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Abstract: In this article, global asymptotic stability and trajectory structure of the following high-
order nonlinear difference equation

zn+1 =
zn−1zn−2zn−4 + zn−1 + zn−2 + zn−4 + b

zn−1zn−2 + zn−1zn−4 + zn−2zn−4 + 1 + b
, n ∈ N,

are studied, where b ∈ [0,∞) and the initial conditions zi ∈ (0,∞), i = 0,−1,−2,−3,−4. Using the
semi-cycle analysis method, in a prime period, a continuous length of positive and negative semi-
cycles of any nontrivial solution appears periodically: 2,3,4,6,12. Moreover, two examples are given
to illustrate the effectiveness of theoretic analysis.
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1. Introduction

Difference equations and differential equations are equally important mathematical theories in
mathematics. In many fields such as chemistry, engineering, physics, medicine, and many practical
problems, real-world data is statistically analyzed at equal intervals and time periods. Mathematical
models that describe the relationships between discrete variables are called discrete models, and these
discrete variables are usually referred to as discrete variables. In physics, this model is often used to
simulate and predict discontinuous phenomena in continuous processes, such as shock waves in fluid
dynamics. Difference equations are an effective method for studying discrete models. They reflect
the variation law of the values of discrete variables. When seeking numerical solutions to differential
equations, the differentiation is often approximated using corresponding differences, and the resulting
equation is called a difference equation. Finding an approximate solution to a differential equation by
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solving a difference equation is an example of discretizing continuous problems. Studying high-order
rational difference equations is not only necessary for the development of mathematics itself, but also
for the development of multiple fields. It can help us to understand and to predict the dynamic behavior
of various systems, providing an important theoretical basis for scientific decision-making. In this
context, the study of the dynamical behavior of these mathematical models has practical significance.

In recent years, dynamical behavior of nonlinear difference equations or discrete dynamical systems
has become a popular research topic since it is widely applied in many fields, such as biology,
economics, chemistry, physics, and so on. Many scholars are interested in studying the qualitative
property of the solution for these models and have obtained many very important achievements (see
[1–5]).

In 1995, Ladas [6] proposed an open problem that is to find some sufficient conditions on the global
stability of the rational difference equation

rn+1 =
rn + rn−1rn−2

rnrn−1 + rn−2
, n ∈ N, (1.1)

with initial conditions ri ∈ (0,∞), i = 0,−1,−2.
In 2001, Tim Nesemann [7], using the strong negative feedback property [8], studied the rational

difference equation

rn+1 =
rn−1 + rnrn−2

rnrn−1 + vn−2
, n ∈ N,

with initial conditions ri ∈ (0,∞), i = 0,−1,−2.
In 2004, Li and Zhu [9] studied the dynamical behaviors of two recursive difference equations

rn+1 =
rnrn−1 + rn−2 + d
rn + rn−1rn−2 + d

and rn+1 =
rn−1 + rnrn−2 + d
rnrn−1 + rn−2 + d

, n ∈ N,

respectively, where d ∈ [0,∞) and with initial conditions ri ∈ (0,∞), i = 0,−1,−2.
In 2005, Li [10], utilizing the semi-cycle analysis method, obtained the global asymptotic stability

of the equilibrium of the difference equation

gn+1 =
gn−1gn−2gn−3 + gn−1 + gn−2 + gn−3 + d

gn−1gn−2 + gn−1gn−3 + gn−2gn−3 + 1 + d
, n ∈ N,

in which d ∈ [0,∞) and with initial conditions gi ∈ (0,∞), i = 0,−1,−2,−3.
In 2008, Chen and Li [11] studied the trajectory structure rules of a high-order rational

difference equation

gn+1 =
gn−1gn−2 + gn−1gn−4 + gn−2gn−4 + 1 + d
gn−1gn−2gn−4 + gn−1 + gn−2 + gn−4 + d

