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1. Introduction

In this paper, we focus on a class of critical κ(x)-Kirchhoff-type problems formulated as follows:
S

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

)
∆κ(x)u = |u|r(x)−2u + g(x, u), in Ω,

|∇u|κ(x)−2 ∂u
∂v = |u|s(x)−2u on ∂Ω,

(1.1)

where Ω is a bounded domain in RN , with the Lipschitz boundary denoted by ∂Ω. The symbol ∂
∂v

represents the outer unit normal derivative and ∆κ(x)u = div
(
|∇u|κ(x)−2

∇u
)
. S(t) is a continuous
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function and the function g : Ω × R → R is a Carathéodory function that satisfies appropriate
assumptions.

We assume that both κ, r and s are continuous functions in Ω, meaning they are defined and
continuous on the closure of Ω. Moreover, we consider the condition 1 < κ(x) < r(x) ≤ κ∗(x) for
all x ∈ Ω, where p∗(x) represents the critical Sobolev exponent. Additionally, we assume that the set
A = {x ∈ Ω : r(x) = κ∗(x)} is non-empty.

Problems with critical growth, the concentration-compactness principle introduced by
Lions (see [21]) has been widely recognized as a fundamental tool for establishing the existence
of solutions. This principle is particularly crucial when considering equations involving Sobolev
embeddings, which capture the critical growth behavior. For a more comprehensive understanding
of this topic, we suggest referring to the references [3, 4, 18, 24] and the additional sources mentioned
therein.

The study of problems with variable exponents, critical growth, and problems involving fractional
p-Laplacian has received significant attention in recent years. These problems have proven to
be interesting and relevant in various applications, such as the modeling of electro-rheological
fluids [20, 23, 25] and image processing [6]. Additionally, they give rise to challenging mathematical
problems that require careful investigation.

In [5], the authors consider the critical variable exponents equation:
(−∆)p(x)u = |u|r(x)−2u + a(x)|u|q(x)−2u in Ω,

u = 0 on ∂Ω,

(1.2)

where 1 < p(x) < r(x) ≤ p∗(x) for all x ∈ Ω, where p∗(x) denotes the critical Sobolev exponent
associated with p(x). The set A = {x ∈ Ω : r(x) = p∗(x)} is assumed to be non-empty, indicating the
presence of critical growth behavior.

To establish the existence of solutions, the authors employ variational methods and make use of
the mountain pass theorem. These techniques allow them to construct a suitable functional and apply
critical point theory to find nontrivial solutions to the problem (1.2).

Due to their importance, problems involving variable exponents are attracting increasing interest
from many researchers. Many authors studied the problem with Dirichlet, Neumann, or Steklov
boundary conditions on a bounded domain. In particular, Chammem et al. [7] used the mountain
pass theorem combined with Ekland’s variational principle to study the following Steklov problem:

(−∆)p(x)u + a(x)|u|p(x)−2u = f (x, u) in Ω,

|∇u|p(x)−2 ∂u
∂ν

+ b(x)|u|q(x)−2u = g(x, u) on ∂Ω.

(1.3)

After that, Chammem and Sahbani [8] considered the following double-phase problem:
(−∆)p1(x)u + (−∆)p2(x)u + a(x)|u|p1(x)−2u
+b(x)|u|p2(x)−2u = f (x, u) in Ω,

|∇u|p1(x)−2 ∂u
∂v + |∇u|p2(x)−2 ∂u

∂v = g(x, u) on ∂Ω.

(1.4)
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By means of variational methods, the mountain pass lemma and its Z2 symmetric version, the existence
and multiplicity of solutions for problem (1.4), was established.

Problems involving Kirchhoff-type with variable exponents are attracting attention and gaining
prominence in several research groups for numerous theoretical and practical questions [9, 10, 12, 13]
and the references therein. On the other hand, it is also worth mentioning Kirchhoff’s problems
with fractional operators, which over the years has been increasing exponentially [1, 17, 29]. The
p(x)-Laplacian possesses more complex nonlinearity which raises some of the essential difficulties.
For example, in [30], Z. Yücedag consider the p(x)-Kirchhoff problem with Steklov boundary value
conditions: 

M
(∫

Ω

1
p(x)

|∇u|p(x) dx
)
∆p(x)u = |u|q(x)−2u, in Ω,

|∇u|p(x)−2 ∂u
∂v = λ f (x, u) on ∂Ω,

(1.5)

where 1 < p(x) ≤ p∗(x) for all x ∈ Ω.
Under suitable conditions on the functions q and f , the authors employed variational methods and

fountain theorem to establish the existence and multiplicity of solutions for problem (1.5).
Motivated by the results presented in references [5, 7, 8, 30], our paper aims to contribute further

by studying the critical case of the aforementioned problem. To this end, we utilize a recent
concentration-compactness principle for spaces with variable exponents to investigate the weighted
Kirchhoff problem (1.1). Our study provides a generalization, improvement, and extension of the
aforementioned references under additional, appropriate conditions. Consequently, this research
project holds significant importance and offers valuable insights.

