AIMS Mathematics, 9(10): 28341-28360.
DOI: 10.3934/math.20241375
ATMS Mathematics Received: 29 August 2024

Revised: 24 September 2024

Accepted: 25 September 2024
https://www.aimspress.com/journal/Math Published: 30 September 2024

Research article

On the study the radius of analyticity for Korteweg-de-Vries type systems
with a weakly damping

Sadok Otmani'*, Aissa Bouharou?, Khaled Zennir’, Keltoum Bouhali’, Abdelkader Moumen*
and Mohamed Bouye’

! Laboratory of Applied Mathematics, Kasdi Merbah University, B. P. 511. 30000 Ouargla, Algeria,

Email: sadok.sadok @univ-ouargla.dz

University of Science and Technology Houari Boumediene, Bab Ezzouar, Algeria, Email:

boukarouaissa@gmail.com

Department of Mathematics, College of Science, Qassim University, Saudi Arabia, Email:

k.zennir@qu.edu.sa, k.bouhali@qu.edu.sa

Department of Mathematics, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia,

Email: mo.abdelkader @uoh.edu.sa

> Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha
61413, Saudi Arabia, Email: mbmahmad @kku.edu.sa

* Correspondence: Email: sadok.sadok @univ-ouargla.dz.

Abstract: In the present paper, we considered a Korteweg-de Vries type system with weakly damping
terms and initial data in the analytic Gevery spaces. The presence of tow functions c;(x), c;(x), called
damping coefficients, made the system more interesting from an application point of view due to
their great importance in physics. To start, by using the fixed point theorem in Banach space, we
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1. Introduction

The Korteweg-de Vries (KdV) equation is a fundamental partial differential equation that describes
the propagation of solitary waves in shallow water channels. In recent years, there has been many


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241375

28342

authors who have studied the behavior of the analytic radius for the solution of the KdV equation with
analytic initial data. The author in [1] proved the exponential convergence rate for a spectral projection
of the periodic initial-value problem for the generalized KdV equation. Based on this convergence
result, a new method to determine the radius of analyticity of solutions to the generalized KdV equation
is derived. Wang [2] considered the following KdV equation:

O + 020 + 0.0 + a(x)p = 0, ©(0, x) = @o(x),

where the author established the local well-posedness solution and studied the long-time behavior of
the analytic radius for the solution of the KdV equation with damping term and an analytic initial data
on the real line. Boukarou and da Silva [3] considered a KdV-Kawahara equation with a weak damping
term

O + A + PO + 1 + 10,9 + a(x)p = 0, ©(0, x) = @o(x).

The authors used linear, bilinear, and trilinear estimates in analytic Bourgain spaces, to prove the local
well-posedness and the behavior of the analytic radius for this problem. Similar articles have the same
problems, but without the weakly damping term we mention [4-7].

T. Oh [8] investigated the local well-posedness of the KdV type systems

$r +a11Pxxx T alwaxx + bl(;ﬂ‘f)x + bZQwa + b390x¢/ + b4$¢x = 0,
lﬁz + A2 Pyxx + a22wxxx + bSQD()Dx + béspwx + b7¢xlp + bS'ﬁlﬁx =0,
(‘)0’ $)|t:0 = (()00’ l/’O) s

in different cases, both periodic and nonperiodic. Guo et al. [9] presented the following problem:

Pr = Pxxx — PPx T %(‘P‘/’)x,
lr//t = lr//xxx - l//lﬁx + %(()0'//))”
()0(0’ -x) = ()DO(X)7 lﬁ(O’ X) = w()(-x)’

where the authors investigated the global well-posedness of solutions for the system of KdV equations.
In 2018, Yang and Zhang [10] considered the couple KdV system

Y1 + A1 Pxxx = C11PPx + ClZ‘pwx + dll(pxlp + d12(pwx’
Ui+ @ = CoPQx + Co + do1 o + dpgi,
(‘)0’ lr//)lt:O = (‘100’ l//0) .

By denoting r = & with a;,a, € R\ {0}, in various cases of a constant r, they established the local
aj
well-posedness of the problem.

Then, Carvajal and Panthee [11] introduced the system

{atgo + P+, (p0?) =0, ¢t =0,%) = f(x), 0

O+ ad¥y + 0, (W) = 0, Y(t =0,x) = g(x).

