section presents the new encryption system, including its algorithm
and practical examples. Section 5 highlights the strengths of the proposed system and compares it with
existing soft set-based encryption systems in the literature. Section 6 summarizes the findings of this
study and discusses potential future research problems. An example alphabet for the case (n, r) = (4, 3)
is provided in the Appendix.

2. Soft set-based encryption systems

Let X be a set, and U, E, and P(U) represent the universe, the set of parameters, and the power set
of X, respectively. The term soft set over U refers to a pair of (F, A), where F is a function defined
as F : A ⊆ E → P (U) [1]. Alternatively, the soft set can be described as a parameterized family of
P(U). The set of all soft sets over U will be symbolized as S S (U, E). Considering F (e) = ∅ for every
e ∈ E \A, (F, E) can be written instead of (F, A). The soft set (F, E) is abbreviated as FE for simplicity.

Soft sets can be associated with matrices for the purpose of storage or transmission in a computer
environment. For a soft set FE, the subset

RE = {(u, e) : e ∈ E, u ∈ F(e)} ⊂ U × E

is referred to as a relation form of FE, and the function

χRE : U × E → {0, 1},

χRE (u, e) =
{

1 if (u, e) ∈ RE

0 if (u, e) < RE

is known as the characteristic function of the relation. Accordingly, for a universe set with q elements
and a parameter set with r elements, [

ai j

]
q×r
=
[
χRE (ui, e j)

]
q×r
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defines the soft set matrix of FE.
For example, consider a universe set consisting of patients U = {k1, k2, k3, k4, k5}, and a parameter

set consisting of symptoms E = {e1 = shortness of breath, e2 = severe cough, e3 = high fever}. A soft
set used to determine whether the patients have a specific disease is as follows:

FE = {e1 = {k1, k2, k4, k5}, e2 = {k1, k3}, e3 = {k2, k4, k5}}.

The soft set matrix of FE would be as 
1 1 0
1 0 1
0 1 0
1 0 1
1 0 1


.

One of the first studies on soft set-based encryption systems in the literature was conducted by
Aygün [36]. This study utilized a soft set matrix to create a key selected by the receiver and sender
through mutual agreement. The soft set matrix [ai j] and a matrix [bi j], where each row corresponds to
the vector representation of each character in the message within the alphabet, are constructed. Using
these matrices, the encryption process is defined by:

ci j =

{
1 if ai j , bi j

0 if ai j = bi j

where [ai j] · i[bi j] = [ci j] denotes the inverse product. Similarly,

di j =

{
1 if ai j = bi j

0 if ai j , bi j

where [ai j] · c[bi j] = [di j] denotes the characteristic product. These operations serve as the primary
tools in the encryption system developed by Aygün [36].

The second study, by Aygün [37], on soft set-based encryption systems builds upon the encryption
system introduced in Aygün [36], with the goal of improving the reliability of the encryption process
by integrating a permutation within the encryption scheme utilizing soft sets.

One of the most recent publications on soft sets was authored by Paik and Mondal [38]. They
developed a new encryption algorithm based on the foundation of previous works, employing a new
approach. Instead of matrices, a symmetric difference operation defined between soft sets as

(I, L)∆̃(J,M) = ((I, L) ∪R (J,M)) −R ((I, L) ∩R (J,M))

was utilized.
Some other studies on soft set-based encryption systems can be found in Aktaş and Kalkan [30],

Kalkan [33], and Yılmaz [39]. Soft set-based encryption systems in the literature are illustrated in
Figure 1.
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Figure 1. Soft set-based encryption systems in the literature.

3. The mathematical theory

This section introduces the mathematical theory behind the encryption system. The fundamental
components of this system are the maximum (or minimum) operators based on the algebraic structure
of the chosen alphabet. The operators employed in the proposed encryption system, as far as we
know, are being applied for the first time in a cryptosystem, adding a new dimension to the encryption
process. In this context, the innovative use of maximum and minimum operators also contributes to
the development of stronger and more reliable encryption systems in modern cryptography. The basis
of these operators is the maximum (or minimum) functions, which, when selecting high values, never
take certain values based on the n values determined in the algebraic structure. Moreover, as the n
value increases, the number of values that the maximum (or minimum) function does not take also
increases. However, these excluded values are utilized in encryption, thereby enhancing the
complexity of the encryption process, making it more challenging for attackers to understand the
encryption structure, ultimately providing stronger security. The definition of the maximum (or
minimum) operator in relation to matrices, where calculations are mathematically straightforward,
and the fact that these operators do not require complex mathematical processing, ensures
computational efficiency. On the other hand, the use of these operators also impacts the size of the key
space. Consequently, this richness in the mathematical structure of the encryption system complicates
the ability of potential attackers to identify the system’s vulnerabilities.

Due to the properties of the operators and the encryption system, the algebraic structure Zn used in
encryption must have n > 3.

As will be defined later, based on the algebraic structure, a vector will be created for each character
in the encrypted information within the algorithms. Therefore, the length of the vectors used must be
determined based on the number of elements in the alphabet. If vectors of length r are to be created for
the chosen Zn residue class, the alphabet used will have nr elements.

Accordingly, to ensure that the encryption system is compatible with each language, if the number
of characters in the language’s alphabet is not nr, the alphabet can be expanded to nr elements by
adding different characters from languages in the surrounding area. An example of such an alphabet is
provided in the Appendix.