In this paper, we consider problem (1.1), where g(x, u) = a(x)h(u). Under specific hypotheses, we
employ the variational method, the mountain pass theorem, and the symmetric mountain pass theorem
to establish the existence and multiplicity of nontrivial weak solutions for problem (1.1). This rigorous
approach ensures the robustness and reliability of our results.

In summary, our research significantly contributes to the existing literature by exploring the critical
case of the Kirchhoff problem with Dirichlet boundary conditions. Through rigorous mathematical
techniques and the utilization of recent concentration-compactness principles, we establish the
existence and multiplicity of solutions for problem (1.1) under different scenarios, enhancing the
overall understanding of this important topic.

In Section 2, we present some necessary preliminary. In Section 3 we give our main results, where
we present and prove the existence and multiplicity of solutions for the weighted Kirchhoff problem.

2. Preliminaries

In this section, we provide an overview of some important properties of variable exponent spaces.
For more detailed information, we recommend referring to the works [11, 15, 16, 19, 26] and the
references therein. We consider the set

C+(Ω) = {κ ∈ C(Ω), κ(ξ) > 1,∀ξ ∈ Ω}.
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For all κ ∈ C+(Ω), consider

κ− = inf
Ω

κ(ξ), κ+ = sup
Ω

κ(ξ).

Additionally, we define

L κ(ξ)(Ω) =

{
u : Ω→ R,measurable :

∫
Ω

|u(ξ)|κ(ξ)dξ < ∞
}
,

with the norm on L κ(ξ)(Ω) defined as

|u|L κ(ξ)(Ω) = inf
{
$ > 0 :

∫
Ω

∣∣∣∣∣u(ξ)
$

∣∣∣∣∣κ(ξ) dξ ≤ 1
}
.

Also, we define

L κ(ξ)(∂Ω) =

{
u : Ω→ R, measurable :

∫
∂Ω

|u(ξ)|κ(ξ)dσ < ∞

}
,

with the norm on L κ(ξ)(∂Ω) defined as

|u|L κ(ξ)(∂Ω) = inf
{
$ > 0 :

∫
∂Ω

∣∣∣∣∣u(ξ)
$

∣∣∣∣∣κ(ξ) dσ ≤ 1
}
.

The spaces
(
L κ(ξ)(Ω), | · |L κ(ξ)(Ω)

)
and

(
L κ(ξ)(∂Ω), | · |L κ(ξ)(∂Ω)

)
are a Banach spaces, which we refer

to as variable exponent Lebesgue spaces.
The Sobolev space is defined as:

W1,κ(x)(Ω) =
{
u ∈ L κ(ξ)(Ω) : |∇u| ∈ L κ(ξ)(Ω)

}
with the norm

‖u‖ = ‖u‖W1,κ(x)(Ω) = ‖u‖L κ(ξ)(Ω) + ‖∇u‖L κ(ξ)(Ω) .

Denote by W1,κ(x)
0 (Ω) the closure of C∞0 (Ω) in W1,κ(x)(Ω).

The following proposition provides important properties of variable exponent spaces.

Proposition 1. [15] The spaces L κ(ξ)(Ω) and W1,κ(x)(Ω) are separable and reflexive Banach spaces.

Proposition 2. [7, 8, 27]

(1) The Hölder inequality holds, that is, for any u ∈ L κ(ξ)(Ω) and v ∈ L κ′(ξ)(Ω), we have∣∣∣∣∣∫
Ω

uvdξ
∣∣∣∣∣ ≤ (

1
κ−

+
1

(κ′)−

)
|u|κ(ξ)|v|κ′ (ξ).

(2) If p1, p2 ∈ C+(Ω) such that p1(ξ) ≤ p2(ξ) for all ξ ∈ Ω, then the embedding L p2(ξ)(Ω) ↪→ L p1(ξ)(Ω)
is continuous.
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Note that ‖u‖ and ‖∇u‖L κ(ξ)(Ω) are equivalent in the space W1,κ(x)
0 (Ω) , so let’s use ‖u‖ = ‖∇u‖L κ(ξ)(Ω),

for simplicity [11, 28].

The following proposition highlights the properties of the variable exponent Sobolev spaces.

Proposition 3. [15]

(1) If q ∈ C+(Ω) with q(ξ) < κ∗(ξ) for all ξ ∈ Ω, then the embedding from W1,κ(x)
0 (Ω) into L q(ξ)(Ω) is

compact and continuous. Here, κ∗(ξ) is defined as follows:

κ∗(ξ) =


Nκ(ξ)

N−κ(ξ) , if κ(ξ) < N,

∞, if κ(ξ) ≥ N.

(2) If q ∈ C+(∂Ω) with q(ξ) < κ∗(ξ) for all ξ ∈ ∂Ω, then the embedding from W1,κ(x)
0 (Ω) into L q(ξ)(∂Ω)

is compact and continuous. Here, κ∗(ξ) is defined as follows:

κ∗(ξ) =


(N−1)κ(ξ)

N−κ(ξ) , if κ(ξ) < N,

∞, if κ(ξ) ≥ N.