, n ∈ N,

in which d ∈ [0,∞) and with initial conditions gi ∈ (0,∞), i = 0,−1,−2,−3,−4.
In 2012, Elsayed and El-Dessoky [12] obtained a global convergence result, the boundedness, and

the periodicity of the solutions to the difference equation

gn+1 = agn−s +
bgn−l + cgn−k

dgn−l + egn−k
, n ∈ N,
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with parameters a, b, c, d, e ∈ R+ and initial conditions gi ∈ R+, i = 0,−1, ...,−t, t = max{s, l, k}.
In 2018, Ibrahim [13] explored the bifurcation and periodically semi-cycles of fifth- order rational

difference equation

ym+1 =
ymyαm−2yβm−4 + ym + yαm−2 + yβm−4 + γ

ymyαm−2 + ymyβm−4 + γ + 1
, m ∈ N,

where γ ∈ [0,∞), α, β ∈ Z+, and y−i ∈ (0,∞), i = 0, 1, 2, 3, 4.
In 2019, Chatzarakis et al. [14] studied the dynamics of solutions of the following

difference equation

gn+1 = α +
βg2

n

(γ + gn)gn−1
, n ∈ N,

in which α, γ ∈ [0,∞) and β ∈ (0,∞), and with initial conditions gi ∈ (0,∞), i = 0,−1. The authors
obtained the periodicity character, stability, and boundedness of its solutions.

In 2021, Khan and El-Metwally [15] studied the second-order nonlinear difference equation

gn = an +
gp

n

gp
n−1

, n ∈ N,

in which p ∈ N, with initial conditions g−1, g0 ∈ R+, and where {an} is a nonnegative periodic sequence;
when n is even, an = α, and when n is odd, an = β. The authors explored the local stability, attractor,
periodicity character, and boundedness of solutions.

In 2024, Liu and Xu et al. [16] studied the solutions of several systems of the first-order partial
differential difference equations

u(z + d)[a1u(z) + b1uz1 + c1uz2 + a2v(z) + b2vz1 + c2vz2] = 1,

v(z + d)[a1v(z) + b1vz1 + c1vz2 + a2u(z) + b2uz1 + c2uz2] = 1,

where d = (d1, d2) ∈ C2 (two-dimensional complex number space) and ai, bi, ci ∈ C (complex number),
i = 1, 2. They discussed the forms of the transcendental solutions of the system in respect to the
previous existing results.

Inspired by the above works, in this article, we will study the dynamical behaviors of the high-order
rational difference equation

zn+1 =
zn−1zn−2zn−4 + zn−1 + zn−2 + zn−4 + b

zn−1zn−2 + zn−1zn−4 + zn−2zn−4 + 1 + b
, n ∈ N, (1.2)

where zi ∈ (0,∞), i = 0,−1,−2,−3,−4, and b ∈ [0,∞).
The aim of this article is to obtain some results, such as the global asymptotic stability and the

trajectory structure of the positive and negative semi-cycles of any nontrivial solution of Eq (1.2) by
utilizing the semi-cycle analysis method.

The rest of this article is arranged as follows. Section 2 introduces some lemmas, definitions, and
the trajectory structures of the solution to Eq (1.2). The global asymptotical stability of the unique
positive equilibrium of the system is derived by mathematical analysis in Section 3. Two examples
demonstrate the effectiveness of theoretic analysis in Section 4. A general conclusion and discussion
are drawn in Section 5.
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The contribution of this study lies in the following aspects.
• The trajectory structure rules of the solution to the nonlinear difference equation are derived
extensively using the semi-cycle method. It is beneficial to fully understand asymptotic behavior of
the solution.
• This study provides an effective method to explore the qualitative dynamical behaviors of some
high-order rational difference equations.

2. Definitions and some lemmas

For the convenience of readers, we provide definitions and some lemmas used in what follows.
Let K be an interval of a real number g: K × K × K → K, g ∈ C1 (continuously differentiable

function). Then,
zn+1 = g(zn−1, zn−2, zn−4), n ∈ N, (2.1)

has a unique positive solution {zn}
∞
n=−4 for the initial conditions z j ∈ K, j = 0,−1,−2,−3,−4.

Definition 2.1. [10] z is said to be an equilibrium of (2.1) if z = g(z̄, z̄, z̄). In other words, for n ≥ 0,
zn = z is a solution of (2.1), that is to say, z is also a fixed point of g.

It is clear that z̄ = 1 is a unique positive equilibrium of Eq (1.2) satisfying

z̄ =
z̄3 + 3z̄ + b
3z̄2 + 1 + b

. (2.2)

Definition 2.2. [13] Let z be an equilibrium of (2.1).
(i) The equilibrium point z̄ is stable if, for any ε > 0 with the initial values z j ∈ K, j = 0,−1,−2,−3,−4,
there exists δ > 0,

∑0
j=−4 |z j − z̄| < δ implies |zn − z̄| < ε, for n ≥ 1.

(ii) The equilibrium point z̄ is locally asymptotically stable (LAS) if it is stable and there exists γ > 0,
for any initial conditions z j ∈ K, j = 0,−1,−2,−3,−4,

∑0
j=−4 |z j − z̄| < γ, and then limn→∞ zn = z̄.

