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Abstract: The stress-strength index measures the likelihood that a system’s strength exceeds its
stress. This study focuses on deducting the stress-strength index, denoted as R = P(Y < X),
where the strength (X) and stress (Y) are independent random variables following new extended
xgamma distributions. Inferences are made based on progressively first-failure censored samples. Both
maximum likelihood and Bayesian estimation approaches, including point and interval estimations,
are considered. The estimations take into account the model parameters as well as the reliability
index. The Bayes estimates are obtained using the Markov chain Monte Carlo sampling procedure
with the squared error loss function. Additionally, the approximate confidence intervals and Bayes
credible intervals are developed. A simulation experiment is conducted to assess the different estimates
presented in this paper. Precision metrics such as root mean square error, mean relative absolute bias,
and interval length are used to evaluate the efficiency of various point and interval estimates. Two
insulating fluid data sets are analyzed to demonstrate the relevance and applicability of the proposed
estimation methods.
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1. Introduction

The stress-strength reliability model is a widely used probabilistic indicator that demonstrates the
effectiveness of a system. By employing this model, it is possible to calculate the probability of
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failure for components. This model is crucial in various real-world domains such as engineering,
business, medicine, and quality assurance. The likelihood that the random strength X of a component
will be greater than the random stress Y is measured by the stress-strength index R = P(Y < X),
see Kotz et al. [1]. Comparing the lifetimes of the two devices, denoted by X and Y , is another
significant use of the stress-strength reliability model. Many writers have extensively discussed
the inference issues related to the stress-strength index R. For example, one can refer to Kundu
and Gupta [2] and Krishnamoorthy et al. [3]. They used the complete sample data to study the
stress-strength index R from generalized exponential and two-parameter exponential distributions,
respectively. Recent research has concentrated on assessing the stress-strength index R using different
censored samples and employing both classical and Bayesian estimation methods. This shift in focus
is due to the impracticality of utilizing complete data for this purpose, especially when the tested
components are reliable. In this regard, Asgharzadeh et al. [4] studied the stress-strength model of
Weibull progressively censored data. Yadav et al. [5] considered the stress-strength model of inverse
Weibull progressively censored samples. Bai et al. [6] investigated some estimations of the stress-
strength model based on finite mixture distributions in the case of progressive interval censoring.
Ghanbari et al. [7] studied the stress–strength reliability for Marshall–Olkin distributions using
progressive Type-II censoring. Nassar et al. [8] considered the spacings estimation of the reliability
index for alpha power exponential distribution progressive Type-II censored data. Sultana et al. [9]
assessed the reliability parameter using two-sample balanced progressively censored samples.

Choosing a suitable statistical distribution to characterize the random variables X and Y is essential
for estimating the stress-strength metric R. To accurately compute R, the most suitable statistical
model needs to be carefully selected. For this investigation, we assume that the random variables X
and Y are independent and have a new extended xgamma (EXG) distribution. The EXG distribution
was proposed and studied by Sen et al. [10]. It is also known as the Mirra distribution. The EXG
distribution is a finite mixture of the exponential distribution with scale parameter λ and the gamma
distribution with scale parameter λ and shape parameter equal to 3, with mixing proportions λ2/(β+λ2)
and α/(β+λ2), respectively. Thus, we can say that the random variable X follows the EXG distribution
with parameters λ, β > 0 if its probability density function (PDF) and cumulative distribution
function (CDF) are given by

h(x; λ, β) =
λ3

β + λ2 (1 + 0.5βx2)e−λx, x > 0 (1.1)

and

H(x; λ, β) = 1 −
λ2

β + λ2

[
1 + β

(
1
λ2 +

x
λ
+ 0.5x2

)]
e−λx. (1.2)

By setting λ = β in (1.1), one can acquire the xgamma distribution proposed by Sen et al. [11].
Sen et al. [10] demonstrated that the EXG distribution is an effective model for data exhibiting a
bathtub hazard rate shape as well as increasing and decreasing shapes based on certain ranges of x. For
example, infants experience a high failure rate due to health issues, but this rate decreases as they grow
older. However, in later years, failure rates increase again due to age-related health problems, resulting
in a bathtub-shaped curve. The failure rate of batteries generally increases with age and the number
of charge cycles, leading to an increasing hazard rate shape. Many semiconductor devices suffer early
failures because of defects. However, after this initial period, the remaining devices often operate

AIMS Mathematics Volume 9, Issue 11, 32200–32231.



32202

reliably, resulting in a decrease in failure rates over time. They also showed that the EXG distribution
is superior to some commonly used models, such as the xgamma, gamma, Weibull, log-normal, and
exponentiated exponential distributions, among others. Peres [12] investigated some applications of
the EXG distribution in survival analysis. When X ∼ EXG(λ, β1) and Y ∼ EXG(λ, β2), where X
represents the strength of a component and Y is the applied stress, the reliability index R = P(Y < X)
can be derived as shown by Sen et al. [10] as follows:

R =
4(β1β2 + λ

4) + λ2(β1 + 7β2)
8(β1 + λ2)(β2 + λ2)

. (1.3)

In reliability investigations, the use of censoring plans is common, enabling the experimenter to end
the test earlier before all of the items fail. These procedures result in data referred to as censored data.
Among the different censorship plans accessible in the literature, first-failure censoring is a type of life
test in which the researcher divides the items into distinct groups, each functioning as a cluster of test
items, and subsequently conducts the test for all of the groups together until the first failure in each
of them is detected. The sample items, denoted by N, can be examined with the formula N = k × n,
where n is the number of groups, each one with an identical amount of items k. It is beneficial when
the survival period is extremely long and the testing capabilities are restricted, but test material is
significantly less expensive. The major disadvantage of the first failure censoring is that it prohibits
items from being removed at any moment other than the scheduled ending time. To address this issue,
Wu and Ku [13] developed the so-called progressive first-failure censoring (PFFC) plan. This scheme
can be outlined as follows: Assume that there are n distinct sets, each containing k items, assigned
to a life-testing experiment at time zero. Let r be the preset number of failures and S = (S 1, . . . , S r)
represent the prefixed removal pattern. Then, at the time of the first failure, denoted by X1:r, S 1 sets
are removed from the test, as is the set from which the first failure happened. After detecting the
second failure, with failure time X2:r, S 2 sets, as well as the set that experienced the second failure, are
eliminated from the still-living sets, and so forth. The process proceeds until the r − th failure arises,
with failure time Xr:r, and at this point, all the leftover sets S r = n − r −

∑r−1
i=1 S i are eliminated from

the test. Consider x = (x1, . . . , xr) as the realization of X1:r, . . . , Xr:r. Then, based on a PFFC sample x
with a progressive censoring plan S taken from a continuous population with PDF h(.) and CDF H(.),
one can write the joint likelihood function of the observed sample as given below:

L(θ|x) = Ckr
r∏

i=1

h(xi; θ)[1 − H(xi; θ)]k(1+S i)−1, (1.4)

where θ is the unknown parameters vector and C is a constant. It is important to mention here that by
setting k = 1, the progressive Type-II censoring can be acquired as special case from (1.4). Several
studies explored the inferences of some lifetime models employing the PFFC scheme. For example,
the Gompertz distribution by Soliman et al. [14], Lindley distribution by Dube et al. [15], generalized
inverted exponential distribution by Ahmed [16], generalized Maxwell failure by Saini et al. [17],
Nadarajah–Haghighi distribution by Ashour et al. [18], inverse power Lomax distribution by Shi and
Shi [19], log-logistic distribution by Xie and Gui [20], left-truncated normal distribution by Cai and
Gui [21], alpha power exponential distribution by Nassar et al. [22], and generalized extreme value
distribution by Elshahhat et al. [23].
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The flexible hazard rate function provided by the EXG distribution is desirable in analyzing various
kinds of data, but there has been little interest in estimating the model parameters or functions that
include them, especially for censoring samples. From a practical perspective, as indicated later in
the data analysis section, the results demonstrate that the EXG distribution is suitable for modeling
the time to breakdown of insulating fluid data. Additionally, no previous research has examined
the classical and Bayesian estimation concerns related to the EXG distribution. The only available
study by Sen et al. [10] focused on classical estimation of the EXG distribution using a complete
sample. However, this study does not address Bayesian estimation of the unknown parameters or
the estimation methods for censored samples. Given these reasons, we recommend using the PFFC
samples to estimate the EXG distribution. This choice is motivated by the fact that it can encompass
various conventional censoring plans, such as progressive Type-II and Type-II censorship schemes. It
is important to mention here that the results of classical estimation by Sen et al. [10] can be viewed
as a special case of the current study. Our primary focus is on estimating the unknown parameters,
followed by the stress-strength index R = P(Y < X). We believe that this topic will be helpful to a
wide range of readers, particularly reliability engineers and statisticians. The main objectives of this
study are as follows:

1) Finding the maximum likelihood estimates (MLEs) and approximate confidence intervals (ACIs)
for model parameters λ, β1, and β2. Additionally, we utilize the invariance property to compute
the MLE of the stress-strength index R = P(Y < X). The ACI of R is also calculated using the
delta approach to approximate the variance of the MLE of R.

2) Investigating Bayesian estimations of λ, β1, and β2, as well as R = P(Y < X) using the squared
error (SE) loss function. To address the challenges posed by the joint posterior distribution form,
we calculate Bayes estimates by sampling from the posterior distribution using the Markov chain
Monte Carlo (MCMC) approach. Additionally, we explore the Bayes credible intervals (BCIs)
for different parameters.