For simplicity, let us denote

Γ(u) =

∫
Ω

|∇u|κ(ξ) dξ.

The following proposition provides important properties of the functional Γ(u):

Proposition 4. [15]

(1) If Γ(u) ≥ 1, then ‖u‖κ
−

≤ Γ(u) ≤ ‖u‖κ
+

.

(2) If Γ(u) ≤ 1, then ‖u‖κ
+

≤ Γ(u) ≤ ‖u‖κ
−

.

(3) Γ(u) ≥ 1(= 1,≤ 1)⇔ ‖u‖ ≥ 1(= 1,≤ 1).

Let us define

ρ(u) =

∫
Ω

|u(ξ)|κ(ξ)dξ.

The next proposition provides properties of the functional ρ(u):

Proposition 5. [7, 8] For all u ∈ L κ(ξ)(Ω), we have

(1) |u|L κ(ξ)(Ω) < 1; (resp = 1, > 1)⇔ ρ(u) < 1; (resp = 1, > 1).

(2) |u|L κ(ξ)(Ω) > 1⇒ |u|κ
−

L κ(ξ)(Ω) ≤ ρ(u) ≤ |u|κ
+

L κ(ξ)(Ω).

(3) |u|L κ(ξ)(Ω) < 1⇒ |u|κ
+

L κ(ξ)(Ω) ≤ ρ(u) ≤ |u|κ
−

L κ(ξ)(Ω).

The next proposition relates the norms of a function in variable exponent Lebesgue spaces with its
pointwise behavior.

AIMS Mathematics Volume 9, Issue 10, 28361–28378.



28366

Proposition 6. [7,8] If p and q are measurable functions such that p ∈ L ∞(RN) and 1 ≤ κ(ξ)q(ξ) ≤ ∞
for all ξ ∈ RN , then for all u ∈ L q(ξ)(RN) with u , 0, we have

(1) |u|L κ(ξ)q(ξ)(Ω) ≤ 1⇒ |u|q
+

L κ(ξ)q(ξ)(Ω) ≤ ||u|
κ(ξ)|L q(ξ)(Ω) ≤ |u|

q−

L κ(ξ)q(ξ)(Ω).

(2) |u|L κ(ξ)q(ξ)(Ω) ≥ 1⇒ |u|q
−

L κ(ξ)q(ξ)(Ω) ≤ ||u|
κ(ξ)|L q(ξ)(Ω) ≤ |u|

q+

L κ(ξ)q(ξ)(Ω).

Denote for u ∈ L p(ξ)(∂Ω),

ρ∂(u) =

∫
∂Ω

|u(ξ)|p(ξ)dσ.

Proposition 7. [7, 8] For all u ∈ L p(ξ)(∂Ω), we have,
(1) |u|L p(ξ)(∂Ω) > 1⇒ |u|p

−

L p(ξ)(∂Ω) ≤ ρ∂(u) ≤ |u|p
+

L p(ξ)(∂Ω),

(2) |u|L p(ξ)(∂Ω) < 1⇒ |u|p
+

L p(ξ)(∂Ω) ≤ ρ∂(u) ≤ |u|p
−

L p(ξ)(∂Ω).

3. Main results

In this section, we will present our main result of the paper. Firstly, we assume the following
hypotheses:

(C1) The function g(x, u) can be expressed as a(x)h(u), where a and h are measurable functions
satisfying the following conditions: there exists c1 > 0, p, q ∈ C+(Ω) such that for all
(x, u) ∈ Ω × R, we have

a(x) ∈ L
p(x)

p(x)−q(x) (Ω), h(u) ≤ c1 |u|q(x)−1 ,

and
κ+ < q(x) < p(x) < κ∗(x) and κ+ < N. (3.1)

(C2) There exists m0 > 0 such that S(t) ≥ m0.

(C3) There exists 0 < ω < 1 such that, 1 − ω ≥ 1
κ+ and Ŝ(t) ≥ (1 − ω)S(t)t, where Ŝ(t) =

∫ t

0
S(s)ds.

(C4) There exist M1 > 0 and κ+

1−ω < θ < min(r−, s−), such that for all x ∈ Ω, we have

0 < θa(x)H(u) ≤ a(x)h(u)u, |u| ≥ M1, where H(t) =

∫ t

0
h(s)ds.

(C5) We have κ+ ≤ s(x) < κ∗(x) .
(C6) For all x ∈ Ω, we have h(−u) = −h(u).

Next, we define a weak solution for the problem (1.1) as follows:

Definition 1. We say that u ∈ X = W1,κ(x)
0 (Ω) is a weak solution for Eq (1.1) if, for any v ∈ X, we have

S

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

) ∫
Ω

|∇u|(κ(x)−2)∇u∇v −
∫

Ω

|u|r(x)−2uvdx

−

∫
Ω

a(x)h(u)vdx −
∫
∂Ω

|u|s(x)−2uvdx = 0.
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Now, we are ready to state and prove the first main results:

Theorem 1. Under the hypotheses (C1) − (C5), problem (1.1) has a nontrivial weak solution.