By different ways, the authors studied the local well-posedness of solutions for this system.
Furthermore, if @ = 1, the problem (1.1) transformed to the system considered by Ablowiz et al. [12].

AIMS Mathematics Volume 9, Issue 10, 28341-28360.



28343

For more works in KdV systems, we refer to [13—16]. In this paper, we consider a KdV type system
with weakly damping terms of the form:

@1 + Prxx + D19y + bopic + b3l + by + c1(x)p = 0,

l/’t + a"/’xxx + bSQO(;Dx + bGQDwx + b7‘10xw + waWx + Cz(X)lﬁ = 0’ (12)
(90’ W)L:o = (‘PO» '700) s

where b;, i = 1...8 are nonegative constants.
Several conservation laws are known for the system

I, = fgodx,
Inglﬁdx,

h:fﬁ+¢m,
Iy = fgoi + ay? — pyida,
where 1, is the Hamiltonian of the system and no other conservation laws seem apparent.
2. Preliminaries

Here, we state certain notations, tools, definitions, and functional spaces which will be used later.
Let f € L*(R?). The spatial Fourier transform is defined by

f© = fR e f O,

and then the space-time Fourier transform is given by

e, 1) = f e~ y(x, dxdt.
RZ

Remark 2.1. We denote by F~'(f) for the inverse Fourier transformation of the function f.

For o > 0,b € R, we denote G™*(R?) the Gevery type Bourgain space defined by the norm

lullgrs@) == le”8(1 + [r = €D, D22 (2.1)
and
ullgros@zy = le”™(1 + v = BEN U, Dl 22 (2.2)

and for Yo > 0, we have G™” is denoted to be the restrictions of G™*(R?) to R X (-, v). The spaces
G7" are defined by:

lullgz» = inf{ligllgrs : g = uonR X (=v,v)}.
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Remark 2.2. When we replace €% by (1 + |£])* in (2.1), it will be the classical Bourgain spaces X**
and X5°.

Let ¢”'Px! be the Fourier multiplier operator with symbol e”*!, where
eTIDTf = ¢ 7.

Then, the norm of G” can be expressed as

D
T2

llellge = lle
The interest in these spaces is due to the following fact, for which a discussion can be found in [17].

Theorem 2.1. (Paley-Wiener theorem) Let o > 0, then f € G if, and only if, it is the restriction to the
real line of a function F, which is holomorphic in the strip

So={x+iy: x,yeR, |y <o},
and satisfies

sup [P (x + iy)ll 2 < oo.

byl<o

By the Paley-Wiener theorem, every function in G’ has a uniform analytic radius o on the real line,
see Figure 1.

<

-0
Figure 1. Strip around x-axis.

The question of local existence in G” was studied in [6]. These works show the following fact:
If (o, ¥o) € G7° X G7° with some oy > 0, then
(D), ¥ (1) € G”° X G”°, (2.3)

for ¢ small, and (¢(7), ¥(t)) is a solution of the KdV type system with an appropriate initial data (¢, ).
The global well-posedness of the KdV type system in G” X G is not well treated, since the KdV type
system has no conservation law in the analytic space G’ X G?. Then, we can pose the question

whether (2.3) holds Vr € R? 2.4)

Instead of attacking, we can consider the next more suitable problem: If (g, ¥) € G X G?°, then for
what kind of o (¢) so that
(1), y() € GV x G Yt>0? (2.5)

There has been some progress toward answering question (2.5). The main ideas are:
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(1) Show the local existence in G” X G’ with a lifespan v > 0;
(2) find an almost conservation law in G X G, namely, for some a > 0,

eIl < llgollg + Collgolige (2.6)

WG < ollze + CoIlollg 2.7)

(3) by shrinking o gradually, and using the intervals [0, v], [v,2v], ..., we can get a global bound of
the solution on [0, T'], with 7" > 0 large enough.