One of the main elements of the new encryption system is the maximum and minimum operators.
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First, we provide the tools needed to define these operators.

Definition 1. Let n ∈ N+. The function M : N × N→ Zn, defined by

M(p, k) = max{p − k (mod n), k − p (mod n)},

is called the maximum function, and similarly, the function m : N × N→ Zn, defined by

m(p, k) = min{p − k (mod n), k − p (mod n)},

is called the minimum function.

In other words, the function M (or m) takes two non-negative integers p and k, computes their
differences in both directions, and then takes the maximum (or minimum) of their remainders when
divided by n. A closer examination of these functions yields the following result:

Corollary 1. When the function M (or m) is restricted to soft set matrices, the domain and range of M
(or m) are isomorphic to Z2 × Z2 and Z3, respectively. On the other hand, when M (or m) is restricted
to the alphabet, the domain and range of M (or m) become isomorphic to Zn ×Z2 and Zn, respectively.

To increase the difficulty of breaking the developed encryption system, a random assignment
process can be implemented.

Lemma 1. The equality
k − p (mod n) ≡ n − (p − k) (mod n)

holds for each p, k ∈ Zn.

Proof. It is obvious. □

We will use the identity from Lemma 1 to prove the theorems covered in the rest of this section.

Theorem 1. Let n ≥ 3 be an integer. The maximum function M, defined on the set Zn ×Zn, cannot take
the values {1, 2, . . . , n

2 − 1} if n is an even integer and cannot take the values {1, 2, . . . , n−1
2 } if n is an

odd integer.

Proof. If p = k, then M(p, k) = 0. Assume that p , k, and n is an even integer. If

0 < p − k (mod n) ≤
n
2
,

then, by Lemma 1, the inequality

k − p (mod n) ≡ n − (p − k) (mod n) ≥
−n
2
≡

n
2

implies that
M(p, k) = k − p (mod n) ≥

n
2
.

On the other hand, if
p − k (mod n) >

n
2
,
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then the inequality
k − p (mod n) ≡ n − (p − k) (mod n) <

n
2

suggests that
M(p, k) = p − k (mod n) ≥

n
2
.

Thus, for all p, k ∈ Zn, we obtain

M(p, k) ∈ {0,
n
2
, · · · , n − 1}.

Now suppose that n is an odd integer. If

0 < p − k (mod n) ≤
n − 1

2
,

then the inequality

k − p (mod n) ≡ n − (p − k) (mod n) ≥
n + 1

2
indicates that

M(p, k) = k − p (mod n) ≥
n + 1

2
.

Conversely, if

p − k (mod n) >
n − 1

2
,

then the inequality

k − p (mod n) ≡ n − (p − k) (mod n) <
n + 1

2
entails that

M(p, k) = p − k (mod n) >
n − 1

2
.

Thus, for all p, k ∈ Zn, we obtain that

M(p, k) ∈ {0,
n + 1

2
, · · · , n − 1}.

The result follows. □

Theorem 2. Let n ≥ 3 be an integer. The minimum function m, defined on the set Zn × Zn, cannot take
the values { n2 + 1, . . . , n − 1} if n is an even integer and cannot take the values { n+1

2 , . . . , n − 1} if n is an
odd integer.

Proof. When p = k, m(p, k) = 0. Assume that p , k, and n is an even integer. If

0 < p − k (mod n) ≤
n
2
,

then the inequality
k − p (mod n) ≡ n − (p − k) (mod n) ≥

n
2
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indicates that
m(p, k) = p − k (mod n) ≤

n
2
.

In contrast, if
p − k (mod n) >

n
2
,

then the inequality
k − p (mod n) ≡ n − (p − k) (mod n) <

n
2

shows that
m(p, k) = k − p (mod n) <

n
2
.

Thus, for all p, k ∈ Zn,
m(p, k) ∈ {0, 1, 2, . . . ,

n
2
}.

Assume now that n is an odd integer. If

0 < p − k (mod n) ≤
n − 1

2
,

then the inequality

k − p (mod n) ≡ n − (p − k) (mod n) ≥
n + 1

2
implies that

m(p, k) = p − k (mod n) ≤
n − 1

2
.

On the other hand, if

p − k (mod n) >
n − 1

2
,

then the inequality

k − p (mod n) ≡ n − (p − k) (mod n) <
n + 1

2
suggests that

m(p, k) = k − p (mod n) <
n + 1

2
.

Thus, for all p, k ∈ Zn, we have

m(p, k) ∈ {0, 1, 2, . . . ,
n − 1

2
}.

This leads to the result. □

Definition 2. Let p, k ∈ N. Define

S p,k =


n − 1, if M(p, k) ≡ (p − k) mod n,
n − 2, if M(p, k) ≡ (k − p) mod n,

0, otherwise

and

sp,k =


1, if m(p, k) ≡ (p − k) mod n,
2, if m(p, k) ≡ (k − p) mod n,
0, otherwise.
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The natural numbers defined in Definition 2 are used to denote whether the value of M(p, k) (or
m(p, k)) is calculated based on the difference p − k or k − p. Therefore, S p,k (or sp,k) is referred to as
the location indicator according to the function M (or m) for p and k.

As discussed in Theorems 1 and 2, the values that M (or m) does not take will be added as a
third coordinate within the encryption process in the algorithm, a procedure referred to as random
assignment.