(iii) The equilibrium point z̄ is a global attractor if limn→∞ zn = z̄ for any initial conditions z j ∈ K, j =

0,−1,−2,−3,−4.
(iv) The equilibrium point z̄ is globally asymptotically stable (GAS) if it is stable and a global attractor.
Definition 2.3. [10] A positive semi-cycle of {zn}

∞
n=−4 of (1.2) is a “string” of terms {zm, zm+1, · · · , zl}

which is greater than or equal to the equilibrium z̄ for m ≥ −4 and l ≤ ∞ such that

zm−1 < z̄, either m = −4 or m > −4,

and
zl+1 < z̄, either l = ∞ or l < ∞.

A negative semi-cycle of {zn}
∞
n=−4 of (1.2) is a “string” of terms {zm, zm+1, · · · , zl} which is less than

the equilibrium z̄ for m ≥ −4 and l ≤ ∞ such that

zm−1 ≥ z̄, either m = −4 or m > −4,

and
zl+1 ≥ z̄, either l = ∞ or l < ∞.
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The length of a positive or negative semi-cycle with p terms is denoted by p+ (or p−), and the
number of terms is the length of semi-cycle.
Definition 2.4. [9] A solution {zn}

∞
n=−4 of (1.2) is eventually positive or negative if there exists a positive

integer M for n > M such that zn − z̄ > 0 or zn − z̄ < 0.
Definition 2.5. [13] If {zn} is eventually equal to z̄, then the solution{zn}

∞
n=−4 of (1.2) is eventually trivial,

otherwise the solution is nontrivial.
Lemma 2.1. A positive solution {zn}

∞
n=−4 of (1.2) is equal to 1 if and only if

(z0 − 1)(z−1 − 1)(z−2 − 1)(z−3 − 1)(z−4 − 1) = 0. (2.3)

Proof. Suppose condition (2.3) holds. Then, the following conclusions are true.
(1) If z−4 = 1, then zn = 1, for n ≥ 3.
(2) If z−3 = 1, then zn = 1, for n ≥ 4.
(3) If z−2 = 1, then zn = 1, for n ≥ 3.
(4) If z−1 = 1, then zn = 1, for n ≥ 1.
(5) If z0 = 1, then zn = 1, for n ≥ 2.
Suppose

(z0 − 1)(z−1 − 1)(z−2 − 1)(z−3 − 1)(z−4 − 1) , 0, (2.4)

which claims that
zn , 1, f or n ≥ 1.

Suppose the opposite is true for a positive integer N ≥ 1:

zN = 1, and zn , 1 for −4 ≤ n ≤ N − 1. (2.5)

Obviously,

1 = zN =
zN−2zN−3zN−5 + zN−2 + zN−3 + zN−5 + b

zN−2zN−3 + zN−2zN−5 + zN−3zN−5 + 1 + b
,

implies that
(zN−2 − 1)(zN−3 − 1)(zN−5 − 1) = 0.

This contradicts (2.5).

Remark 1. A positive solution {zn}
∞
n=−4 of Eq (1.2) is eventually nontrivial if and only if (z−4 − 1)(z−3 −

1)(z−2 − 1)(z−1 − 1)(z0 − 1) , 0. If zn , 1 for n ≥ −4, then {zn}
∞
n=−4 is nontrivial.

Lemma 2.2. For any nontrivial positive solution {zn}
∞
n=−4 of (1.2), these assertions are true for n ≥ 0.

(i) (zn+1 − 1)(zn−1 − 1)(zn−2 − 1)(zn−4 − 1) > 0.
(ii) (zn+1 − zn−1)(zn−1 − 1) < 0.
(iii) (zn+1 − zn−2)(zn−2 − 1) < 0.
(iv) (zn+1 − zn−4)(zn−4 − 1) < 0.
Proof. From Eq (1.2), it follows that

zn+1 − 1 =
(zn−1 − 1)(zn−2 − 1)(zn−4 − 1)

zn−1zn−2 + zn−1zn−4 + zn−2zn−4 + 1 + b
.
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zn+1 − zn−1 =
(1 − zn−1)[zn−2(1 + zn−1) + zn−4(1 + zn−1) + b]

zn−1zn−2 + zn−1zn−4 + zn−2zn−4 + 1 + b
.

zn+1 − zn−2 =
(1 − zn−2)[zn−1(1 + zn−2) + zn−4(1 + zn−2) + b]

zn−1zn−2 + zn−1zn−4 + zn−2zn−4 + 1 + b
.

zn+1 − zn−4 =
(1 − zn−4)[zn−1(1 + zn−4) + zn−2(1 + zn−4) + b]

zn−1zn−2 + zn−1zn−4 + zn−2zn−4 + 1 + b
.