As in [6], it is shown that the analytic radius o (¢) of solution at ¢ for the system has the lower bound
_4_g
o) =213 t— oo,

where £ > 0 is a small enough.
Note here that the lower bound does not rule out the possibility that o(f) — 0 as t — oco. Then, the
question (2.4) cannot be answered, as (2.4) is equivalent to see that

o(t)y >0y, VYt=0. (2.8)
Now, let us consider the analytic radius for a damped KdV type system and prove that
o(t) > dy, Vt=0,

for &y > 0. Although, this is still weaker than (2.8), which implies that the analytic radius does not
shrink to 0 as t — co.
We consider the KdV type system on R with a damping term as

@1 + Pxxx + D19y + bopir + b3l + by + c1(x)p = 0,
Ui + Qe + bsppy + by + b + bsy + cr(x)y = 0,
(‘P’ l/’)l[:o = (QDO’ lﬂo) .

We should impose certain assumptions on the damping coefficients ¢(-) and c,(+)

(H1) Damping effect. There exists & > 0 such that
cilx)>¢e, VYxeR,i=1,2.
(H2) Analyticity. There exist nonegative constants C, M so that
0 cilli=@) < CM*k!, keN, i=1,2.
Proposition 2.1. [I8] Let o > 0 and v > 0.

1
(1) If b > o then
Ifllzege < Collfllge-

1 1
(2) If—z <b<b < > then

b'—b
I llgre < Coprv” 7l fll oo -

AIMS Mathematics Volume 9, Issue 10, 28341-28360.



28346

1 1
(3) =3 <b< > then for any interval I C [-v,V],

1 fDllgre < Coll fOll g
where x| is the characteristic function of 1.
1
Proposition 2.2. [18] (Linear estimates) Let o > 0, 3 <b<1,and0 < v < 1. Then, for some a; > 0,
we have

IS @ollgrs < ailleollor,
IS Dathollgre < arllpollge,

< I fllgee

Gob

S —s)f(s)ds
0

!

So(t = 5)f(s)ds

< | fllgeo.

GTP

Now, we state the bilinear estimates.

1 1 1
Lemma 2.1. [I8] (Bilinear estimates) Let o > 0,b > 5 be sufficiently close to > and b’ > > then

lle@allgrmi < @l
llewllgesr < llgllgos W llges
lellgeo-1 < ll@llgos Wllgos
W aligesr < WAL, -

We shall need to define a special class of functions by A” by

[Se]

k
o
Ifllar = D Gk + 1) 1104l

=0
Note that the norms of A” and G“ can be connected. Let us give an equivalent norm of G.

Lemma 2.2. [2] Let o > 0 and [ € G, then we have

A ~ > Vi+1 ( )Ilﬁ"flle<R)

k>0
Furthermore, we state the product estimates

Lemma 2.3. /2] Forall o > 0,(c, f) € A X G, we have

llcfllge < llcllacllfllGe-
Lemma 2.4. [2] Let (c, f) € A7 X G” and (0,v) € R: X (0,1],b > 0,b" <0, then

licfllger < llellasllfllgee-

These spaces will be essential for constructing analytic solutions to the problem (1.2).

AIMS Mathematics Volume 9, Issue 10, 28341-28360.



28347

3. Local well-posedness
Let S () = ¢ and S () = e By Duhamel principle, (¢, %) is a solution to system (1.2) if, and
only if,

{ (1) = Sy — [ S (t — $) Fy (s)ds, A

() = So(tWo = [ Sa (2= 5) Fa(s)ds,

for -1 <t <1, where

Fl (S) = (bl()OQDx + bZer//x + b390xw + b4¢% + Cl(X)(,D) (S),
F (5) = (bsppy + bepr + D1y + bspif + c2(X)Y) (s),

and we denote B = max{b;,i = 1, .., 8}.

3.1. Existence
Here, we state and prove the local well-posedness theorem.

Theorem 3.1. (Local well-posedness) Let b € (%, l) and b’ € (b, 1) be given by Lemma 2.1. Then,
Vo > 0 and any (¢o,¥0) € G X G, and there exists a time v > 0 given by

1
V ~bp > 3.2)
Cas (llcllar + 4R) 7=
with R being a constant will be define later, and a unique solution (¢, ¥) of (3.1) such that
(@, Yllyee < 2C [1(0, Yo)llye - (3.3)
Proof. Let us consider the mapping
1—‘(.’ ) = (rl’ FQ)’ (34)
where
73
L1, ) = S(Dpo + f S(t = $)(br19@x + brpi + b3 + bapip + c1(X)p)ds,
0
t
Do, ) = S oo + f S ot = )(bsppy + beprs + b1 + by + c2(X))ds,
0
and define the spaces Y7, Y{" b , and N7 by
N =G7 xG7,
Ycr,b — Gcr,b X Go-,b,a’
Yot = GTP x GTh,
equipped with norms
(@ Yllyre = max {[l@liges, [[llgrsa}, (3.5)
1. )l = max {llgllges, Wl o ) (3.6)
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lI(0, ¥o)lln- = max {ligollge [lollo-} » (3.7

and we define the ball 8 by
B ={(e.¥) : e, Wllye» < R}. (3.8)

where R = 2a|(¢o, Yo)llyes-
The idea of the proof is to show that the functional I" is contraction in 8.