The random assignments and location indicators for some specific values (n, r) of the functions M
and m are provided in Table 1, where Column 1 gives the specific value for nr, Columns 2 and 3 provide
possible randomly assigned elements and their location indicators for the function M, respectively, and
Columns 4 and 5 supply possible randomly assigned elements and their location indicators for the
function m, respectively.

Table 1. Some examples of random assignments and location indicators.

Ran. Loc. Ran. Loc.

nr Assg. Indic Assg. Indic.

Elts. (M) (M) Elts. (m) (m)

33 None 0,1,2 None 0,1,2
34 None 0,1,2 None 0,1,2
43 1 0,2,3 3 0,1,2
62 1,2 0,4,5 4,5 0,1,2
72 1,2,3 0,6,5 4,5,6 0,1,2
82 1,2,3 0,6,7 5,6,7 0,1,2
92 1,2,3,4 0,7,8 5,6,7,8 0,1,2

102 1,2,3,4 0,8,9 6,7,8,9 0,1,2

The set of all n × m matrices with entries from non-negative integers will be denoted by Matn×m. The
maximum and minimum operators used in the encryption algorithms are defined as follows.

Definition 3. Let P = [pi j],K = [ki j] ∈ Matn×m, M(pi j, ki j) = Mi j, and m(pi j, ki j) = mi j. The maximum
operator is defined as

C : Matn×m × Matn×m → Matn×m,

where
C(P,K) = [Mi jS pi j,ki j],

and the minimum operator is defined as

D : Matn×m × Matn×m → Matn×m,

where
D(P,K) = [mi jspi j,ki j].
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In Definition 3, Mi jS pi j,ki j (or mi jspi j,ki j) denotes a vector of length two, where the first component
comes from the maximum (or minimum) function, and the second comes from the location indicator.

Let S 3r denote the set of all possible permutations defined on the set {1, 2, . . . , 3r}, and
π = (u1)(u2) · · · (uℓ) ∈ S 3r, where ui represents a cycle of length ki (

∑
ki = 3r, i ∈ {1, 2, · · · , ℓ}). We

define the matrix form of the permutation π, denoted by [π], as follows:

i) If for some i, ki = 1, there will be no row in the matrix [π] corresponding to the cycle ui.

ii) If ki > 1, each digit in the cycle ui = (x1
i x2

i , . . . , x
ki
i ) is written as a row in a ki × 3 matrix [πui], with

the digits corresponding to the elements of the alphabet. If i < ℓ, the first digit of the cycle ui is
written as the ki + 1-th row at the end of this block matrix.

iii) The matrix [π] is obtained as 
[πu1]
[πu2]
...

[πuℓ]

 .
4. An advanced encryption system based on soft sets

This section will introduce a new encryption system for transmitting any text using soft sets,
appropriate alphabets, and compatible Zn residue classes, in the context of contemporary technology.
In this encryption system, a key component, derived from soft sets, will not be predetermined by the
parties but will be transferred through a secure channel (as an encrypted text) within an encryption
system.

Throughout this section, let P, S, andK be a finite set of possible plaintexts, a finite set of possible
ciphertexts, and a finite set of possible keys, respectively. Encryption and decryption rules will be
defined as

eK : P → S, and dK : S → P

such that
dK(eK(x)) = x

for each x ∈ P.
In the proposed encryption system, the goal is that, in the absence of a previously agreed common

key, both parties independently define soft sets of keys in matrix form and a permutation to be created
by the receiver for encryption and decryption purposes.

The key used in the encryption system can be shared between the sender and the receiver using
any encryption method. Specifically, this sharing process can be described using a Key Exchange
Algorithm, outlined in the steps below. More precisely, after the sender transmits their key in a soft
matrix form, the receiver, using this key, creates their own compatible key and a permutation, performs
encryption, and sends the result back to the sender. Consequently, the sender obtains the receiver’s key
and the permutation. The core principle here is that both parties independently determine their own
keys and that different keys can be used for each encryption.

Definition 4 (Key Exchange Algorithm (KEA)). The Key Exchange Algorithm (KEA) based on soft
sets is defined as follows:
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Let P = Zr
2,S = Z

r
n and let

K = {FE : FE ∈ S S (U, E)}.

For K = FE, define
eK(x) = CR,π

and
dK(y) =

(
C−1

x (β),C−1
K (γ)

)
where β is a q × r type matrix representing the first q · r coordinates of y, γ is the remaining part of
the matrix [y], and C−1

x (β) is the matrix determined such that its image under the maximum operator
C, with respect to x, is the matrix β (C−1

K (γ) can be determined similarly).

Details of the KEA:

Step 1: The receiver and sender determine the values of n and r in accordance with a mutually agreed
alphabet.

Step 2: The sender selects a q-element universe set and an r-element parameter set to define the soft
set AE. Subsequently, the sender transmits the matrix [AE], which is a q × r matrix, to the
receiver by writing out the alphabetic counterparts of the rows of this matrix sequentially.

Step 3: The receiver converts the received text into the matrix [AE] using the alphabet. The receiver
then selects their own soft set BE, ensuring it is of the same dimension, and constructs the soft
matrix [BE] as the key.

