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Keywords: periodic solutions; Poincaré-Birkhoff theorem; resonance; Landesman-Lazer conditions;
parameter-dependent
Mathematics Subject Classification: 34B15, 34C15, 34C25

1. Introduction

We are interested in the existence of multiple periodic solutions to the following equation:

x′′ + f (t, x) = sp(t). (1.1)

Here, f : R × R → R is assumed to be a continuous function, T -periodic in the first variable, and
locally Lipschitz-continuous in the second variable. Moreover, p : R → R is assumed to be locally
integrable and T -periodic, and s is a positive parameter. A similar result could be provided for s being
negative. We investigate the case where x f (t, x) is sign-varying.

The study on such kind of parameter-dependent differential equations dates back to the contribution
of Berger and Podolak [1], who investigated the following equation:

x′′ + g(x) = sw(t), (1.2)
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or a more general elliptic PDE. g is assumed to be of class C2, for which g′′ > 0, and g′(−∞) <
λ1 < g′(+∞) < λ2; and w(t) = sin(πt/T ), which is the eigenfunction associated with λ1 = (π/T )2, the
first eigenvalue, for the corresponding Dirichlet problem on [0,T ]. The research of this type of model
has its physical background, which can be seen from the Lazer-McKenna model of oscillations in
suspension bridges in [2]. What sets suspension bridges apart is their inherent nonlinearity. This form
of nonlinearity, commonly referred to as asymmetric, arises from its differing behavior for positive and
negative values of x. The fluctuation of sp(t) represents varying wind conditions, potentially causing
different oscillation patterns in the bridge.

There have been significant advances in this field over the years. In particular, Fabry, Mawhin,
and Nkashama [3] initiated the investigation of the corresponding problem with periodic boundary
conditions. Lazer and McKenna [4] provided a multiplicity result for a periodic problem. Ortega [5]
discussed the corresponding periodic problem for a damped Duffing equation from the point of view
of the stability of the solutions. For additional contributions, concerning the existence and multiplicity
of periodic solutions for second order equations, see for instance [6–10] and the references therein.
Additionally, we refer to the works in [11, 12] for equations with a singularity and the nonlinearity
sign-varying, respectively; the work in [13] for weakly coupled parameter-dependent equations.

On the other hand, resonance problems are typical models in ordinary differential equations.
There have been many interesting results in this field. It is well known that, under some resonance
assumptions, the existence of the periodic solution to the considered problem is not guaranteed. In the
last years, several conditions were produced in order to overcome this obstacle, such as Landesman-
Lazer conditions, which can be traced back to the work of Landesman and Lazer in [14]. The power
effects and classical definitions can be seen in [15–17]. We also refer to the works in [18–20] and
the references therein. Boscaggin and Garrione [18] investigated the existence of multiple periodic
solutions to a planar system under nonresonance conditions near zero, as well as resonance conditions
at infinity. Garrione, Margheri, and Rebelo [19] investigated the periodic problem for the equation

x′′ + f (t, x) = 0 (1.3)

under resonance conditions at zero and infinity. Moreover, Landesman-Lazer conditions possess
rotational effects on small and large solutions in the phase-plane.

Furthermore, Fonda and Garrione [17] investigated the double resonance problem for a
planar system

z′ = F(t, z), z ∈ R2. (1.4)

Their result was later generalized by Liu, Qian and Torres [20].
From the research status of resonance problems described above, one can find that researches on

resonance problems associated with parameter-dependent differential equations are relatively sparse.
In sight of this, and motivated by the works in [9,10,17–20], a natural question arises: Whether second
order parameter-dependent equations possess multiple periodic solutions under certain resonance
conditions. Moreover, it is observed that there is a common point of the above works concerning
resonance problems, which is that the sublinearity of the perturbation is required as |x| becomes large
when discussing the rotational characterizations of Landesman-Lazer conditions. If one weakens the
usual requirement on the sublinearity of the perturbations, the discussion of this issue will become
more complex.
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Therefore, we aim to explore a more general method and apply it to investigate the rotational
characterizations of the corresponding Landesman-Lazer conditions; and investigate the multiple
periodic solutions to (1.1) with nonresonance assumptions at positive infinity and resonance ones at
infinity. Additionally, our analysis allows for the nonlinearity f to be sign-varying, and the global
existence of the solution to Eq (1.1) may be destroyed within our framework. Our main tool is the
Poincaré-Birkhoff theorem, which has broad applications in the multiplicity of periodic solutions
(see for instance [8, 10, 19, 21, 22] and the references therein). Another power tool for studying
multiple solutions is the variational method, see for instance [23,24] and the references therein, where
Hamiltonian systems coupling resonant linear components with twisting components and first-order
Hamiltonian random impulsive differential equations are studied, respectively.

In the following, standard notations are used, such as x+ := max{x, 0} and x− := max{−x, 0}.
Moreover, ρ(q) and ρ(φ) are used to denote rotation numbers, the exact definitions of which can be
seen in Section 2. We introduce the following assumptions.

(H0) f : R × R → R is assumed to be continuous, T -periodic in the first variable, and locally
Lipschitz-continuous in the second variable. Moreover, p : R→ R is assumed to be locally integrable
and T -periodic.

(H1) There is a function φ(t) ∈ L1([0,T ]) such that

lim inf
x→−∞

f (t, x)
x
> φ(t), uniformly for a.e. t ∈ [0,T ].

(H2) There is a function q(t) ∈ L1([0,T ]) such that

lim
x→+∞

f (t, x)
x

= q(t), uniformly for a.e. t ∈ [0,T ].

(H3) There exists an integer m > 0 such that

m < ρ(q) < m + 1. (1.5)

Here, ρ(q) represents the rotation number of x′′ + q(t)x = 0. Furthermore, the only T -periodic
solution of

x′′ + q(t)x = p(t) (1.6)

is strictly positive.
(H4) There exists an integer n > 0 such that the rotation number ρ(φ) to the following equation:

x′′ + q(t)x+ − φ(t)x− = 0 (1.7)

satisfies ρ(φ) = n. Moreover, the argument function of every solution to (1.7) is 2π-periodic.
Furthermore, we assume the Landesman-Lazer condition as follows.
(H5) If u is a nontrivial T -periodic solution to (1.7), it holds∫

{u>0}

lim inf
x→+∞

( f (t, x) − q(t)x)u(t)dt +

∫
{u<0}

lim sup
x→−∞

( f (t, x) − φ(t)x)u(t)dt > 0. (1.8)

Then our main result is as follows.
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Theorem 1.1. Suppose that (H0)–(H5) hold and n > m. Then, there is a s0 > 0 such that Eq (1.1) has
at least 2(n − m) + 1 distinct T -periodic solutions, for every s > s0.

