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1. Introduction 

The effects of complex functions are widely used in various fields of science, including physics, 

mathematical mechanics, electrical engineering, biological mechanisms, chemistry, AC voltage 

analysis, signal analysis, fluid dynamics, radio frequency transmission, and cell technology [1,2]. 

Additionally, fractional mathematics is a branch of mathematics that has been steadily refined over the 

past three centuries [3,4]. In the 19th century, Riemann and Liouville defined differentiation as a 

fractional order. Harmonic oscillators, hydrodynamics, optimal control, quantum physics, phase field 
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systems, electromagnetism, and dispersion media are just a few of the fascinating and complex 

phenomena that have been extensively modeled with fractional mathematics in recent decades. 

Finding unique solutions to different kinds of differential and integral equations is the primary 

focus of most academic journals. In 1922, the famous Polish mathematician Stefan Banach established 

the Banach fixed-point principle, a powerful and important technique. Recently, many researchers have 

investigated nonlinear fractional differential and integro-differential equations (NF/IDEqs) to 

determine their existence and unique solutions. For example, Schaefer's fixed-point theory was used 

in [5] to demonstrate the existence of a unique solution to fractional differential equations (FDEs). 

In [6], the existence of a unique fractional fuzzy system was examined through the lens of metric fixed-

point theory. [7] introduces a nonlinear implicit random FIDE in the sense of the mean square and 

discusses the uniqueness and existence of its solutions. In [8], sufficient conditions for solving NFIDEq 

in complex space were provided. For additional analytical investigations, refer to [9–14]. 

Nevertheless, most fractional-order equations lack analytical solutions. Consequently, there has 

been significant interest in developing numerical techniques for solving FIDE. Several scientists have 

addressed the computational outcomes of these equations by employing strategies that manage them 

in a more practical setting. In [15], a differential transform scheme was devised to address a set of 

composite fractional oscillation problems. The Ritz approximation method was introduced in [16] to 

obtain the solutions for fractional control equations. Moreover, numerous academics have proposed 

robust computational strategies based on wavelet techniques for solving FDEs. For instance, 

Chebyshev cardinal wavelets were applied in [17], the Haar wavelet method was used in [18], the 

Euler wavelet method was introduced in [19], and the Legendre wavelet method was applied in [20]. 

Chebyshev wavelet operational matrices were also introduced in [21], while numerical techniques 

based on wavelet functions and collocation approaches were suggested in [22–25]. 

Based on previous research mentioned in the existing literature, we want to present a qualitative 

analysis to solve the following NFVIDEqs in complex space. Consider the problem: 

𝑐𝐷𝜈 𝛺 (𝑡) = W (t, Ω(𝑡)) + 𝜆(𝑡) ∫ 𝛯(𝑡, 𝑟, 𝛺(𝑟)) 𝑑𝑟
𝑡

0
, t ∈ T = [0,𝜏] ,     (1) 

with initial condition 

𝛺 (0) = Ω0 + 𝛽(𝑡) ∫ 𝛺(𝑟)  𝑑𝑟
𝜏

0
,        (2) 

where 𝛺 (𝑡)

 

is an unknown C1 complex function, 𝛺 : E 
  
→  C, E ⊂C, 𝐷𝐶 𝜈 is a Caputo derivative 

with 𝜐 ∈ (0,1) ,   𝑟 ∈ 𝑇 such that 𝑟 ≺ 𝑡 , 𝑊 and  𝛯  are known and continuous functions such that 

W: T × E 
  
→    C, 𝛯: T ×  𝑇 ×  E 

  
→  C, the values of 𝜆(𝑡) and 𝛽(𝑡) are real, and 𝛺0 is prescribed 

constant. To resolve problems (1) and (2), both theoretical and numerical methods are used. 

The article investigates an unexplored area of fractional calculus and analyzes the existence and 

originality of the solution. In addition, it is proposed to integrate the rationalization of the Haar wavelet 

method (RHM) and the Euler polynomial (EP) approach into a new numerical technique. This method 

is used to solve a first fractional model using variables specified on complex planes. The proposed 

method uses the power series to develop a numerical solution that shows rapid convergence and 

includes multiple terms that can be easily calculated. This methodology proves computational 
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efficiency and makes it easy to implement in computer systems. 

This article organizes its structure as follows: Section 2 covers crucial subjects. Section 3 outlined 

the necessary conditions for the existence and uniqueness of a solution to problems (1) and (2). Section 

4 presents the numerical approach for problems (1) and (2) using the Euler wavelet method (EWM). 

Additionally, we provide a newly developed approach that merges the (RHM) with the (EP) 

approximation. In Section 5, we discuss numerical problems linked to what we established in Section 4 

to present the precision of the proposed technique and calculate the case's abs. error. Section 6 contains 

the conclusion. 

2. Basic concepts 

We will elaborate on the definitions and preliminary information provided in this paper. 

Definition 1. [26] The Riemann-Liouville operator of order 𝜐 ≻ 𝑜is represented as: 

𝐼𝜐 V (𝑧) =  
1

𝛤(𝜐)
  ∫ (z - u) 𝑉(𝑢)  du 

𝑧

0
 ,V > 0, 

where 𝛤(⋅) represents the gamma function. 

Proposition 1. [27] Caputo's operator is related to the (R-L) operator in the following manner: 

1) 𝐷𝜐 I𝜐 V(𝑧) =  𝑉(𝑧) ,  z > 0; 

2) 𝐼𝜐 D𝜐 V(𝑧) =  𝑉(𝑧) - ∑
𝑉(𝑘) (0) z𝑘

𝑘!

𝑛−1
𝑘=0 ,  z > 0. 

Theorem 1. [28] Consider 𝑋 be a Banach space. The set 𝐺 ⊂ 𝑋 of functions is relatively compact 

if and only if it is bounded and equicontinuous. 

