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Abstract: Given an immersed hypersurface Mn in the Euclidean space En+1, the tangential component
ω of the position vector field of the hypersurface is called the basic vector field, and the smooth function
of the normal component of the position vector field gives a function σ on the hypersurface called
the support function of the hypersurface. In the first result, we show that on a complete and simply
connected hypersurface Mn in En+1 of positive Ricci curvature with shape operator T invariant under
ω and the support function σ satisfies the static perfect fluid equation if and only if the hypersurface
is isometric to a sphere. In the second result, we show that a compact hypersurface Mn in En+1 with
the gradient of support function σ, an eigenvector of the shape operator T with eigenvalue function the
mean curvature H, and the integral of the squared length of the gradient ∇σ has a certain lower bound,
giving a characterization of a sphere. In the third result, we show that a compact and simply connected
hypersurface Mn of positive Ricci curvature in En+1 has an incompressible basic vector field ω, if and
only if Mn is isometric to a sphere.

Keywords: shape operator; n-sphere; Euclidean space; static perfect fluid equation; incompressible
vector fields
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1. Introduction

Given an orientable immersed hypersurface Mn in the Euclidean space En+1 with unit normal ξ and
shape operator T , we denote by ψ : Mn → En+1 the immersion, by g the induced metric, and denote the
hypersurface by (Mn, ψ, g, ξ,T ). The eigenvalues µ1, .., µn of the shape operator T are called principal
curvatures of the hypersurface (Mn, ψ, g, ξ,T ) and play a very important role in the geometry [1, 2] as
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well as the topology of (Mn, ψ, g, ξ,T ) (cf. [3–5]). It is fascinating to see that constraints on principal
curvatures also influence the topology of exterior En+1\Mn. An interesting result in [6] proves that
if a compact and connected hypersurface (Mn, ψ, g, ξ,T ), n ≥ 2, An is the unbounded component of
En+1\Mn and the principal curvatures satisfy µ1 + .. + µn < 0, then An simply connected. There are
many important aspects of studying the geometry of hypersurface (Mn, ψ, g, ξ,T ) in En+1 and one of
them is to study the geometry of (Mn, ψ, g, ξ,T ) under the condition ∆2ψ = 0, and the study of such
submanifolds was initiated by Chen [7–9], calling them biharrmonic hypersurfaces. Moreover, Chen
conjectured that a biharmonic hypersurface of En+1 is minimal (cf. [10–12]). An interesting result
in Euclidean submanifolds is that of Jacobowicz (cf. [6]), which states an n-dimensional Riemannian
manifold (Mn, g) with sectional curvatures less than a constant λ−2 admits an isometric immersion into
the Euclidean space E2n−1 can never be contained in a ball of radius λ in E2n−1 and this result is the
generalization of the nonembeddability result due to Tompkins (cf. [3]). Taking clue from [6, 13, 14],
in [2], the author generalized the result to a compact hypersurface (Mn, ψ, g, ξ,T ) in En+1, where it is
proved that if the scalar curvature of (Mn, g) is less than a constant n(n − 1)λ−2, then no immersion
ψ : Mn → En+1 is contained in a ball of radius λ in En+1. It is still open to show that if the Ricci
curvatures of a compact Riemannian manifold (Mn, g) are less than a constant (n − 1)λ−2, then no
immersion ψ : Mn → En+1 is contained in a ball of radius λ in En+1. The geometrical and topological
properties [15–17] of hypersurfaces are the branches of differential geometry [18, 19], and a small
portion of it is described above [20–22]. The submanifolds theory [23, 24] and soliton theory [25–27],
etc., continue to inspire new insights and discoveries to help solve these problems and make it an active
area of research in many branches of mathematics and physics.

Inspired by the previous results, in the present paper, we first intend to study the geometrical and
topological properties of an orientable hypersurface (Mn, ψ, g, ξ,T ) in the Euclidean space En+1, and
we express the vector ψ as

ψ = ω + σξ, σ = 〈ψ, ξ〉 , (1.1)

where ω is tangential projection of ψ to Mn. We call ω the basic vector field and the function σ the
support function of the hypersurface (Mn, ψ, g, ξ,T ).