Remark 1.1. Regarding the conclusion presented in Theorem 1.1, the rotational characterization of
the Landesman-Lazer condition (H5) plays a crucial role. Specifically, the application framework
of the Poincaré-Birkhoff theorem requires a twist condition on the inner and outer boundaries of
an appropriate annulus. However, the presence of the resonance assumption in (H4) can hinder
the occurrence of the twist, so it is necessary to impose extra conditions to get “far away” from
the resonance scenario. The Landesman-Lazer condition (H5) happens to be the extra “powerful”
condition needed.

Remark 1.2. We prove Theorem 1.1 in Section 3. After two times of change of variables in Section 3,
Eq (1.1) is changed into an equivalent equation. Then, we employ the Poincaré-Birkhoff theorem, and
through the estimates of the T-rotation numbers (see the definition in Section 2), of the solutions that
have a small amplitude and of those having a large amplitude. The rotational characterization of (H5)
is used to provide the estimation to the T-rotation number of the solutions with a large amplitude.

Remark 1.3. In the nonresonance and resonance conditions (H1)–(H4), φ(t) and q(t) are sign-varying,
which implies that sgn(x) f (t, x) could be sign-varying. The following is an interesting example
regarding this. Two sign-varying functions are defined as follows:

q(t) =

{
(2m + 1)2, t ∈ [0, π],
−λ2, t ∈ [π, 2π],

φ(t) =

{
(2α + %)2, t ∈ [0, π],
−µ2, t ∈ [π, 2π].

Here, m ∈ N+, α, % ∈ R+, arctan |λ| 6 π/(2(2m + 1)) and π − nπ/(2α + %) − nπ/(2m + 1) <

max{2 arctan |λ|, 2 arctan |µ|}. Furthermore, there is an integer n > 0 satisfying

π

m
+
π

α
6

2π
n
. (1.9)

Then, it follows that (see the detailed proof in Section 4)

m < ρ(q) < m + 1, ρ(φ) = n. (1.10)

The remainder of the paper is structured as follows. In Section 2, we present the rotational
characterization of the Landesman-Lazer condition at infinity. In Section 3, we provide the proof
of the main result. In Section 4, we prove several technical lemmas and discuss (1.10). Finally, some
conclusions are given in Section 5.

2. The rotational characterization of the Landesman-Lazer condition at infinity

We provide the rotational characterization of the Landesman-Lazer condition at infinity in this part.
By utilizing the rotational characterizations, we can estimate of T -rotation numbers of the solutions,
and then verify that the solution to the system (3.4) in the next section satisfies some twist condition
on an appropriate annulus. This verification is a key step in applying the Poincaré-Birkhoff theorem.

First, we present the definitions of T -rotation numbers and rotation numbers. Consider the following
system:

x′ = y, y′ = −h(t, x). (2.1)
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Here, h : R ×R→ R is assumed to be continuous, T -periodic with respect to the first variable. Denote
z = (x, y) ∈ R2, a solution to (2.1) satisfying the initial condition z(0) = z0 can be written as z(t; z0). If
z(t; z0) , 0, switch to polar coordinates

x = r cos θ, y = r sin θ,

it follows that  θ′ = − sin2 θ −
h(t, x)

r
cos θ,

r′ = r sin θ cos θ − h(t, x) sin θ.
(2.2)

In case that z(t; z0) exists in [0,T ], the T -rotation number associated to z(t; z0) can be defined as

Roth(z0) =
θ(0; z0) − θ(T ; z0)

2π
=

1
2π

∫ T

0

xh(t, x) + y2

x2 + y2 dt.

Here, θ(t; z0) represents the argument function of z(t; z0). Accordingly, Roth(z0) represents the total
algebraic count of the clockwise rotations of the solution z(t; z0) around the origin during [0,T ].

If (2.1) is assumed to be a system of the form

x′ = y, y′ = −a+(t)x+ + a−(t)x−, (2.3)

with a±(t) ∈ L1([0,T ]), and θ(t; z0) satisfying

θ′ = −a+(t)
(
(cos θ)+)2

− a−(t)
(
(cos θ)−

)2
− sin2 θ. (2.4)

θ(t; z0) depends the beginning moment t = 0 as well as the initial value θ0 ∈ S
1 = R/(2πZ).

Moreover, the function

a+(t)((cos θ)+)2 + a−(t)((cos θ)−)2 + sin2 θ

is T -periodic with respect to t and 2π-periodic with respect to θ. Therefore, Eq (2.4) is a equation on a
torus. Hence, the rotation number of (2.4) can be defined as

ρ(a) = lim
t→∞

θ0 − θ(t; θ0)
t

,

which exists independently of t0 = 0 and θ0. Expanding on this, we call ρ(a) the rotation number
of (2.3).

Second, we provide rotational characterizations of Landesman-Lazer conditions. We first present
the usual versions of Landesman-Lazer conditions at infinity [16, 17, 19]. Assume the validity of the
conditions:

(Hl
∞) There exist two functions a± ∈ L1([0,T ]) such that

lim inf
x→±∞

h(t, x)
x
> a±(t) uniformly a.e. in t ∈ [0,T ],

and
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(Hr
∞) There exist two functions b± ∈ L1([0,T ]) such that

lim sup
x→±∞

h(t, x)
x
6 b±(t) uniformly a.e. in t ∈ [0,T ],

respectively, Landesman-Lazer conditions at infinity (LL+
∞) and (LL−∞) are stated as follows.