Theorem 2. [28] In a Banach space, each contraction mapping admits a unique fixed point. 

Definition 2. [29] The Euler polynomials of degree m are defined as: 

∑ (
𝑛
ℓ
)𝑚

ℓ=0 𝐸1(𝑧) + E𝑚(𝑧) = 2 z𝑚 ,  z ∈  [0, 1], 

which can be constructed by the following generating functions 

2𝑒𝑧𝑡

𝑒𝑡 + 1
  =  ∑ 𝐸𝑚(𝑧) 

𝑡𝑚

𝑚!
∞
𝑚=0   . 

Proposition 2. [29] The Euler polynomials constitute a comprehensive foundation throughout the 

interval [0,1]. 

Definition 3. [30] Degenerate Euler polynomials for𝑛 ∈ 𝑁are defined as: 

𝐸 (u , 𝑣) = ∑𝑛𝑘=0  ∑ (
𝑛
𝑘
)𝑘

ℓ=1   (𝑢)ℓ 𝑆
(2) (k, ℓ) . E𝑛−𝑘(𝑣), 

such that 𝑧(𝑡) = 𝑢 (𝑡)  +  𝑖 𝑣(𝑡), (𝑢)𝑙 is a falling factorial sequence defined as (𝑢)𝑙 = 𝑢 (𝑢 −

 1) . . . (𝑢 −  𝑙 +  1) , 𝑙 ≥ 1, and 𝑆(2) is a Stirling numbers of the second kind. 

Definition 4. [31] Rationalized Haar functionℎ𝑚(𝑡)for𝑚 = 2𝛽 + k , 𝛽 = 1, 2, ...,and𝑘 =  0, 1, 2, ..., 

2
𝛽

 - 1, are defined by 
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ℎ𝑚(𝑡) = 𝐻(2
𝛽𝑡 - k) ,  t ∈  [0, 1),

 
where 

𝐻(𝑡) = 

{
 
 

 
 1 ,  0 < t ≤

1

2
;

−1 ,  
1

2
 < t < 1;

0,  𝑜𝑡ℎ𝑒𝑟 wise.

 

3. Existence and uniqueness solution of NFIDEq 

Before we begin our examination of the theoretical solution to the problems (1) and (2), we will 

apply the (R-L) fractional integral operator to the problems (1) and (2) to transform it into the following 

integral equation: 

𝛺 (𝑡) = Ω0 + 𝛽(𝑡) ∫ 𝛺(𝑟)  𝑑𝑟
𝜏

0  
+ 

1

𝛤(𝜐)
 ∫ (𝑡 − 𝑟)𝜐−1 [𝑊 (r , Ω(𝑟)) + 𝜆(𝑡) ∫ 𝛯 (r, s, Ω(𝑠)) 𝑑𝑠)

𝑟

0
] 𝑑𝑟

𝜏

0
.

 

(3) 

Consider these assumptions: 

(C1) The function 𝛺 : E 
  
→   ℂ

 

is an analytical function; 

(C2) For 𝑟, s ∈  T, and 𝛺1, 𝛺2 ∈  ℂ(𝑇), there exists a non-negative constant𝑝, 𝑞 such that: 

|𝑊(r, Ω1) - 𝑊(𝑟, 𝛺2)|  ≤  p |𝛺1 - Ω2|,  

|𝛯(r, s, Ω1) - Ξ(𝑟, s, Ω2)|  ≤  q |𝛺1 - Ω2|;  

(C3) For 𝑀, N ∈ R+, we have 𝑆𝑢𝑝
0≤𝑡≤𝜏

 |𝜆(𝑡) + 𝛽(𝑡)| ≤  M, and 𝑆𝑢𝑝
0≤𝑡≤𝜏

 | 𝛺(𝑡) | ≤  N. 

This segment's primary goal is to establish the existence and uniqueness of solutions to NFVIDEq. 

Theorem 1 helps to analyze the compactness of function sets, which is important for ensuring the 

problem's well-posedness. Furthermore, Theorem 2 is critical for proving the solution's uniqueness 

with the aid of certain fractional calculus properties. 

In order to examine whether a solution exists for problems (1) and (2), consider the integral 

operator 𝛹: (ℂ(𝑇), ‖. ‖∞)  → (ℂ(𝑇), ‖⋅‖∞). 

Where 

‖𝑥𝑖‖∞ = 𝑆𝑢𝑝
𝑡∈𝑇
|𝑥𝑖(𝑡)|, ∀𝑥𝑖 ∈ ℂ(𝑇), 

such that 

(𝛹𝛺)(𝑡) =  𝛺0 + 𝛽(𝑡) ∫ 𝛺(𝑟)   dr
𝜏

0

 + 
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 
𝑡

0

[𝑊(𝑟, 𝛺(𝑟)) + 𝜆(𝑡) ∫ 𝛯 (r, s, Ω(𝑠)) ds
𝑟

0

]  dr.

 

Now, we will proceed to present the following theorems:

 Theorem 3. Under conditions (C1)–(C3), the problems (1) and (2) possess at least one solution. 
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Proof. Here's how we are going to approach the proof: 

Step 1. Suppose that we have a sequence of solutions {𝛺𝐾}𝐾∈𝑁 that converges to 𝛺 in ℂ(𝑇) for 

some 𝑡 ∈ 𝑇, and by the aid of Theorem 1, we have: 

|𝛹𝛺𝐾(𝑡) −  𝛹𝛺 (𝑡)|  ≤  |𝛽(𝑡)| ∫ |𝛺𝐾(𝑟)  - Ω(𝑟)| dr
𝜏

0

 

+
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 
𝑡

0

|𝑊(𝑟, 𝛺𝐾(𝑟)) - 𝑊(𝑟, 𝛺(𝑟))| dr  
 

+ 
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 
𝑡

0
|𝜆(𝑡)| [∫ |𝛯 (r, s, Ω𝐾(𝑠)) - Ξ (r, s, Ω(𝑠))|

𝑟

0
 ds]dr . 

