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1. Introduction

The quasihyperbolic metric was introduced by Gehring and his students Palka and Osgood in the
1970’s in the setting of Euclidean spaces Rn (n ≥ 2) [1, 2]. With the aid of the quasihyperbolic
metric, from late 1980’s onwards, Väisälä developed the theory of (dimension) freely quasiconformal
mappings in Banach spaces [7–11].

We assume throughout this paper that E and E′ are real Banach spaces with dimension at least 2,
and that G ⊊ E and G′ ⊊ E′ are domains, i.e., nonempty connected open sets. A homeomorphism
f : G → G′ is said to be an M-quasihyperbolic (M-QH) mapping with M ≥ 1 if

1
M

kG(z1, z2) ≤ kG′(z′1, z
′
2) ≤ MkG(z1, z2)

for all z1, z2 ∈ G. Here and hereafter, the primes always denote the images in G′ of the points in G
under the mapping f , and kG and kG′ are the quasihyperbolic metrics of G and G′, respectively; see
Subsection 2.2 for the precise definitions.

Quasihyperbolic mappings constitute a basic mapping class in the theory of freely quasiconformal
mappings, and they are also one of the important tools for the study of the freely quasiconformal
mapping theory. Therefore, the study of the properties of quasihyperbolic mappings has attracted
extensive attention.
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In this paper, we will investigate an open problem raised by Väisälä concerning the quasihyperbolic
mappings in the freely quasiconformal mapping theory [11].
Open problem 1.1. [11, 13.2.13] Suppose that f : G → G′ is a homeomorphism and that each point
of G has a neighborhood D ⊂ G such that f |D : D→ f (D) is M-QH. Is f M′-QH with M′ = M′(M)?

There are some related references that discuss Väisälä’s open problem [3,4,12,13]. Here the authors
positively answered the problem under certain additional conditions. In [4], Huang et al. considered
Open problem 1.1 in the setting of metric spaces and obtained the following:

Theorem 1.1. [4, Theorem 1.10] Let X be a c1-quasiconvex and dense metric space, and let Y be a
c2-quasiconvex, dense, and proper metric space. Let G ⊊ X and G′ ⊊ Y be two domains. Suppose that
f : G → G′ is a homeomorphism that is both semi-locally M-QH and semi-locally η-QS with M > 1 a
constant and η : [0,∞)→ [0,∞) a homeomorphism. Then f is M1-QH with M1 = M1(M, η, c1, c2).

Here a metric space X is said to be dense if for any two points x, y ∈ X and two positive real numbers
r1, r2 with |x − y| < r1 + r2, we have B(x, r1) ∩ B(y, r2) , ∅, and a homeomorphism f : G → G′ is said
to be semi-locally M-QH (resp. semi-locally η-QS), if for each point z ∈ G, the homeomorphism
f |B(z,dG(z)) is M-QH (resp. η-QS), where dG(z) = dist(z, ∂G).

Subsequently, in [12], Zhou considered Open problem 1.1 in the setting of Banach spaces and
obtained the following:

Theorem 1.2. [12, Theorem 1.2] Suppose that f : G → G′ is a homeomorphism. If there exists a
constant M > 1 and a homeomorphism η : [0,∞) → [0,∞) such that f is semi-locally M-QH and
semi-locally η-QS, then f is M1-QH with M1 = M1(M, η).

At the same time, in [13], Zhou et al. considered Open problem 1.1 in the setting of length metric
spaces, and weakened the condition “semi-locally η-QS” to “semi-locally relatively η-QS” (see
Subsection 2.4 for the precise definition), strengthened the above Theorem 1.2, and obtained the
following.

Theorem 1.3. [13, Theorem 2] Suppose that X is a length metric space and Y is a c-quasiconvex and
complete metric space, and that G ⊊ X and G′ ⊊ Y are two domains. Suppose that M > 1 is a constant,
η : [0,∞) → [0,∞) a homeomorphism, and f : G → G′ a homeomorphism that is both semi-locally
M-QH and semi-locally relatively η-QS. Then f is M1-QH with M1 = M1(M, η, c).