Theorem 2. Under the hypotheses (C1) − (C6), problem (1.1) has infinitely many solutions.

Now, we introduce the functional J(u) associated with problem (1.1), which characterizes the
critical points and plays a key role in the existence of solutions.

I(u) = Ŝ

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

)
−

∫
Ω

|u|r(x)

r(x)
dx −

∫
Ω

a(x)H(u)dx −
∫
∂Ω

|u|s(x)

s(x)
dx,

= L(u) − I(u) − J(u) − T (u),

where Ŝ(t) =
∫ t

0
S(s)ds, L(u) = Ŝ

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

)
,

T (u) =

∫
∂Ω

|u|s(x)

s(x)
dx, I(u) =

∫
Ω

|u|r(x)

r(x)
dx and J(u) =

∫
Ω

a(x)H(u)dx.

We recall from [7], that L ∈ C1(X,R). Moreover, for all u, v ∈ X, we have

< L
′

(u), v >= S

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

) ∫
Ω

|∇u|(κ(x)−2)∇u∇vdx.

The functional L′ satisfies the following properties.

Proposition 8. [7]
Let L : H

$,ν;ψ
κ(x) (Ω)→ (H$,ν;ψ

κ(x) (Ω))∗,
such that

< L
′

(u), v >=

∫
Ω

|∇u|(κ(x)−2)∇u∇vdx.

(1) L
′

: X → X∗ is a continuous, bounded, and strictly monotone operator.

(2) L
′

is a mapping of (S +) type, that is, if un ⇀ u in X and lim sup
n→∞

< L
′

(un)−L
′

(u), un − u >≤ 0, then,

un → u strongly in X.

Remark 1. It can be shown, using (C1), Propositions 4, 6, and the Hölder inequality, that J ∈ C1(X,R).
Furthermore, for all u, v ∈ X, we have

< J
′

(u), v >=

∫
Ω

a(x)h(u(x))v(x)dx.

From Proposition 8 and Remark 1, it follows that J ∈ C1(X,R). Moreover, for all u, v ∈ X, we
obtain

< J′(u), v > = S

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

) ∫
Ω

|∇u|(κ(x)−2)∇u∇vdx

−

∫
Ω

|u|r(x)−2uvdx −
∫

Ω

a(x)h(u(x))v(x)dx −
∫
∂Ω

|u|s(x)−2uvdx.

Hence, the weak solutions of problem (1.1) correspond to the critical points of the functional J.
Now, we establish a key result that provides a lower bound for the functional J(u) associated with

problem (1.1).
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Lemma 1. Assume that (C1)–(C5) are satisfied. Then, there exist m, η > 0 such that, for u ∈ X,

if ‖u‖ = η, then, J(u) ≥ m.

Proof. Let u ∈ X, with ‖u‖ < 1. Under the hypothesis (C1), we have for all x ∈ Ω,

H(u) ≤
c1

q(x)
|u|q(x). (3.2)

Since 1 < p(x) < κ∗(x), 1 < r(x) ≤ κ∗(x), 1 < s(x) < κ∗(x) and according to Proposition 3, we obtain
the existence of c3, c4, c5 > 0, such that

|u|L p(x)(Ω) ≤ c3 ‖u‖ , |u|L r(x)(Ω) ≤ c4 ‖u‖ , |u|L s(x)(∂Ω) ≤ c5 ‖u‖ . (3.3)

On the other hand, under hypothesis (C2) and (C3) and by Proposition 4, we get,

L(u) = Ŝ

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

)
≥ (1 − ω)S

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

) ∫
Ω

1
κ(x)
|∇u|κ(x) dx

≥
(1 − ω)m0

κ+

∫
Ω

|∇u|κ(x) dx ≥
(1 − ω)m0

κ+
||u||κ

+

. (3.4)

Now, by (3.2)–(3.4) and using Propositions 2, 6 and 4, we obtain,

J(u) = Ŝ

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

)
−

∫
Ω

a(x)H(u)dx −
∫

Ω

|u|r(x)

r(x)
dx −

∫
∂Ω

|u|s(x)

s(x)
dx,

= L(u) − J(u) − I(u) − T (u)

≥
(1 − ω)m0

κ+
||u||κ

+

−
c3

q−
|a|

L
P(x)

P(x)−q(x) (Ω)
||u||q

−

−
c4

r−
||u||r

−

−
c5

s−
||u||s

−

≥ ||u||κ
+

(
(1 − ω)m0

κ+
−

c3

q−
|a|

L
p(x)

p(x)−q(x) (Ω)
||u||q

−−κ+

−
c4

r−
||u||r

−−κ+

−
c5

s−
||u||s

−−κ+

)
≥ ||u||κ

+

(
(1 − ω)m0

κ+
− t||u||min(q−−κ+,r−−κ+,s−−κ+)

)
,

where
t =

c3

q−
|a|

L
p(x)

p(x)−q(x) (Ω)
+

c4

r−
+

c5

s−
.