So, 

kSup ( )(t) - ( )(t)      [MT + 
𝑃𝑇𝜐

𝛤(𝜐+1)
  + 

𝑀𝑞𝑇𝜐+1

𝛤(𝜐+2)
 ]  .  𝑆𝑢𝑝 |𝛺𝐾(𝑡) - Ω(𝑡)|. 

Thus, 

‖(𝛹𝛺𝑘)(𝑡) - (ΨΩ)(𝑡)‖∞  ≤  𝑄 (M, 𝜐) ‖𝛺𝐾(𝑡) - Ω(𝑡)‖∞, 

where 

𝑄 (𝑀, 𝜐)  =  MT + 
𝑃𝑇𝜐

𝛤(𝜐+1)
  + 

𝑀𝑞𝑇𝜐+1

𝛤(𝜐+2)
. 

From (C1), we have ‖𝛹𝛺𝐾(𝑡) - ΨΩ(𝑡)‖∞  
  
→   0 , as  K 

  
→   ∞. This implies that𝛹is a continuous 

operator on ℂ(𝑇). 

Step 2. Our goal here is to show that𝛹 transforms bounded sets into bounded sets in ℂ(𝑇) such 

that𝛹:𝐵�̃�  
  
→   ℂ(𝑇), where 𝐵�̃�  is a closed bounded convex subset of ℂ(𝑇)  such that 𝐵�̃�  =

 {𝛺(𝑡)  ∈  ℂ(𝑇) ∶  ‖𝛺‖∞ < 𝑎, 𝑎 >  0}. 

For all 𝛺(𝑡)  ∈  𝐵�̃�, we have 

|𝛹 𝛺 (𝑡)|  ≤  |𝛺0| + |𝛽(𝑡)| ∫ |𝛺(𝑟)| dr

𝜏

0

 

+ 
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 
𝑡

0

|𝑊(𝑟, 𝛺(𝑟)) - 𝑊(𝑟, 0)| dr  

+
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 
𝑡

0

|𝜆(𝑡)| [∫ |𝛯 (r, s, Ω(𝑠) - Ξ (r, s, 0)|
𝑟

0

 ds] dr  

+ 
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 

𝑡

0

|𝑊(r, 0)| dr 
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+ 
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 
𝑡

0
|𝜆(𝑡)| ∫ |𝛯 (r, s, 0)|

𝑟

0
 ds dr. 

For 𝑎0 , b0 > 0, set 𝑆𝑢𝑝 |𝑊(𝑟, 0)|  ≤  a0 , and 𝑆𝑢𝑝 |𝛯(𝑟, s, 0)|  ≤  b0. 

Thus, we have 

‖(𝛹𝛺) (𝑡)‖∞  ≤  |𝛺0| + MNT + 
(𝑃𝑁+𝑎0) 𝑇

𝜐

𝛤(𝜐 + 1)
 + 

(𝑞𝑁+𝑏0) 𝑇
𝜐+1

𝛤(𝜐 + 2)
. 

So, 

‖(𝛹𝛺) (𝑡)‖∞ < 𝜇, for all 𝑡 ∈ 𝑇,  

where 

𝜇 = |𝛺0| + MNT  + 
(𝑃𝑁+𝑎0)𝑇

𝜐

𝛤(𝜐+1)
  + 

(𝑞𝑁+𝑏0) T
𝜐+1

𝛤(𝜐+2)
 . 

Thus, for all 𝛺 ∈  𝐵�̃�, we have 𝛹 𝐵�̃�  ⊂  𝐵�̃�. 

Step 3. We will show that 𝛹is completely continuous on ℂ(𝑇). 

For 𝛺 ∈  𝐵�̃�, and 𝜃1 , 𝜃2  ∈  T such that 𝜃1 < 𝑡 < 𝜃2, 

|(𝛹 𝛺)(𝜃1) - (Ψ 𝛺)(𝜃2)| ≤ |𝜃1 - 𝜃2| |𝜆 (𝜃)| 𝑁 

+
1

𝛤(𝜐)
 ∫ ((𝜃1 - r)

𝜐−1 -(𝜃2 - r)
𝜐−1) 

𝑡

0

|𝑊(𝑟, 𝛺(𝑟))| dr 

+
1

𝛤(𝜐)
 ∫ (𝜃2 - r)

𝜐−1 
𝜃2

𝜃1

|𝑊(r, Ω(𝑟))| dr 

+
1

𝛤(𝜐)
 ∫ ((𝜃1 - r)

𝜐−1 - (𝜃2 - r)
𝜐−1) 

𝜃2

𝜃1

∫ |𝛯 (r, s, Ω(𝑠))| ds dr
𝑡

0

 

+ 
1

𝛤(𝜐)
 ∫ ((𝜃1 - r)

𝜐−1 -(𝜃2 - r)
𝜐−1) 

𝜃2

𝜃1

∫ |𝛯 (r, s, Ω(𝑠))| ds dr
𝑡

0

 

+
1

𝛤(𝜐)
 ∫ (𝜃1 - r)

𝜐−1 
𝜃2

𝜃1

∫ |𝛯 (r, s, Ω(𝑠))| ds dr
𝑡

0

, 

|(𝛹 𝛺)(𝜃1) - (Ψ 𝛺)(𝜃2)|  ≤  |𝜃1 - 𝜃2| |𝜆 (𝜃)| 𝑁 

+ 
1

𝛤(𝜐 + 1)
 [2 (𝜃2 - 𝜃1)

𝜐 + 𝜃1
𝜐 - 𝜃2

𝜐] 

 

+
1

𝛤(𝜐+2)
 [2 (𝜃2 - 𝜃1)

𝜐+1 + 𝜃1
𝜐 - 𝜃2

𝜐]. 
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So, we obtain‖𝛹 𝛺 (𝜃1) - Ψ 𝛺 (𝜃2)‖∞  
  
→   0 , as𝑄1  

  
→   Q2 , and hence [𝛹 𝐵�̃�]  be equicontinuous 

for all 𝛺 ∈  𝐵�̃�. 