(LL+
∞) If u is a nonzero T -periodic solution of the following equation:

x′′ + a+(t)x+ − a−(t)x− = 0, (2.5)

it holds ∫
{u>0}

lim inf
x→+∞

(h(t, x) − a+(t)x)u(t)dt +

∫
{u<0}

lim sup
x→−∞

(h(t, x) − a−(t)x)u(t)dt > 0. (2.6)

(LL−∞) If u is a nonzero T -periodic solution of the following equation:

x′′ + b+(t)x+ − b−(t)x− = 0, (2.7)

it holds ∫
{u>0}

lim sup
x→+∞

(h(t, x) − b+(t)x)u(t)dt +

∫
{u<0}

lim inf
x→−∞

(h(t, x) − b−(t)x)u(t)dt < 0. (2.8)

Set H(t, z) = (y,−h(t, x)), L1(t, z) = (y,−a+(t)x+ + a−(t)x−), L2(t, z) = (y,−b+(t)x+ + b−(t)x−).
Then, (2.1), (2.5) and (2.7) are equivalent to

z′ = H(t, z),

z′ = L1(t, z), (2.9)

and
z′ = L2(t, z), (2.10)

respectively.
Next, we list Lemmas 2.1–2.5 and some foundational conclusions in order to show the rotational

characterization of the Landesman-Lazer conditions (LL±∞). However, we choose to omit the proofs
of them in this part, so that we can arrive quickly at the proof of the main result (Theorem 1.1) in the
next section. Lemma 2.1 is about the generalized polar coordinates based on solutions of the system
z′ = L(t, z), it comes from Lemma 5.2 in [20]. Lemma 2.5 will be proved similarly to the proof of
Lemma 2.4. The missing proofs of Lemmas 2.2–2.4 are thus provided in the final section.

Lemma 2.1. Suppose that L : R × R2 → R2 is an L1-Carathéodory function, and is T-periodic in the
first variable and positive homogeneous with degree one with respect to the second vector variable.
Assume that zω(t) is a solution of the system

z′ = L(t, z) (2.11)

with zω(t0) = ω ∈ S1. Then any continuous function z(t) can be expressed as z(t) = r(t)zω(t)(t), with r(t)
and ω(t) being continuous and r(t) > 0.
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Lemma 2.2. (i) For every ν ∈ S1, let zν(t) = (xν(t), yν(t)) . 0 be a solution to (2.9) that satisfies
zν(0) = ν. Then for every µ ∈ S1, condition (2.6) is equivalent to∫ T

0
lim inf

(λ,ν)→(+∞,µ)

(
〈JH(t, λzν(t)), zν(t)〉

|zν(t)|2
− λ
〈JL1(t, zµ(t)), zµ(t)〉

|zµ(t)|2

)
dt > 0. (2.12)

(ii) For every ν ∈ S1, let zν(t) = (xν(t), yν(t)) . 0 be a solution to (2.10) that satisfies zν(0) = ν. Then
for every µ ∈ S1, condition (2.8) is equivalent to∫ T

0
lim sup

(λ,ν)→(+∞,µ)

(
〈JH(t, λzν(t)), zν(t)〉

|zν(t)|2
− λ
〈JL2(t, zµ(t)), zµ(t)〉

|zµ(t)|2

)
dt < 0. (2.13)

Here, J =

(
0 −1
1 0

)
represents a standard symplectic matrix.

Next, we give a lemma, aiming to find a truncated function of h, which plays a crucial role in the
proof of Lemma 2.4.

Lemma 2.3. Suppose that h : R × R → R is continuous, T -periodic in the first variable. Moreover,
assume the validity (Hl

∞). Then there is a function ĥ, which can be expressed as

ĥ(t, x) = a+(t)x+ − a−(t)x− + r̂(t, x), (2.14)

such that r̂(t, x) satisfies

lim
|x|→+∞

r̂(t, x)
x

= 0, (2.15)

and ĥ satisfies
xĥ(t, x) 6 xh(t, x), for every x ∈ R and a.e. t ∈ [0,T ]. (2.16)

Lemma 2.4. Suppose that h : R × R → R is continuous, T -periodic in the first variable, and (Hl
∞)

and (LL+
∞) hold. Furthermore, let the rotation number of Eq (2.5) satisfy ρ(a) = k, and the argument

function of every solution to Eq (2.5) is 2π-periodic. Then, there exists R̃ > 0 such that

Roth(z0) > k

is valid for each solution to (2.1) that satisfies |z(t; z0)| > R̃, ∀ t ∈ [0,T ].

Furthermore, symmetrical to Lemma 2.4, replace (Hl
∞) and (LL+

∞) by (Hr
∞) and (LL−∞), respectively,

we get a result as follows.

Lemma 2.5. Suppose that h : R × R → R is continuous, T -periodic in the first variable, and (Hr
∞)

and (LL−∞) hold. Furthermore, let the rotation number of Eq (2.7) satisfy ρ(b) = k, and the argument
function of every solution to Eq (2.7) is 2π-periodic. Then, there exists R̃ > 0 such that

Roth(z0) < k

is valid for each solution to (2.1) that satisfies |z(t; z0)| > R̃, ∀ t ∈ [0,T ].
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3. The existence of multiple periodic solutions

In this part, we provide the proof of the main result by applying the Poincaré-Birkhoff theorem. We
now make a change of variables. In (1.1), let

u(t) =
1
s

x(t).

Then, Eq (1.1) is changed into

u′′ +
f (t, su)

s
= p(t). (3.1)

Similar to Lemmas 3.3 in [12], we present an existence result as follows.

Lemma 3.1. Assume the validity of (H0)–(H3). Then, there is a s1 > 1, such that, for every s > s1,
Eq (3.1) has a T-periodic solution ũs that satisfies

c0 6 ũs(t) 6 C0,

for each t ∈ [0,T ], where c0 and C0 are two positive constants.

Next, we make the second change of variables. In (3.1), let

v(t) = u(t) − ũs(t),

Eq (3.1) is thus changed into

v′′ +
f (t, s(v + ũs(t))) − f (t, sũs(t))

s
= 0. (3.2)

We can see that v = 0 is a solution of (3.2). Similar to Lemmas 3.4 in [12], we have the following
lemma.

Lemma 3.2. Assume (H0), (H2) and (H3), then

lim
s→+∞

f (t, s(v + ũs(t))) − f (t, sũs(t))
s

= q(t)v

holds uniformly for almost every t ∈ [0,T ] and every v ∈ [−
1
2

c0,
1
2

c0].

Set
f̃s(t, v) =

f (t, s(v + ũs(t))) − f (t, sũs(t))
s

,

then Eq (3.2) is changed into
v′′ + f̃s(t, v) = 0. (3.3)

Consider the first order planar system

v′ = w, w′ = − f̃s(t, v), (3.4)

associated to Eq (3.3), where f̃s(t, v) satisfies the following conditions, which can be deduced from
(H0), (H1), (H2), and (H5) by some simple computations.
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(H0)′ f̃s : R × R → R is assumed to be continuous, T -periodic in the first variable, and locally
Lipschitz-continuous in the second variable. Moreover, f̃s(t, 0) = 0.