Remark 1.1. Note that Theorems 1.1–1.3 show that Open problem 1.1 has a positive answer under the
condition that f is both semi-locally M-QH and semi-locally (relatively) η-QS. Naturally, one will ask
whether the related conditions of Theorems 1.1–1.3 can be removed or not. In [3, Example 2.1], He
et al. constructed an example to illustrate that Open problem 1.1 has a negative answer, which shows
that these related conditions cannot be removed.

In [7], Väisälä investigated the properties of QH mappings and proved the following result:

Theorem 1.4. [7, Theorem 4.7] Suppose that G ⊊ E, G′ ⊊ E′, and that f : G → G′ is M-QH. Then
for every subdomain D of G, the restriction f |D is 4M2-QH.

Remark 1.2. Based on Theorem 1.4, we know that the condition “ f being semi-locally M-QH”
in Theorems 1.1–1.3 is necessary. Naturally, one will ask whether the condition “ f being
semi-locally (relatively) η-QS” in Theorems 1.1–1.3 is necessary or not. In Section 3, we construct an
example to show that it is not a necessary condition; see Example 3.1.
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The main motivation of this paper is to consider Open problem 1.1. We obtain the following
necessary and sufficient condition for QH mappings. For 0 < q ≤ 1, a homeomorphism f : G → G′ is
said to be q-locally M-QH, if for each point z ∈ G, the restriction f |BG

q (z) : BG
q (z) → f (BG

q (z)) is M-QH,
where BG

q (z) = B(z, qdG(z)). Obviously, 1-locally M-QH means semi-locally M-QH in Theorems
1.1–1.3. Our main result is as follows:

Theorem 1.5. Suppose that G ⊊ E, G′ ⊊ E′, and f : G → G′ is a homeomorphism. Then f is M-QH
if and only if both f and f −1 are q-locally M′-QH such that in the necessity part q is arbitrary and M′

depends only on M and such that in the sufficiency part M depends only on (M′, q).

There are several ways to prove Theorem 1.5, such as using [11, Theorem 5.26]
or [12, Theorem 1.1], but these proofs may not be so elementary. In this paper, we shall provide an
elementary proof of Theorem 1.1. In fact, we obtained as follows a more general result related
to (locally) coarsely quasihyperbolic (briefly, CQH) mappings.

Theorem 1.6. Suppose that G ⊊ E, G′ ⊊ E′, and f : G → G′ is a homeomorphism. If f and f −1 are
q-locally (M,C)-CQH, then f is (M′,C′)-CQH with the constants M′ and C′ depending only on the
constants M, C, and q.

Remark 1.3. The converse of Theorem 1.6 is invalid; see Example 3.2.

The rest of this paper is organized as follows; In Section 2, we recall necessary definitions and
preliminary results. In Section 3, we will prove Remarks 1.2 and 1.3 and Theorems 1.5 and 1.6.

2. Preliminaries

2.1. Notation

Throughout this paper, we assume that E and E′ are real Banach spaces with dimension at least 2,
and that G ⊊ E and G′ ⊊ E′ are domains, i.e., nonempty connected open sets. The norm of a vector
z in E is written as |z|, and for every pair of points z1, z2 in E, the distance between them is denoted
by |z1 − z2|. Let B(x, r) denote the open ball with the center x ∈ E and radius r(> 0), and S (x, r) and
B(x, r) denote the boundary and the closure of B(x, r), respectively. In particular, for 0 < q ≤ 1 and
x ∈ G, let BG

q (x) = B(x, qdG(x)) and S G
q (x) = S (x, qdG(x)), where dG(x) denotes the distance from x to

the boundary ∂G of G.

2.2. Quasihyperbolic metric and quasigeodesic

Let G ⊊ E be a domain. For a rectifiable curve γ in G, that is, of the length ℓ(γ) < ∞, its
quasihyperbolic length is defined by

ℓkG (γ) =
∫
γ

|dx|
dG(x)

.