By Theorem 1,Ψis relatively compact, and hence it is completely continuous. From Schafer’s 

theory, see [32], we have validated that at least one solution exists for problems (1) and (2) on ℂ(𝑇). 

Theorem 4. Under the conditions (C2) and (C3), the problems (1) and (2) provide a unique solution if 

𝑄(𝑀, 𝜐) < 1. 

Proof. According to fixed point theory, it is evident that 𝛺 (𝑡) is a solution to the problems (1) and (2) 

only when 𝛺 ∈  ℂ(𝑇)

 

becomes a fixed point of the operator 𝛹. 

For 𝛺1 , Ω2 ∈  ℂ(𝑇) , we have 

|(𝛹𝛺1) (𝑡) − (𝛹𝛺2) (𝑡)|  ≤  |𝛽(𝑡)| ∫ |𝛺1(𝑟)  - Ω2(𝑟)| dr

𝜏

0  

+
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 

𝑡

0

|𝑊(𝑟, 𝛺1(𝑟)) - 𝑊(𝑟, 𝛺2(𝑟))| dr  

+
1

𝛤(𝜐)
 ∫ (𝑡 - r)𝜐−1 
𝑡

0
|𝜆(𝑡)| [∫ |𝛯 (r, s, Ω1(𝑠) - Ξ (r, s, Ω2(𝑠)|

𝑟

0
]dr . 

So, according to Theorem 3, we have 

1 2Sup (  )(t) - (  )(t)        [MT + 
𝑃𝑇𝜐

𝛤(𝜐+1)
  + 

𝑀𝑞𝑇𝜐+1

𝛤(𝜐+2)
 ]  . 𝑆𝑢𝑝 |𝛺1(𝑡) - Ω2(𝑡)|. 

Thus, 

‖(𝛹 𝛺1)(𝑡) - (Ψ 𝛺2)(𝑡)‖∞  ≤  𝑄 (M, 𝜐) ‖𝛺1(𝑡) - Ω2(𝑡)‖∞. 

For 𝑄(𝑀, 𝜐) < 1 , 𝛹  becomes a contraction mapping. So, according to Theorem 2, 𝛹 has a fixed 

point, which guarantees the uniqueness of the solution for problems (1) and (2). 

4. Numerical approximation for solving problems (1) and (2) 

This section introduces a modified method for solving the NFVIDEq after presenting a 

computational approach based on the Euler Wavelet Method (EWM). 

4.2. Euler wavelets method 

The Euler wavelet of degree m denoted by �̑�𝑛𝑚(𝑧), and defined on the interval [0,1] as: 

�̑�𝑛𝑚(𝑧)  ≃  2
𝑎−1

2  Ȇ𝑚 (2
𝛼−1 Z - n + 1), 

𝑛−1

2𝛼−1
  ≤  Z ≤ 

𝑛

2𝛼−1
,     (4) 

where n = 1, 2, ... 2
𝛼−1

 ,  𝛼 ∈  ℤ+, and m = 0, 1, ... N -1. 
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�̑�𝑚 (𝑧) = {

1 ,                                                    m = 0;

(
2 (-1)m-1 (m!)2

(2 m)!
 E𝑚 (𝑧))

−1

2
,   m > 0,

     (5) 

where 𝐸𝑚 (𝑧)is the Euler polynomial defined in Definition 2. 

A function z (𝑡) can be expressed in terms of Euler wavelets as a truncated series given by 

𝑍(𝑡) = ∑2
𝛼−1

𝑛=1 ∑   hnm �̑�𝑛𝑚 (𝑡)
𝑁−1
𝑚=0 ,       (6) 

 =  H𝑇 𝛹 (𝑡),           (7) 

where 𝐻𝑇is the coefficient vector defined as 

T
11 1(N-1) 20 2(N-1)10

H = h  , h  , ..., h  , h  , ... h


 , ... h2𝛼-1 0 , ... h2𝛼-1 (N-1)].   (8) 

Using Eq (6), we obtain 

𝛽𝑖𝑗 =  ∫ �̑�𝑖𝑗  (1) z(𝑡)  dt 
1

0
 = ∑2

𝛼−1

𝑛=1 ∑   hnm  ∫ �̑�𝑛𝑚(𝑡)  Ψ̑𝑖𝑗(𝑡)
1

0
 z(𝑡) dt𝑁−1

𝑚=0 , 

= ∑2
𝛼−1

𝑛=1 ∑   hnm 𝛾𝑛𝑚
𝑖𝑗
 𝑁−1

𝑚=0 ,        (9) 

where 

𝛾𝑛𝑚
𝑖𝑗

 =  ∫ �̑�𝑛𝑚 (1) �̑�𝑖𝑗  (𝑡) z(𝑡) dt 
1

0
. 

𝛹(𝑡)
 
in Eq (7) is Euler function vector, which is defined as 

𝛹(𝑡) = [�̑�10 , Ψ̑11 , ..., Ψ̑1(𝑁−1) , Ψ̑20 , ..., Ψ̑2(𝑁−1), �̑�2𝛼-1 0 , ...,Ψ̑2𝛼-1 (𝑁−1)]. 
 

(10) 

So, we can formulate a system of matrices as 

𝐵𝑇 =  H𝑇 𝛤,          (11) 

with 𝛽 = [𝛽10 , 𝛽11 , ..., 𝛽1(𝑁−1) , 𝛽20 , ..., 𝛽2(𝑁−1), 𝛽2𝛼-1 0 , ..., 𝛽2𝛼-1 (𝑁−1)]
𝑇
, and 𝛤 = [𝛾𝑛𝑚

𝑖𝑗
]
𝑀×𝑀

, is a 

matrix of order 𝑀 = 2𝛼−1 N, and is given by: 

𝛤 = ∫ 𝛹 (𝑡) . Ψ𝑇(𝑡)    dt
1

0
. 