Since q−, s− and r− are both greater than κ+, we can choose ‖u‖ = η to be sufficiently small such that

(1 − ω)m0

κ+
− tηmin(q−−κ+,r−−κ+,s−−κ+) > 0.

Finally, we conclude that

J(u) ≥ ηκ
+
( (1 − ω)m0

κ+
− t ηmin(q−−κ+,r−−κ+,s−−κ+)

)
:= m > 0.

�
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Now, define the Palais−Smale (PS ) condition at a given level c:

Definition 2. Let X be a Banach space and J ∈ C1(X,R), where c ∈ R. We say that J satisfies the
Palais−Smale condition at level c if any {un} ⊂ X, such that

J(un)→ c, and J′(un)→ 0, in X∗, as n→ ∞,

contains a convergent subsequence.

In the following lemma, we establish a result regarding the boundedness of a Palais−Smale
sequence in X.

Lemma 2. Suppose that conditions (C2) − (C5) are satisfied. Let {un} be a Palais−Smale sequence of
J in X. Then {un} is bounded in X.

Proof. Let {un} be a sequence in X such that

J(un)→ c, and J′(un)→ 0, in X∗, as n→ ∞,

where c is a positive constant.
Since J(un)→ c, there exists T1 > 0, such that

|J(un)| ≤ T1. (3.5)

On the other hand, the fact that J′(un) → 0 in X∗, implies that < J′(un), un >→ 0. In particular,
< J′(un), un > is bounded. Thus, there exists T2 > 0, such that∣∣∣< J′(un), un >

∣∣∣ ≤ T2. (3.6)

We claim that the sequence {un} is bounded. If it is not true, by passing to a sub-sequence if necessary,
we may assume that ‖un‖ → ∞. Without loss of generality, we assume that ‖un‖ ≥ 1.

From (3.5), (3.4) and using κ+ < θ < min(r−, s−), we obtain

T1 ≥ J(un) = L(un) − I(un) − J(un) − T (un)

≥
(1 − ω)m0

κ+

∫
Ω

|∇un|
κ(x) dx −

1
r−

∫
Ω

|un|
r(x)dx −

1
s−

∫
∂Ω

|un|
s(x)dx − J(un) (3.7)

≥
(1 − ω)m0

κ+

∫
Ω

|∇un|
κ(x) dx −

1
θ

∫
Ω

|un|
r(x)dx −

1
θ

∫
∂Ω

|un|
s(x)dx − J(un).

On the other hand by (3.6) and assumption (C2), we have

T2 ≥ − < J′(un), un >

= −S

(∫
Ω

1
κ(x)
|∇u|κ(x) dx

) ∫
Ω

|∇un|
κ(x) dx +

∫
Ω

|un|
r(x)dx

+

∫
∂Ω

|un|
s(x)dx+ < J′(un), (un) >

≥ −m0

∫
Ω

|∇un|
κ(x) dx +

∫
Ω

|un|
r(x)dx +

∫
∂Ω

|un|
s(x)dx+ < J′(un), (un) > .
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By combining the above inequality and (3.7), we obtain

θT1 + T2 ≥ (
(1 − ω)θ

κ+
− 1)m0

∫
Ω

|∇un|
κ(x) dx+ < J

′

(un), (un) > −θJ(un)

≥ (
(1 − ω)θ

κ+
− 1)m0 ‖un‖

κ− +

∫
Ω

a(x)
(
h(un)un − θH(un)

)
dx.

Hence, assumption (C4) implies

θT1 + T2 ≥
( (1 − ω)θ

κ+
− 1

)
m0 ‖un‖

κ− . (3.8)

By (C4) and (C2), κ+

1−ω < θ and m0 > 0, then, we have
(

(1−ω)θ
κ+ − 1

)
m0 > 0, so

( (1 − ω)θ
κ+

− 1
)
m0 ‖un‖

κ−
→ ∞.

By (3.8) this is absurder. Then, {un} is bounded in X. �

Now, we introduce the nonempty set A define by A = {x ∈ Ω : r(x) = κ∗(x)}. Also, define the set
Aδ = {x ∈ Ω : dist((x, A) < δ} for δ > 0. We note r−δ = infAδ r(x), and r−A = infA r(x).
We will now introduce and recall several important theorem.

Theorem 3. (Concentration−compactness principle) (see [5]) Let κ(x) and r(x) be two continuous
functions such that

κ− = inf
Ω

κ(x) ≤ κ+ = sup
Ω

κ(x) < N and 1 < r(x) ≤ κ∗(x) in Ω.

Let {u j} j∈N be a weakly convergent sequence in W1,κ(x)
0 (Ω) with weak limit u and such that:

• |u j|
r(x) ⇀ ν weakly in the sense of measures.

• |∇u j|
κ(x) ⇀ µ weakly in the sense of measures.

Also assume that A = {x ∈ Ω : r(x) = κ∗(x)} is nonempty. Then, for some countable index set I, we
have:

ν = |u|r(x) +
∑
i∈I

νiδxi , vi > 0.