3) Comparing the various obtained estimates helps identify which strategy produces adequate
estimates for the EXG distribution. To attain this goal, we conduct simulation research using
several experimental designs and statistical precision requirements.

4) In order to ensure that the results provided are grounded in real-life observations rather than
simulations only, and to enhance the identification and resolution of real-world issues, two sets
of insulating fluid data are investigated. This analysis aims to observe the actual patterns and
applicability of the different estimates.

The article will be arranged as follows. Section 2 investigates the MLEs of λ, β1, β2, and the stress-
strength index R, and the associated ACIs. In Section 3, we use the MCMC procedure to calculate
Bayesian estimates of the various parameters, incorporating the SSE loss function, as well as the BCIs.
Section 4 includes the design and findings of the simulation study. Section 5 evaluates two insulating
fluid data sets. Finally, we conclude the paper in Section 6.

2. Classical inference

For the EXG distribution and based on PFFC samples, the maximum likelihood estimations for the
various parameters, namely λ, β1, β2, and the reliability index R, are investigated in this section. Along
with the point estimations, the interval estimations are also discussed.
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2.1. Point estimation

Let x = (x1, . . . , xr) be an observed PFFC sample of size r out of n groups taken from the EXG(λ, β1)
population with removal plan S = (S 1, . . . , S r). Moreover, let Let y = (y1, . . . , ym) be an observed
PFFC sample of size m out of v groups selected from the EXG(λ, β2) population with removal pattern
R = (R1, . . . ,Rm). Based on the observed data, the joint likelihood function can be formulated as

L(θ|x, y) = C1C2kr
1km

2

 r∏
i=1

h(xi; λ, β1)[1 − H(xi; λ, β1)]k1(1+S i)−1


×

 m∏
i=1

h(yi; λ, β2)[1 − H(yi; λ, β2)]k2(1+Ri)−1

 , (2.1)

where θ = (λ, β1, β2)⊤. Using (1.1), (1.2), and (2.1), the likelihood function, ignoring the constant term,
we have

L(θ|x, y) =
λκ

(β1 + λ2)k1n(β2 + λ2)k2v exp

−λ  r∑
i=1

Q1ixi +

m∑
i=1

Q2iyi


×

r∏
i=1

(1 + 0.5β1x2
i )

[
1 + β1ψi(xi; λ)

]Q1i−1
m∏

i=1

(1 + 0.5β2y2
i )

[
1 + β2ψi(yi; λ)

]Q2i−1 , (2.2)

where κ = r + m + 2(k1n + k2v), Q1i = k1(1 + S i), Q2i = k2(1 + Ri), ψi(xi; λ) = 1
λ2 +

xi
λ
+ 0.5x2

i . The
natural logarithm of (2.2), indicated by L(θ|x, y), can be expressed as

L(θ|x, y) = κ log(λ) − k1n log(β1 + λ
2) − k2m log(β2 + λ

2) − λ

 r∑
i=1

Q1ixi +

m∑
i=1

Q2iyi


+

r∑
i=1

log(1 + 0.5β1x2
i ) +

r∑
i=1

(Q1i − 1) log
[
1 + β1ψi(xi; λ)

]
+

m∑
i=1

log(1 + 0.5β2y2
i ) +

m∑
i=1

(Q2i − 1) log
[
1 + β2ψi(yi; λ)

]
. (2.3)

From (2.3), the maximum likelihood estimates (MLEs) of λ, β1, and β2 can be obtained through
solving the next three normal equations simultaneously:

∂L(θ|x, y)

∂λ
=

κ

λ
−

k1nλ
β1 + λ2 −

k2vλ
β2 + λ2 −

 r∑
i=1

Q1ixi +

m∑
i=1

Q2iyi

 − r∑
i=1

β1(Q1i − 1)ψ1i(xi; λ)
1 + β1ψi(xi; λ)

−

m∑
i=1

β2(Q2i − 1)ψ1i(yi; λ)
1 + β2ψi(yi; λ)

= 0, (2.4)

∂L(θ|x, y)

∂β1
= −

k1n
β1 + λ2 +

r∑
i=1

x2
i

2 + β1x2
i

+

r∑
i=1

(Q1i − 1)ψi(xi; λ)
1 + β1ψi(xi; λ)

= 0 (2.5)
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and

∂L(θ|x, y)

∂β2
= −

k2v
β2 + λ2 +

m∑
i=1

y2
i

2 + β2y2
i

+

m∑
i=1

(Q2i − 1)ψi(yi; λ)
1 + β2ψi(yi; λ)

= 0, (2.6)

where ψ1i(xi; λ) = xi
λ2 +

2
λ3 . Upon initial examination of the normal equations, it is evident that explicit

expressions for the MLEs are not present. Therefore, it is necessary to utilize numerical techniques
in order to obtain the MLEs, indicated by λ̂, β̂1, and β̂2. Once we have calculated the MLEs of the
unknown parameters, we can leverage the invariance property to calculate the MLE of the reliability
index R that we need. This is done in the following manner:

R̂ =
4(β̂1β̂2 + λ̂

4) + λ̂2(β̂1 + 7β̂2)
8(β̂1 + λ̂2)(β̂2 + λ̂2)

.

2.2. Interval estimation

In this part, we first construct the ACIs for the parameters λ, β1, and β2. We then use the same
method to determine the interval bounds for the reliability index R. The ACIs for the parameters λ,
β1, and β2 are determined depending on the asymptotic normality of the MLEs, which indicates that
(λ̂, β̂1, β̂2) ∼ N[(λ, β1, β2), J(θ)], on which J(θ) represents the variance-covariance matrix acquired
through obtaining the inverse of the Fisher information matrix. In our case, computing the exact
expressions of the Fisher information matrix is challenging due to their complexity. As a result, we
overcome this difficulty by estimating the variance-covariance matrix through the inversion of the
observed Fisher information matrix, as illustrated below:

J(θ̂) =


−
∂L2(θ|x,y)

∂λ2 −
∂L2(θ|x,y)

∂λ∂β1
−
∂L2(θ|x,y)

∂λ∂β2

−
∂L2(θ|x,y)

∂β2
1

0

−
∂L2(θ|x,y)

∂β2
2


−1

=


v̂ar(λ̂) ĉov(λ̂, β̂1) ĉov(λ̂, β̂2)

v̂ar(β̂1) 0
v̂ar(β̂2)

 , (2.7)

where all derivatives in (2.7) are evaluated at the MLEs λ̂, β̂1, and β̂2, and

∂L2(θ|x, y)

∂λ2 = −
κ

λ2 −
k1n(β1 − λ

2)
(β1 + λ2)2 −

k2v(β2 − λ
2)

(β2 + λ2)2 +

r∑
i=1

(Q1i − 1)
2β1(3 + λxi)

λ4(1 + β1ψi(xi; λ))

−

r∑
i=1

(Q1i − 1)
[
β1ψ1i(xi; λ)

1 + β1ψi(yi; λ)

]2

+

m∑
i=1

(Q2i − 1)
2β2(3 + λyi)

λ4(1 + β2ψi(xi; λ))

−

m∑
i=1

(Q2i − 1)
[
β2ψ1i(yi; λ)

1 + β2ψi(yi; λ)

]2

,

∂2L(θ|x, y)

∂β2
1

=
k1n

(β1 + λ2)2 −

r∑
i=1

x4
i

(2 + β1x2
i )2
−

r∑
i=1

(Q1i − 1)ψ2
i (xi; λ)

[1 + β1ψi(xi; λ)]2 ,
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∂2L(θ|x, y)

∂β2
2

=
k2v

(β2 + λ2)2 −

m∑
i=1

y4
i

(2 + β2y2
i )2
−

m∑
i=1

(Q2i − 1)ψ2
i (yi; λ)

[1 + β2ψi(yi; λ)]2 ,

∂2L(θ|x, y)

∂λ∂β1
=

k1nλ
(β1 + λ2)2 −

r∑
i=1

(Q1i − 1)ψ1i(xi; λ)
[1 + β1ψi(xi; λ)]2

and

∂2L(θ|x, y)

∂λ∂β2
=

k2vλ
(β2 + λ2)2 −

m∑
i=1

(Q2i − 1)ψ1i(yi; λ)
[1 + β2ψi(yi; λ)]2 ,

According on the asymptotic normality of the MLEs, the 100(1 − α)% ACIs of λ, β1, and β2 can be
computed as (

λ ± zα/2
√

v̂ar(λ̂)
)
,

(
β1 ± zα/2

√
v̂ar(β̂1)

)
and

(
β2 ± zα/2

√
v̂ar(β̂2)

)
,

where zα/2 is the upper (α/2)th percentile point of the standard normal distribution.
In order to calculate the ACI ranges of the reliability index R, we must first determine the variance

of R̂. To do this, we use the estimated variance-covariance matrix in Eq (2.7) and apply the delta
method to approximate the estimated variance of R̂ as

v̂ar(R̂) ≃
[
R̂1, R̂2, R̂3

] 
v̂ar(λ̂) ĉov(λ̂, β̂1) ĉov(λ̂, β̂2)

v̂ar(β̂1) 0
v̂ar(β̂2)



R̂1

R̂2

R̂3


where

R̂1 =
3λ̂(λ̂4 − β̂1β̂2)(β̂1 − β̂2)
4(β̂1 + λ̂2)2(β̂2 + λ̂2)2

, R̂2 = −
3λ̂2

8(β̂1 + λ̂2)2
and R̂3 =

3λ̂2

8(β̂2 + λ̂2)2
.