Secondly, the paper studied the static perfect fluid equation on a Riemannian manifold (Mn, g),
which is given by

σRic − Hes(σ) =
1
n

(στ − ∆σ) ,

where Ric is the Ricci tensor, Hes(σ) is the Hessian of σ, τ is the scalar curvature and ∆ is the Laplace
operator on (Mn, g). It is known that the static perfect fluid equation has immense importance in
mathematical physics, in particular in fluid dynamics and also in differential geometry (cf [28] and
references therein).

Furthermore, we investigate the impacts on the geometry of the complete and simply connected
hypersurface (Mn, ψ, g, ξ,T ) in the Euclidean space En+1 with support function σ satisfying static
perfect fluid equation and find conditions under which this hypersurface (Mn, ψ, g, ξ,T ) is isometric
to the Euclidean sphere S n(c) of constant curvature c (see Theorem 3.1).

We also show a compact and simply connected hypersurface (Mn, ψ, g, ξ,T ) in En+1 that has support
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function σ, mean curvature H = 1
nTraceT , and the shape operator T satisfies

T (∇σ) = H∇σ,
∫
Mn

‖∇σ‖2 ≥
1
n

∫
Mn

(divω)2 ,

where ∇σ is the gradient of the support function σ, if and only if H is a constant and hypersurface
(Mn, ψ, g, ξ,T ) is isometric to S n

(
H2

)
(see Theorem 4.1).

For a vector field ζ on a Riemannian manifold (Mn, g) to be incompressible, it is required that
divζ = 0. This notion is borrowed from fluid mechanics (cf. [8, 30]). In this paper, further we study
compact hypersurface (Mn, ψ, g, ξ,T ) in the Euclidean space En+1 of positive Ricci curvature with basic
vector field ω incompressible and show that for such hypersurfaces the mean curvature H is a constant
and (Mn, ψ, g, ξ,T ) is isometric to S n

(
H2

)
and also the converse holds (see Theorem 5.1).

2. Preliminaries

Let (Mn, ψ, g, ξ,T ) be an orientable hypersurface in the Euclidean space En+1 with immersion ψ :
Mn → En+1. We denote by Ω (Mn) the space of smooth vector fields on Mn and by ∇E the covariant
derivative in the direction of E ∈ Ω (Mn) with respect to the Riemannian connection of the induced
metric g. Then, on differentiating Eq (1.1) with respect to E ∈ Ω (Mn) and using the Gauss-Weingarten
formulae and equating akin parts, we obtain the following for the basic vector field ω [10, 29].

∇Eω = E + σT E, ∇σ = −Tω, E ∈ Ω (Mn) . (2.1)

The curvature tensor of (Mn, ψ, g, ξ,T ) has the following expression:

R(E1, E2)E3 = g (T E2, E3) T E1 − g (T E1, E3) T E2, E1, E2, E3 ∈ Ω (Mn) , (2.2)

and using the following formulas of the Ricci tensor and the mean curvature H of (Mn, ψ, g, ξ,T )

Ric (E1, E2) =
∑
α

g (R(uα, E1)E2, uα) , H =
1
n

∑
α

g (Tuα, uα) , (2.3)

where {uα}n1 is a local orthonormal frame on (Mn, ψ, g, ξ,T ), we obtain through Eq (2.1)

Ric (E1, E2) = nHg (T E1, E2) − g (T E1,T E2) , E1, E2 ∈ Ω (Mn) . (2.4)

The scalar curvature τ of (Mn, ψ, g, ξ,T ) is obtained by taking trace in the above equation, and we have
the formula

τ = n2H2 − ‖T‖2 , (2.5)

where
‖T‖2 =

∑
α

g (Tuα,Tuα) .