(H1)′ For φ(t) ∈ L1([0,T ],R) in (H1), we have

lim inf
v→−∞

f̃s(t, v)
v
> φ(t), uniformly for a.e. t ∈ [0,T ]. (3.5)

(H2)′ For q(t) ∈ L1([0,T ],R) in (H2), we have

lim
v→+∞

f̃s(t, v)
v

= q(t), uniformly for a.e. t ∈ [0,T ].

(H5)′ If u is a nonzero T -periodic solution to (1.7), it holds∫
{u>0}

lim inf
v→+∞

( f̃s(t, v) − q(t)v)u(t)dt +

∫
{u<0}

lim sup
v→−∞

( f̃s(t, v) − φ(t)v)u(t)dt > 0. (3.6)

3.1. Spiral property

It is noted that the global existence of solutions for system (3.4) may be destroyed under the
conditions (H0)′, (H1)′, and (H2)′. Global existence is essential in the application of the Poincaré-
Birkhoff theorem. In this part, we provide a spiral property of the solutions for Eq (3.3) under the
conditions (H0)′, (H1)′, and (H2)′, and modify system (3.4) using the spiral property below. We then
obtain the global existence of solutions to the modified system.

Denote by z̃s(t) := (vs(t),ws(t)) a solution to (3.4) that satisfies z̃0 := z̃s(0) = (vs(0),ws(0)). By (H0)′,
every solution to the initial value problem corresponding to (3.4) is unique. Because z̃s(t) = 0 is a
solution to (3.4), by uniqueness, one has z̃s(t) , 0 when z̃0 , 0. Switch to polar coordinates

v = r cos θ, w = r sin θ,

then it follows that  θ′ = − sin2 θ −
f̃s(t, v)

r
cos θ,

r′ = r sin θ cos θ − f̃s(t, v) sin θ.
(3.7)

Let (θ̃s(t), r̃s(t)) := (θ̃s(t; z̃0), r̃s(t; z̃0)) denote a solution to (3.7) with (θ̃s(0), r̃s(0)) = (θ0, r0). Then, we
have the spiral property of the solution for the system (3.4) as follows. Its proof is analogous to that of
Lemma 4.1 in [12], and is therefore omitted here.

Lemma 3.3. Suppose that (H0)′, (H1)′ and (H2)′ hold, s > s1. For every fixed l, N0 ∈ N and a r∗ large
enough, there exist two strictly increasing functions ξ−N0

, ξ+
N0

: [r∗,+∞)→ R, such that

ξ±N0
(r)→ +∞ ⇐⇒ r → +∞.

Furthermore, given any r0 > r∗, then the solution (θ̃s(t), r̃s(t)) of (3.4) satisfies that either

ξ−N0
(r0) 6 r̃s(t) 6 ξ+

N0
(r0), t ∈ [0, lT ],

or there exists tN0 ∈ (0,T ) such that

θ0 − θ̃s(tN0; z̃0) = 2N0π,

and
ξ−N0

(r0) 6 r̃s(t) 6 ξ+
N0

(r0), t ∈ [0, tN0].
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3.2. The modified system

We now introduce a modified system. To ensure the existence of global solutions to the associated
initial value problems, we propose a truncated function as follows:

g̃s(t, v) =


f̃s(t,−R), v < −R,
f̃s(t, v), |v| 6 R,
f̃s(t,R), v > R,

where the positive parameter R satisfies R > c0/2, and its exact value will be provided when proving
Theorem 1.1. Then the Hamiltonian system associated to g̃s(t, v) is as follows:

v′ = w, w′ = −g̃s(t, v). (3.8)

We now give some basic properties of the modified system (3.8), containing uniqueness, global
existence and rotational property. For convenience, we denote by z̃s(t) a solution to (3.8) with an initial
value z̃0, and θ̃s(t) the argument function associated to z̃s(t) satisfying θ̃s(0) = θ0.

Lemma 3.4. Assume (H0)′, then every solution to the initial value problem associated to (3.8) is unique
and exists globally. If |z̃s(t)| 6 R, z̃s(t) is also a solution of system (3.4).

Lemma 3.5. Nonzero solutions satisfy the rotational property. More precisely, if z̃s(t) is a nontrivial
solution of (3.8), then,

θ̃s(t2) − θ̃s(t1) < π, for any t2 > t1.

Lemma 3.5 can be proven similarly to Lemma 4.1 in [25], so we omit it here. Before proving
the main result, we present a lemma to determine the inner boundary of an appropriate annulus for
applying the Poincaré-Birkhoff theorem, as follows [12].

Lemma 3.6. There exist three positive constants δ, r̃ and s2 that satisfy δ < r̃ <
1
2

c0 and s2 > s1, such
that, for every s > s2, if |z̃0| = r̃, then we have

δ < |z̃s(t)| <
1
2

c0,

for every t ∈ [0,T ].

3.3. Proof of the main result

The proof will be divided into the following steps.
Step 1. Define a set

Ω := {z ∈ R2 : δ < |z| <
1
2

c0},

and let
Γ− := {z : |z| = r̃}.

Consider the solution z̃s(t) of (3.8) with z̃0 ∈ Γ−. By Lemma 3.6, there is a s2 with s2 > s1, for which
z̃s(t) ∈ Ω when s > s2, that is

δ < |z̃s(t)| <
1
2

c0, t ∈ [0,T ].
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Since
1
2

c0 < R, right now, z̃s(t) is a solution to (3.4). By Lemma 3.2, it follows that

lim
s→+∞

f̃s(t, v) = q(t)v

holds uniformly for almost every t ∈ [0,T ] and z = (v,w) ∈ Ω. Then we obtain

lim
s→+∞

f̃s(t, v)
v

= q(t) (3.9)

holds uniformly for almost every t ∈ [0,T ] and any z = (v,w) ∈ Ω. Additionally, it is observed that

s→ +∞ ⇐⇒ s(v + ũs)→ +∞, for v + ũs ∈ [
1
2

c0,
1
2

c0 + C0].

Thus, from (H3) and Lemma 2.3 in [12], we can obtain

m < Rot f̃s
(z̃0) < m + 1.