µ ≥ |∇u|κ(x) +
∑
i∈I

µiδxi , µi > 0.

S ν
1

κ∗(xi)

i ≤ µ
1

κ(xi)

i .

Where {xi}i∈I ⊂ A and S is the best constant in the Gagliardo-Nirenberg-Sobolev inequality for variable
exponents, namely

S = S r(Ω) = inf
φ∈C∞0 (Ω)

||∇φ||L κ(x)

||φ||L κ(x)
.
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If {un} is a Palais–Smale sequence with energy level c, then according to Theorem 3, we have the
following convergence results:

|un|
r(x) ⇀ ν = |u|r(x) +

∑
i∈I

νiδxi , νi > 0. (3.9)

|∇un|
κ(x) ⇀ φ ≥ |∇u|κ(x) +

∑
i∈I

µiδxi , µi > 0. (3.10)

S ν
1

κ∗(xi)

i ≤ µ
1

κ(xi)

i . (3.11)

If I = ∅, then un → u in L r(x)(Ω). It should be noted that {xi}i∈A ⊂ A. We aim to demonstrate that if
c < ( 1

κ+ −
1
r−A

)S n, then I = ∅, where S is defined in Theorem 3.
The following lemma establishes an important result regarding the behavior of Palais−Smale

sequences under certain conditions.

Lemma 3. If conditions (C1) − (C5) are satisfied. Let {un} be a Palais−Smale sequence of J in X with
energy level c. If c < ( 1

κ+ −
1
r−A

)S n, then the index set I is empty.

Proof. Suppose that I , ∅ and let ϕ ∈ C∞0 (Rn) such that ϕ(0) , 0. Now, we consider the functions
ϕi,ε(x) = ϕ( x−xi

ε
). We have < J′(un), ϕi,εun >→ 0. Thus,

< J′(un), ϕi,εun >

= S
( ∫

Ω

1
κ(x)
|∇un|

κ(x) dx
) ∫

Ω

|∇un|
(κ(x)−2)∇un∇(ϕi,εun)dx

−

∫
Ω

|un|
r(x)ϕi,εdx −

∫
Ω

a(x)h(un(x))ϕi,εundx −
∫
∂Ω

|un|
s(x)ϕi,εdx.

Passing to the limit as n→ ∞, we have

0 = lim
n→∞

(
S
( ∫

Ω

1
κ(x)
|∇un|

κ(x) dx
) ∫

Ω

|∇un|
(κ(x)−2)∇un∇(ϕi,ε)undx

+

∫
Ω

ϕi,εdµ −
∫

Ω

ϕi,εdν −
∫

Ω

a(x)h(un(x))ϕi,εundx −
∫
∂Ω

|un|
s(x)ϕi,εdx

)
.

By Hölder’s inequality and using hypothesis (C2) we can show that

lim
n→∞

∫
Ω

|∇un|
(κ(x)−2)∇un∇(ϕi,ε)undx = 0.

On the other hand, we have

lim
ε→0

∫
Ω

a(x)h(un(x))ϕi,εundx = 0, lim
ε→0

∫
∂Ω

|un|
s(x)ϕi,εdx = 0

lim
ε→0

∫
Ω

ϕi,εdµ = µiϕ(0), lim
ε→0

∫
Ω

ϕi,εdν = νiϕ(0).

Then,
(
µi − νi

)
ϕ(0) = 0, which implies µi = νi. Consequently,

S ν
1

κ∗(xi)

i ≤ ν
1

κ(xi)

i ,
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Thus, we conclude that νi = 0 or S n ≤ νi.

Now, since r(x), s(x), θ > κ+ > 1 − ω, and by using hypothesis (C4), we have

c = lim
n→∞
J(un) = lim

n→∞

(
J(un) −

1
κ+

< J′(un), un >
)

= lim
n→∞

(
Ŝ
( ∫

Ω

1
κ(x)
|∇u|κ(x) dx

)
−

∫
Ω

|un|
r(x)

r(x)
dx −

∫
Ω

a(x)H(un)dx −
∫

Ω

|un|
s(x)

s(x)
dx

−
1
κ+
S
( ∫

Ω

1
κ(x)
|∇un|

κ(x) dx
) ∫

Ω

1
κ(x)
|∇un|

κ(x) dx +
1
κ+

∫
Ω

a(x)h(un)undx

+
1
κ+

∫
Ω

|un|
r(x)dx +

1
κ+

∫
∂Ω

|un|
s(x)dx

)
≥ lim

n→∞

(
(1 − ω)S

( ∫
Ω

1
κ(x)
|∇un|

κ(x) dx
) ∫

Ω

1
κ(x)
|∇un|

κ(x)

−
1
κ+
S
( ∫

Ω

1
κ(x)
|∇un|

κ(x) dx
) ∫

Ω

1
κ(x)
|∇un|

κ(x) dx

+

∫
Ω

(
1
κ(x)

−
1

r(x)
)|un|

r(x)dx +

∫
∂Ω

(
1
κ(x)