Similarly, we can approximate the function of two variables 𝐹(t, s) in terms of Euler wavelets as 

𝐹(𝑡, 𝑠) = Ψ(𝑡) F̑ 𝛹(𝑠),        (12) 

where �̑� is a matrix of order m × m given by: 

�̑� = Γ−1  [∫ ∫
1

0
𝐹(𝑡, 𝑠) 

1

0
𝛹 (𝑡)  Ψ(𝑠)  ds] 𝛤−1. 
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The 𝐸𝑊 vector 𝛹(𝑡), defined in Eq (10), can be determined as 

∫  𝛹 (𝑉)  𝑑𝑣
𝑡

0
  = F Ψ (𝑡),        (13) 

where 𝐹 is 𝑀 ×𝑀 dimensional matrix. 

Now, we can define the fractional integration of 𝛹(𝑡) as 

𝐼𝜐 𝛹 (𝑡) = 𝐹𝜐 𝛹 (𝑡),         (14) 

where 𝐹𝜐 is 𝑀 × 𝑀dimensional matrix. 

So, from Definition 1, and Eq (12), 𝐹𝜐obtained as follows: 

𝐹𝜐 = [∫ (
1

𝛤(𝜐)0
 ∫ (𝑡 - v)𝜐−1
𝑡

0
 𝛹 (𝑣) d v) 𝛹𝑇 (𝑡)  dt

1

0
]  . Γ−1.     (15) 

Numerical solution for solving problems (1) and (2) using EWM: 

We will convert problems (1) and (2) to a set of algebraic equations by implementing the EWM. 

We will approximate the following functions with the aid of Eqs (10)–(12) as follows: 

Let 

 𝐷𝜐 𝛺 (𝑡)  =  H1
𝑇 𝛹 (𝑡) ,  0 < 𝜐 < 1,       (16) 

such that 

𝛺 (0)  =  𝑈𝑇𝛹 (𝑡),        (17) 

𝑊(t , Ω (𝑡)) = Ψ𝑇(𝑡) F̑.        (18) 

Integrating Eq (16) and using Eq (14), we obtain 

𝛺 (𝑡)  =  𝑈𝑇𝛹 (𝑡) + 𝐻1
𝑇 F𝜐 𝛹 (𝑡)=  (𝑈𝑇 + 𝐻1

𝑇 F𝜐) 𝛹 (𝑡)=  Ψ𝑇(𝑡)  ⋅ 𝐻2,   (19) 

where 

𝐻2 = U +(𝐹𝜐)𝑇𝐻1. 

The integral part of problems (1) and (2) can be defined as 

∫ 𝛯 (t, r, Ω(𝑟))  dr

𝑡

0

= ∫ 𝛹𝑇(𝑡) F̑𝛹(𝑟) 𝛹𝑇(𝑟) H2 dr 

1

0

 

= 𝛹𝑇(𝑡) F̑𝐻2 ⋅ ∫ 𝛹(𝑟) 𝛹𝑇(𝑟) dr 

1

0

  

=  Ψ𝑇 (𝑡) F̑ 𝛤 H2 

=  Ψ𝑇(𝑡)  H3,         (20) 

which implies that 

𝐻2  =   𝑈 + �̑�  + 𝜆 (𝑡) 𝐻3.       (21) 
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Equation (21) is a linear system of 𝑚 = 2
𝛼−1𝑁

 

algebraic equations. By plugging the value of 𝐻2 into 

Eq (19), the approximate solution of problems (1) and (2) can be computed numerically. 

4.3. Proposed technique for solving problems (1) and (2) 

4.2.1 Rationalized Haar Wavelet Method (RHW) 

RHW is considered to be one of the essential categories among the various kinds of 

wavelets [22,23]. We can enlarge any function 𝑢(𝑥) as defined by Definition 4 as: 

𝑢(𝑥)  ≃  ∑ 𝑒𝑘 h𝑘 (𝑥)
∞
𝑘=0 ,        (22) 

where 

𝑒𝑘 = 2
𝑖 ∫ 𝑢(𝑧) ℎ𝑘(𝑧) 𝑑𝑧 =  2

𝑖 < 𝑢, ℎ𝑘 > ℎ𝑟
1

0
.
 

For 𝑖 = 1, 2, ..., r, the level of wavelet is2𝑖,𝑟is a translation parameter. 

Equation (22) could be expressed as 

𝑢(𝑥)  =  ∑ 𝑒𝑘 h𝑘 (𝑥)
𝑛−1
𝑘=0  = e𝑇 h(𝑥),       (23) 

where 

𝑒𝑇 = [𝑒0 , e1 , ..., en-1], andℎ(𝑥) =  [ℎ0(𝑥) , ℎ1(𝑥) , ..., ℎ𝑛+1(𝑥)]. 