After obtaining v̂ar(R̂), we can simply compute 100%(1 − α) ACI of the reliability index R as

R̂ ± zα/2

√
v̂ar(R̂).

3. Bayesian inference

In this section, we will use the Bayesian estimation approach to study the Bayes estimates for the
unknown parameters λ, β1, and β2, as well as the reliability index R of the EXG distribution, based
on PFFC data. We provide a simple comparison of the advantages and disadvantages of maximum
likelihood and Bayesian inferential approaches, as follows:

(a) Maximum likelihood estimation
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(i) Advantages:
• It provides the best and most effective parameter estimator when the correct model

assumptions are employed.
• It can provide the user with a consistent and adaptable approach, making it more dependable

than other estimators.
• For large samples, it delivers unbiased results.

(ii) Disadvantages:
• It becomes highly sensitive to the choice of a model’s initial values, creating significant

challenges similar to those faced by other methods.
• The computational cost of numerical estimating may increase due to the complexity of the

normal equations.
• For a small sample size, it generates inaccurate results.

(b) Bayesian estimation

(i) Advantages:
• It provides a clear and principled way to integrate prior knowledge with data.
• It gives conditional and accurate conclusions based on data.
• It follows the principle of probability.
• It gives interpretable results.
• It offers a suitable environment for a variety of models, including hierarchical models and

missing data issues.
• It is highly dependent on MCMC techniques and makes computations tractable for nearly all

parametric models.
(ii) Disadvantages:
• The specification of a suitable prior is very hard.
• It can generate posterior distributions that are significantly influenced by the priors.
• It often requires intensive computations.

3.1. Prior selection and posterior distribution

To begin the Bayesian approach, we need to specify our knowledge of the unknown parameters
λ, β1, and β2 using prior distributions. Since there are no conjugate priors available for the EXG
distribution, we use the gamma distribution to reflect the prior knowledge for the three unknown
parameters. We assume that these parameters are independent, with each following the gamma prior
distribution. This selection can be justified through the following: The gamma distribution is flexible
and can model a wide variety of shapes depending on the value of its shape parameter. It has the same
support as the true unknown parameters λ, β1, and β2. It is commonly used in practice, facilitating
both analytical and numerical Bayesian analysis. The closed-form expressions for both the mean and
variance of the gamma distribution allow for easy determination of hyper-parameter values during
simulations and data analysis. Additionally, the closed form of its variance enables an examination of
how the degree of variation in the prior distribution influences estimation performance. The joint prior
distribution in this case can be expressed as

g(θ) ∝ λτ1−1 βτ2−1
1 βτ3−1

2 e−ω1λ−ω2β1−ω3β2 , λ, β1, β2 > 0, (3.1)
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where τ j, ω j > 0, j = 1, 2, 3 are the hyper-parameters and assumed to be known. Combining the
likelihood function in Eq (2.2) with the joint prior distribution in Eq (3.1), the posterior distribution of
λ, β1, and β2 can possibly be presented as

P(θ|x, y) =
λκ+τ1−1βτ2−1

1 βτ3−1
2

A(β1 + λ2)k1n(β2 + λ2)k2v e−ω2β1−ω3β2 exp

−λ  r∑
i=1

Q1ixi +

m∑
i=1

Q2iyi + ω1


×

r∏
i=1

(1 + 0.5β1x2
i )

[
1 + β1ψi(xi; λ)

]Q1i−1
m∏

i=1

(1 + 0.5β2y2
i )

[
1 + β2ψi(yi; λ)

]Q2i−1 , (3.2)

where A refers to the normalized constant.
The loss function is an important component of Bayesian analysis. There are several loss functions

found in the literature. For this study, we specifically employ the symmetric SE loss function to
calculate the necessary Bayes estimators. In this case, the Bayes estimator is obtained by as the
posterior distribution mean. The Bayes estimator for any parametric function, denoted as ϖ(θ), using
the SE loss function, can be obtained from the posterior distribution in (3.2) as

ϖ̃(θ) =

∫ ∞
0

∫ ∞
0

∫ ∞
0
ϖ(θ)g(ϖ(θ))L(θ|x, y)dλ dβ1 dβ2∫ ∞

0

∫ ∞
0

∫ ∞
0

g(θ)L(θ|x, y)dλ dβ1 dβ2

. (3.3)

Equation (3.3) reveals a challenge in obtaining the Bayes estimator. This challenge arises from the
difficulty of obtaining the ratio of integrals.

3.2. MCMC sampling strategy

To overcome the difficulty of obtaining the Bayes estimator in (3.3), we propose utilizing the
technique of MCMC. The purpose of MCMC is to simulate samples from the posterior distribution,
which can then be used to compute the necessary Bayes estimates and BCIs. To apply the MCMC
technique, we follow the next two steps:

1) Determine the full conditional distributions of the various unknown parameters. The conditional
distributions of the parameters λ, β1, and β2 can be obtained by retaining only the terms that
depend on the specific parameter of interest. From (3.2), we have

P(λ|β1, β2, x, y) ∝
λκ+τ1−1

(β1 + λ2)k1n(β2 + λ2)k2v exp

−λ  r∑
i=1

Q1ixi +

m∑
i=1

Q2iyi + ω1


×

r∏
i=1

[
1 + β1ψi(xi; λ)

]Q1i−1
m∏

i=1

[
1 + β2ψi(yi; λ)

]Q2i−1 (3.4)

P(β1|λ, β2, x, y) ∝
βτ2−1

1 e−ω2β1

(β1 + λ2)k1n

r∏
i=1

(1 + 0.5β1x2
i )

[
1 + β1ψi(xi; λ)

]Q1i−1 (3.5)

and

P(β2|λ, β1, x, y) ∝
βτ3−1

2 e−ω3β2

(β2 + λ2)k2v

m∏
i=1

(1 + 0.5β2y2
i )

[
1 + β2ψi(yi; λ)

]Q2i−1 (3.6)
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2) Determine if the conditional distributions can be simplified to any known distributions. This is
an important step in deciding which algorithm to use for generating the samples. The conditional
distributions in (3.4)–(3.6) are unidentified and cannot be represented by any established
distributions.

By simulating a random sample from the proposed censored strategy using (β1, β2, λ) =
(0.2, 0.5, 0.8), when k1 = k2 = 2, n = v = 100, r = m = 50, and S = R (uniform progressive
design), Figure 1 indicates that the proposed conditional distribution of λ, β1, or β2 behaves similar to
a normal distribution. Therefore, we employ the Metropolis-Hastings (MH) procedure with a normal
proposal distribution to obtain samples from these distributions.
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Figure 1. Plots of conditional distributions of λ (left), β1 (center), and β2 (right).

The following steps illustrate how the MH algorithm generates the required samples

Step 1. Take j = 1 and make use of (λ(0), β(0)
1 , β(0)

2 ) = (λ̂1, β̂1, β̂1) as starting choices.

Step 2. Use the MH steps to simulate:

• λ( j) from (3.4) with N(λ( j−1), v̂ar(λ̂)).
• β( j)

1 from (3.5) with N(β( j−1)
1 , v̂ar(β̂1)).

• β( j)
2 from (3.6) with N(β( j−1)

2 , v̂ar(β̂2)).

Step 3. Employ the simulated values (λ( j), β
( j)
1 , β

( j)
2 ) to obtain R( j) as

R
( j) =

4{β( j)
1 β

( j)
2 + [λ( j)]4} + [λ( j)]2{β

( j)
1 + 7β( j)

2 }

8{β( j)
1 + [λ( j)]2}{β

( j)
2 + [λ( j)]2}

.

Step 4. Set j = j + 1 and perform steps 2 and 3, M times to generate

(λ(1), β(1)
1 , β(1)

2 ,R(1)), . . . , (λ(M), β(M)
1 , β(M)

2 ,R(M)).
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After obtaining the MCMC samples, we can use them to compute the Bayes estimates and
associated BCIs. To ensure that the derived estimates are trustworthy, the impact of the initial values
must be removed first. This can be achieved by removing the first K generated samples, which is
known as the burn-in phase. After discarding the K samples, we will have (λ( j), β

( j)
1 , β

( j)
2 ,R

( j)) for
j = K + 1, . . . ,M. We can then compute the Bayes estimates for the various parameters as well as the
reliability index using the SE loss function as

λ̃ =
1
M̄

M∑
j=K+1

λ( j), β̃1 =
1
M̄

M∑
j=K+1

β
( j)
1 ,

β̃1 =
1
M̄

M∑
j=K+1

β
( j)
2 , and R̃ =

1
M̄

M∑
j=K+1

R
( j),

where M̄ = M − K. On the other hand, after sorting (λ( j), β
( j)
1 , β

( j)
2 ,R

( j)) as (λ[ j], β
[ j]
1 , β

[ j]
2 ,R

( j)) for
j = K + 1, . . . ,M, we can obtain the 100%(1 − α) BCIs as

{
λ[αM̄/2],R[(1−α/2)M̄]

}
,
{
β[αM̄/2]

1 , β[(1−α/2)M̄]
1

}
,

{
β[αM̄/2]

2 , β[(1−α/2)M̄]
2

}
, and

{
R

[αM̄/2],R[(1−α/2)M̄]
}
.

4. Monte Carlo comparisons

This section compares the offered point and interval estimators of β1, β2, λ, and R based on a series
of Monte Carlo simulations.