The shape operator T of the hypersurface (Mn, ψ, g, ξ,T ) of the Euclidean space En+1 satisfies the
following Codazzi equation:

(∇T ) (E1, E2) = (∇T ) (E2, E1) , E1, E2 ∈ Ω (Mn) , (2.6)
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and here (∇T ) (E1, E2) means

(∇T ) (E1, E2) = ∇E1T E2 − T
(
∇E1 E2

)
.

On differentiating the expression for H in Eq (2.3) and utilizing Eq (2.6), we confirm

nE (H) = g

E,
∑
α

(∇T ) (uα, uα)

 , E ∈ Ω (Mn) ,

and it accounts for the expression for the gradient ∇H of H given by

∇H =
1
n

∑
α

(∇T ) (uα, uα) . (2.7)

For a compact hypersurface (Mn, ψ, g, ξ,T ) of the Euclidean space En+1 with support function σ

and mean curvature H, Minkowski’s integral formula states∫
Mn

(1 + σH) = 0. (2.8)

Recall that for a vector field ω on a Riemannian manifold (Mn, g), we say that an operator S defined

on (Mn, g) is invariant under ω if the following holds:

dϕt ◦ S = S ◦ dϕi,

where {ϕi} is the local flow of ω. It follows that if S is invariant under ω, then we have

£ωS = 0,

where £ω is the Lie derivative with respect to ω.
Next, we discuss the model example of the sphere S n(c) of constant curvature c as an embedded

hypersurface ψ : S n(c)→ En+1 given by

S n(c) =

{
x ∈ En+1 : 〈x, x〉 =

1
c

}
, ψ(x) = x.

The unit normal ξ to S n(c) is expressed by ξ =
√

cψ and the shape operator T = −
√

cI. Moreover, the
support function σ of S n(c) is given by σ = 1

√
c and the basic vector field ω of S n(c) is given by ω = 0.

The mean curvature H of S n(c) is given by H = −
√

c.

3. Hypersurfaces with support function solution of static perfect fluid equation

Let (Mn, ψ, g, ξ,T ) be an orientable hypersurface in the Euclidean space En+1 with immersion ψ :
Mn → En+1 support function σ, basic vector field ω, mean curvature H, and scalar curvature τ. We
assume that the pressure on the support function σ to satisfy the static perfect fluid equation, namely

σRic − Hes(σ) =
1
n

(τσ − ∆σ) g, (3.1)
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where Hes(σ) is the Hessian, defined by

Hes(σ)(E1, E2) = g
(
∇E1∇σ, E2

)
, E1, E2 ∈ Ω (Mn) ,

and we also have Hessian operator Hσ and the Ricci operator Q defined by

Hes(σ)(E1, E2) = g (HσE1, E2) , Ric(E1, E2) = g (QE1, E2) , E1, E2 ∈ Ω (Mn) .

The Laplace operator ∆ on (Mn, ψ, g, ξ,T ) is defined by ∆σ = div (∇σ), and it is also the trace of Hσ.
Moreover, we also assume that the hypersurface (Mn, ψ, g, ξ,T ) of the Euclidean space En+1 has a basic
vector field ω under which the operator T is invariant, that is,

(£ωT ) = 0,

which amounts to the following

[ω,T E] = T [ω, E] , E ∈ Ω (Mn) . (3.2)

We intend to show that a complete and simply connected hypersurface (Mn, ψ, g, ξ,T ) of En+1 having
positive Ricci curvature, subjected to conditions (3.1) and (3.2), gets ready to acquire the shape of a
sphere, as seen in the following:

Theorem 3.1. A complete and simply connected hypersurface (Mn, ψ, g, ξ,T ) of the Euclidean space
En+1, n > 1, with positive Ricci curvature satisfies the shape operator T is invariant under the basic
vector field ω, and the support function σ satisfies the static perfect fluid equation if and only if the
mean curvature H is a constant and (Mn, ψ, g, ξ,T ) is isometric to the sphere S n

(
H2

)
.