Thus,
m < Rotg̃s(z̃0) < m + 1, for z̃0 ∈ Γ−. (3.10)

Step 2. By (H1)′, (H2)′, we can deduce that (Hl
∞) in Lemma 2.4 holds. Then by (H4) and (H5)′, and

Lemma 2.4, for s > s2, there is a R̃ > 0, so that for each solution z̃s(t) of (3.4) that satisfies |z̃s(t)| > R̃,
t ∈ [0,T ], we have

Rot f̃s
(z̃0) > n. (3.11)

Define
Γ+ := {z : |z| = R∞},

and select R = R′∞, where
R∞ > (ξ−n+1)−1(R̃), R′∞ > ξ

+
n+1(R∞),

as a result, (3.8) is equivalent to (3.4) when |z̃s(t)| 6 R.
Next, Let us focus on the solution to system (3.8) starting from z̃0 ∈ Γ+. If R̃ 6 |z̃s(t)| 6 R′∞, for

every t ∈ [0,T ], then by (3.11) we have

Rotg̃s(z̃0) > n, for z̃0 ∈ Γ+. (3.12)

If for some t∗ ∈ [0,T ] it holds |z̃s(t∗)| > R′∞ > ξ
+
n+1(R∞), it can be seen that

ξ−n+1(|z̃0|) 6 |z̃s(t)| 6 ξ+
n+1(|z̃0|)

is not valid for every t ∈ (0,T ). Thus, applying Lemma 3.3, there exists t̄∗ ∈ (0, t∗] for which

θ0 − θ̃s(t′∗) = 2(n + 1)π.

Furthermore, applying Lemma 3.5, it follows that

θ0 − θ̃s(T ) = θ0 − θ̃s(t̄∗) + θ̃s(t̄∗) − θ̃s(T ) > 2(n + 1)π − π > 2nπ.
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Then,
Rotg̃s(z̃0) > n. (3.13)

Last, if for some t′∗ ∈ (0,T ) it holds that |z(t′∗)| 6 R̃ < ξ−n+1(R∞), then

ξ−n+1(|z0|) 6 |z(t)| 6 ξ+
n+1(|z0|)

is not valid for every t ∈ (0,T ). By the same discussion as above we have

Rotg̃s(z̃0) > n. (3.14)

Combined (3.12), (3.13) with (3.14), we have, if the solution of (3.8) begins from z̃0 ∈ Γ+,

Rotg̃s(z̃0) > n. (3.15)

Step 3. Give the definition of the Poincaré map

P : R2 → R2,

z̃0 7→ z̃s(T ).

Lemma 3.4 confirms the global existence of solutions, which implies that P is well-defined.
Furthermore, the fact that solutions are unique guarantees that P is a homeomorphism, and (3.8) has a
Hamiltonian structure, P is therefore an area-preserving homeomorphism.

Let k = m + 1, m + 2, · · · , n, then from (3.10) and (3.15) we have

Rotg̃s(z̃0) < k, for z̃0 ∈ Γ−,

Rotg̃s(z̃0) > k, for z̃0 ∈ Γ+.

Thus, by the Poincaré-Birkhoff theorem (see [21, 26]), P possesses no fewer than n − m pairs of
geometrically distinct fixed points z̃i, j, i = 1, · · · , n − m, j = 1, 2, which associate to n − m pairs of
T -periodic solutions

z̃s(t; z̃i, j), i = 1, · · · , n − m, j = 1, 2

of (3.8) with
Rotg̃s(z̃i, j) = k, i = 1, · · · , n − m, j = 1, 2. (3.16)

Step 4. We aim to show that z̃s(t; z̃i, j), i = 1, · · · , n − m, j = 1, 2 are in fact T -periodic solutions
to (3.4). Specifically, we will show that |z̃s(t; z̃i, j)| 6 R, for every t ∈ [0,T ], i = 1, · · · , n − m, j = 1, 2.
Note that

0 < |z̃i, j| < R∞, i = 1, · · · , n − m, j = 1, 2.

Take z̃s(t; z̃1,1) as an example. Suppose by contradiction that there is t1 ∈ (0,T ) for which
|z̃s(t1; z̃1,1)| > R = R′∞, as well as

|z̃s(t; z̃1,1)| 6 R′∞, for t ∈ [0, t1].

Applying Lemma 3.3, then it holds

θ̃s(0; z̃1,1) − θ̃s(t1; z̃1,1) = 2(k + 1)π.
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Moreover, by Lemma 3.5, we have

θ̃s(0; z̃1,1) − θ̃s(T ; z̃1,1)
= θ̃s(0; z̃1,1) − θ̃s(t1; z̃1,1) + θ̃s(t1; z̃1,1) − θ̃s(T ; z̃1,1)
> 2(k + 1)π − π > 2kπ.

Hence,
Rotg̃s(z̃1,1) > k,

contradicting (3.16). Hence, we can obtain

|z̃s(t; z̃1,1)| 6 R, for t ∈ [0,T ],

so z̃s(t; z̃1,1) is indeed a T -periodic solutions of (3.4). The same discussion is valid for other solutions.
Recalling the zero solution to (3.3) which corresponding to ũs(t) of (3.1), we get 2(n−m)+1 distinct

T -periodic solutions for (3.1), which means that Eq (1.1) has 2(n−m)+1 distinct T -periodic solutions.
Therefore, the proof is completed.

Remark 3.1. To demonstrate the application of the main result, we give an example as follows.
Consider a function f (t, x) defined by

f (t, x) =

 q(t)x, x > 0,

|φ(t)|x3, x ≤ 0

with q(t) and φ(t) being defined as that in Remark 1.3. Then we have

lim inf
x→−∞

f (t, x)
x
≥ φ(t) uniformly for a.e. t ∈ [0, 2π];

and
lim

x→+∞

f (t, x)
x

= q(t) uniformly for a.e. t ∈ [0, 2π].

Therefore, (H1) and (H2) hold. By (1.10) in Remark 1.3 and a similar discuss to that in Remark 3.1
in [12], we can verify (H3). Then, (H4) can be verified by applying Remark 1.3, and (H5) can be
verified by a simple computation. Furthermore, let n > m. Then, by applying Theorem 1.1, there is a
s0 ≥ 0 such that, for every s ≥ s0, the equation x′′ + f (t, x) = sp(t) with f (t, x) defined as above, has at
least 2(n − m) + 1 distinct 2π-periodic solutions.

4. Proofs of some technical lemmas

This section is dedicated to proving Lemmas 2.2–2.4 and discussing (1.10).