Remark 2. If for Eq (1.2) there exists a non-oscillatory solution with initial values zi ∈ (0, 1), i =

0,−1,−2,−3,−4, then the solution is eventually negative. Otherwise, it is eventually positive for initial
values zi ∈ (1,∞), i = 0,−1,−2,−3,−4.

Noting Remark 2, for the solution of Eq (1.2), if zi > 1, i = 0,−1,−2,−3,−4, from the first
inequality of Lemma 2.2 it follows that zn > 1 for n ≥ 4, so the solution is eventually positive. If
zi ∈ (0, 1), i = 0,−1,−2,−3,−4, then zn < 1 for n ≥ 4, so the solution is eventually negative.
Theorem 2.1. If {zn}

∞
n=−4 is an oscillatory solution of (1.2), on account of the disturbance of initial

conditions, a continuous length of positive and negative semi-cycles appears periodically in different
prime periods:2,3,4,6,12. For period 2, the rule is 1+, 1− in a period. For period 3, the rule is 2−, 1+

or 2+, 1− in a period. For period 4, the rule is 2+, 2− in a period. For period 6, the rule is 3+, 3− in a
period. For period 12, the rule is 4+, 1−, 1+, 4−, 1+, 1− in a period.
Proof. From the first inequality of Lemma 2.2, the length of the positive or negative semi-cycle does
not exceed 4. According to Remark 1, one has that

(z−4 − 1)(z−3 − 1)(z−2 − 1)(z−1 − 1)(z0 − 1) , 0.

Assuming q ∈ N, at least one of the following eight cases occurs.
Case (i): zq−4 < 1, zq−3 > 1, zq−2 > 1, zq−1 > 1, zq > 1.
Case (ii): zq−4 < 1, zq−3 > 1, zq−2 > 1, zq−1 > 1, zq < 1.
Case (iii): zq−4 < 1, zq−3 > 1, zq−2 > 1, zq−1 < 1, zq > 1.
Case (iv): zq−4 < 1, zq−3 > 1, zq−2 > 1, zq−1 < 1, zq < 1.
Case (v): zq−4 < 1, zq−3 > 1, zq−2 < 1, zq−1 > 1, zq > 1.
Case (vi): zq−4 < 1, zq−3 > 1, zq−2 < 1, zq−1 > 1, zq < 1.
Case (vii): zq−4 < 1, zq−3 > 1, zq−2 < 1, zq−1 < 1, zq < 1.
Case (viii): zq−4 < 1, zq−3 > 1, zq−2 < 1, zq−1 < 1, zq > 1.

If Case (i) takes place, from the first inequality of Lemma 2.2 it follows that zq+1 < 1, zq+2 >

1, zq+3 < 1, zq+4 < 1, zq+5 < 1, zq+6 < 1, zq+7 > 1, zq+8 < 1, zq+9 > 1, zq+10 > 1, zq+11 > 1, zq+12 >

1, zq+13 < 1, zq+14 > 1, zq+15 < 1, zq+16 < 1, zq+17 < 1, zq+18 < 1, zq+19 > 1, zq+20 < 1, · · · . So, the positive
and negative semi-cycles appear continuously, and the rule is · · · , 4+, 1−, 1+, 4−, 1+, 1−, 4+, 1−, 1+,

4−, 1+, 1−, · · · .
If Case (ii) takes place, from the first inequality of Lemma 2.2, zq+1 < 1, zq+2 < 1, zq+3 > 1, zq+4 >

1, zq+5 > 1, zq+6 < 1, zq+7 < 1, zq+8 < 1, zq+9 > 1, zq+10 > 1, zq+11 > 1, zq+12 < 1, zq+13 < 1, zq+14 <

1, zq+15 > 1, zq+16 > 1, zq+17 > 1, · · · . So, the positive and negative semi-cycles appear continuously,
and the rule is · · · , 3+, 3−, 3+, 3−, · · · .