4.1. Simulation designs

We replicated 1,000 times PFFC data from the proposed EXG model when (β1, β2, λ) =
(0.2, 0.5, 0.8). Taking k(= 2, 4), where k1 = k2 = k, several predetermined values of n, v (number
of groups), r,m (effective sample sizes), and S,R (removal plans) are used; see Table 1. Specifically,
for each value of k, n, and v, the values of r (or m) are utilized as a failure percentage (FP), such
as r

n =
m
v = 50 and 80%. Without loss of generality, in Table 1, we assumed that the comparison

setups used for the EXG(λ, β1) and EXG(λ, β2) populations are the same. To distinguish, in Table 1,
the progressive design (115) (as an example) means that one survival item will be drawn fifteen times.
Then, once 1000 PFFC samples are available, there are two recommended packages called ‘maxLik’
(by Henningsen and Toomet [24]) and ‘coda’ (by Plummer et al. [25]) which are utilized to calculate
the frequentist and Bayes estimations.

AIMS Mathematics Volume 9, Issue 11, 32200–32231.



32211

Table 1. Comparison settings in Monte Carlo simulation.

Test (n, r) (v,m) {S,R}
A (30,15) (30,15) PC[1]:{(115), (115)}

PC[2]:{(35, 010), (35, 010)}
PC[3]:{(05, 35, 05), (05, 35, 05)}
PC[4]:{(010, 35), (010, 35)}

B (30,24) (30,24) PC[1]:{(16, 018), (16, 018)}
PC[2]:{(32, 022), (32, 022)}
PC[3]:{(011, 32, 011), (011, 32, 011)}
PC[4]:{(022, 32), (022, 32)}

C (60,30) (60,30) PC[1]:{(130), (130)}
PC[2]:{(310, 020), (310, 020)}
PC[3]:{(010, 310, 010), (010, 310, 010)}
PC[4]:{(020, 310), (020, 310)}

D (60,48) (60,48) PC[1]:{(112, 036), (112, 036)}
PC[2]:{(34, 044), (34, 044)}
PC[3]:{(022, 34, 022), (022, 34, 022)}
PC[4]:{(044, 34), (044, 34)}

Specifically, to gather a PFFC sample of sizes r and m from the EXG(λ, β1) and EXG(λ, β2)
populations, respectively, do the following steps:

Step 1: Set the true values of EXG(λ, β1) population.

Step 2: Obtain a conventional progressive Type-II sample as follows:

(a) Obtain ϱ independent items (say ϱ1, ϱ2, . . . , ϱr) from a uniform U(0, 1) distribution.

(b) Set ξi = ϱ

(
i+

∑r
j=r−i+1 R j

)−1

i for i = 1, 2, . . . , r.
(c) Set Ui = 1 − ξrξr−1 · · · ξr−i+1 for i = 1, 2, . . . , r.
(d) Collect a desired progressive Type-II sample (with size r) from the EXG(λ, β1) distribution

by taking:
X∗i = H−1(ui; λ, β1), i = 1, 2, . . . , r.

Step 3: Group each data set of X∗i for i = 1, 2, . . . , r randomly into other sets of size k.

Step 4: Collect a PFFC sample by setting Xi = min{X∗i } for i = 1, 2, . . . , r.

Step 5: Redo steps 1–4 for the EXG(λ, β2) population.

In this study, we use the Newton-Raphson method to compute the MLEs of the unknown parameters
λ, β1, and β2. The method can be applied by following these steps:

1) Determine the score function ∆(λ, β1, β2) =
(
∂L(θ|x,y)

∂λ
,
∂L(θ|x,y)

∂β1
,
∂L(θ|x,y)

∂β2

)⊤
.
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2) Obtain the Hessian matrix J(λ, β1, β2) with second-order partial derivatives as provided in
subsection 2.2.

3) Use the initial values (λ(0), β(0)
1 , β(0)

2 ) to update the estimates iteratively as

(λ(l+1), β(l+1)
1 , β(l+1)

2 )⊤ = (λ(l), β(l)
1 , β

(l)
2 )⊤ − J−1(λ(l), β(l)

1 , β
(l)
2 ) ∆(λ(l), β(l)

1 , β
(l)
2 ), l = 0, 1, . . . .

4) Continue the process until convergence is achieved.

To implement the Newton-Raphson method, we utilize the ‘maxLik’ package (developed by
Henningsen and Toomet [24]) which employs the ‘maxNR()’ function of maximization in the R
programming language.

By considering two criteria of prior density, namely prior mean and prior variance, we use two
informative sets of the prior-parameters τ j, ω j > 0 for j = 1, 2, 3, called Prior-1:(τ1, τ2, τ3) = (1, 2.5, 4)
and ω j = 5 for j = 1, 2, 3, and Prior-2:(τ1, τ2, τ3) = (2, 5, 8) and ω j = 10 for j = 1, 2, 3. According to
the MH procedure prescribed in Section 3, we draw MCMC samples of size M = 12, 000 and discard
the first K = 2, 000 samples. Subsequently, when M̄ = 10, 000, all Bayes’ findings are evaluated.

The obtained estimate serves as an approximation of the theoretical expression for an unknown
parameter. Its accuracy reflects the reproducibility of the estimate and indicates its proximity to the
true value. Therefore, for each PFFC data set derived from the EXG(λ, β1) and EXG(λ, β2) populations,
we calculate the following measures of R (as an example) to judge the performance of the obtained
estimates:

• The average estimate (AvE) of R (say, R̈) is given by

R̈ =
1

1000

1000∑
d=1

R̈
[d].

• Root mean squared-error (RMSE):

RMSE(R̈) =

√√
1

1000

1000∑
d=1

(
R̈[d] − R

)2
,

• Mean relative absolute bias (MRAB):

MRAB(R̈) =
1

1000

1000∑
d=1

1
R̈

∣∣∣R̈[d] − R
∣∣∣,

• Average interval length (AIL):

AIL(1−α)%(R) =
1

1000

1000∑
d=1

(
UR̈[d] − LR̈[d]

)
,

• Coverage percentage (CP):

CP(1−τ)%(R) =
1

1000

1000∑
d=1

1(LR̈[d] ;U
R̈[d]) (R),

where R̈[d] is the calculated estimate of R at the dth sample, 1(·) is the indicator function, and
(L(·),U(·)) refers to (lower,upper) interval bounds.
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4.2. Simulation outputs

All simulation results of β1, β2, λ, and R are reported in Tables 2–9. For specification, in Tables 2–
5, the AvE, RMSEs, and MRABs are listed in the first, second, and third columns, respectively.
Additionally, in Tables 6–9, the AILs and CPs are listed in the first and second, respectively.

From Tables 2–9, in sense of the lowest RMSE, MRAB, and AILs as well as the largest CPs, we
list the following notes:

• The best of our observation is that the offered estimates of β1, β2, λ, or R behave satisfactorily in
the presence of the proposed data.
• When v(or n) grows, all results of β1, β2, λ, or R perform well. This fact means that the offered

MLE results of β1, β2, λ, orR are consistent. This result is also observed when
∑r

i=1 S i (or
∑m

i=1 Ri)
decreases.
• Because the Bayes results included more precision information from the joint gamma prior, as

we anticipated, the Bayesian estimations of β1, β2, λ, and R behaved better compared to the
frequentist estimates. The same conclusion is also reached if one compares the asymptotic
intervals with credible intervals.
• It is evident from comparing the provided priors 1 and 2 that the Bayes estimates based on Prior-2

outperform the other estimates due to the variance associated with Prior-2 being less than the
other.
• As k grows, the simulated RMSE, MRAB, and AIL values for all results of β2, λ, and R increase,

while those of β1 decrease.
• As k grows, the simulated CP values for all results of β2, λ, and R decrease while those of β1

increase.
• It is clear, in most cases, that the estimated CPs of ACI/BCI estimates are almost closely (or

greater) to the preassigned nominal level 95%.
• Comparing the PC[i] for i = 1, 2, 3, 4, the inferential results of β1 and β2 become superiority based

on PC[4] and PC[2], respectively, while those of λ, and R become superiority based on PC[1].
• As a recommendation, to receive efficient inferential results about β1, β2, λ, or R in the presence

of PFFC data, the investigator ought to increase the number of groups.
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Table 2. Point evaluations of β1.

k Test PC MLE MCMC

Prior-1 Prior-2
2 A [1] 0.4255 0.4953 2.0697 0.3378 0.3341 1.5576 0.3659 0.2968 1.1017

[2] 0.3943 0.3290 1.2636 0.2613 0.2695 1.1661 0.3511 0.1693 0.8459
[3] 0.2236 0.2820 1.0261 0.3764 0.2202 0.8963 0.3786 0.1677 0.8378
[4] 0.1737 0.2680 0.9708 0.2424 0.2100 0.8954 0.2430 0.1659 0.8265

B [1] 0.2404 0.2657 0.9639 0.3678 0.1999 0.8851 0.3790 0.1500 0.7478
[2] 0.2372 0.2462 0.8802 0.3669 0.1892 0.8320 0.3765 0.1471 0.7302
[3] 0.2360 0.2295 0.8446 0.3409 0.1785 0.7753 0.3544 0.1363 0.6319
[4] 0.1847 0.1681 0.6985 0.1947 0.1565 0.6777 0.2678 0.1286 0.5867