Step 4: The receiver computes the matrix

[C] = C ([AE] , [BE])

which is the image of the matrix of the sender’s soft set under the maximum operator with the
matrix of the receiver’s key.

Step 5: To perform random assignment using the values not taken by the operator and elements from
the selected class Zn, the following procedure is applied: For each coordinate (i, j) in the q × r
matrix [C], the third coordinate is assigned as follows:

i) If i + j = 0 (mod 2), assign one of the values not taken by the operator as the third
coordinate.

ii) If i + j = 1 (mod 2), assign one of the elements not used in the encryption process from
the class Zn as the third coordinate.

Thus, the matrix [CR] of type q × r is obtained, where each entry is a 3-dimensional vector.

Step 6: The receiver arbitrarily chooses a permutation π ∈ S 3r and determines the matrix [π]. Applying
the procedures of steps 4 and 5 with their own key, the receiver computes the matrix [Cπ].

Step 7: The receiver forms the matrix

CR,π =

[
[CR]
[Cπ]

]
.
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Step 8: By determining the alphabetic counterparts of each entry in the matrix CR,π, the receiver
generates the encrypted text, where the first q · r characters represent the receiver’s key and
the remaining characters represent the permutation.

Step 9: The receiver sends the encrypted message y back to the sender. The initial q.r coordinates of y
are referred to as β, while the remaining portion of y is denoted by γ.

Step 10: The sender retrieves the matrix [CR] by finding the alphabetic counterparts of the first q · r
characters of the encrypted text and removes the random assignments. Using the properties
of the maximum operator, placeholder information, and their own key, the sender derives the
matrix form of the receiver’s key K, which is C−1

x (β).

Step 11: Given that the sender now possesses the receiver’s key, they apply the procedures from step 10
to the remaining part of the encrypted matrix [y] to determine the matrix [Cπ], which is C−1

K (γ),
and subsequently find the permutation π. Thus, the sender obtains the receiver’s specified key
and permutation.

Since the sender now knows the receiver’s key and permutation, they will use these to encrypt the
message according to the steps outlined in the Main Algorithm:

Definition 5 (Main Algorithm). An advanced encryption system based on soft sets is defined as
follows:

Let P = S = Zr
n, and let

K = {(FE, π) : FE ∈ S S (U, E), π ∈ S 3r}.

For K = (FE, π), define
eK(x) = [CR]π

and
dK(y) = C−1(α), where α =

[([
y
]π−1)

R−1

]
.

Details of the Main Algorithm:

Step 1: The sender converts the original message x into matrix form [x] using the alphabet.

Step 2: The sender calculates the matrix
[C] = C ([x] , [AE])

which is the image of the message matrix under the maximum operator with the receiver’s key
matrix.

Step 3: To perform random assignment using the values not taken by the operator and elements from
the selected class Zn, the following procedure is applied: For each coordinate (i, j) in the q × r
matrix [C], the third coordinate is assigned as follows:

i) If i + j = 0 (mod 2), assign one of the values not taken by the operator as the third
coordinate.

ii) If i+ j = 1 (mod 2), assign one of the elements from Zn that was not used in the encryption
process as the third coordinate.
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Thus, the matrix [CR] of type q × r is obtained, where each entry is a 3-dimensional vector.

Step 4: The sender then applies the π permutation obtained from the receiver to each row of the matrix
[CR] to get the matrix [CR]π.

Step 5: By writing the alphabetic counterparts of each entry in the resulting matrix, the sender obtains
the encrypted form of the message they wish to transmit.

Step 6: The sender sends the encrypted message to the receiver.

Step 7: Upon receiving the message y, the receiver constructs the matrix [y] using the alphabet and
applies the inverse permutation π−1 to each row of the matrix [y], resulting in the matrix

[
y
]π−1

.

Step 8: By removing the third coordinates, which were assigned randomly, from each entry of the
matrix

[
y
]π−1

, the matrix α =
[([

y
]π−1)

R−1

]
is derived.

Step 9: Finally, the matrix [x] is determined such that its image under the maximum operator C is
the matrix α. The original message x is then obtained by converting each row of [x] into its
corresponding alphabetic representation.

Remark 1. Although the number of columns in the matrix form of the message to be encrypted must
match the number of columns in the key matrices, the number of rows may be greater. In such cases,
during encryption and decryption, copies of the key matrices are added to ensure that they are of the
same dimension as the matrix form of the message. Conversely, if the number of rows in the matrix
form of the message is less than that of the key matrices, the encryption and decryption processes utilize
as many rows of the key matrices as there are rows in the matrix form of the message.

Remark 2. Alternative algorithms can be developed by substituting the maximum operator used in the
algorithms aforementioned with the minimum operator.

The new soft set-based encryption system defined above is illustrated in Figure 2.

Figure 2. Newly developed encryption system based on soft sets.