Stepl. In this step we show that I'(8) c 8. After the Proposition 2.2, we have

1S (Do, S Datbollyss < aill(@o, Yo)llne. (3.9)

Using (2) in Propositions 2.1 and 2.2 and Lemmas 2.1 and 2.4, we find

f S = s)c1(xX)p + biop, + by + b3y + baynyr,)(s)ds
0

Gob

Cb Vb -b

IA

f St = s)(c1(x)p + bippy + bopir, + b3y + by )(s)ds
0

a,b’
G,

IA

CopV" " ler(0)@ + b1, + bagi, + b3t + bays | g
Cop?"™ (||c1||A(r||so||Gg,b + billgl s + (B2 + bl grolll ggoe + mnwngg,,,ﬂ)

Cri max{1, b (llcllac + 41, ¥)llyo ) 1160 W)Ly

IA

IA

where ||c||4» = max {||c1]|4~, ||c2]la-}. Like the same as before, we get

f S ot = )(2(X)@ + b5y + by, + b1, + by, )(s)d's
0

o,b,a
Gy

vab -b

IA

f Sl = (X6 + bsgpy + bogirs + bros + by )(s)ds
0

o,b’
G,

IA

Cb,b'Vb/_b ”CZ(X)‘;D + bS‘p‘px + b690l//x + b7(px'70 + walr//x”vaf-h’*lﬂ
Cop?”™" (||c2||Av||¢||Gg,b + bsllgl + (b + bWl ggns + sl )

Cppr max{1, b (llcllae + 4ll(0, W)llyes ) 1162, W)l

IA

IA

In other words, there exists a, = a»(b’, b, max{1, b}) > 0 so that

f St = s)c1(xX)¢ + (bropy + bapy + b3 + by )(s)ds
0

yob
< "™ (llellar + 401G, Wllyes ) e, )y (3.10)
f S ot = $)(2(0)¢ + (bsppy + b + b h + bgyip,)(s)d s
0 yob
< a7 (llellar + 4G, Wllyes ) 1, W)y 3.11)
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Step2.

On one hand, if (¢, ) € B, then we deduce from (3.9)—(3.11) such that

ICCe, Wllyes < il o, Yo)lle + @2’ ™ (licllae + 41, ¥)llyes ) 1, )y

R ,
< o V" 7P (|cllar + 4R) R.

We choose
V= ! —, (3.12)
(Caz (llcllar + 4R)) 7=
then we get
I, ¥)llyrs < R. (3.13)
Here, we infer that the functional T is a contraction in 8. Then, for all [(¢, ), (z,w)] € B X B,

similarly we have
IT(p, ) = Tz, Wllyer = [IT1(@, ) = T'i(z, w), T, ) — Ia(z, wllyers.
So, we estimate I';(¢, ) — I'1(z, w) and ['2(p, ) — I'2(z, w),

Li(p,¢) = Tz, w)
f S(r- S)[cl(X)(so = 2) + b1 = 222) + Do — 2wi) + bs(puf — 2,w)
0

+

bars — wwy) |ds.

So, we have

bi(ppx — 22x) = bil(e — Dgx + (ox — 227l
Doy — 2wy) = bal(@ — DY + (P — Wizl
by(of — 2w) = b3[(@x — 2 + (Y — W)z,
Da(h = wwy) = byl(f — W + (Y — wwl,

then, using Lemmas 2.1 and 2.4 and Propositions 2.1 and 2.2,
I3 (e, ) = T'i (2, Wllge
< G| fo (= 910060 = 2+ bl — 22 + bl )
+h3(pulr — 2w) + ba(r — ww)|ds]| .-

It means that there is a,(b, b’, max{1, b}) > 0, such that

||F1((,0, ‘ﬁ) - FI(Z’ W)”G(vfb
< a2V’ (llellaellp = Zllges + e = g lieligs + Il = Zllgosllzligns + ll = Zlges [Wlgrae
Hll = Wligraalelles)

+ay” ‘b(llso = ZlgeolWligrea + 1 = Wllgesallzligrs + W = WllgeoalWllGrsa

AIMS Mathematics Volume 9, Issue 10, 28341-28360.