Proof. Let (Mn, ψ, g, ξ,T ) be a complete and simply connected hypersurface of positive Ricci curvature
in the Euclidean space En+1, n > 1, with support function σ and the basic vector field ω satisfying
Eqs (3.1) and (3.2), respectively. On employing Eq (2.1) in Eq (3.2), we extract the following

(∇T ) (ω, E) = T E + σT 2E − T (E + σT E) = 0, E ∈ Ω (Mn) . (3.3)

Next, we wish to use Eq (2.1) in order to compute the Hessian operator Hσ as follows:

HσE = ∇E∇σ = −∇ETω = − (∇T ) (E,ω) − T (∇Eω) , E ∈ Ω (Mn) ,

which, in view of Coddazzi Eq (2.6) and Eqs (2.1) and (3.3), yields

HσE = −T E − σT 2E, E ∈ Ω (Mn) . (3.4)

Equation (2.4) has the form QE = nHT E − T 2E and employing it in Eq (3.4), it turns out that

Hσ = −(1 + nHσ)T + σQ. (3.5)

Defining the second fundamental form Ξ of the hypersurface (Mn, ψ, g, ξ,T ), by

Ξ (E1, E2) = g (T E1, E2) , E1, E2 ∈ Ω (Mn) .
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Thus, Eq (3.5) now takes the shape

σRic − Hes(σ) = (1 + nHσ)Ξ. (3.6)

Next, taking trace in the Eq (3.4), we conclude

∆σ = −nH − σ ‖T‖2 ,

and using Eq (2.5) in above the equation, we have

∆σ = −nH − n2σH2 + στ.

Inserting this value in Eq (3.1), we confirm

σRic − Hes(σ) = H (1 + nσH) g. (3.7)

Combining Eqs (3.6) and (3.7), we have

(1 + nσH) (Ξ − Hg) = 0. (3.8)

Assume that (1 + nσH) = 0 holds. Then, we conclude σ∇H = −H∇σ, which, on employing Eq (2.1)
implies

σ∇H = HTω. (3.9)

Now, we use Eqs (2.6) and (3.3) to conclude (∇T ) (E,ω) = 0, and taking the inner product with E
while using the symmetry of T gives

g (ω, (∇T ) (E, E)) = 0, E ∈ Ω (Mn) .

On taking the sum in the above equation over a local orthonormal frame {uα}n1 and employing the (2.7),
we conclude

g (ω,∇H) = 0. (3.10)

The Eq (3.9), on taking the inner product with ω and using Eq (3.10), we get

Hg (Tω,ω) = 0,

and utilizing it with Eq (2.4) in computing Ric (ω,ω), we get

Ric (ω,ω) = − ‖Tω‖2 .

As Ric > 0, the above equation implies the basic vector field ω = 0, that is, div (ω) = n(1 + σH) (by
virtue of Eq (2.1)) and we get σH = −1, and combining it with our assumption (1 + nσH) = 0, we get
(n − 1) = 0, a contradiction as n > 1. Hence, we have (1 + nσH) , 0 and as Mn is simply connected.
It is connected and as such, Eq (3.8) now yields

Ξ = Hg,

that is equivalent to
T = HI, (3.11)
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which implies
(∇T ) (E, E) = E (H) E, E ∈ Ω (Mn) .

Taking E = uα in the above equation for an orthonormal frame {uα}n1, and summing while using
Eq (2.7), we conclude n∇H = ∇H, which, in view of n > 1, implies H is a constant. Now, the
Eq (2.2), gives

R(E1, E2)E3 = H2 {g (E2, E3) E1 − g (E1, E3) E2} , E1, E2, E3 ∈ Ω (Mn) .

The above equation confirms that the hypersurface (Mn, ψ, g, ξ,T ) has constant curvature H2. Note
that the constant H2 > 0 as Ric = (n − 1)H2g > 0. Hence, the complete and simply connected
(Mn, ψ, g, ξ,T ) is isometric to S n

(
H2

)
.