C [1] 0.2004 0.1341 0.6438 0.1381 0.1294 0.5835 0.2147 0.1215 0.4464
[2] 0.3896 0.1291 0.5699 0.3310 0.1190 0.4759 0.3318 0.1087 0.4364
[3] 0.2446 0.1216 0.5688 0.2088 0.1138 0.4373 0.2749 0.1016 0.4237
[4] 0.1808 0.1180 0.5648 0.2678 0.1093 0.4055 0.1672 0.0993 0.2966

D [1] 0.2362 0.1087 0.5494 0.1529 0.1020 0.3665 0.2889 0.0936 0.2906
[2] 0.2333 0.0987 0.5271 0.1855 0.0920 0.3646 0.2593 0.0862 0.2671
[3] 0.2327 0.0860 0.4554 0.1506 0.0820 0.3593 0.2392 0.0764 0.2662
[4] 0.1824 0.0806 0.3422 0.1789 0.0715 0.3294 0.2316 0.0652 0.2628

4 A [1] 0.2743 0.4523 1.9229 0.2243 0.3092 1.3237 0.2732 0.2129 1.0402
[2] 0.2615 0.2803 1.1266 0.2461 0.2327 0.9152 0.3464 0.1687 0.8431
[3] 0.2946 0.2364 0.8991 0.2619 0.1809 0.8371 0.3080 0.1675 0.7574
[4] 0.2171 0.1791 0.8303 0.3580 0.1663 0.6763 0.3115 0.1369 0.6188

B [1] 0.3097 0.1639 0.7452 0.2188 0.1492 0.6227 0.2668 0.1295 0.5349
[2] 0.3063 0.1602 0.7287 0.2118 0.1463 0.6055 0.2632 0.1159 0.4547
[3] 0.3079 0.1545 0.6269 0.2102 0.1267 0.5974 0.2717 0.1096 0.4490
[4] 0.2539 0.1485 0.5818 0.1344 0.1175 0.5720 0.2162 0.1062 0.4284

C [1] 0.2710 0.1467 0.5795 0.1556 0.1119 0.5491 0.2973 0.1006 0.4004
[2] 0.2582 0.1200 0.5685 0.2184 0.1064 0.4793 0.3821 0.1004 0.3959
[3] 0.3170 0.1172 0.5664 0.2060 0.0986 0.4570 0.3715 0.0910 0.3443
[4] 0.2514 0.1149 0.5604 0.2162 0.0944 0.4535 0.2284 0.0816 0.3346

D [1] 0.3067 0.1126 0.5514 0.1729 0.0911 0.4501 0.2959 0.0805 0.3302
[2] 0.3036 0.1087 0.5151 0.1732 0.0873 0.4379 0.2889 0.0793 0.3255
[3] 0.3041 0.1031 0.3846 0.1574 0.0828 0.3470 0.2781 0.0731 0.3233
[4] 0.2526 0.0904 0.3346 0.1821 0.0759 0.3214 0.2618 0.0631 0.2644
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Table 3. Point evaluations of β2.

k Test PC MLE MCMC

Prior-1 Prior-2
2 A [1] 0.5543 0.4736 0.8948 0.4265 0.4475 0.8022 0.6643 0.3803 0.6817

[2] 0.5533 0.4112 0.8131 0.6678 0.2872 0.5140 0.5315 0.2156 0.3815
[3] 0.5774 0.4126 0.8229 0.4376 0.3451 0.6110 0.6708 0.3024 0.5338
[4] 0.6181 0.4313 0.8619 0.8806 0.3589 0.6738 0.5841 0.3354 0.6551

B [1] 0.6620 0.4071 0.8130 0.4261 0.2624 0.4874 0.5322 0.2083 0.3794
[2] 0.5386 0.3508 0.6984 0.5286 0.2085 0.3765 0.5458 0.1812 0.3196
[3] 0.6008 0.3737 0.7453 0.4104 0.2402 0.4331 0.4623 0.1843 0.3237
[4] 0.6587 0.3973 0.7915 0.4310 0.2456 0.4432 0.5124 0.2056 0.3643

C [1] 0.5435 0.3495 0.6975 0.5264 0.2050 0.3667 0.5186 0.1671 0.3053
[2] 0.5026 0.3098 0.6075 0.5458 0.1763 0.2847 0.3832 0.1215 0.2182
[3] 0.6060 0.3143 0.6163 0.5329 0.1788 0.2855 0.5299 0.1372 0.2209
[4] 0.9456 0.3448 0.6879 0.6341 0.2028 0.3630 0.4830 0.1577 0.2998

D [1] 0.6462 0.3047 0.5880 0.4947 0.1752 0.2824 0.5585 0.1168 0.2122
[2] 0.5190 0.2264 0.2189 0.5729 0.1661 0.1890 0.3446 0.0864 0.1562
[3] 0.6012 0.2493 0.2703 0.5845 0.1705 0.2147 0.4926 0.0989 0.1903
[4] 0.6419 0.2699 0.5788 0.6335 0.1720 0.2774 0.5720 0.1076 0.2089

4 A [1] 0.5409 0.5191 0.9523 0.4385 0.4467 0.8933 0.7034 0.3882 0.6474
[2] 0.7005 0.4106 0.8120 0.6008 0.2980 0.4653 0.5445 0.2391 0.4354
[3] 0.6135 0.4311 0.8203 0.4469 0.3601 0.6592 0.6035 0.3127 0.5014
[4] 0.4752 0.4531 0.8620 0.8387 0.4263 0.7562 0.5819 0.3482 0.5799

B [1] 0.6668 0.4010 0.8007 0.4784 0.2757 0.4560 0.5723 0.2202 0.3747
[2] 0.5899 0.3745 0.6894 0.5067 0.2292 0.4166 0.5915 0.1804 0.3003
[3] 0.6560 0.3866 0.7301 0.4231 0.2483 0.4213 0.6612 0.1999 0.3320
[4] 0.7015 0.3967 0.7918 0.5010 0.2645 0.4251 0.6182 0.2139 0.3565

C [1] 0.5594 0.3645 0.6880 0.6333 0.2262 0.3847 0.5070 0.1725 0.2931
[2] 0.6353 0.3108 0.6091 0.5915 0.2124 0.3627 0.5348 0.1501 0.2778
[3] 0.6261 0.3327 0.6190 0.3882 0.2146 0.3672 0.5363 0.1580 0.2814
[4] 0.5431 0.3397 0.6785 0.5557 0.2169 0.3768 0.7548 0.1701 0.2822

D [1] 0.6195 0.3069 0.5969 0.4349 0.2095 0.3595 0.5702 0.1407 0.2733
[2] 0.5690 0.2267 0.4490 0.5170 0.1866 0.2904 0.3278 0.1147 0.1718
[3] 0.4553 0.2591 0.4876 0.4665 0.1967 0.3373 0.4987 0.1280 0.2272
[4] 0.5905 0.2916 0.5866 0.4371 0.2061 0.3439 0.5873 0.1328 0.2531
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Table 4. Point evaluations of λ.

k Test PC MLE MCMC

Prior-1 Prior-2
2 A [1] 0.9357 0.5223 0.6540 0.8130 0.4180 0.5074 1.0553 0.3707 0.4940

[2] 0.7882 0.5349 0.6683 0.7783 0.4282 0.5268 0.7240 0.3894 0.4987
[3] 0.8458 0.5472 0.6839 0.7833 0.4404 0.5480 0.6930 0.4005 0.5050
[4] 0.7654 0.5669 0.7085 0.7550 0.4633 0.5765 0.7007 0.4075 0.5072

B [1] 0.8377 0.4571 0.5757 0.8408 0.3778 0.4628 0.8196 0.3229 0.4013
[2] 0.8647 0.4633 0.5878 0.8360 0.3866 0.4647 0.7780 0.3330 0.4137
[3] 0.8673 0.4899 0.6119 0.8358 0.4009 0.4792 0.7774 0.3434 0.4390
[4] 0.8689 0.5121 0.6398 0.8352 0.4085 0.4939 0.7772 0.3553 0.4604

C [1] 0.7332 0.4355 0.5483 0.9196 0.3210 0.4039 0.6442 0.2979 0.3426
[2] 0.7881 0.4375 0.5507 0.7116 0.3371 0.4239 0.6550 0.3078 0.3674
[3] 0.8394 0.4401 0.5550 0.7511 0.3571 0.4460 0.6669 0.3121 0.3794
[4] 0.7529 0.4479 0.5677 0.6888 0.3673 0.4609 0.6460 0.3212 0.3891

D [1] 0.8105 0.3967 0.5247 0.7521 0.2858 0.3572 0.7190 0.2582 0.2813
[2] 0.8560 0.4062 0.5389 0.7798 0.2988 0.3690 0.7316 0.2634 0.3029
[3] 0.8595 0.4180 0.5408 0.7817 0.3040 0.3864 0.7322 0.2734 0.3110
[4] 0.8614 0.4283 0.5442 0.7813 0.3121 0.3927 0.7309 0.2877 0.3243

4 A [1] 0.4397 0.5284 0.6354 0.7441 0.4279 0.5237 0.7693 0.4117 0.4984
[2] 0.2947 0.5385 0.6642 0.4064 0.4322 0.5240 0.4564 0.4168 0.5163
[3] 0.3524 0.5451 0.6813 0.4473 0.4568 0.5689 0.4493 0.4213 0.5212
[4] 0.2687 0.5649 0.7060 0.4007 0.4693 0.5842 0.4536 0.4321 0.5230