Proof of Lemma 2.2. We present the proof of the first statement. The second one can be proved
similarly. For every ν ∈ S1, since zν(t) = (xν(t), yν(t)) . 0 is a solution to (2.9) that satisfies zν(0) = ν,
from the continuous dependence of the solution on the initial value, it holds limν→µ xν(t) = xµ(t) for
t ∈ [0,T ]. Therefore, (2.12) is equivalent to∫ T

0
lim inf

(λ,ν)→(+∞,µ)

( xν(t)h(t, λxν(t))
|zν(t)|2

− λ
a+(t)(x+

ν (t))2 + a−(t)(x−ν (t))2

|zν(t)|2

)
dt > 0. (4.1)
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Then, we will prove that (2.6) is equivalent to (4.1).
In another perspective, it holds that∫ T

0
lim inf

(λ,ν)→(+∞,µ)

( xν(t)h(t, λxν(t))
|zν(t)|2

− λ
a+(t)(x+

ν (t))2 + a−(t)(x−ν (t))2

|zν(t)|2

)
dt

=

∫ T

0
lim inf

(λ,ν)→(+∞,µ)

1
|zν(t)|2

xν(t)
(
h(t, λxν(t)) − λ(a+(t)x+

ν (t) − a−(t)x−ν (t))
)
dt.

(4.2)

Notice that {t ∈ [0,T ] : x(t) = 0} is a finite subset of [0,T ], let

h
∞

(t) = lim inf
x→+∞

(h(t, x) − a+(t)x), h∞(t) = lim sup
x→−∞

(h(t, x) − a−(t)x),

and denote by x+
µ (t) =

xµ(t) + |xµ(t)|
2

, x−µ (t) =
xµ(t) − |xµ(t)|

2
, we have

lim inf
(λ,ν)→(+∞,µ)

xν(t)
(
h(t, λxν(t)) − λ

(
a+(t)x+

ν (t) − a−(t)x−ν (t)
))

= h
∞

(t)x+
µ (t) + h∞(t)x−µ (t),

for almost every t ∈ [0,T ]. Therefore, we conclude that∫ T

0

1
|zµ(t)|2

lim inf
(λ,ν)→(+∞,µ)

xν(t)
(
h(t, λxν(t)) − λ

(
a+(t)x+

ν (t) − a−(t)x−ν (t)
))

dt

=

∫
{uµ>0}

1
|zµ(t)|2

lim inf
x→+∞

(h(t, x) − a+(t)x)uµ(t)dt

+

∫
{uµ<0}

1
|zµ(t)|2

lim sup
x→−∞

(h(t, x) − a−(t)x)uµ(t)dt,

(4.3)

this is because, under (Hl
∞), every integral on the right hand side must be either finite or +∞.

Furthermore, (2.6) is equivalent to that the right hand side of (4.3) is greater than zero. By (4.2), (2.6) is
equivalent to (4.1). Therefore, the proof is completed. �

Proof of Lemma 2.3. By (Hl
∞), for arbitrary ε > 0, there is a positive constant d > 0 for which

h(t, x)
x
> a+(t) − ε, for x > d, (4.4)

and
h(t, x)

x
> a−(t) − ε, for x 6 −d. (4.5)

Focus on a certain t ∈ [0,T ], it is noted that h(t, x)/x will fall into one of two cases as follows.
(i) h(t, x)/x ∈ [a+(t) + ε,+∞) for x > d, h(t, x)/x ∈ [a−(t) + ε,+∞) for x 6 −d;
(ii) h(t, x)/x ∈ [a+(t) − ε, a+(t) + ε] for x > d, h(t, x)/x ∈ [a−(t) − ε, a−(t) + ε] for x 6 −d.
Case 1. h(t, x)/x ∈ [a+(t) + ε,+∞) for x > d, and h(t, x)/x ∈ [a−(t) + ε,+∞) for x 6 −d. In such a

case, we see that
h(t, x) − a±(t)x

x
> ε > 0, for |x| > d.
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Then, it holds
h(t, d) − a+(t)d > 0, h(t,−d) + a−(t)d < 0. (4.6)

Moreover, we have

lim
x→+∞

h(t, d) − a+(t)d
x

= 0, lim
x→−∞

h(t,−d) + a−(t)d
x

= 0.

Thus, for the above ε > 0, there is a positive constant d (which, for simplicity, we can take to be the
same as before) such that

0 <
h(t, d) − a+(t)d

x
6 ε, for x > d, (4.7)

and
0 <

h(t,−d) + a−(t)d
x

6 ε, for x 6 −d. (4.8)

By (4.7), it holds
h(t, x)

x
> a+(t) +

h(t, d) − a+(t)d
x

, for x > d, (4.9)

and by (4.8), it holds
h(t, x)

x
> a−(t) +

h(t,−d) + a−(t)d
x

, for x 6 −d. (4.10)

We proceed to define a truncated function ĥ as follows:

ĥ(t, x) =


a+(t)x + h(t, d) − a+(t)d, x > d,
h(t, x), |x| < d,
a−(t)x + h(t,−d) + a−(t)d, x 6 −d.

We can conclude that: focusing on a certain t ∈ [0,T ], if h(t, x)/x falls into Case 1, from (4.9)
and (4.10), it follows that

h(t, x)
x
>

ĥ(t, x)
x

, for |x| > d. (4.11)

Multiplying both sides of (4.11) by x2 and using the definition of ĥ yields

xh(t, x) > xĥ(t, x), for x ∈ R and a.e. t ∈ [0,T ].

Hence, one can deduce the validity of (2.16). Furthermore, it can be obtained

r̂(t, x) =


h(t, d) − a+(t)d, x > d,
h(t, x) − (a+(t)x+ − a−(t)x−), |x| < d,
h(t,−d) + a−(t)d, x 6 −d.

As a result, r̂(t, x) is bounded: a T -periodic function η(t), which belongs to L1([0,T ]), exists such that
for a.e. t ∈ [0,T ] and any x ∈ R,

|r̂(t, x)| 6 η(t). (4.12)

Therefore, we can also deduce the validity of (2.15).
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Case 2. h(t, x)/x ∈ [a+(t) − ε, a+(t) + ε] for x > d, and h(t, x)/x ∈ [a−(t) − ε, a−(t) + ε] for x 6 −d.
Now, we see that

|h(t, x)/x − a+(t)| 6 ε, for x > d,

and
|h(t, x)/x − a−(t)| 6 ε, for x 6 −d.