−
1

s(x)
)|un|

s(x)dx

+
1
κ+

∫
Ω

a(x)h1(un)undx −
∫

Ω

a(x)H(un)dx
)

≥ lim
n→∞

(
(1 − ω −

1
κ+

)S
( ∫

Ω

1
κ(x)
|∇un|

κ(x) dx
) ∫

Ω

1
κ(x)
|∇u|κ(x) dx

+

∫
Ω

(
1
κ+
−

1
r(x)

)|un|
r(x)dx +

∫
∂Ω

(
1
κ+
−

1
s(x)

)|un|
s(x)dx

+
1
θ

∫
Ω

a(x)h(un)undx −
∫

Ω

a(x)H(un)dx

≥ lim
n→∞

∫
Ω

(
1
κ+
−

1
r(x)

)|un|
r(x)dx

≥ lim
n→∞

∫
Aδ

(
1
κ+
−

1
r−Aδ

)|un|
r(x)dx.

On the other hand

lim
n→∞

∫
Aδ

(
1
κ+
−

1
r−Aδ

)|un|
r(x)dx = (

1
κ+
−

1
r−Aδ

)(
∫

Aδ
|u|r(x) +

∑
i∈I

νi)

≥ (
1
κ+
−

1
r−Aδ

)νi

≥ (
1
κ+
−

1
r−Aδ

)S n. (3.12)

Therefore, since δ is positive and arbitrary and r is continuous, we have

c ≥ (
1
κ+
−

1
r−A

)S n.

Then if c < ( 1
κ+ −

1
r−A

)S n, the index set I is empty. �
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We now present the following lemma that establishes an important convergence result.

Lemma 4. If conditions (C1) − (C5) are satisfied, let {un} be a Palais–Smale sequence of J in X, with
energy level c. Then there exists a subsequence of {un} that converges strongly in X.

Proof. Let {un} be a (PS )c sequence in X. By Lemma 2, {un} is bounded in X. Then, there exists a
subsequence of {un}, such that un ⇀ u .

Using Lemma 3, p(x) < κ∗(x), s(x) < κ∗(x) and Proposition 3, we have
un → u, strongly in L p(x)(Ω),
un → u, strongly in L r(x)(Ω),
un → u, strongly in L s(x)(∂Ω).

Next, we will show that un → u. We start by considering the inner product

< J′(un), un − u > = < L′(un), un − u > −
∫

Ω

|un|
r(x)−2un(un − u)dx −

∫
∂Ω

|un|
s(x)−2un(un − u)dx

−

∫
Ω

a(x)h(un)(un − u)dx.

By applying Hölder’s inequality, Propositions 3 and 6, we can estimate the integral term as follows:∫
Ω

|un|
r(x)−1|un − u|dx ≤ |un − u|L r(x) ||u|r(x)−1|

L
r(x)

r(x)−1

≤ |un − u|L r(x) max(|un|
r+−1
L r(x) , |un|

r−−1
L r(x))

≤ c1|un − u|L r(x) max(||un||
r+−1, ||un||

r−−1).

This leads to the conclusion
lim
n→∞

∫
Ω

|un|
r(x)−2un(un − u)dx = 0. (3.13)

Similarly, we get

lim
n→∞

∫
∂Ω

|un|
s(x)−2un(un − u)dx = 0. (3.14)

Now, by using (C1), propositions 3 and 6, and Hölder’s inequality, we obtain∫
Ω

a(x)h(un)(un − u)dx ≤

∫
Ω

c1|a(x)||un|
q(x)−1|un − u|dx

≤ c1|un − u|L p(x) |a(x)|
L

p(x)
p(x)−q(x)

||un|
q(x)−1|

L
p(x)

q(x)−1

≤ c1|un − u|L p(x) |a(x)|
L

p(x)
p(x)−q(x)

max(|un|
q+−1|L p(x) , |un|

q−−1|L p(x))

≤ c1|un − u|L p(x) |a(x)|
L

p(x)
p(x)−q(x)

max(||un||
q+−1|, ||un||

q−−1|).

Hence, we have

lim
n→∞

∫
Ω

a(x)h(un)(un − u)dx = 0. (3.15)

By combining (3.13)–(3.15), and using the fact that < J′(un), un − u >→ 0, we conclude that

< L′(un), un − u >
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= S
( ∫

Ω

1
κ(x)
|∇u|κ(x) dx

) ∫
Ω

|∇un|
(κ(x)−2)∇un∇(un − u)dx→ 0.

Hence by using hypothesis (C2), we have S
( ∫

Ω

1
κ(x) |∇u|κ(x) dx

)
, 0, then

< L
′

(un), un − u >=

∫
Ω

|∇un|
(κ(x)−2)∇un∇(un − u)dx→ 0.

Since un ⇀ u, we get < L
′

(u), un − u >→ 0.
Finally, we get

lim
n→∞

< L
′

(un) − L
′

(u), un − u >= 0.

By Proposition 8, L
′

is of type (S +), then un → u. �

In order to further investigate the properties of the functional J and its critical points, we establish
the following lemma.