B [1] 0.3431 0.4608 0.5712 0.4726 0.3790 0.4973 0.5560 0.3556 0.4341
[2] 0.3721 0.4757 0.5871 0.4806 0.3889 0.5050 0.5358 0.3588 0.4452
[3] 0.3723 0.4877 0.6093 0.4822 0.4040 0.5099 0.5306 0.3741 0.4602
[4] 0.3741 0.5155 0.6232 0.4809 0.4150 0.5149 0.5312 0.3871 0.4876

C [1] 0.2352 0.4389 0.5344 0.5560 0.3412 0.4705 0.3816 0.3127 0.3974
[2] 0.2917 0.4408 0.5467 0.3449 0.3534 0.4780 0.3913 0.3381 0.4188
[3] 0.3430 0.4444 0.5500 0.3881 0.3687 0.4831 0.4126 0.3403 0.4219
[4] 0.2549 0.4548 0.5695 0.3326 0.3780 0.4921 0.3862 0.3544 0.4387

D [1] 0.3125 0.4138 0.4526 0.3811 0.2970 0.3923 0.4490 0.2613 0.3047
[2] 0.3600 0.4317 0.4844 0.4135 0.3090 0.4168 0.4648 0.2685 0.3268
[3] 0.3627 0.4333 0.5046 0.4247 0.3222 0.4460 0.4729 0.2740 0.3538
[4] 0.3647 0.4361 0.5235 0.4236 0.3350 0.4691 0.4721 0.2909 0.3795
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Table 5. Point evaluations of R.

k Test PC MLE MCMC

Prior-1 Prior-2
2 A [1] 0.6605 0.0692 0.0828 0.5474 0.0531 0.0773 0.5601 0.0438 0.0635

[2] 0.5529 0.0755 0.0880 0.5205 0.0583 0.0803 0.5454 0.0451 0.0663
[3] 0.5551 0.0813 0.0983 0.5233 0.0592 0.0910 0.5329 0.0463 0.0691
[4] 0.5596 0.0862 0.1156 0.5271 0.0726 0.1007 0.5462 0.0465 0.0741

B [1] 0.5745 0.0573 0.0716 0.5427 0.0469 0.0630 0.5678 0.0368 0.0520
[2] 0.5545 0.0591 0.0725 0.5229 0.0475 0.0646 0.5496 0.0376 0.0553
[3] 0.5754 0.0624 0.0750 0.5213 0.0481 0.0659 0.5448 0.0401 0.0565
[4] 0.5745 0.0653 0.0774 0.5201 0.0494 0.0681 0.5442 0.0423 0.0582

C [1] 0.5487 0.0448 0.0592 0.5678 0.0384 0.0512 0.5741 0.0281 0.0402
[2] 0.5458 0.0459 0.0632 0.5401 0.0419 0.0569 0.5524 0.0319 0.0442
[3] 0.5559 0.0476 0.0666 0.5554 0.0428 0.0588 0.5638 0.0338 0.0481
[4] 0.5562 0.0523 0.0695 0.5604 0.0451 0.0609 0.5725 0.0358 0.0497

D [1] 0.5597 0.0364 0.0472 0.5762 0.0288 0.0405 0.5889 0.0210 0.0305
[2] 0.5573 0.0375 0.0499 0.5621 0.0315 0.0426 0.5777 0.0232 0.0321
[3] 0.5746 0.0415 0.0549 0.5763 0.0338 0.0458 0.5903 0.0236 0.0355
[4] 0.5738 0.0435 0.0570 0.5738 0.0360 0.0476 0.5886 0.0259 0.0392

4 A [1] 0.6593 0.0770 0.1037 0.5513 0.0626 0.0872 0.5837 0.0488 0.0652
[2] 0.5560 0.0807 0.1059 0.5496 0.0653 0.0972 0.5683 0.0504 0.0724
[3] 0.5540 0.0831 0.1075 0.5413 0.0690 0.1095 0.5657 0.0519 0.0786
[4] 0.5596 0.0928 0.1372 0.5628 0.0734 0.1188 0.5790 0.0616 0.0912

B [1] 0.5760 0.0624 0.0852 0.5798 0.0525 0.0686 0.5944 0.0388 0.0535
[2] 0.5544 0.0648 0.0988 0.5671 0.0549 0.0721 0.5815 0.0403 0.0553
[3] 0.5760 0.0665 0.1006 0.5810 0.0579 0.0758 0.5910 0.0428 0.0595
[4] 0.5751 0.0678 0.1029 0.5758 0.0596 0.0799 0.5903 0.0457 0.0617

C [1] 0.5483 0.0481 0.0626 0.5944 0.0415 0.0563 0.5377 0.0332 0.0471
[2] 0.5459 0.0504 0.0660 0.5520 0.0420 0.0594 0.5276 0.0349 0.0490
[3] 0.5552 0.0526 0.0686 0.5521 0.0463 0.0636 0.5181 0.0356 0.0498
[4] 0.5562 0.0552 0.0744 0.5648 0.0505 0.0657 0.5417 0.0372 0.0506

D [1] 0.5603 0.0369 0.0523 0.5726 0.0316 0.0481 0.5681 0.0253 0.0339
[2] 0.5575 0.0407 0.0527 0.5696 0.0348 0.0497 0.5528 0.0258 0.0356
[3] 0.5746 0.0432 0.0583 0.5833 0.0372 0.0516 0.5613 0.0283 0.0379
[4] 0.5738 0.0439 0.0606 0.5829 0.0388 0.0541 0.5576 0.0293 0.0416
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Table 6. Interval evaluations of β1.

k Test PC 95% ACI 95%BCI

Prior-1 Prior-2
2 A [1] 0.987 0.941 0.789 0.952 0.637 0.956

[2] 0.791 0.945 0.603 0.955 0.510 0.963
[3] 0.763 0.947 0.500 0.959 0.376 0.970
[4] 0.755 0.948 0.466 0.962 0.367 0.971

B [1] 0.741 0.950 0.415 0.966 0.357 0.972
[2] 0.684 0.953 0.358 0.968 0.333 0.974
[3] 0.532 0.957 0.347 0.969 0.322 0.975
[4] 0.421 0.960 0.343 0.970 0.311 0.977

C [1] 0.415 0.961 0.331 0.971 0.286 0.979
[2] 0.338 0.964 0.303 0.974 0.279 0.980
[3] 0.299 0.966 0.274 0.976 0.232 0.982
[4] 0.292 0.967 0.270 0.977 0.225 0.983

D [1] 0.274 0.968 0.267 0.977 0.190 0.985
[2] 0.268 0.969 0.255 0.978 0.148 0.987
[3] 0.265 0.969 0.234 0.979 0.139 0.987
[4] 0.258 0.970 0.205 0.981 0.129 0.988

4 A [1] 0.880 0.949 0.731 0.957 0.497 0.963
[2] 0.617 0.953 0.507 0.961 0.460 0.968
[3] 0.623 0.955 0.480 0.964 0.280 0.975
[4] 0.497 0.956 0.451 0.968 0.275 0.976

B [1] 0.482 0.957 0.379 0.970 0.267 0.977
[2] 0.397 0.961 0.353 0.972 0.262 0.979
[3] 0.373 0.963 0.340 0.973 0.245 0.980
[4] 0.367 0.964 0.336 0.973 0.232 0.982

C [1] 0.348 0.966 0.328 0.974 0.222 0.983
[2] 0.317 0.967 0.303 0.976 0.191 0.985
[3] 0.293 0.969 0.273 0.980 0.186 0.986
[4] 0.287 0.971 0.267 0.981 0.178 0.987

D [1] 0.276 0.972 0.226 0.983 0.149 0.989
[2] 0.254 0.974 0.187 0.985 0.138 0.990
[3] 0.245 0.975 0.170 0.986 0.125 0.991
[4] 0.197 0.978 0.149 0.989 0.119 0.991

AIMS Mathematics Volume 9, Issue 11, 32200–32231.



32219

Table 7. Interval evaluations of β2.

k Test PC 95% ACI 95%BCI

Prior-1 Prior-2
2 A [1] 1.422 0.916 1.143 0.922 0.648 0.931

[2] 0.614 0.926 0.604 0.932 0.532 0.935
[3] 0.687 0.924 0.638 0.930 0.534 0.935
[4] 1.062 0.920 0.876 0.925 0.561 0.934

B [1] 0.609 0.927 0.516 0.934 0.429 0.938
[2] 0.535 0.932 0.486 0.939 0.402 0.942
[3] 0.567 0.930 0.491 0.937 0.410 0.941
[4] 0.590 0.928 0.496 0.936 0.421 0.939

C [1] 0.525 0.933 0.485 0.939 0.400 0.942
[2] 0.472 0.936 0.454 0.943 0.297 0.949
[3] 0.483 0.935 0.471 0.941 0.334 0.947
[4] 0.484 0.935 0.478 0.940 0.397 0.943

D [1] 0.470 0.936 0.445 0.945 0.283 0.951
[2] 0.424 0.940 0.249 0.952 0.156 0.957
[3] 0.457 0.938 0.392 0.948 0.260 0.953
[4] 0.467 0.937 0.443 0.945 0.262 0.953

4 A [1] 1.434 0.915 1.172 0.921 0.857 0.925
[2] 0.733 0.923 0.659 0.931 0.587 0.933
[3] 0.860 0.921 0.675 0.929 0.590 0.933
[4] 1.173 0.918 1.011 0.924 0.711 0.928