Example 1. Alice wishes to send a message to Bob using the alphabet provided in the Appendix.
To create the soft sets, Alice defines the universe as U = {k1, k2, k3, k4} and the parameter set as
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E = {e1, e2, e3}. Alice chooses the soft set AE = {e1 = {k1, k2, k3}, e2 = {k1, k3}, e3 = {k1, k4}} as the key
and constructs the soft matrix as follows:

AE =


1 1 1
1 0 0
1 1 0
0 0 1

 .
After finding the alphabetic counterparts of each entry in this matrix, she sends the message İFI1
to Bob. Bob chooses the soft set FE = {e1 = {k2, k4}, e2 = {k1, k2, k3}, e3 = {k1, k3}} as his key, and
constructs the soft matrix

FE =


0 1 1
1 1 0
0 1 1
1 0 0

 .
Using both keys and the maximum operator, he applies steps 4 and 5 of the Key Exchange Algorithm
to obtain the matrices

C([AE] , [FE]) =


32 00 00
00 33 00
32 00 33
33 00 32

 , CR([AE] , [FE]) =


321 000 001
003 331 002
321 000 331
332 001 320

 .
Bob chooses a permutation π = (13567)(2489) and obtains the matrix [π] as follows:

[π] =



0 0 1
0 0 3
0 1 1
0 1 2
0 1 3
0 0 1
0 0 2
0 1 0
0 2 0
0 2 1



, [Cπ] =



001 333 001
332 331 333
001 002 001
333 321 202
001 002 201
332 331 323
001 333 321
332 321 002
001 322 331
333 321 322



, CR,π([AE] , [FE]) =



321 000 001
003 331 002
321 000 331
332 001 320
001 333 001
332 331 333
001 002 001
333 321 202
001 002 201
332 331 323
001 333 321
332 321 002
001 322 331
333 321 322



.

Bob then finds the alphabetic counterparts of each entry in the resulting matrix and obtains the
encrypted message

Ξ013Φ2Ξ0ΦΨ1Λ1Ω1ΨΦΩ121ΩΞU12TΨΦΣ1ΛΞΨΞ21ΠΦΩΞΠ.

He sends this encrypted message to Alice. Alice, by applying steps 10 and 11 of KEA to the received
encrypted message, retrieves Bob’s key as a pair of a soft set and a permutation π.

AIMS Mathematics Volume 9, Issue 11, 32232–32256.



32247

Alice wishes to send the message “life is good” to Bob. By applying step 1 of the Main Algorithm
to convert the message into matrix form using the alphabet, she obtains

P =



1 2 0
1 1 1
1 0 0
0 3 3
1 1 1
1 3 3
1 0 1
1 2 3
1 2 3
0 3 2



, CR(P, FE) =



321 323 331
002 001 320
321 332 331
330 331 330
321 000 001
003 201 330
321 330 001
002 201 332
321 322 201
320 201 203



, Cπ
R(P, FE) =



132 333 312
200 213 000
133 323 312
033 313 303
100 000 312
320 313 000
133 000 312
220 313 020
132 022 312
020 012 332



.

The final matrix is converted into the encrypted message

RΩ∆ŞQ0KΨ∆EΘO′F0∆ΛΘ0S 0∆XΘ8RA∆86Ψ,

which Alice sends to Bob.

Example 2. This example addresses a secure and strategic communication process between two
investment companies. Company A, which provides investment consulting services, conducts market
analyses to identify the most suitable investment opportunities and presents these opportunities to
Company B, which offers portfolio management services. These proposals are categorized based on
specific risk levels. Company B analyzes the offers received from Company A to determine and make
investment strategies. Encrypting investment proposals is preferred to ensure the security of these
recommendations. This process protects the confidentiality of investment strategies, preventing rival
firms from acquiring this information and shaping their strategies accordingly. Thus, it helps
Company A gain a competitive advantage in the market. Additionally, encryption enhances the
security for both parties by preventing third parties from tracking and manipulating the information.

The following universal set (U) represents the investment options. Each element expresses the
investment instruments evaluated by Company A.

U = {k1 = Stock S 1, k2 = Stock S 2, k3 = Stock S 3, k4 = Bond B1, k5 = Bond B2, k6 = Fund F1,

k7 = Fund F2, k8 = Fund F3, k9 = Currency Euro, k10 = Currency Dollar, k11 = Gold}.

The following parameter set (E) categorizes the risk levels of the investment instruments. This
classification facilitates investors in making choices according to their risk tolerance.

E = {e1 = Low-risk investment, e2 = Medium-risk investment, e3 = High-risk investment}.

Accordingly, Company A offers Company B three different investment proposals categorized as low,
medium, and high risk, enabling investors to diversify their portfolios.

Company A determines the investment recommendations based on the following dataset, which
presents the key characteristics of each investment instrument and the market conditions. Thus, the
investment recommendations are supported by more concrete data.
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Table 2. Some categorized investment instruments and their metrics.

Inv.
Inst.

Exp.
Ret.
(%)

Mat.
Per.

(Yrs)

Inv.
Amt.

(USD)

Mkt.
Val.

(USD)

Int.
Rate
(%)

Mng.
Fee
(%)

Vol.
(%)

Mkt.
Trend

Risk
Score

Liqu.
Ratio

Stocks
S 1 8 5 50k 1M - - 18 Inc. 6 High
S 2 7 3 45k 800k - - 15 Stbl. 5 Med.
S 3 9 4 30k 600k - - 12 Inc. 6 High

Bonds
B1 4 10 100k 500k 3 - 2 Dec. 3 Low
B2 5 7 95k 300k 4 - 2.5 Dec. 3 Low

Funds
F1 10 2 20k 200k - 1.2 9 Inc. 6 Med.
F2 8 3 30k 150k - 1.5 8 Stbl. 5 Med.
F3 9 2 25k 175k - 1.1 7 Inc. 6 High

Curren.
Euro 3 1 10k 50k - - 5 Dec. 4 High
Dollar 2 1 5k 20k - - 4 Dec. 4 High

Commod. Gold 6 1 15k 80k - - 6 Inc. 5 Med.