For each pair of points z1, z2 in G, the quasihyperbolic distance kG(z1, z2) between z1 and z2 is defined
in the usual way:

kG(z1, z2) = inf
γ
ℓkG (γ)

with the infimum taken over all rectifiable curves γ in G joining z1 to z2. It is known that kG is a metric
in G, the quasihyperbolic metric. We introduce some estimates on the quasihyperbolic metric.
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Theorem 2.1. [7, Lemma 2.2]
(1) For all z1, z2 ∈ G, we have

kG(z1, z2) ≥ log
(
1 +

|z1 − z2|

min{dG(z1), dG(z2)}

)
≥

∣∣∣∣ log
dG(z1)
dG(z2)

∣∣∣∣.
(2) For w ∈ G, 0 < t < 1, and z1, z2 ∈ B(w, tdG(w)),

kG(z1, z2) ≤
1

1 − t
|z1 − z2|

dG(w)
.

In addition, if t ≤ 1
2 , then

kG(z1, z2) ≥
1

1 + 2t
|z1 − z2|

dG(w)
.

A rectifiable arc γ in G is called a c-quasigeodesic with c ≥ 1 if

ℓkG (γ[z1, z2]) ≤ ckG(z1, z2)

for all z1, z2 ∈ γ. In particular, γ is a quasihyperbolic geodesic if and only if γ is a 1-quasigeodesic.

In [11], Väisälä proved the existence of quasigeodesics in Banach spaces.

Theorem 2.2. [11, Theorem 9.4] Suppose that G ⊊ E, z1, z2 ∈ G, and c > 1. Then there is a c-
quasigeodesic from z1 to z2 in G.

2.3. Quasihyperbolic mappings

Let M ≥ 1, C ≥ 0, and 0 < q ≤ 1. Following the notation of [11], we say that a homeomorphism
f : G → G′ is

(1) C-coarsely M-quasihyperbolic (briefly, (M,C)-CQH) if

kG(z1, z2) −C
M

≤ kG′(z′1, z
′
2) ≤ MkG(z1, z2) +C

for all z1, z2 ∈ G;
(2) q-locally (M,C)-CQH if for each point z ∈ G, the restriction

f |BG
q (z) : BG

q (z)→ f (BG
q (z))

is (M,C)-CQH.
Note that f is M-QH if f is (M, 0)-CQH and that f is q-locally M-QH if f is q-locally (M, 0)-CQH.

2.4. Quasisymmetric mappings

Let 0 < q ≤ 1 and η : [0,∞) → [0,∞) be a homeomorphism. We say that a homeomorphism
f : G → G′ is

(1) η-quasisymmetric (briefly, η-QS) if for each t > 0 and for each triple x, a, b of distinct points in
G,

|x − a| ≤ t|x − b| implies |x′ − a′| ≤ η(t)|x′ − b′|.
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(2) Relatively η-QS if f has a continuous extension to the boundary ∂G, with the extended mapping
on G is still being denoted by f , such that

|x − a| ≤ t|x − b| implies |x′ − a′| ≤ η(t)|x′ − b′|

for each triple x, a, b in G with x ∈ ∂G or a, b ∈ ∂G.
(3) q-locally η-QS if the homeomorphism f |BG

q (x) is η-QS for each x ∈ G.
(4) Semi-locally relatively η-QS if the homeomorphism f |B(x,dG(x)) is relatively η-QS for each x ∈ G.

Remark 2.1. It follows from the definition above and [6, Theorem 2.21] that if a homeomorphism
f : G → G′ is relatively η-QS, then the restriction f |∂G of f is constant or an η-QS embedding.

Theorem 2.3. [6, Corollary 2.6] A quasisymmetric embedding maps every bounded set onto a bounded
set.

3. Proofs of the main results

3.1. The proof of Remark 1.2

In this subsection, we construct an example establishing the correctness of Remark 1.2.