28350

W = WllgesalWllgra)

< @V (llcllar + 4110, Wllyos + 4G Wllyes ) e = 228 = W)l
We remind that [(¢,¥) X (z,w)] € B X B, and we get
IT1 (0. %) = D1 Wllgrs < @2V ™ lcllar + 8R) (@ — 2,80 = W)l (3.14)
Similar to that use as before, we obtain
IT2(, %) = Doz Wllgre < @2V llcllae + 8R) (@ — 2,80 = W)l (3.15)
Inequalities (3.14) and (3.15) lead to
IT(, ) = Tz Wllyor < a@2v” ™ (llcllar + 8R) 1@ = 2, = Wllyoo.
Then, because v = 2a,(||c||a + 4R))™", we find
I, ¥) = T Wllyeo < 1@ = 280 = W)l (3.16)

This means that I is a contraction in B.

3.2. Uniqueness

Uniqueness of the solution in C([0, v], G") X C([0, v], G”) can be proved as follows.

Lemma 3.1. Suppose (¢, ) and (¢*, ") are two solutions to (3.1) in C([0,v],G”) x C([0, v], G”) with
initial data (go, ¥o) = (@5, ¥p) then (o, 4) = (¢", ¥").

Proof. Let the conservation law I(w, w") be defined by
Iw,w) = f w? + w'?)dx,
R

and

Li(w) = fR wWiHdx,  LWw) = fR (W?)dx.
Suppose (¢, ) and (¢*, ") are two solutions to (3.1), then
@t + Qe + D19 + Do + b3 + b + 1 (X)p = 0,
O+ Grax T 0190°0L + D™ + b3 + by + ci(0)g” = 0,
thus

B(p — ¢") + 0p — ¢*) + (brppy + bapifr, + by h + by, + ¢1(X)g)
—(b1@" @, + bo" U + b3 " + b Y, + (X)) = 0.
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We have w = ¢ — ¢* and w’ = ¢ — ¢*, then

dw + 0w + [ ()@ = @") + bi(px — ¢ 6Y) + ol — @"0)
+hy(pah — QW) + bas — W] = 0.

We have
bi(pp, — " ¢}) = bilweo, + wp'],
bZ(QDVx - ‘p*l//;kc) = bZ[wa + W;()O*],
by(oxy — o) = bs[way + wel],
by — ) = ba W' + Wiy
So,

ow + ﬁiw + [01 W + bi[we, + we@ ] + ba[wi, + wg']

+b3[wf + WLl + ba[W, + w;w*]] =0.

Multiplying both sides by w and integrating in space yields

wo,w + waiw + w[cl(x)w + b1 [wey + Wi ] + bo[wi, + Wip']

+hlwy + WLl + ba[w'yr, + wiy']| = 0.

Then, we have

1d
EZIIWIIE = —fRW[cl(X)W+ bi[wey + wip']
+hy Wi + W'l + bs[wf + Wl + balw'y, + w;w*]]dx
1d 1d .
'ZEII(W)' = |§E”W”i2 < C”CIHL"“”W”iz + ”W”izllﬁpx”Lw + ||W||iz||90 Iz

2

HIWI Wl + w2l [zl Nl
2

HIWI WAL + (w2l ll2 Nl

HIWll2 W llzllllze + w2 w2yl

f wdwdx = 0.
R

AIMS Mathematics Volume 9, Issue 10, 28341-28360.
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Assume that

low, w)llr2 = max{|wllz2, W]l 2},
then
‘1 < )] Cullow. w)IE
2d 1 w 1 W7W L2

By the Gronwall lemma, we get

Iwll7, < e llw(0), w' ODI7, 0<t<v.