Company A intends to convey the message, “As investment recommendations, we are considering
a high-risk investment for Fund F1, medium-risk investments for Stock S 1, Fund F3, and gold, and
low-risk investments for Stock S 2, Bond B1, and Currency Euro.” to Company B.

This message allows Company A to express its investment recommendations clearly. The intended
message can be encrypted according to the proposed encryption system as plain text. However, since
this message can also be represented in soft set form, it would be more efficient to transmit it in soft
matrix format. The soft set representation of the message is constructed as follows:

PE = {e1 = {k2, k4, k9}, e2 = {k1, k8, k11}, e3 = {k6}}.

Company A learns the key and permutation in the soft set format that Company B intends to use,
utilizing the Key Exchange Algorithm (KEA) as provided below.

KB
E = {e1 = {k1, k3, k11}, e2 = {k3, k7, k9}, e3 = {k2, k9}}, π = (186)(2734)(59).

Subsequently, Company A encrypts the PE soft set, which indicates the investment proposal, using the
main algorithm along with the algebraic structure and alphabet in Example 1 as follows:

PE =



0 1 0
1 0 0
0 0 0
1 0 0
0 0 0
0 0 1
0 0 0
0 1 0
1 0 0
0 0 0
0 1 0



, CR(PE,KB
E) =



331 320 001
322 001 330
331 332 001
320 001 002
001 003 001
000 001 322
001 332 001
002 321 003
321 330 331
000 001 002
331 320 001



, Cπ
R(P, FE) =



003 313 102
330 203 210
003 313 123
000 223 010
000 010 130
230 020 010
003 010 123
003 030 212
333 213 103
000 020 010
003 313 102



.
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The final matrix is converted into the encrypted message

3ΘĞΥÜ V3ΘO0Å404ÖÑ8434O3CZΩQH0843ΘĞ.

After receiving the encrypted message, Company B performs decryption to learn about the
investment proposals.

5. Comparison of the new cryptosystem with others

The proposed encryption system employs a mathematical framework based on soft sets and matrix
operations, offering a complex key structure that includes both permutations and random elements
within a matrix. The keys are constructed using soft set matrices and operators like the maximum or
minimum functions, which apply to elements of Zn. The encryption process in this system is highly
flexible and involves matrix transformations, yielding a vast key space of 2qr(3r)!, making it resistant
to brute force attacks and adding multiple layers of security through randomness and key variability.
The encryption and decryption operations use this key space in combination with matrix operators to
provide highly secure communication. Due to the enormous size of the key space and its flexibility,
this system is much harder to crack compared to some of the encryption methods discussed in the rest
of this section.

5.1. Comparison with the known soft set-based encryption systems

In the encryption system proposed by Aygün [36], the soft set used as a key is not encrypted,
which means that anyone who knows the soft set can access the main message. Additionally, when the
number of letters in the message is not a multiple of five, the letter ‘A’ is appended to the end of the
message to make its length a multiple of five. This approach creates ambiguity during decryption, as it
becomes unclear whether an ‘A’ character encountered in the decrypted text corresponds to an actual
letter in the original message or was added as an extra character to achieve the multiple of five. Another
issue arises when both the defined inverse multiplication and characteristic multiplication are applied
simultaneously to the message (Theorem 4.1(i3), [36]), resulting in the complement of the message
being obtained as the encrypted text.

In examining the algorithm and examples provided by Paik and Mondal [38], it is evident that the
system operates for texts that can be expressed as soft sets. However, there are no details on how a
general text to be sent can be expressed as a soft set. Therefore, this method will work if a text to be
sent can indeed be expressed as a soft set, that is, if it can be written in the format of parameterized
subsets. On the other hand, the system we propose allows for the encryption of any general text in any
form. The number of elements in the key space of this system is given as

Theorem 3. [38] Let the number of elements in the universe set (U) and the parameter set (E) be q
and r, respectively. The number of soft sets that can be written with respect to P on E is 2qr.

On the other hand, the number of elements in the key space of the encryption systems we propose
is given as:

Theorem 4. Let the number of elements in the universe set (U) and the parameter set (E) be q and r,
respectively. The number of elements in the key space of the proposed encryption system is 2qr(3r)!.
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Proof. Since |S 3r| = (3r)!, by Theorem 3, the result follows. □

Paik and Mondal [38] evaluated their system against other soft set-based encryption methods,
proving its greater resilience. Theorem 4 establishes that the key space of the encryption system
proposed in this study exceeds that of the one in [38], suggesting that the system introduced here
offers enhanced security.

The features of some soft set-based encryption systems known in the literature (including the one
presented in this study) are summarized in Table 3, where columns represent some of the known soft
set-based encryption systems, Row 1 states the alphabet size, Rows 2 and 3 give the type of text and key
used, respectively, Row 4 shows the length of the vector corresponding to the letters of the alphabet,
and the last row provides the mathematical tools used.

Table 3. Comparison of some soft set-based encryption systems.

Aygün [36] Aygün [37] Paik and Mondal [38] The advance system
Alph. size 32 32 - nr, n > 3
Text type Plain text Plain text Soft set No restriction
Key type Soft set Soft set Soft set Soft set & permutation
Vector lenght 5 5 - r

Mathematical tools
Invers &

Char. prod.
Inv. & Char. prod.