Lemma 5. If conditions (C2) − (C4) hold. Then, there exists u0 ∈ X such that

||u0|| > η, and J(u0) < 0,

where η is defined in Lemma 1.

Proof. By (C4) , we get
G(x, t) ≥ ξ|t|θ, x ∈ Ω, |t| ≥ M1. (3.16)

By the conditions (C2) and (C3) , the function t 7−→
Ŝ(t)
t1/w−1 is decreasing. So for all t0 > 0, when t > t0,

yields
Ŝ(t)
t1/w−1 ≤

Ŝ(t0)

t1/w−1
0

, then,

Ŝ(t) ≤
Ŝ(t0)

t1/1−w
0

t1/1−ω ≤ ct
1

1−ω , f or t > t0. (3.17)

Let u ∈ X such that
∫

Ω
|u|θ , 0 and let t > 1, be sufficiently large. Then, we have by (3.16) and (3.17)

J(tu) ≤ Ŝ
(∫

Ω

1
κ(x)
|∇tu|κ(x) dx

)
−

∫
Ω

a(x)H(tu)dx

≤ C
( ∫

Ω

|∇u|κ(x)dx
)1/1−ω

t
κ+

1−ω − cξtθ
∫

Ω

|u|θdx.

Since θ > κ+

1−ω , it follows that
J(tu)→ −∞, as t → ∞.

Therefore, we can choose t0 > 0 and set u0 = t0e, such that ||u0|| > η and J(u0) < 0. This completes the
proof. �

Now, we establish the following lemma that provides a key result regarding the boundedness of a
set under certain hypotheses.
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Lemma 6. Under hypotheses (C1) − (C4), if F is a finite dimensional subspace of X, then the set

T = {u ∈ F, such that J(u) ≥ 0},

is bounded in X.

Proof. Let u ∈ T. By (3.16) and (3.17) , we have:

J(u) ≤ Ŝ
(∫

Ω

1
κ(x)
|∇u|κ(x) dx

)
−

∫
Ω

a(x)H(u)dx

≤ C
( ∫

Ω

|∇u|κ(x)dx
)1/1−ω

− ξ

∫
Ω

|u|θdx

≤ C(||u||
κ+

1−ω + ||u||
κ−

1−ω ) − ξ|u|θL θ ,

where |.|L θ and ||.|| are equivalent norms in F. Thus, there exists a positive constant k such that

||u||θ ≤ k|u|θL θ .

Therefore, we have

J(u) ≤
κ+

1 − ω
(||u||

κ+

1−ω + ||u||
κ−

1−ω ) −
ξ

k
||u||θ.

Hence, since κ−

1−ω <
κ+

1−ω < θ, we deduce that T is bounded in X. �

In the context of our analysis and proofs, we will now introduce and recall several important
theorems: The mountain pass theorem, its symmetric version for even functions. These theorems
play a crucial role in establishing our results. Here are the statements of the theorems:

Theorem 4. (Mountain pass theorem) (see [2]) Let X be a Banach space. Consider a functional
J ∈ C1(X,R) satisfying the following conditions:

(1) J(0) = 0;

(2) J satisfies the (PS) condition;

(3) There exist positive constants η and ρ such that if ||u|| = η, then J(u) ≥ ρ;

(4) There exists e ∈ X with ||e|| > η such that J(e) ≤ 0. Then, J possesses a critical value c ≥ ρ which
can be characterized as

c = inf
γ∈Γ

max
t∈[0,1]
J(γ(t)),

where,
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

Theorem 5. (Symmetric mountain pass theorem) (see [2]) Let X be an infinite dimensional real Banach
space. Let J ∈ C1(X,R), satisfying the following conditions:

(1) J is an even functional such that J(0) = 0.

(2) J satisfies the (PS)-condition.
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(3) There exist positive constants η and ρ, such that if ||u|| = η, then, J(u) ≥ ρ.

(4) For each finite dimensional subspace F ⊂ X, the set {u ∈ F,J(u) ≥ 0} is bounded in X. Then J has
an unbounded sequence of critical values.

Proof of Theorem 1. Lemmas 1, 4, and 5 establish the fulfillment of all the conditions required by
Theorem 4 (mountain pass theorem), ensuring the existence of a nontrivial solution to problem (1.1).
With this, the proof of Theorem 1 is now concluded. �

Proof of Theorem 2. We observe that J(0) = 0, and due to (C6), the functional J is even. Furthermore,
Lemmas 1, 4, and 6 establish the fulfillment of all the conditions stated in Theorem 5 (symmetric
mountain pass theorem). Consequently, we can conclude that problem (1.1) possesses an unbounded
sequence of nontrivial solutions. With this, the proof of Theorem 2 is now completed. �

4. Conclusions

In this paper, the existence of a solution and an infinite number of solutions for the Steklov problem
have been proven under appropriate conditions on our parameters within variable exponent Sobolev
spaces. An interesting perspective is to extend this work to Robin-type problems and to problems
involving Leray-Lions type operators.
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