Also, any function 𝑣(x, y) of two variables in a complex space can be similarly approximated by 𝑅𝐻 

functions as
 

𝑣(x,y)  =  ∑   ∑ 𝑒𝑘ℓ h𝑘ℓ (x,y)𝑛−1
ℓ=0

𝑛−1
𝑘=0  = ẽ𝑇 h(x,y),     (24) 

where 

�̃�𝑇 = [𝑒00 , e01 , ..., en-1,n-1]
𝑇

, 

ℎ(𝑥, 𝑦) = [ℎ00 , ℎ01 , ..., ℎ𝑛+1,𝑛−1](𝑛−1)×(𝑛−1)
𝑇

 (𝑥, 𝑦), 

where 

ℎ𝑘ℓ(𝑥, 𝑦) = ℎ𝑘 (𝑥) ℎℓ (𝑦),        
(25)

 

the coefficients 𝑒𝑘ℓ are given by:
 

𝑒𝑘ℓ = 
⟨𝜐 (𝑥,𝑦), h𝑘ℓ (𝑥,𝑦)⟩

‖ℎ𝑘ℓ(𝑥,𝑦)‖∞
2 .         (26) 

 

Consider 𝛺𝑛(𝑡) be a sequence of functions derived iteratively from problems (1) and (2) as 

𝐶𝐷𝜐 𝛺𝑛(𝑡)  =  𝛺0 + 𝛽 (𝑡) ∫ 𝛺𝑛−1 (𝑡)  dr
𝑇

0
 + W (t, Ω𝑛−1 (𝑡))+ 𝜆 (𝑡) ∫ 𝛯 (t, Ω𝑛−1 (𝑟))  𝑑𝑟

𝑡

0
. 

Assume 
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𝐹𝑛−1 (𝑡) =  W (t, Ω𝑛−1 (𝑡)), 

and 

𝐺𝑛−1 (t, r) = Ξ (t, , r, Ω(𝑟)). 

Then, we have
 

𝐶𝐷𝜐 𝛺𝑛−1(𝑡)  =  𝛺0 + 𝛽 (𝑡) ∫ 𝛺𝑛−1 (𝑟)  dr
𝑇

0
 + Fn-1 (𝑡) + 𝜆(𝑡) ∫ 𝐺𝑛−1 (t, t)  dr

𝑡

0
 .  (27)

 

Consider 𝑄𝑛 be the orthogonal projection with the following property (see [18]), 
 

∫ 𝑄𝑛 (𝛺n-1 (𝑡))  dr
𝑡

0
 =  ∑   ∑  𝑒𝑖𝑘 h𝑘 (𝑡)

𝑛−1
𝑘=0

𝑛−1
𝑖=1 ,      (28) 

where
 

𝑒𝑖𝑘 = 
⟨𝛺𝑖−1 (𝑡),ℎ𝑘 (𝑡)⟩

‖ℎ𝑘 (𝑡)‖∞
2 ,

 

∫ 𝑄𝑛 (𝛺n-1 (t,r)) dr
𝑡

0
 =  ∑   ∑  𝑛−1

𝑘=0 ∑ 𝑒𝑖𝑘ℓ h𝑘ℓ (t, r)
𝑛−1
ℓ=0

𝑛−1
𝑖=1 ,

    
(29)

 

where
 

𝑒𝑖𝑘ℓ = 
⟨𝛯 (𝑡,𝑟,𝛺𝑛−1 (𝑟)),ℎ𝑘ℓ (𝑡,𝑟)⟩

‖ℎ𝑘ℓ (𝑡,𝑟)‖∞
2 .

 

Equation (27), with the assistance of Eqs (28) and (29), will be: 

𝐶𝐷𝜐 𝛺𝑛(𝑡) =  𝛺0 + 𝛽 (𝑡)∑   ∑ 𝑒𝑖𝑘 h𝑘 (𝑡)

𝑛−1

𝑘=0

𝑛−1

𝑖=1

 + ∑ 𝑒𝑘 h𝑘 (𝑡)

𝑛−1

𝑘=0

 

 + 𝜆 (𝑡) ∑   ∑  𝑛−1
𝑘=0  ∑  𝑒𝑖𝑘ℓ h𝑘ℓ (t, r).

𝑛−1
𝑘ℓ=0

𝑛−1
𝑖=1      (30) 

4.2.2 Euler polynomial approximation 

The fractional derivative part of problems (1) and (2) can be approximated by using the Euler 

polynomial approximation as follows: 

Lemma 1. Consider the fractional derivative of a complex function 𝛺 (𝑡)  ∈  ℂ [0,1] with respect to 

Euler polynomials as: 

𝐷𝑛
𝜐 𝛺 (𝑡)  =  

1

2
 [∑  (

𝑛
ℓ
) (1)𝑛−1 Eℓ (𝑎(𝑡), b(𝑡)) + E𝑛 (𝑏(𝑡))

𝑛
ℓ=0 ],    (31)

 

where 

𝑎(𝑡) = Re(𝛺 (𝑡)),and𝑏(𝑡) = Im (𝛺 (𝑡)). 

then, we have 
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𝛺 (𝑡) = ∑   ∑  𝑛
𝑘=0  ∑  𝑘

𝑞=0 (
𝑛
ℓ
)𝑛

ℓ=0  (
ℓ
𝑘
) (1)𝑛−1 (𝑎 (𝑡))𝑞 S

2 (k, q) . 𝜔ℓ−𝑘,𝜐 + 𝜔𝑛,𝜐(𝑡), 

where 

𝜔𝑛,𝜐 (𝑡)  =  
1

2 𝛤(𝜐)
 ∫ (𝑡 - 𝜇)𝜐-1

𝑡

0

 E𝑛 (𝑏 (𝜇)) d𝜇 . 

Proof. As per Definition 1 and Proposition 1, applying 𝐼𝑡
𝜐 to both sides of formula (31) results in: 

𝛺𝑛 (𝑡) - ∑  
𝛺(0)

𝑘!
 t𝑘 = 

1

2

𝑛−1
𝑘=0   I𝑡

𝜐  [∑  𝑛
ℓ=0 (

𝑛
ℓ
) (1)𝑛−1 Eℓ (𝑎 (𝑡), b(𝑡)) + 𝐸𝑛 (𝑏 (𝑡))]. 