& perm.
Symmetric
differ. op.

Max. op., Min. op.
& Perm.

5.2. Comparison with classical encryption systems

Paik and Mondal [38] compared their proposed system with several classical encryption systems in
the literature (such as shift, substitution, affine, Vigenere), showing that their system is more robust.
Theorem 4 demonstrates that the number of elements in the key space of the proposed encryption
system is greater than that of the key space of the one given in [38], indicating that the encryption
method proposed in this study is more secure for the particular values of the pair (q, r) discussed
in [38]. Below, we provide details of these comparisons for the particular pairs (q, r) shown in Table 1.

We will start by considering the Shift Cipher, a symmetric encryption method where each character
in the plaintext is shifted by a constant value k (mod nr) based on a predefined key k. The size of
the key space in this system is nr, where nr represents the number of characters in the alphabet. The
proposed encryption system, due to its complex structure and larger key space, provides a higher level
of security and reliability than the Shift Cipher, without any restrictions on q.

The Substitution Cipher is an older and simpler encryption system where each character in the
message (plaintext) is substituted with another character from the alphabet based on a predetermined
permutation. The encryption function eπ(x) maps each plain-text symbol x to a cipher symbol using a
permutation π, while the decryption function dπ(y) reverses this process using the inverse permutation
π−1. The key space for the Substitution Cipher consists of all possible permutations of the alphabet,
which results in (nr)! possible keys. Although this number grows quickly and renders exhaustive
key search impractical, the Substitution Cipher is vulnerable to cryptanalysis through other methods,
making it less secure despite the large key space. Even though the key space in the Substitution Cipher
is large, it is still smaller compared to the proposed system’s key space when q exceeds a certain
threshold. Table 4 shows specific values of q for which the proposed system is more secure than the
Substitution Cipher.
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Table 4. Values of q for which the proposed system outperforms Substitution Cipher.

33 34 43 62 72 82 92 102

q > 24 > 93 > 92 > 64 > 99 > 143 > 195 > 257

The Affine Cipher operates over a message and ciphertext space P = C = Znr with a key space
defined as K = {(a, b) ∈ Znr × Znr : gcd(a, nr) = 1}. Affine Cipher’s security depends on the key
pair (a, b) and uses modular arithmetic, making it relatively straightforward but vulnerable to certain
cryptanalysis methods, such as frequency analysis and attacks that exploit the linear nature of the
transformation. Table 5 indicates the values of q for which the proposed system is more secure than
the Affine Cipher, where a “−” implies that no restrictions on q are needed for the specific alphabet
size. For most combinations of n and r, Table 5 shows that the proposed system is inherently more
secure without any specific restrictions on q.

Table 5. Values of q for which the proposed system outperforms Affine Cipher

33 34 43 62 72 82 92 102

nrϕ(nr) 486 4374 2048 432 2058 2048 4374 4000
q - - - - - - > 1 > 1

The Vigenére Cipher is a classical poly-alphabetic cipher that operates over a message space P =
Zm

nr , where m is a positive integer representing the length of the keyword. The key space is also K = Zm
nr ,

where each key k = (k1, k2, · · · , km) is a sequence of shifts applied to the message characters. The size
of the key space is (nr)m, which becomes large as m, n, and r increase. Table 6 presents values of
q for which the proposed system outperforms Vigenére Cipher in terms of security. Given that the
number of characters in alphabets around the world is generally limited, Table 6 demonstrates that in
the majority of cases, no constraints on q are necessary for the proposed system to offer greater security
and reliability than the Vigenère Cipher.

Table 6. Values of q for which the proposed system outperforms Vigenére Cipher.

m
nr

33 34 43 62 72 82 92 102

1 - - - - - - - -
2 - - - - - > 1 > 1 > 1
3 - - - > 2 > 3 > 4 > 4 > 5
4 - - > 1 > 5 > 6 > 7 > 7 > 8
5 > 1 - > 3 > 8 > 9 > 10 > 11 > 11

Due to the simplicity of the computations in many of the previously mentioned classical encryption
systems, they tend to operate faster than the proposed system. However, as previously discussed, this
increase in speed often comes at the expense of security. In many cases, these systems are vulnerable
to various cryptanalytic attacks, making them less secure compared to the proposed system. The
proposed system, while potentially slower in execution, offers enhanced security features, particularly
for specific types of data, such as soft set-related data, which are less efficiently handled by traditional
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encryption methods. Thus, the trade-off between speed and security becomes crucial, with the proposed
system providing a stronger defense in scenarios where security is paramount.