From the arbitrariness of ε, we have

lim
|x|→+∞

h(t, x) − a+(t)x+ + a−(t)x−

x
= 0. (4.13)

For a certain time instant t ∈ [0,T ], if h(t, x)/x falls into Case 2, let ĥ(t, x) = h(t, x), it is observed
that (2.16) holds. Moreover, by (4.13), we can obtain

lim
|x|→+∞

r̂(t, x)
x

= 0.

Thus, (2.15) holds.
From the discussions in the above two cases, we can conclude that regardless of which case h(t, x)/x

falls into, we can find a function ĥ that satisfies (2.15) and (2.16). Furthermore, after the modification,
it is observed that, ĥ lies within the interval [a+(t) − ε, a+(t) + ε] when x > d, and ĥ lies within the
interval [a−(t) − ε, a−(t) + ε] when x 6 −d. The proof is completed. �

We will prove Lemma 2.4 by contradiction in the next. Before this, we want to give some
remarks. Based on the assumptions (Hl

∞) and ρ(a) = k, one can conclude that Roth(z0) > k by
Lemmas 2.1–2.3 in [22]. The Landesman-Lazer condition (LL+

∞) serves to prevent the case where
Roth(z0) = k, ensuring instead that Roth(z0) > k. This ensures that we can obtain some twist condition
for an appropriate annulus when applying the Poincaré-Birkhoff theorem. When proved through
contradiction, the sublinearity of the perturbation is critical in deriving the corresponding contradiction,
which can be seen from (4.17) to (4.18) below. However, the sublinearity of the perturbation is not fully
satisfied for the system (2.1). Therefore, we define a truncated system (4.14) based on Lemma 2.3,
with its perturbation being sublinear and its solutions have a smaller angular velocity. We use the
system (4.14) as a medium to deduce the corresponding contradiction.

Proof of Lemma 2.4. Assume, by way of contradiction, that there is a sequence (zn)n of solutions that
satisfy zn(0) = z0

n for which min{|zn(t)| : t ∈ [0,T ]} → +∞ as n→ ∞, and Roth(z0
n) 6 k.

Applying (Hl
∞) and Lemma 2.3, we can find a truncated function ĥ that satisfies (2.15) and (2.16).

Next, using this function ĥ, we define a truncated system

x′ = y, y′ = −ĥ(t, x), (4.14)

in which ĥ can be expressed as

ĥ(t, x) = a+(t)x+ − a−(t)x− + r̂(t, x).

Therefore, system (4.14) is equivalent to

z′ = L1(t, z) + R̂(t, z), (4.15)
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where L1(t, z) = (y,−a+(t)x+ + a−(t)x−), R̃(t, z) = (0,−r̂(t, x)).
Denote by (ẑn)n a sequence of solutions to (4.14) with ẑn(0) = z0

n. Furthermore, employing the
definition of T -rotation numbers, we can obtain

Rotĥ(z0
n) 6 Roth(z0

n) 6 k. (4.16)

Setting ŵn = ẑn/‖ẑn‖∞, and substitute it into (4.15), we have

ŵ′n = L1(t, ŵn) +
R̂(t, ẑn)
‖ẑn‖∞

. (4.17)

By the definition of ĥ, we can deduce that every solution to (4.14) exists globally. Consequently, the
elastic property of solutions ensues. Furthermore, since min{|zn(t)| : t ∈ [0,T ]} → +∞ as n → ∞, it
can be concluded that ‖z0

n‖∞ → +∞ as n→ ∞. As a result, it holds that ‖ẑn‖∞ → +∞ as n→ ∞.
Due to the boundedness of (ŵn)n in L2(0,T ), (4.17) yields the boundedness of (ŵn)n in H1([0,T ]).

Thus, there is a ŵ ∈ H1([0,T ]) for which, up to subsequence, ŵn → ŵ uniformly, as well as ŵn ⇀ ŵ
weakly in H1([0,T ]). Then, ‖ŵ‖∞ = 1. Taking the weak limit in (4.17) and noting that the last term
disappears due to the sublinearity of R̂(t, z), we can obtain

ŵ′ = L1(t, ŵ). (4.18)

Moreover, since the argument function of ŵ(t) is 2π-periodic, so ŵ(t) performs k clockwise rotations
around the origin in [0,T ]. Thus, ŵ(t) = R0vµ(t) for proper R0 > 0 and vµ(t) is a solution to (4.18) that
satisfies vµ(0) = µ ∈ S1. Thus, we obtain∫ T

0

〈JL1(t, vµ(t)), vµ(t)〉
|vµ(t)|2

dt =

∫ T

0

〈JL1(t,R0vµ(t)),R0vµ(t)〉
|R0vµ(t)|2

dt = k. (4.19)

Applying the generalized polar coordinates presented from Lemma 2.1, we have ẑn(t) = rn(t)vµn(t)(t),
where µn(t) ∈ S1 for each n. Therefore, by ŵn → ŵ(t), it holds that

ẑn(t)/‖ẑn‖∞ → R0vµ(t) uniformly as n→ ∞.

Moreover, by ẑn(t) = rn(t)vµn(t)(t), it holds that

rn(t)/‖ẑn‖∞ → R0, µn(t)→ µ uniformly when n→ ∞.

Let Ĥ = (y,−ĥ(t, x)). By (4.16) and (4.19), it holds∫ T

0

〈JĤ(t, ẑn), ẑn(t)〉
|ẑn(t)|2

dt 6
∫ T

0

〈JL1(t, vµ(t)), vµ(t)〉
|vµ(t)|2

dt.

This implies ∫ T

0

R0‖ẑn‖∞

rn(t)

(〈JĤ(t, ẑn(t)), ẑn(t)
rn(t)〉

|ẑn(t)|2/(rn(t))2 −
〈JL1(t, rn(t)vµ(t)), vµ(t)〉

|vµ(t)|2

)
dt 6 0.