B [1] 0.701 0.924 0.648 0.932 0.543 0.935
[2] 0.669 0.926 0.529 0.936 0.431 0.939
[3] 0.670 0.926 0.532 0.936 0.434 0.939
[4] 0.687 0.925 0.632 0.932 0.442 0.938

C [1] 0.640 0.927 0.516 0.937 0.419 0.940
[2] 0.532 0.932 0.507 0.938 0.303 0.943
[3] 0.565 0.931 0.509 0.938 0.341 0.941
[4] 0.590 0.930 0.514 0.937 0.410 0.940

D [1] 0.525 0.933 0.499 0.939 0.290 0.945
[2] 0.437 0.938 0.310 0.945 0.164 0.951
[3] 0.461 0.936 0.429 0.941 0.270 0.947
[4] 0.511 0.934 0.479 0.940 0.276 0.947
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Table 8. Interval evaluations of λ.

k Test PC 95% ACI 95%BCI

Prior-1 Prior-2
2 A [1] 0.287 0.948 0.237 0.953 0.224 0.956

[2] 0.306 0.946 0.251 0.951 0.239 0.955
[3] 0.310 0.945 0.258 0.950 0.255 0.953
[4] 0.391 0.942 0.324 0.946 0.263 0.952

B [1] 0.265 0.951 0.204 0.957 0.201 0.960
[2] 0.266 0.950 0.216 0.956 0.210 0.959
[3] 0.274 0.949 0.228 0.954 0.212 0.959
[4] 0.277 0.949 0.235 0.953 0.219 0.958

C [1] 0.179 0.956 0.164 0.962 0.162 0.964
[2] 0.196 0.955 0.181 0.960 0.164 0.963
[3] 0.212 0.954 0.191 0.959 0.168 0.963
[4] 0.216 0.954 0.199 0.958 0.173 0.962

D [1] 0.152 0.959 0.140 0.966 0.130 0.969
[2] 0.160 0.958 0.149 0.965 0.146 0.967
[3] 0.163 0.958 0.159 0.964 0.155 0.966
[4] 0.172 0.957 0.162 0.963 0.159 0.965

4 A [1] 0.300 0.945 0.294 0.949 0.244 0.953
[2] 0.326 0.943 0.296 0.949 0.255 0.952
[3] 0.366 0.941 0.316 0.947 0.279 0.951
[4] 0.577 0.937 0.400 0.943 0.341 0.948

B [1] 0.286 0.948 0.210 0.954 0.207 0.958
[2] 0.287 0.947 0.223 0.953 0.211 0.957
[3] 0.292 0.946 0.233 0.952 0.220 0.956
[4] 0.297 0.946 0.277 0.950 0.232 0.955

C [1] 0.258 0.953 0.173 0.959 0.163 0.961
[2] 0.267 0.951 0.190 0.957 0.167 0.960
[3] 0.277 0.950 0.202 0.956 0.172 0.960
[4] 0.281 0.948 0.207 0.955 0.178 0.959

D [1] 0.174 0.958 0.146 0.963 0.138 0.965
[2] 0.188 0.957 0.155 0.962 0.148 0.963
[3] 0.219 0.955 0.160 0.961 0.158 0.962
[4] 0.230 0.954 0.170 0.959 0.161 0.961
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Table 9. Interval evaluations of R.

k Test PC 95% ACI 95%BCI

Prior-1 Prior-2
2 A [1] 0.242 0.942 0.195 0.948 0.149 0.956

[2] 0.257 0.940 0.199 0.948 0.161 0.954
[3] 0.264 0.939 0.229 0.947 0.176 0.953
[4] 0.272 0.938 0.241 0.945 0.181 0.952

B [1] 0.219 0.945 0.178 0.952 0.138 0.959
[2] 0.233 0.944 0.180 0.951 0.140 0.958
[3] 0.237 0.944 0.189 0.950 0.145 0.957
[4] 0.240 0.943 0.192 0.949 0.147 0.956

C [1] 0.170 0.949 0.165 0.956 0.129 0.961
[2] 0.174 0.948 0.168 0.955 0.130 0.961
[3] 0.181 0.947 0.176 0.953 0.132 0.960
[4] 0.190 0.946 0.177 0.953 0.135 0.960

D [1] 0.152 0.953 0.137 0.960 0.098 0.965
[2] 0.158 0.952 0.151 0.958 0.103 0.964
[3] 0.162 0.951 0.158 0.957 0.116 0.963
[4] 0.168 0.949 0.163 0.956 0.124 0.962

4 A [1] 0.250 0.940 0.234 0.946 0.167 0.953
[2] 0.275 0.937 0.239 0.946 0.168 0.952
[3] 0.278 0.937 0.241 0.945 0.181 0.951
[4] 0.313 0.936 0.262 0.943 0.188 0.950

B [1] 0.232 0.942 0.186 0.950 0.156 0.957
[2] 0.235 0.942 0.221 0.949 0.161 0.956
[3] 0.239 0.941 0.222 0.948 0.163 0.954
[4] 0.241 0.941 0.224 0.947 0.163 0.954

C [1] 0.182 0.947 0.169 0.952 0.138 0.959
[2] 0.209 0.946 0.170 0.952 0.142 0.959
[3] 0.219 0.945 0.177 0.951 0.143 0.958
[4] 0.228 0.943 0.178 0.951 0.144 0.958

D [1] 0.164 0.950 0.145 0.958 0.103 0.964
[2] 0.166 0.949 0.155 0.956 0.115 0.963
[3] 0.167 0.949 0.161 0.954 0.128 0.961
[4] 0.170 0.948 0.165 0.953 0.137 0.960
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5. Insulating fluid data analysis

This section addresses two distinct engineering applications to demonstrate the practicality of the
suggested estimators and the usefulness of the offered estimation techniques. Both applications analyze
the time to breakdown of an insulating fluid (in seconds) during a voltage endurance test under various
stress conditions. We now list the following insulating fluid data sets as follows:

• The first data set, called Data-A, consists of two pressure levels, namely 40kV (with n = 12)
and 45kV (with v = 12). This type of data was reported by Nelson [26] and discussed by
Nassar et al. [27]. By denoting that the data set at 40kV by X and at 45kV by Y , in Table 10,
each time point has been divided by ten for the computational process.
• The second data set, called Data-B, consists of two pressure levels, namely: 30kV (with n = 10)

and 36kV (with v = 15); see Nelson [26] and Alotaibi et al. [28]. Here, we denote the data set at
30kV by X and at 36kV by Y , then each time is divided by 100 for computational ease; see Table
10.

Table 10. Time to breakdown of an insulating fluid.

Data Group Times
A X 0.1 0.1 0.2 0.3 1.2 2.5 4.5 5.6 6.8 10.9 32.3 41.7

Y 0.1 0.1 0.1 0.2 0.2 0.3 0.9 1.3 4.7 5.0 5.5 7.1
B X 0.1705 0.1774 0.2046 0.2102 0.2266 0.4340 0.4730 1.3907 1.4412 1.7588

Y 0.0035 0.0059 0.0096 0.0099 0.0169 0.0197 0.0207 0.0258 0.0271 0.0290 0.0367 0.0399
0.0535 0.1377 0.2550

Before proceeding with our inference, to determine whether or not the EXG model provides a
significant fit to the insulating fluid data sets, we evaluate the Kolmogorov-Smirnov (KS) statistic and
P-value at a 5% significance level; see Table 11. Additionally, the MLEs with associated standard-
errors (St.Er) of EXG parameters are also obtained and provided in Table 11. Since the P-value results
are higher than 5%, we can decide that the proposed EXG distribution fits the insulating fluid data sets
satisfactorily.

In Figure 2, we employ three visual aids to demonstrate the performance of fitting the proposed
EXG model to insulating fluid data sets; namely: (i) contour diagrams of the log-likelihood, and (ii)
estimated/empirical reliability. It can be seen that:

• The contour plots using the complete data sets state that the MLEs of EXG parameters exist and
are unique.
• The estimated EXG reliability line is close to its empirical line.
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Table 11. Fitting results of the EXG distribution from insulating fluid data sets.

Data Group MLE(St.Er) KS(P-value)
λ β

A X 0.1473(0.0442) 0.0039(0.0057) 0.2966(0.2417)
Y 0.7164(0.2109) 0.1814(0.2420) 0.7164(0.1814)

B X 2.3029(1.0655) 1.7389(4.3059) 0.2464(0.5024)
Y 25.611(7.9070) 64.691(115.48) 0.2101(0.4604)
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Figure 2. Contour (top) and reliability (bottom) plots from insulating fluid data sets.

From Table 10, for each data set, the first-failure censored sample is generated by randomly
grouping and taking k = 2 and 3 for groups X and Y , respectively; see Table 12. To distinguish,
the starred number refers to the first-failure item. As a result, from Table 12, the first-failure censored
samples are presented in Table 13. Taking (r,m) = (3, 3), using Table 13, we report different PFFC
samples in Table 14 based on various choices of R and S. Via the MH sampler, with M = 50, 000
and K = 10, 000, the Bayes evaluations of β1, β2, λ, and R are developed using non-informative prior.
Hence, the point estimations (with their St.Ers) and 95% interval estimations (with their widths of β1,
β2, λ, and R are obtained; see Tables 15 and 16. It shows that the estimated point values of β1, β2, λ,
and R obtained by both likelihood and Bayesian estimation methods are quite similar. It also indicates
that the Bayes point (or 95% BCI) findings of all unknown quantities outperform those developed by
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the likelihood approach in terms of the minimum level of standard-error and shortest interval values.
When using the maximum likelihood estimation approach, existence and uniqueness are important

features to highlight when obtaining the MLEs. Using sample-I (as an example) from Table 14, the
profile log-likelihoods of β1, β2, and λ are plotted; see Figure 3. It shows that the calculated values of
β1, β2, and λ (in Table 15) exist and are unique. Again, using sample-I (as an example) from Table 14,
Figure 4 displays both trace and density plots of β1, β2, λ, and R using their staying M̄ = 40, 000
iterations. It demonstrates that the collected iterations of β1, β2, λ, and R are roughly symmetric and
mixed effectively. For clarity, in Figure 4, the sample mean and 95% BCI bounds of β1, β2, λ, and R
are represented by solid red and red–dashed lines, respectively.