12°

A similar way for

wt + a’wxxx + b5‘;090x + b6(pl//x + b7¢x'vb + bSl/’lr//x + Cz(x)l// = O’

(3.17)
UE + Qg + bsg™ 0+ b s+ il + byl + (Y =0,
then
1 d ,
jz < < Collon W,

By the Gronwall lemma, we get

IW'lIZ, < e“NwO), W ODIF., 0<r<v.

12°

Then,

il /
37 (w,w")

‘10,’

1d 72
‘Zd f(w + w)dx

(€ + e2)llw(0), w' (O)II7

0<tr<w

IA

12°

Since ||(w(0), w’(O))lli2 = 0, we obtain that (w,w’) = (0,0), 0 <t <v,or(p,¥) = (¢*,¥").

3.3. Continuous dependence of the initial data

We are going to show that the solution map ¢, — ¢ is Lipschitz continuous.

1
Lemma 3.2. [3] Let o > 0 and b > 7 v > 0, and (¢, ), (z, w) be solutions of problem (1.2). We

pertain to initial data (¢, ¥o) and (29, wy), respectively. Then, there exists a constant C > 0 such that

(@, ¥) = @ Wllye» < Cli(@o, ¥o) = (20, wo)llne

AIMS Mathematics Volume 9, Issue 10, 28341-28360.
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4. Lower bound of analytic radius

4.1. Approximate conservation law

We begin by reminding that, for smooth, compactly supported solutions to (1.2), we have
d. o 2
d—||90||Lz +2 | c(xedx =0,

? R
d. 2
d—”W”Lz +2 | c(x)ydx =0.
t R
Under assumption (H1), we get
d. o 2
d—tIIsOIILz < —2fR890 dx,
illwllz < —2fsw2dx
a7 g '

By applying Gronwall’s lemma, we obtain

le®llz2 < llgollrze™, 4.1
g Ollzz < ollze™, (4.2)

SO
lI(e(®), y(@)llyo < 11(po, o)llnoe™". (4.3)

The aim here is to demonstrate the energy growth bound in N?. Then, we state and prove the main
theorem.

Theorem 4.1. Suppose that ci,c, € A7 with some O < o < 0. Let (g, ¥o) € N7 and (p,¥) € Yf’b be
the solution on [—v, v]. Then, we have the following estimate:

1@, ) Wllyes < 10, o)l + C (40'”||(900,¢o)||1w + GIICIIAg) (0, o)l
+ Collellzel(@o, Yol 2wy l1(@o, Yol (4.4)

where ||(¢o, Yo)ll 2y = max{lloll2w), IWoll2w)} > C1, Co are two constants and n will be defined later.

Proof. We set, for fixed o > 0,
(D,V) = (e(’ID”(p, e‘rlD‘*llrll) .

oD

We apply e”'P+! to system (1.2), and we find

0D + D + by DI,D + by DO, + b30, DV + b, PO, ¥ + ¢, (x)D

=L+L+6L+1,+ s, (45)
0¥ + PV + bs®0, D + b0, + b70,DV + bgP0, ¥ + c2(x)D
=0+ L+ L+ 1+ 1L, (4.6)

AIMS Mathematics Volume 9, Issue 10, 28341-28360.
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where
I = b, ( o1Dxl 4§ TPxl g — e<r|Dx|(¢5x¢,))
L =b (e<r|Dx|¢3 e7IDslyy — ea|Dx\903xl/,)
L= bs ( 8,e7 1P peisly, — a|Dx\¢,3x‘p)
I = by (7P lyd, 7Py — Pgd )
Is = c1(x)e”Pp — 7Pl (e (x)g),

and

s (¢7Pp0,e" P — P 0 p))
1} = b (¢7Pp0,e"Py — 7P )
1 = by (0,e"Pge Py — 7Py, )
1} = by (7P y,e Py — Py, p)
I = ca(x)e”Py — TP ey ().