Example 3.1. Let C be the complex plane and G = {z ∈ C|z = x + iy, y > 0}. Define f to be the
conformal mapping

f (z) = log z = log |z| + i arg z.

Thus f (G) = G′ with G′ = {z ∈ C|z = x + iy, 0 < y < π}, see Figure 1. Let η : [0,∞) → [0,∞) be a
homeomorphism.

Then we have the following:
(1) f : G → G′ is M-QH for some M ≥ 1.
(2) f |BG

1 (i) is not η-QS; recall that BG
1 (i) = B(i, dG(i)).

(3) f |BG
1 (i) is not relatively η-QS.

2i

i
i
n

0

G

f (z) = log z

0

iπ

log 2− log n

f (2i)
f (i)f ( i

n )

− log n

∞ G′

Figure 1. The mapping f : G → G′.
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Proof. (1) By [5, Proposition 1.6], f is 4-QH. Alternatively, since G′ ⊂ C is an infinite strip, G ⊂ C
a half-plane, and g = f −1 : G′ → G defined by the exponential map z 7→ ez, [7, 4.11] shows that g is
π
2 -QH; thus, f is π2 -QH.

(2) We first show that f (BG
1 (i)) is unbounded. Let zn =

i
n ∈ BG

1 (i), n ≥ 1; then

f (zn) = − log n + i
π

2
→ ∞

as n→ ∞. Therefore, f (BG
1 (i)) is unbounded.

Now, we assume that f |BG
1 (i) is η-QS. Since BG

1 (i) is bounded, by Theorem 2.3 we get that f (BG
1 (i))

is also bounded, which is absurd. Hence f |BG
1 (i) is not η-QS.

(3) As BG
1 (i) is compact while f (BG

1 (i)) is unbounded, f |BG
1 (i) has no extension to a continuous map

BG
1 (i)→ C. Hence f |BG

1 (i) cannot be relatively η-QS.

3.2. The proof of Theorem 1.6

The purpose of this subsection is to prove Theorem 1.6. Suppose that G ⊊ E, G′ ⊊ E′, f : G → G′

is a homeomorphism, and f and f −1 are q-locally (M,C)-CQH. We must prove that f is (M′,C′)-CQH,
that is, prove that for any x, y ∈ G,

1
M′

(kG(x, y) −C′) ≤ kG′(x′, y′) ≤ M′kG(x, y) +C′.

By the assumption, we only need to prove that

kG′(x′, y′) ≤ M′kG(x, y) +C′. (3.1)

Fix x, y ∈ G. In the following, we divide the proof of (3.1) into two cases.

Case 3.1. |x − y| ≤ q
2dG(x).

It follows from Theorem 2.1(2) that

1
1 + q

|x − y|
dG(x)

≤ kG(x, y) ≤
1

1 − q
2

|x − y|
dG(x)

and hence
kBG

q (x)(x, y) ≤ 2
|x − y|

dBG
q (x)(x)

=
2
q
|x − y|
dG(x)

.

These imply that

kBG
q (x)(x, y) ≤

2
q
|x − y|
dG(x)

≤
2(1 + q)

q
kG(x, y).

Therefore,

kG′(x′, y′) ≤ k f (BG
q (x))(x′, y′) ≤ MkBG

q (x)(x, y) +C

≤
2M(1 + q)

q
kG(x, y) +C.
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Case 3.2. |x − y| > q
2dG(x).

In this case, by Theorem 2.1(1), we obtain

kG(x, y) ≥ log
(
1 +

|x − y|
min{dG(x), dG(y)}

)
> log

(
1 +

q
2

)
= : t0. (3.2)

By Theorem 2.2, we take a 2-quasigeodesic γ joining x and y in G, and γ′ = f (γ) ⊂ G′. Then there
exists a unique integer m such that

mt0 < ℓkG (γ) ≤ (m + 1)t0.