Table 12. Random grouping for insulating fluid data sets.

Data Group Sub-Group 1 2 3 4 5 6
A X 1 5.6 10.9 0.1⋆ 32.3 0.2⋆ 6.8

2 1.2⋆ 0.1⋆ 2.5 4.5⋆ 41.7 0.3⋆

Y 1 0.1⋆ 4.7 0.1⋆ 5 0.3⋆ 0.1⋆

2 0.2 0.9⋆ 1.3 0.2⋆ 5.5 7.1
1 2 3 4 5 -

B X 1 1.3907 0.1774⋆ 0.2266⋆ 1.7588 0.4340 -
2 0.1705⋆ 0.4730 1.4412 0.2102⋆ 0.2046⋆ -

Y 1 0.0059⋆ 0.1377 0.0367 0.0035⋆ 0.2550 -
2 0.0099 0.0271⋆ 0.0197⋆ 0.0535 0.0207 -
3 0.0290 0.0399 0.0258 0.0096 0.0169⋆ -

Table 13. The first-failure censored samples from insulating fluid data sets.

Data Group Times
A X 0.1 0.1 0.2 0.3 1.2 4.5

Y 0.1 0.1 0.1 0.2 0.3 0.9
B X 0.1705 0.1774 0.2046 0.2102 0.2266

Y 0.0035 0.0059 0.0169 0.0197 0.0271
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Table 14. Artificial PFFC samples from insulating fluid data sets.

Data Sample {R,S} {x, y}
A I {(1, 1, 1), (1, 1, 1)} {(0.1, 0.3, 4.5),(0.1, 0.2, 0.9)}

II {(3, 0, 0), (3, 0, 0)} {(0.1, 0.1, 0.3),(0.1, 0.2, 0.3)}
III {(0, 3, 0), (0, 3, 0)} {(0.1, 0.1, 1.2),(0.1, 0.1, 0.9)}
IV {(0, 0, 3), (0, 0, 3)} {(0.1, 0.1, 0.2),(0.1, 0.1, 0.1)}

B I {(1, 1, 0), (1, 1, 0)} {(0.1705, 0.2046, 0.2102),(0.0035, 0.0197, 0.0271)}
II {(2, 0, 0), (2, 0, 0)} {(0.1705, 0.2102, 0.2266),(0.0035, 0.0059, 0.0197)}
III {(0, 2, 0), (0, 2, 0)} {(0.1705, 0.1774, 0.2266),(0.0035, 0.0059, 0.0271)}
IV {(0, 0, 2), (0, 0, 2)} {(0.1705, 0.1774, 0.2046),(0.0035, 0.0059, 0.0169)}

Table 15. Point estimates of β1, β2, λ, and R from insulating fluid data sets.

Data→ A B
Sample Par. MLE MCMC MLE MCMC

Est. St.Er Est. St.Er Est. St.Er Est. St.Er
I β1 0.1380 0.3520 0.1363 0.0102 2.8495 3.3036 2.8229 0.0564

β2 0.0476 0.1964 0.0431 0.0112 14.874 1.7995 14.848 0.0563
λ 0.4115 0.2402 0.3562 0.0100 1.0973 0.2387 1.1004 0.0492
R 0.4069 0.1892 0.4002 0.0197 0.5833 0.0903 0.5842 0.0050

II β1 1.5295 0.5799 1.5283 0.0101 0.7170 12.051 0.6112 0.1454
β2 0.3217 0.0906 0.3200 0.0101 16.698 1.7204 16.603 0.1359
λ 0.6289 0.0946 0.6296 0.0100 4.2668 0.2289 4.1612 0.1431
R 0.3703 0.0446 0.3697 0.0031 0.6652 0.2317 0.6708 0.0070

III β1 1.9477 2.4627 1.9467 0.0101 38.168 17.038 38.066 0.1381
β2 0.3748 0.2358 0.3733 0.0101 45.371 2.7205 45.270 0.1416
λ 0.9057 0.4256 0.9054 0.0100 7.4518 0.2478 7.3351 0.1552
R 0.3537 0.1448 0.3535 0.0022 0.5159 0.0417 0.5160 0.0003

IV β1 1.8395 2.0059 1.8384 0.0100 420.88 2.7267 420.78 0.1406
β2 0.7431 0.1836 0.7418 0.0101 12.341 5.4465 12.241 0.1399
λ 0.9022 0.1043 0.9023 0.0100 1.1091 0.1657 1.1457 0.1012
R 0.4190 0.0997 0.4189 0.0014 0.4671 0.0136 0.4647 0.0057
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Table 16. Interval estimates of β1, β2, λ, and R from insulating fluid data sets.

Sample Par. 95% ACI 95% BCI
Lower Upper Width Lower Upper Width

Data-A→
I β1 0.0000 0.8279 0.8279 0.1167 0.1557 0.0391

β2 0.0000 0.4324 0.4324 0.0228 0.0631 0.0403
λ 0.0000 0.8275 0.8275 0.3368 0.3757 0.0389
R 0.0362 0.7777 0.7415 0.3618 0.4340 0.0723

II β1 0.3929 2.6661 2.2731 1.5086 1.5478 0.0392
β2 0.1442 0.4992 0.3550 0.3007 0.3397 0.0389
λ 0.4435 0.8143 0.3708 0.6100 0.6492 0.0391
R 0.2829 0.4576 0.1748 0.3637 0.3757 0.0120

III β1 0.0000 6.7745 6.7745 1.9271 1.9664 0.0393
β2 0.0000 0.8370 0.8370 0.3537 0.3930 0.0393
λ 0.0715 1.7400 1.6685 0.8858 0.9252 0.0394
R 0.0699 0.6376 0.5676 0.3491 0.3577 0.0086

IV β1 0.0000 5.7709 5.7709 1.8188 1.8581 0.0393
β2 0.3832 1.1030 0.7198 0.7221 0.7614 0.0393
λ 0.6979 1.1066 0.4087 0.8827 0.9221 0.0394
R 0.2236 0.6144 0.3909 0.4162 0.4215 0.0053

Data-B→
I β1 0.0000 9.3244 9.3244 2.7262 2.9204 0.1941

β1 11.347 18.401 7.0541 14.752 14.946 0.1941
λ 0.6295 1.5651 0.9356 1.0053 1.1978 0.1925
R 0.4063 0.7604 0.3541 0.5745 0.5939 0.0194

II β1 0.0000 24.336 24.336 0.4101 0.8074 0.3973
β2 13.326 20.070 6.7440 16.415 16.793 0.3788
λ 3.8182 4.7154 0.8973 3.9744 4.3499 0.3754
R 0.2112 1.1192 0.9081 0.6626 0.6790 0.0164

III β1 4.7747 71.562 66.787 37.898 38.258 0.3605
β2 40.038 50.703 10.664 45.088 45.469 0.3804
λ 6.9661 7.9375 0.9714 7.1303 7.5322 0.4019
R 0.4340 0.5977 0.1636 0.5154 0.5166 0.0012

IV β1 415.53 426.22 10.689 420.58 420.97 0.3913
β2 1.6664 23.016 21.350 12.059 12.432 0.3734
λ 0.7842 1.4339 0.6497 0.9616 1.3260 0.3643
R 0.4404 0.4938 0.0535 0.4545 0.4745 0.0201
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Figure 3. The log-likelihoods of β1 (left), β2 (middle), and λ (right) using sample-I from
insulating fluid data sets.
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(a) Data-A

(b) Data-B

Figure 4. Density (left) and trace (right) of β1, β2, λ, and R using sample-I from insulating
fluid data sets.

6. Conclusions

This study explored different techniques for evaluating the stress-strength index based on
progressively first-failure censored data. We consider the strength and stress factors as independent
random variables, modeled using extended xgamma distributions. The model parameters and the
stress-strength index using the maximum likelihood method, a widely used approach, are addressed.
Additionally, the approximate confidence intervals for these estimations are obtained. To approximate
the variance of the classical estimator of the stress-strength index, we employed the delta method.
Furthermore, the gamma priors and the squared error loss function are utilized to estimate the Bayes
estimates of the model parameters and stress-strength index. The Markov chain Monte Carlo approach
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is used to generate samples from conditional distributions, which allows for the calculation of Bayesian
estimates considering the complex nature of the posterior distribution. Additionally, Bayesian credible
ranges are calculated. To assess the estimations, we conducted a thorough numerical study with
numerous testing methodologies. We employed the various approaches for analyzing a pair of
insulating fluid data sets, seeking to increase our comprehension and demonstrate the applicability
of the supplied estimations. For future research, one can investigate the same estimation approaches
discussed in this study for the stress-strength index of the extended xgamma distribution in the context
of progressively first-failure censored data when all parameters are unequal.
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