According to Definition 3, we obtain 

𝛺𝑛(𝑡) - ∑
𝛺 (0)

𝑘!
𝑡𝑘 = 

1

2
𝐼𝑡
𝜐 [∑  

𝑛

ℓ=0

∑

ℓ

𝑘=0

∑ 

𝑘

𝑞=0

(
𝑛
ℓ
) (
ℓ
𝑘
) (1)𝑛−1(𝑎)𝑞𝑆

2(k, q)𝐸ℓ−𝑘(𝑏(𝑡))+E𝑛(𝑏(𝑡))]

𝑛−1

𝑘=0

 ,
 

= 
1

2
 [
1

𝛤(𝜐)
 ∑  

𝑛

ℓ=0

∑

ℓ

𝑘=0

∑ 

𝑘

𝑞=0

(
𝑛
ℓ
) (
ℓ
𝑘
) (1)𝑛−1(𝑎)𝑞𝑆

2(k, q) ∫ (𝑡 − 𝜇)𝜐−1 Eℓ−𝑘(𝑏(𝜇)) d𝜇
𝑡

0

 
 

+ 
1

𝛤(𝜐)
 ∫ (𝑡 - 𝜇)𝜐−1
𝑡

0
 E𝑛 (𝑏 (𝜇)) d𝜇]. 

Set 

𝜔𝑛,𝜐 (𝑡) = 
1

2 𝛤(𝜐)
 ∫ (𝑡 - 𝜇)𝜐−1
𝑡

0
 E𝑛 (𝑏 (𝜇)) d𝜇, 

and 

𝜔ℓ−𝑘,𝜐 (𝑡) = 
1

2 𝛤(𝜐)
 ∫ (𝑡 - 𝜇)𝜐−1
𝑡

0
 Eℓ-k (𝑏 (𝜇)) d𝜇. 

Therefore, as per Lemma 1, Eq (30) can be expressed as 

𝛺𝑛(𝑡) = Ω0 + ∑

𝑛

ℓ=0

∑ ∑  

𝑘

𝑞=0

(
𝑛
ℓ
) (
ℓ
𝑘
) (1)𝑛−1(𝑎 (𝑡))𝑞𝑆

2(k, q) . 𝜔ℓ−𝑘,𝜐 (𝑡) + 𝜔𝑛,𝜐 (𝑡)

𝑛

𝑘=0

  

+ 𝛽 (𝑡)∑

𝑛−1

𝑖=1

∑  e𝑖𝑘 h𝑘 (𝑡)

𝑛−1

𝑘=0

+ ∑  e𝑘 h𝑘  (𝑡)

𝑛−1

𝑘=0

  

+ 𝜆 (𝑡) ∑𝑛−1𝑖=1 ∑  ∑𝑛−1ℓ=0 𝑒𝑖𝑘ℓ h𝑘ℓ (t, r)
𝑛−1
𝑘=0 .         (32) 

Lemma 2. The suggested technique has a convergence rate of order𝑂(𝑀2(2𝑑)𝑀). 

Proof. Using Lemma 1, assumption (C3), and putting 𝑑 ≤
1

2
 , we get the proof. (See [8]). 
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5. Numerical experiments 

This section will numerically conduct the proposed method for solving problems (1) and (2) to 

validate the theoretical work. To validate the approach and assess its effectiveness, we pose two 

problems that satisfy the assumptions (C1)–(C3). 

Problem 1. Consider the following: NFVIDeq 

𝐷0.8 𝛺 (𝑡) = 
1 + e𝛺(𝑡)

3
 + t2  ∫ 𝑒−𝜋(𝑟

2+𝑡) 
𝑡

0

 𝛺 (𝑟) dr , 

with the initial condition 𝛺 (0) = 2. 

Here we have 𝜐 = 0.8 , 𝜆 (𝑡) = t2, 𝛯 (t, r, Ω (𝑟)) = e−𝜋(𝑟
2+𝑡) 𝛺 (𝑟) , 𝛽(𝑡) = 0 , and the known 

function 𝑊 (t, Ω (𝑡)) = 
1 + e𝛺(𝑡)

3
  is employed to guarantee that the exact solution will be 

𝛺 (𝑡) =𝑒√3∏𝑖𝑡 + 1. Also, we have that 𝑃 = 0.6, 𝑞 = 0.87 . 

So, we have 𝑀𝑇 + 
𝑃 T𝜈

𝛤 (𝜈+ 1)
 + 

𝑀 q T𝜈+ 1

𝛤 (𝜈 + 2)
 = 0.864 < 1 . According to Theorem 2, we conclude that 

Problem 1, has a unique solution. 

Using EWM and our proposed method, we have assessed and presented the estimated solutions 

in Table 1 with 𝑡 ∈  [0 , 1] ,   as    t = 0.1 : 0.1 : 1 , by selecting two distinct �̃� values as �̃� = 10, and 

�̃� = 20. Figure 1 shows the numerical solutions using the suggested technique for 𝛺𝑛(𝑡) together with 

its magnitude 𝑎𝑏𝑠 (𝛺 (𝑡))
 

and the argument 𝑎𝑟𝑔(𝛺 (𝑡))
 
at �̃� = 20. 

Table 1. Shows the absolute errors in problem 1's exact and approximate values by using 

EWM and the proposed method at ñ = 10 and ñ = 20. 

𝑡𝑖 
�̃� = 10 �̃� = 20 

EWM The proposed method EWM The proposed method 

0.1 2.45 × 10-10 2.22 × 10-10 1.04 × 10-11 4.04 × 10-11 

0.2 8.45× 10-12 4.32 × 10-12 1.28× 10-10 2.32 × 10-12 

0.3 1.36 × 10-11 1.54 × 10-11 5.38 × 10-12 1.36 × 10-13 

0.4 8.53 × 10-10 6.04 × 10-10 3.19 × 10-11 5.46 × 10-12 

0.5 1.17× 10-9 7.25 × 10-10 8.35× 10-12 8.93 × 10-12 

0.6 2.86 × 10-12 1.39 × 10-12 5.18 × 10-11 3.47 × 10-11 

0.7 9.28 × 10-13 8.23 × 10-13 4.37 × 10-10 6.45 × 10-13 

0.8 1.84 × 10-13 3.39× 10-13 4.03× 10-12 7.02 × 10-13 

0.9 3.53 × 10-12 2.28× 10-13 2.38 × 10-13 1.39 × 10-15 

1 1.09 × 10-13 5.04 × 10-13 1.22 × 10-13 7.43 × 10-15 
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Figure 1. Approximate solutions for Problem 1 by utilizing the magnitude of the solution 

in (I) and the argument of the solution in (II) through the proposed method atñ = 20. 