The converse is trivial, as for the support function σ of S n
(
H2

)
is a constant σ = − 1

H that satisfies

Eq (3.1) and the basic vector field ω = 0 satisfies (3.2) and also that S n
(
H2

)
has positive Ricci

curvature. �

4. Hypersurface with gradient of support function an eigenvector of shape operator

Let (Mn, ψ, g, ξ,T ) be a complete and simply connected hypersurface in En+1 with basic vector field
ω , support function σ, and mean curvature H. At times, simple restrictions lead to very fundamental
results. In this section, we are going to witness a similar situation. We are going to show that a simple
condition like T (∇σ) = H (∇σ), that is, the gradient ∇σ of σ is an eigenvector of T with eigenvalue
function H, and an appropriate lower bound on the integral of ‖∇σ‖2 leads to a characterization of the
sphere. Indeed, we prove the following:

Theorem 4.1. A compact and simply connected hypersurface (Mn, ψ, g, ξ,T ) of the Euclidean space
En+1, n > 1, with support function σ, basic vector field ω and mean curvature H satisfy

T (∇σ) = H (∇σ) ,
∫
Mn

‖∇σ‖2 ≥
1
n

∫
Mn

(divω)2 ;

if and only if, H is a constant and (Mn, ψ, g, ξ,T ) is isometric to the sphere S n
(
H2

)
.

Proof. Let (Mn, ψ, g, ξ,T ) be a compact and simply connected hypersurface En+1, n > 1, with support
function σ, the basic vector field ω and mean curvature H, satisfying

T (∇σ) = H (∇σ) , (4.1)

and ∫
Mn

‖∇σ‖2 ≥
1
n

∫
Mn

(divω)2 . (4.2)

Inserting the Eq (2.1) namely ∇σ = −Tω in Eq (4.1) to reach T 2ω = HTω, which by the inner product
with ω, gives

‖Tω‖2 = Hg (Tω,ω) .
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Employing Eq (2.4) in the above equation, we arrive at

Ric (ω,ω) = (n − 1)Hg (Tω,ω) ,

and combining it with Eq (2.1), confirms

Ric (ω,ω) = −(n − 1)Hω (σ) = −(n − 1) (ω (Hσ) − σω (H)) . (4.3)

Note that Eq (4.1) also implies T (∇σ) = ∇ (Hσ) − σ∇H, which by the inner product with ω, implies

g (T (∇σ) ,ω) = ω (Hσ) − σω (H) ,

and employing Eq (2.1), we conclude

− ‖∇σ‖2 = ω (Hσ) − σω (H) .

We insert the above equation in Eq (4.3), yielding

Ric (ω,ω) = (n − 1) ‖∇σ‖2 . (4.4)

Next, we use a local frame {uα}n1 and Eq (2.1), in computing

div (ω) = n (1 + σH) , (4.5)

‖∇ω‖2 = n + 2nσH + σ2 ‖T‖2 , (4.6)

and
|£ωg|2 = 4

(
n + 2nσH + σ2 ‖T‖2

)
, (4.7)

where the Lie derivative £ωg is given by

(£ωg) (E1, E2) = g
(
∇E1ω, E2

)
+ g

(
∇E2ω, E1

)
, E1, E2 ∈ Ω (Mn) .

Now, recall the following integral formula from [31], for the compact hypersurface (Mn, ψ, g, ξ,T )∫
Mn

(
Ric (ω,ω) +

1
2
|£ωg|2 − ‖∇ω‖2 − (div (ω))2

)
= 0,

and inserting Eqs (4.4), (4.6) and (4.7) in the above equation have∫
Mn

(
(n − 1) ‖∇σ‖2 + σ2 ‖T‖2 + n + 2nσH − (div (ω))2

)
= 0.

Rearranging the above equation, we have∫
Mn

{
σ2

(
‖T‖2 − nH2

)
+

1
n

(1 + σH)2 + (n − 1) ‖∇σ‖2 − (div (ω))2
}

= 0,
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which, on employing Eq (4.5), gives∫
Mn

σ2
(
‖T‖2 − nH2

)
= (n − 1)

∫
Mn

(
1
n

(div (ω))2
− ‖∇σ‖2

)
.