From (3.2), we see that m ≥ 1, and thus

m + 1 ≤ 2m ≤
2
t0
ℓkG (γ). (3.3)

Now, we can choose a sequence of successive points {xi}
m+1
i=0 in γ with x0 = x and xm+1 = y such that

ℓkG (γ[xi−1, xi]) = t0 (3.4)

for i ∈ {1, 2, . . . ,m}, and

ℓkG (γ[xm, xm+1]) ≤ t0. (3.5)

For all i ∈ {1, 2, . . . ,m + 1},
|xi−1 − xi|

dG(xi−1)
≤

q
2
, (3.6)

since otherwise an estimate similar to (3.2) shows that

ℓkG (γ[xi−1, xi]) ≥ kG(xi−1, xi) > t0,

which contradicts (3.4) and (3.5).
Thus, (3.6) and Case 3.1 imply

kG′(x′i−1, x
′
i) ≤

2M(1 + q)
q

kG(xi−1, xi) +C (3.7)

for all i ∈ {1, 2, . . . ,m + 1}.
It follows from γ being a 2-quasigeodesic, (3.3) and (3.7) that

kG′(x′, y′) ≤
m+1∑
i=1

kG′(x′i−1, x
′
i) ≤

2M(1 + q)
q

m+1∑
i=1

kG(xi−1, xi) +C(m + 1)

≤
2M(1 + q)

q
ℓkG (γ) +

2C
t0
ℓkG (γ)

=
(2M(1 + q)

q
+

2C
t0

)
ℓkG (γ)

≤
(4M(1 + q)

q
+

4C
t0

)
kG(x, y).

Therefore, from Case 3.1 and Case 3.2, by letting

M′ =
4M(1 + q)

q
+

4C
log
(
1 + q

2

) and C′ = C, (3.8)

we know that (3.1) holds true. Hence f is (M′,C′)-CQH. This completes the proof of Theorem 1.6.
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3.3. The proof of Theorem 1.5

Sufficiency: If f and f −1 are q-locally M′-QH, then f and f −1 are q-locally (M′, 0)-CQH. By
Theorem 1.6 (see (3.8)), we know that f : G → G′ is (M,C)-CQH, where M = 4M′(1+q)

q and C = 0, i.e.,
f : G → G′ is M-QH.

Necessity: If f is M-QH, then by Theorem 1.4 we see that f and f −1 are q-locally M′-QH for any
q ∈ (0, 1] and M′ = 4M2. Hence, we complete the proof of Theorem 1.5.

3.4. The proof of Remark 1.3

In this subsection, we construct an example establishing the correctness of Remark 1.3.

Example 3.2. Let G = {z ∈ C|z = x + iy, x > −1, |y| < 2} and f : G → G be a self-homeomorphism of
G defined by

f (x + iy) =



x + iy, −1 < x ≤ 1;

x + i y
x , x > 1 and |y| ≤ 1;

x + i
(
2 − (2 − |y|)(2 − 1

x )
) y
|y| , x > 1 and 1 < |y| < 2.

See Figure 2. Then we have the following:
(1) f : G → G is (1, 2)-CQH.
(2) f : G → G is not q-locally (M,C)-CQH for any constants M ≥ 1, C ≥ 0, and 0 < q ≤ 1

√
3
.

n

z1 z2
−1

x0 1

−1 + 2i

−1 − 2i

−1 + i

−1 − i

G

f

G

n

z1 z2
−1

x0 1

−1 + 2i

−1 − 2i

−1 + i

−1 − i

n

z1 z2
−1

x0 1

−1 + 2i

−1 − 2i

−1 + i

−1 − i

G

f

G

n

z1 z2
−1

x0 1

−1 + 2i

−1 − 2i

−1 + i

−1 − i

Figure 2. The mapping f : G → G.
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Proof. (1) Before proving that f : G → G is (1, 2)-CQH, we first show that

kG(z, z′) ≤ 1 (3.9)

for any z ∈ G.
Fix z = x + iy ∈ G. If −1 < x ≤ 1, then z′ = z, and so

kG(z, z′) = 0. (3.10)

If x > 1, then we claim that
dG(z) ≤ dG(z′) ≤ 2dG(z). (3.11)