By multiplying (4.5) with ®@ and (4.6) by ¥, and integrating over R with respect to x, we obtain

d

—— f D’dx + f c1(x)®%dx = f (I + L+ I+ I, + I5) ®dx, 4.7)
R R

1 d

2qr ). Yldx + f ci1(x)rdx = f (I + I, + I; + I, + I) Wdx. (4.8)
R R

We remind that ¢;(x) > €,Vx € R, and Eqs (4.7) and (4.8) become

d
— f D’dx + 2& f D?dx < f (I + L + Iy + Iy + I5) Ddx, (4.9)
dt R R R
d
— fz//zdx + 28fw2dx < f(l; + I+ I+ I + IL) Wdx. (4.10)
dt Jr R R
By using Gronwall’s lemma ror the last inequalities, we get
@z < e *gollgr + 2 e+ L+ I + Iy + Is)®dxds| (4.11)
W OIZe < e 2 lollge + 2 eI+ I+ I+ I+ I)Wdxds| . (4.12)

Now, we need to estimate the second term in the righthand side of inequalities (4.10) and (4.11). We

start by
!
ffe‘zg(’_s)llq)dxds = ff 220y 109 ($) I Ddxds
o Jr R JR

2s(t—s
< xo.aOhillgos-1x 0.4 (De o S)‘P”G'TJ’*‘-
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So, by using the fractional Leibnitz rule (see Theorem 2.8 in [19]), we infer that

_De(i— _De(v—
Ito.0e >Vl gear = ”X[O,z]e g (—l‘)‘:"HH,lbeg

<G |LY[0J16_28(V_0||L°°(R) |LV[0J]S (_t)‘p”H}*”G‘;

+ [Peroae ey oS 0| e (4.13)
< Cpe ||X[o,t]<,0||Gm1,,, + ”X[O,t](p” Gob (by Proposition (2.1))
<Gy |L¥[0,z]90||G(,,b < Gollgllgee, (by Proposition 2.1)

where in the last line we used 1 — b < b and Proposition 2.1.
On other hand, after some calculation there is a constant 7 > 0 so that

Ivto.nfill < Ca,b,blﬂ"llsollég,b, (4.14)

for more details, see [3]. Then, combining (4.13) and (4.14), we get

!
f f e 22 ddxds
o Jr

Like the same as before, we conclude that

!
f f e 22 L ddxds
0
f

R
f e 2= L. ddxds
R

< Copp N@IE sl < Cepin Nl I (4.15)

Yob:

2 3
< Copn 0@l oWl geo < Cop (0, YN 05
v v

2 3
< Copy NPl oWl goo < Cop (@, YN s
v 4

!
f f e 229 Dddxds
0 Jr

All that’s left is to estimate ‘ fot fR i (I)dxds'. By using the inequality of Cauchy Schwarz, we

find )
f f e I Dddxds
0 Jr

Therefore, using Lemma 3.3 in [2], we have

0
and

3 3
< Coppy 0NN s < Cepp, 0, s

ob —
Gy

!
< f 2N ()2 le($)ords.
0

o
||15||L2(R) < ZO__HCHA’T”‘P”GV + 2||C||L°°(R)||90||L2(R)-
0

This leads for 0 < o < 0 to become

!
f f e 229 Dddxds
0o Jr

!
De(t— g
Sfe £t S)f(ZO__HC”A"”SD”G"+2||c||L°°(R)”S0”L2(R))||90||G"dXdS
0 R 0

—2e(t—s g
< fz)([o,t]e o= (ZO__HC”A"”(P”G" + 2||C||L°°(R)”90”L2(R))||90||G”dde
R 0
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—2e(1- o 2
XT10,:1€ o=s) (20__||C”A””90”G0 + 2||C||L°°(R)||90||L2(R)||Q0||G<f)dXdS
0

[N

IA

).
J

Combining all the estimations obtained before and using (3.3), we find

—2&(I—S %
Xone )(ZO__HCHA"”(‘P, Wi + 2llell =@ llellell (e, l//)”N")dde-
0

[N

lglloe < e 11(wo, o)l + Ci (40"7||(<po,tﬁo)llzvv + UIICIIAg) 110, Y)lRer
+ Collcllzell(@o, Yo)ll 2y 1o, Yo)llne, (4.16)

where Cy,C, are two constants depending on ¢&,b, 0y, max{b;,i = 1,...,8}. We show the same
calculation as before and we infer that

llge < e>1I(go, Yo)llFe + C (4U”||(90o, Yo)llnr + UIICIIAg) 10, Yol
+ Collellzz (o, Yo)ll 2 ll(@o, Yo)llne- (4.17)

Finally, inequalities (4.16) and (4.17) lead to

1@, Wline < 110, Yol + C (40’7||(soo,¢o)llw + GIICIIAg) 10, Yo)llxe
+ C2||C||L;°||(900, l/’o)”LZ(R)H(SDo, Yo)llve,

which establishes the proof of Theorem 4.1. O

4.2. Main theorem

In this part, we state and prove the main theorem in this paper.