Now, employing the inequality (4.2) in the above equation results in∫
Mn

σ2
(
‖T‖2 − nH2

)
≤ 0.

Further, note that it is due to Schwartz’s inequality ‖T‖2 ≥ nH2, the integrand in above inequality is
non-negative, therefore, we conclude

σ2
(
‖T‖2 − nH2

)
= 0. (4.8)

Note that the implication σ = 0 of the above equation is forbidden due to Minkowski’s formula (2.8).
Hence, σ , 0 on the connected Mn forces Eq (4.8) to yield

‖T‖2 = nH2,

which being an equality in Schwartz’s inequality, holds if and only if T = HI, and it leads to H a
constant (see argument after Eq (3.11)). Hence, as seen in the proof of Theorem 1, the curvature tensor
hypersurface (Mn, ψ, g, ξ,T ) is given by

R(E1, E2)E3 = H2 {g (E2, E3) E1 − g (E1, E3) E2} , E1, E2, E3 ∈ Ω (Mn) .

Now, by a global argument that on a compact hypersurface in a Euclidean space, there exists a
point where all sectional curvatures are positive, we see that the constant H2 > 0. Hence, the
simply connected hypersurface (Mn, ψ, g, ξ,T ) being compact is also complete, and thus, the complete
and simply connected hypersurface (Mn, ψ, g, ξ,T ) has constant positive curvature H2. Hence,
(Mn, ψ, g, ξ,T ) is isometric to S n

(
H2

)
. The converse is trivial. �

5. Hypersurfaces with incompressible basic vector field

In this section, we study the geometry of a compact and simply connected hypersurface
(Mn, ψ, g, ξ,T ) in a Euclidean space En+1 with basic vector field ω, support function σ and mean
curvature H with basic vector field ω incompressible, that is, satisfying div (ω) = 0. The notion that
ω is incompressible for the compact hypersurface (Mn, ψ, g, ξ,T ) is so strong that it alone suffices in
forcing the hypersurface (Mn, ψ, g, ξ,T ) of positive Ricci curvature to acquire the shape of a sphere, as
seen in the following:

Theorem 5.1. A compact and simply connected hypersurface (Mn, ψ, g, ξ,T ) of the Euclidean space
En+1, n > 1, of positive Ricci curvature with support function σ, mean curvature H, has the basic
vector field ω incompressible if and only if H is a constant and (Mn, ψ, g, ξ,T ) is isometric to the
sphere S n

(
H2

)
.
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Proof. Suppose (Mn, ψ, g, ξ,T ) is a compact and simply connected hypersurface of the Euclidean space
En+1, n > 1, with the basic vector field ω incompressible. Then, as div (ω) = 0, by Eq (4.5), σH = −1
and, therefore, both functions σ and H are nowhere zero on Mn and we have

∇H = −
1
σ2∇σ, (5.1)

and joining it with Eq (2.7), we conclude∑
α

(∇T ) (uα, uα) = −
n
σ2∇σ. (5.2)

Now, using ∇σ = −Tω from Eq (2.1), which on differentiation gives the following expression for Hσ

HσE = − (∇T ) (E,ω) − T (E + σT E) ,

and taking trace, while using the symmetry of T , we conclude

∆σ = −g

ω,∑
α

(∇T ) (uα, uα)

 − nH − σ ‖T‖2 .

Now using the above equation with Eq (4.5) in the form σH = −1 and Eq (5.2), we confirm

∆σ =
n
σ2ω (σ) +

n
σ
− σ ‖T‖2 .

Multiplying the above equation by σ and then integrating by parts would lead us to

−

∫
Mn

‖∇σ‖2 =

∫
Mn

( n
σ
ω (σ) + n − σ2 ‖T‖2

)
,

which could be rearranged as∫
Mn

σ2
(
‖T‖2 − nH2

)
=

∫
Mn

( n
σ
ω (σ) + n

(
1 − σ2H2

)
+ ‖∇σ‖2

)
.