Formulas (2.14) and (4.12) enable us to use the Fatou’s lemma now, so we have∫ T

0
lim inf

n→+∞

R0‖ẑn‖∞

rn(t)

(〈JĤ(t, ẑn(t)), ẑn(t)
rn(t)〉

|ẑn(t)|2/(rn(t))2 −
〈JL1(t, rn(t)vµ(t)), vµ(t)〉

|vµ(t)|2

)
dt 6 0.
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Applying the usual properties of the inferior limit and keeping in mind that

ẑn(t)/(R0‖ẑn‖∞)→ vµ(t), and rn(t)/(R0‖ẑn‖∞)→ 1,

uniformly as n→ ∞, it can be assumed, without loss of generality, that µn(t)→ µ uniformly. If needed,
it can be passed to a subsequence. Therefore, for any given t ∈ [0,T ], we are calculating the inferior
limit appearing in (2.12) for H replaced by Ĥ, along the specific subsequence (rn(t), µn(t)), for that
µn(t)→ µ and rn(t)→ +∞. Then, it can be concluded that∫ T

0
lim inf

(λ,ν)→(+∞,µ)

(
〈JĤ(t, λvν(t)), vν(t)〉

|vν(t)|2
− λ
〈JL1(t, vµ(t)), vµ(t)〉

|vµ(t)|2

)
dt 6 0. (4.20)

Furthermore, by Lemma 2.2 we can conclude that (4.20) is equivalent to∫
{u>0}

lim inf
x→+∞

(ĥ(t, x) − a+(t)x)u(t)dt +

∫
{u<0}

lim sup
x→−∞

(ĥ(t, x) − a−(t)x)u(t)dt 6 0. (4.21)

When ĥ(t, x) = h(t, x), (4.21) contradicts with the hypothesis (2.6). When ĥ(t, x) = a+(t)x + h(t, d) −
a+(t)d for x > d, and ĥ(t, x) = a−(t)x + h(t,−d) + a−(t)d for x 6 −d, (4.21) is changed into∫

{u>0}

(h(t, d) − a+(t)d)u(t)dt +

∫
{u<0}

(h(t,−d) + a−(t)d)u(t)dt 6 0.

This is a contradiction. In fact, by the discussions in Lemma 2.3, we can conclude that∫
{u>0}

(h(t, d) − a+(t)d)u(t)dt +

∫
{u<0}

(h(t,−d) + a−(t)d)u(t)dt > 0.

Therefore, the proof is completed. �

Finally, we discuss in detail on m < ρ(q) < m + 1 and ρ(φ) = n in (1.10). First of all, similar to the
discuss of (1.15) in [12], we can prove m < ρ(q) < m + 1. Therefore, we mainly focus on the proof of
ρ(φ) = n in the following.

By (ii) of Lemma 5.1 in [12] and (1.9), we have ρ(φ) > n. Consider the system

x′ = y, y′ = −q(t)x+ + φ(t)x−, (4.22)

associated to equations (1.7). If the following statement hold, we can conclude ρ(φ) = n by Lemma 2.1
in [12].

(∗) There is a solution z(t; z0) to (4.22) with z(0; z0) = z0 such that

θ(2π) − θ0 = −2nπ, (4.23)

with θ(t) being the argument function corresponding to z(t; z0) that satisfies θ(0) = θ0.
Denote by θ(t) a nonzero 2π-periodic solution to the following equation:

θ′ = −q(t)((cos θ)+)2 − φ(t)((cos θ)−)2 − sin2 θ

AIMS Mathematics Volume 9, Issue 10, 28320–28340.
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associated to system (4.22), with θ(0) = θ0. Applying a simple calculation, we can obtain

θ(0) − θ
( nπ
2m + 1

+
nπ

2α + %

)
= 2nπ. (4.24)

Then, θ(2π)− θ
( nπ
2m + 1

+
nπ

2α + %

)
= 0. Using a analogous approach to Lemma 4.5 [20], it follows that

arctan |λ| + arctan |µ| − π < θ(2π) − θ(π) < max{2 arctan |λ|, 2 arctan |µ|}.

Furthermore, since

θ′ = − sin2 θ − (2m + 1)2 cos2 θ < −1, for t ∈
( nπ
2m + 1

+
nπ

2α + %
, π

)
,

then
θ(π) − θ

( nπ
2m + 1

+
nπ

2α + %

)
<

nπ
2m + 1

+
nπ

2α + %
− π.

By the definitions of λ and µ, we can find a nontrivial solution θ̂(t) with θ̂(0) = θ̂0 such that θ̂(π) −

θ̂
( nπ
2m + 1

+
nπ

2α + %

)
= θ̂(π) − θ̂(2π). Thus, by (4.24), we have

θ̂(2π) − θ̂0 = θ̂(2π) − θ̂
( nπ
2m + 1

+
nπ

2α + %

)
+ θ̂

( nπ
2m + 1

+
nπ

2α + %

)
− θ̂0 = −2nπ.

Therefore, ρ(φ) = n.

5. Conclusions

In this paper, we studied the resonance problems for the parameter-dependent equation (1.1) under
Landesman-Lazer conditions and obtained the multiplicity of periodic solutions. It is formulated in an
original way, relying on sufficiently general assumptions.

We weakened the usual requirement on the sublinearity of the perturbations, and developed a
more general method to investigate rotational characterizations of the Landesman-Lazer conditions.
Moreover, we address the challenges arising from the sign-changing nature of the nonlinearity and the
lack of global existence of solutions.
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26. C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar
systems, Nonlinear Anal., 29 (1997), 291–311. https://doi.org/10.1016/S0362-546X(96)00065-X

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 28320–28340.

https://dx.doi.org/https://doi.org/10.1007/BF01765314
https://dx.doi.org/https://doi.org/ 10.1006/jdeq.1995.1040
https://dx.doi.org/https://doi.org/10.1016/j.jde.2010.08.006
https://dx.doi.org/https://doi.org/10.1016/j.na.2011.03.051
https://dx.doi.org/https://doi.org/ 10.1016/j.jmaa.2018.12.063
https://dx.doi.org/https://doi.org/ 10.1016/j.jmaa.2018.12.063
https://dx.doi.org/https://doi.org/10.1007/s00025-021-01401-w
https://dx.doi.org/https://doi.org/ 10.1016/j.anihpc.2016.04.002
https://dx.doi.org/https://doi.org/ 10.1016/j.anihpc.2016.04.002
https://dx.doi.org/https://doi.org/10.1016/j.jde.2018.10.010
https://dx.doi.org/https://doi.org/10.1016/j.jde.2022.03.016
https://dx.doi.org/https://doi.org/10.1007/s12346-023-00748-5
https://dx.doi.org/https://doi.org/10.1007/s00030-022-00768-1
https://dx.doi.org/https://doi.org/10.1016/S0362-546X(96)00065-X
https://creativecommons.org/licenses/by/4.0

	Introduction
	The rotational characterization of the Landesman-Lazer condition at infinity
	The existence of multiple periodic solutions
	Spiral property
	The modified system
	Proof of the main result

	Proofs of some technical lemmas
	Conclusions