Problem 2. Consider the following NFVIDeq: 

𝐷0.2 𝛺 (𝑡) = 
𝑡

√1 + Ω2 (𝑡)
 +  ∫ Cos t2 e𝛺 (𝑟)

𝑡

0

  dr , 

with the initial condition 𝛺 (0) = 0. 

The known function 𝑊 (𝑡, 𝛺 (𝑡)) used to ensure the exact solution given by 𝛺(𝑡) =

2 𝑖 𝑠𝑖𝑛  𝑡 − 3 𝑡2

√1 + 𝑡3 + 𝑡𝑎𝑛  𝑡
, as we shown in Problem 1, the condition 𝑀𝑇 +

𝑃 𝑇𝜈

𝛤 (𝜈+ 1)
+
𝑀 𝑞 𝑇𝜈+ 1

𝛤 (𝜈 + 2)
= 0.893<1. So, this 

problem has a unique solution. 

Table 2. Shows the absolute errors in problem 2's exact and approximate values by using 

EWM and the proposed method at ñ = 10 and ñ = 20. 

𝑡𝑖 
�̃� = 20 �̃� = 30 

EWM The proposed method EWM The proposed method 

0.1 8.37 × 10-12 9.17 × 10-12 3.11 × 10-11 5.14 × 10-12 

0.2 1.28× 10-12 2.06 × 10-12 3.53× 10-12 3.42 × 10-13 

0.3 4.02 × 10-11 1.45 × 10-11 6.73 × 10-13 3.84 × 10-15 

0.4 1.46 × 10-11 6.18 × 10-11 3.02 × 10-11 4.01 × 10-12 

0.5 7.83× 10-13 7.03 × 10-12 7.94× 10-13 7.12 × 10-12 

0.6 6.25 × 10-15 3.94 × 10-15 2.89 × 10-12 9.91 × 10-12 

0.7 2.05 × 10-13 9.47 × 10-13 7.37 × 10-13 1.74 × 10-17 

0.8 8.47 × 10-13 2.41× 10-15 8.28× 10-13 6.47 × 10-17 

0.9 1.19 × 10-14 6.18× 10-17 1.45 × 10-19 3.11 × 10-19 

1 3.38 × 10-17 8.03 × 10-17 8.36 × 10-18 8.32 × 10-19 
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Figure 2. Approximate solutions for Problem 2 by utilizing the magnitude of the solution 

in (I) and the argument of the solution in (II) through the proposed method atñ = 30. 

Table 2 shows the approximate solutions for problem 2 at t = 0.1 : 0.1 : 1 ,  and by taking 

�̃� = 20 , �̃� = 30. Figure 2 shows the numerical solution by the proposed technique at �̃� = 30
 
by the 

aid of 𝑢 = Re (𝛺 (𝑡)), 𝜐 = Im (𝛺 (𝑡)), the magnitude, and the argument of the solution. 

6. Conclusions 

In general, the FIDEq solution is hard to study, especially if the unknown function is complex. 

We present the existence and uniqueness results of the solution for NFVIDEq in the given problem by 

applying the fixed-point theorem of Banach space with the contraction mapping principle and some 

properties of fractional calculus. In addition, we analyze the approximate solutions for solving 

NFVIDEq in problems (1) and (2), utilizing the EWM to a matrix representation that aligns with a 

system of algebraic linear equations. We demonstrate that this method is both highly efficient and 

effective. On the other hand, this research employs a novel approach by using Euler's polynomial 

method to construct the rationalized Haar wavelet method (RHM), which takes the form of convergent 

series with easily computed terms in the bases of Euler polynomials and Haar wavelet functions. In 

Section 5, we present two examples of numerical calculations using MATLAB R2022b. These 

mathematical calculations are the last stage in supporting the theoretical study. The problems supplied 

show the differences between exact and numerical solutions for various values of 𝑛. Furthermore, the 

absolute errors in every problem are shown in Tables 1 and 2. Figures 3 and 4 substantially converge the 

precise and numerical solutions. Based on what exists, we can deduce that increasing the value of 𝑛 

results in a longer time to attain 𝑡 → 1. When compared to the EWM, the proposed method gives more 

accurate numerical answers. Therefore, we can conclude that the suggested method is very good at 

finding exact numerical solutions and cuts down on processing time while keeping accuracy high. Also, 

the suggested approach is particularly effective and significantly reduces the time required for 

calculations while maintaining precision. This study's findings add to the existing literature on the topic, 

particularly for applied researchers in the sciences and engineering. 
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Figure 3. The disparity that exists in the precise, approximate solutions of EWM and the 

proposed method of Problem 1 at ñ = 10 and ñ = 20in (I) and (II), respectively. 

 

Figure 4. The disparity that exists in the precise, approximate solutions of EWM and the 

proposed method of Problem 2 at ñ = 20 and ñ = 30in (I) and (II), respectively. 

As a future work, we can explore the proposed numerical method to fractional integro-differential 

equations in higher-dimensional complex spaces, which are crucial for modeling multi-variable 

systems in physics and engineering. Also, we can make a comparative study of the proposed method 

with other advanced numerical techniques such as finite element methods, boundary element methods, 

or more recent machine learning-based approaches to determine which techniques offer better accuracy 

and computational efficiency. 
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