Theorem 4.2. Let (H1) and (H2) hold, and let (g, ) € N7° X G?° for certain oy > 0. Then, there is
a number &y such that VT > 0, and the problem (1.2) has a unique solution

2

(¢.) € C([0,T1; G (R))

Moreover, we have
(o, Y)(Dllyeo < Ce 2.

To demonstrate Theorem 4.2, we need the following lemma.

Lemma 4.1. Let (¢,¥) be a local solution of system (1.2). Then, there exist some o such that, for
eachn € N, AD,, > 0, satisfying

I, YOt < 1o, Y0)llero + Dall(@o, o)l

where D, depending on v, ||(¢o, Yo)llne, and ||cl| .=

Proof. The proof by induction will be used.
Casel. For n = 1, thanks to (4.1), we have

1@, YYD)llves < €110, o)l + Cr (40Nl 0, Yo)llve + Hlicliano) l(po, Yol
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+ Caollcllze=l1(eo, Yol L2)lI(@0, Yo)llne -

Applying Young’s inequality on the final term on the righthand side of the last inequality, for v > 0,
we get

—2¢ev 2 2

e 2l
Callellzs 1o, Yolll 2l (o, Yo)llnr < T”(SDOa Yol + m”(‘ﬁm Yl 72z

(

The case is satisfied if o is chosen so that

. 1 - e—st
C140" (g0, Yo)llnr < —
1 - e—2€v
Ciollellan < — (4.18)
and R
Gl
1= 2(1 _ e—st)'

Since we are using o to control these quantities, we see that it is thus necessary to restrict 7 to be
strictly greater than zero; otherwise, the necessary o terms would reduce to 1; see [20].
Case2. Suppose that the result holds for n = k and we prove that it keeps holding forn+1 = k+ 1. We
set (¢, ¥)(kv) as initial data (@, yy) and apply the estimate from the base case. We have

1@, ¥)((k + D[y < 11(0, Go)llye + Dill(Gos o)l 72
< I, )Nl + Dille, p) KNI
< Il(@o, Yo)llje + Dell(@o, ¥o)ll2 + Dill(, ¥)(kv)I 5. (by inductive hypotheses)

By using Eqs (4.1) and (4.2) with the last inequality, we get
10, ¥)((k + DR < (0, Yl + Dill(po, o)z + D1l (po, o)l (4.19)

We take
Dis1 = Dy + Dye %,

and the proof is established.

Proof of Theorem 4.2. It is worth noting that the estimate (4.19) leads to

k-1
I(, Y)KV)llye < [J (2+Dy) Z ez’”] l1(@0, ¥o)llne

i=0

which implies that
(e, Y)kV)line < Cli(go, Yo)llne,

for some C > 0. With the local well-posedness result repeatedly at ¢ = nv, the last inequality becomes
lt@, YDl < Cli(o, Yo)llne, (4.20)
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for any o satisfying inequalities in (4.18) and o < 0.
Let o be any number nonnegative, thanks to Eqgs (4.1), (4.2), and (4.18), and we have

1 L v
1@, DIl 7 < 1, Wl Iy, < Ce™2 (o, Yol
The proof of Theorem 4.2 is established by choosing & = %.

5. Conclusions

The local well-posedness of the KdV type system with weak damping is investigated in the modified
analytic space Y;”h. The local well-posedness is established using the Banach contraction mapping
principle, along with bilinear estimates in the Fourier restriction space. The local result, involving the
approximate conservation law

d

gl +2 fR 1 (0,
d

Sl +2 f e (Wdx,
t R

is extended to hold globally in time. Additionally, a lower bound for the analytic radius is established.
The presence of tow functions c;(x),c,(x), called damping coeflicients, makes the system more
interesting from an application point of view due to their great importance in physics. In the case
where c(x) = ¢;(x) = 0, the authors studied a similar model as a single equation in [21], where a KdV
type equations in Bourgain type spaces is considered and quantitative results are obtained, while our
results in the present paper are qualitative studies related to the behavior of solutions in more suitable
analytic spaces.
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