Now, using σH = −1 and (5.1), in the above equation, it yields∫
Mn

σ2
(
‖T‖2 − nH2

)
=

∫
Mn

(
‖∇σ‖2 − nσω (H)

)
. (5.3)

We observe that
div (H (σω)) = σω (H) + Hdiv (σω) ,

and that as ω is incompressible implies div (σω) = ω (σ). Thus, we have

div (H (σω)) = σω (H) + Hω (σ) .

Also, we see by Eq (2.1), ω (σ) = g (ω,∇σ) = −g (Tω,ω) and the above equation becomes

div (H (σω)) = σω (H) − Hg (Tω,ω) .
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Next, we plug the above equation with Eq (2.4) and get

nσω (H) = ndiv (H (σω)) + nHg (Tω,ω) = ndiv (H (σω)) +
(
Ric (ω,ω) + ‖Tω‖2

)
.

Plugging the above equation with Eq (5.3), we achieve∫
Mn

σ2
(
‖T‖2 − nH2

)
=

∫
Mn

(
‖∇σ‖2 − Ric (ω,ω) − ‖Tω‖2

)
,

and by Eq (2.1), ∇σ = −Tω, the above equation reduces to∫
Mn

σ2
(
‖T‖2 − nH2

)
= −

∫
Mn

Ric (ω,ω) .

Owing to Schwartz’s inequality, the left-hand side in the above equation is non-negative, and since
the Ricci curvature is positive, the left-hand side in the above equation is strictly negative. The only
possible conclusion is

σ2
(
‖T‖2 − nH2

)
= 0, and ω = 0. (5.4)

The second equation in Eq (5.4) together with ∇σ = −Tω implies that σ is a constant. This constant σ
has to be non-zero, for otherwise both ω = 0 and σ = 0 would imply ψ = ω + σξ = 0 a contradiction.
Hence, σ is a non-zero constant and also simultaneously H is a non-zero constant (owing to σH = −1)
and Eq (5.4) reduces to

‖T‖2 − nH2 = 0.

Then, using the following Eq (4.8) as in the proof of Theorem 4.1, we conclude (Mn, ψ, g, ξ,T ) is
isometric to S n

(
H2

)
. The converse follows trivially as the sphere S n

(
H2

)
has positive Ricci curvature,

and as a hypersurface the sphere has a basic vector field ω = 0, which is automatically incompressible.
�

6. Conclusions

There is a lot to comment on each result in this paper and future scopes of their respective
generalizations. However, we shall concentrate on the Theorem 3.1, where it is proved that a complete
and simply connected hypersurface (Mn, ψ, g, ξ,T ) of the Euclidean space En+1, n > 1, with positive
Ricci curvature, satisfies the shape operator T is invariant under the basic vector fieldω, and the support
function σ satisfies the static perfect fluid equation if and only if the mean curvature H is a constant
and (Mn, ψ, g, ξ,T ) is isometric to the sphere S n

(
H2

)
. There are natural questions tagged to this result,

namely:
(a) Can we relax the condition that the hypersurface (Mn, ψ, g, ξ,T ) has positive Ricci curvature?
(b) Can we replace the condition in Theorem 3.1 that the operator T is invariant under ω by the

condition T (ω) = τ
nω?

(c) Note that apart from the support function σ of the hypersurface (Mn, ψ, g, ξ,T ), there is yet
another function δ : Mn → R defined by

δ =
1
2
‖ψ‖2 ,
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and this function δ satisfies ∇δ = ω. A natural question would be to find additional conditions under
which the complete and simply connected hypersurface (Mn, ψ, g, ξ,T ) with function δ satisfying static
perfect fluid equation

δRic − Hes(δ) =
1
n

(δτ − ∆δ)

is isometric to the sphere S n
(
H2

)
?

These questions would be our focus for future studies on the hypersurface (Mn, ψ, g, ξ,T ) of the
Euclidean space En+1.
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