The Data Encryption Standard (DES) is a 16-round Feistel cipher that operates on 64-bit plaintext
blocks. It encrypts a 64-bit input string, x, using a 56-bit key, K, to produce a 64-bit ciphertext.
Before the 16 rounds of encryption, an initial permutation, π, is applied to the plaintext. After the 16
rounds, the inverse permutation, π−1, is applied to the intermediate result to generate the final
ciphertext, y. The security of DES has been called into question mainly due to the relatively small size
of its key space, 256. While this was considered secure in the 1970s, advancements in computing have
made exhaustive key searches feasible, raising concerns. Furthermore, cryptanalytic techniques like
differential cryptanalysis and linear cryptanalysis can be used to break DES more efficiently than
brute force. For example, in 1994, Matsui [40] successfully implemented a linear cryptanalysis attack
using 243 plaintext/ciphertext pairs, though the practical application of this attack is limited due to the
large number of pairs required. The proposed system offers better security compared to DES,
particularly when taking into account the alphabet sizes shown in Table 1 (for the pair (n, r) = (3, 4)
we require q > 6, for (3, 3) and (4, 3), q > 12, and for all other pairs, q > 23). The large key space and
complex encryption process of the system make it impervious to brute force and known cryptanalytic
techniques, while DES’s relatively small key space and vulnerability to linear cryptanalysis render it
outdated by modern security standards.

For more details on the classical encryption systems, we refer to [41].

6. Conclusions and future work

This study provides an in-depth explanation of an advanced encryption system based on soft sets.
The new system possesses the following properties:

i) No constraints on the key to be used and/or the text to be encrypted.

ii) Enhanced system reliability through random assignments utilizing the properties of newly defined
operators.

iii) The ability to use a specific key for each step/block of the encryption process, as well as the use
of different keys (within the framework of certain rules) at each step.

iv) Given the large size of the key space, the difficulty of predicting the key used in this system is
currently the highest among existing systems of this type.

v) The use of a permutation from S 3r, with the ability to change this permutation at each step (i.e., the
creation of a permutation schedule alongside the key schedule within a specific rule framework),
makes the system exceptionally difficult to break.

This new system highlights the importance of such systems for the following reasons: (1) the
number of such systems is limited (see Section 2), (2) the extensive range of applications for soft sets
(see Section 1), and (3) the critical importance of information/data security in this era.

This system works for any positive integers n(> 3) and r, demonstrating that it can be applied to
encrypt texts based on any alphabet (or group of alphabets). This observation shows that the number
of characters in the language used is not a significant factor for such a system. Furthermore, the system
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shows that numeric data of any size (by dividing into blocks) can also be easily encrypted outside of
specific alphabet-based texts.

The key space of the proposed system is 2qr(3r)!, and it is evident that it offers significant security
advantages compared to other known such systems. It has been demonstrated that the system proposed
by Paik and Mondal [38] is stronger than many classical encryption systems. The fact that the key size
in the system proposed here is larger than that in the system described in [38] further supports that this
proposed system is more robust than the classical encryption systems discussed.

Although the scenario where the key used has not been previously determined between parties is
considered, according to Kerckhoffs’ principle, if the soft set of the initiating party is known, the
system can be easily broken. Therefore, additional protocols for protecting the relevant soft set will be
required, and determining what these protocols should entail may be a topic for future research. Is it
possible to establish a mathematical theory connecting the soft sets AE, BE, (or the permutation π) in
such a way that knowing one of the soft sets does not easily lead to determining the other? That is, can
we build an asymmetric soft set-based cryptosystem?
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Appendices

A sample alphabet

When examining the languages used in the world, it is observed that the average number of
elements in an alphabet is approximately 36. A sample alphabet can be constructed as shown in
Table 7, where Column 1 provides the letter’s number (corresponding to vector’s value in the decimal
system), Column 2 gives the letter, Column 3 shows the vector correspondence of the letter, and the
last column shows the origin of the alphabet.
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Table 7. A sample alphabet for (n, r) = (4, 3).

# Letter Vector Origin # Letter Vector Origin

0 0 000 32 Ş ş 200 Turkish
1 1 001 33 T t 201 Latin
2 2 002 34 U u 202 Latin
3 3 003 35 Ü ü 203 Turkish
4 4 010 36 V v 210 Latin
5 5 011 37 Y y 211 Latin
6 6 012 38 Z z 212 Latin
7 7 013 39 Q q 213 English
8 8 020 40 X x 220 English
9 9 021 41 W w 221 English

10 A a 022 Latin 42 Ä ä 222 Swedish
11 B b 023 Latin 43 Åå 223 Swedish
12 C c 030 Latin 44 Ñ ñ 230 Spanish
13 Ç ç 031 Turkish 45 fl fl 231 German
14 D d 032 Latin 46 Ă ă 232 Vietnam
15 E e 033 Latin 47 Â â 233 Vietnamese
16 F f 100 Latin 48 D d 300 Vietnamese
17 G g 101 Latin 49 Ê ê 301 Vietnamese
18 Ğ ğ 102 Turkish 50 Ô ô 302 Vietnamese
19 H h 103 Latin 51 O’ o’ 303 Vietnamese
20 I ı 110 Latin 52 U’ u’ 310 Vietnamese
21 İ i 111 Latin 53 Γ γ 311 Greek
22 J j 112 Latin 54 ∆ δ 312 Greek
23 K k 113 Latin 55 Θ θ 313 Greek
24 L l 120 Latin 56 Λ λ 320 Greek
25 M m 121 Latin 57 Ξ ξ 321 Greek
26 N n 122 Latin 58 Π π 322 Greek
27 O o 123 Latin 59 Σ σ 323 Greek
28 Ö ö 130 Turkish 60 Υ υ 330 Greek
29 P p 131 Latin 61 Φ ϕ 331 Greek
30 R r 132 Latin 62 Ψ ψ 332 Greek
31 S s 133 Latin 63 Ω ω 333 Greek
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