Obviously, dG(z) = 2 − |y|. If |y| ≤ 1, then

dG(z′) = 2 − |y′| = 2 −
|y|
x
≥ 2 − |y| = dG(z)

and
dG(z′) = 2 − |y′| = 2 −

|y|
x
≤ 2 ≤ 2(2 − |y|) = 2dG(z);

these imply (3.11). On the other hand, if 1 < |y| < 2, then

dG(z′) = 2 − |y′| = (2 − |y|)(2 −
1
x

) > 2 − |y| = dG(z)

and
dG(z′) = 2 − |y′| = (2 − |y|)(2 −

1
x

) < 2(2 − |y|) = 2dG(z).

Below, we show that the following equation holds:

dG(z′) − dG(z) = |z − z′|. (3.12)

If −1 < x ≤ 1, then z′ = z and thus dG(z′) − dG(z) = 0 = |z − z′|.
Suppose x > 1. Then |z − z′| = |y − y′| and dG(z′) − dG(z) = (2 − |y′|) − (2 − |y|) = |y| − |y′|. With

z = x − iy we have f (z) = f (z). Therefore, we may assume that 0 ≤ y < 2, and then it suffices to
show that 0 ≤ y′ ≤ y. Now, if 0 ≤ y ≤ 1, then 0 ≤ y′ = y/x ≤ y, whereas if 1 < y < 2, then
y′ = 2 − (2 − y)(2 − 1/x) and thus y′ < 2 − (2 − y) = y and y′ > 2 − (2 − y)2 = 2(y − 1) > 0.

Now, we continue to prove (3.9). It follows from (3.11) and (3.12) that

|z − z′| = dG(z′) − dG(z) ≤
1
2

dG(z′).

This, together with Theorem 2.1(2), shows that

kG(z, z′) ≤
1

1 − 1
2

|z − z′|
dG(z′)

≤ 1. (3.13)

Therefore, the inequality (3.9) follows from (3.10) and (3.13).
We are ready to prove that f : G → G is (1, 2)-CQH. For any z1, z2 ∈ G, it follows from (3.9) that

kG(z′1, z
′
2) ≤ kG(z1, z2) + kG(z1, z′1) + kG(z2, z′2) ≤ kG(z1, z2) + 2,
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and
kG(z1, z2) ≤ kG(z′1, z

′
2) + kG(z1, z′1) + kG(z2, z′2) ≤ kG(z′1, z

′
2) + 2.

Hence, f : G → G is (1, 2)-CQH.

(2) Next, we assume that f : G → G is q-locally (M,C)-CQH for some constants M ≥ 1, C ≥ 0, and
0 < q ≤ 1

√
3
. Consider the ball BG

q (n) = B(n, 2q), n ≥ 1. Then the restriction f |B(n,2q) is (M,C)-CQH.

Take z1 = n−q and z2 = n+q in B(n, 2q). We obtain z′1 = z1, z′2 = z2, and with z = z2+ iq
√

3 ∈ S (n, 2q)
that

d f (B(n,2q))(z′2) ≤ |z′2 − z′| =
q
√

3
n + q

<
1
n
.

We obtain from f |B(n,2q) being (M,C)-CQH and Theorem 2.1(2) that

k f (B(n,2q))(z′1, z
′
2) ≤ MkB(n,2q)(z1, z2) +C ≤

M
1 − 1

2

|z1 − z2|

dB(n,2q)(n)
+C = 2M +C. (3.14)

On the other hand, by Theorem 2.1(1), we obtain

k f (B(n,2q))(z′1, z
′
2) ≥ log

(
1 +

|z′1 − z′2|
d f (B(n,2q))(z′2)

)
≥ log

(
1 +

2q
1
n

)
= log(1 + 2qn)→ ∞

as n → ∞. This contradicts (3.14). Hence f : G → G is not q-locally (M,C)-CQH for any constants
M ≥ 1, C ≥ 0, and 0 < q ≤ 1

√
3
. The example is proved.
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