If Case (iii) takes place, from the first inequality of Lemma 2.2, zq+1 > 1, zq+2 < 1, zq+3 > 1, zq+4 >

1, zq+5 < 1, zq+6 > 1, zq+7 > 1, zq+8 < 1, zq+9 > 1, zq+10 > 1, zq+11 < 1, zq+12 > 1, zq+13 > 1, zq+14 <
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1, zq+15 > 1, zq+16 > 1, zq+17 < 1, · · · . So, the positive and negative semi-cycles appear continuously,
and the rule is · · · , 2+, 1−, 2+, 1−, · · · .

If Case (iv) takes place, from the first inequality of Lemma 2.2, zq+1 > 1, zq+2 > 1, zq+3 < 1, zq+4 <

1, zq+5 > 1, zq+6 > 1, zq+7 < 1, zq+8 < 1, zq+9 > 1, zq+10 > 1, zq+11 < 1, zq+12 < 1, zq+13 > 1, zq+14 >

1, zq+15 < 1, zq+16 < 1, zq+17 > 1, zq+18 > 1, · · · . So, the positive and negative semi-cycles appear
continuously, and the rule is · · · , 2+, 2−, 2+, 2−, · · · .

If Case (v) takes place, from the first inequality of Lemma 2.2, zq+1 > 1, zq+2 > 1, zq+3 < 1, zq+4 >

1, zq+5 < 1, zq+6 < 1, zq+7 < 1, zq+8 < 1, zq+9 > 1, zq+10 < 1, zq+11 > 1, zq+12 > 1, zq+13 > 1, zq+14 >

1, zq+15 < 1, zq+16 > 1, zq+17 < 1, zq+18 < 1, zq+19 < 1, zq+20 < 1, · · · . So, the positive and negative
semi-cycles appear continuously, and the rule is · · · , 4+, 1−, 1+, 4−, 1+, 1−, 4+, 1−, 1+, 4−, 1+, 1−, · · · .

If Case (vi) takes place, from the first inequality of Lemma 2.2, zq+1 > 1, zq+2 < 1, zq+3 > 1, zq+4 <

1, zq+5 > 1, zq+6 < 1, zq+7 > 1, zq+8 < 1, zq+9 > 1, zq+10 < 1, zq+11 > 1, zq+12 < 1, zq+13 > 1, zq+14 <

1, zq+15 > 1, zq+16 < 1, zq+17 > 1, zq+18 < 1, zq+19 > 1, zq+20 < 1, · · · . So, the positive and negative
semi-cycles appear continuously, and the rule is · · · , 1+, 1−, 1+, 1−, · · · .

If Case (vii) takes place, from the first inequality of Lemma 2.2, zq+1 < 1, zq+2 > 1, zq+3 < 1, zq+4 >

1, zq+5 > 1, zq+6 > 1, zq+7 > 1, zq+8 < 1, zq+9 > 1, zq+10 < 1, zq+11 < 1, zq+12 < 1, zq+13 < 1, zq+14 >

1, zq+15 < 1, zq+16 > 1, zq+17 > 1, zq+18 > 1, zq+19 > 1, · · · . So, the positive and negative semi-cycles
appear continuously, and the rule is · · · , 4+, 1−, 1+, 4−, 1+, 1−, 4+, 1−, 1+, 4−, 1+, 1−, · · · .

If Case (viii) takes place, from the first inequality of Lemma 2.2, zq+1 < 1, zq+2 < 1, zq+3 >

1, zq+4 < 1, zq+5 < 1, zq+6 > 1, zq+7 < 1, zq+8 < 1, zq+9 > 1, zq+10 < 1, zq+11 < 1, zq+12 > 1, zq+13 <

1, zq+14 < 1, zq+15 > 1, zq+16 < 1, zq+17 < 1, zq+18 > 1, · · · . So, the positive and negative semi-cycles
appear continuously, and the rule is · · · , 2−, 1+, 2−, 1+, · · · .

3. Main result

In this section, we derive the global asymptotical stability of the unique positive equilibrium point.
Theorem 3.1. The equilibrium point z̄ = 1 of (1.2) is GAS.
Proof. In fact, it need to show that the equilibrium point z̄ = 1 of (1.2) is LAS and a global attractor.
The linearized equation of (1.2) at the equilibrium point z̄ = 1 is

zn+1 = 0 × zn + 0 × zn−1 + 0 × zn−2 + 0 × zn−3 + 0 × zn−4, n ∈ N,

so the equilibrium point z̄ = 1 is stable. Now, we need to prove that

lim
n→∞

zn = z̄ = 1. (3.1)

If the solution {zn}
∞
n=−4 of (1.2) is a trivial solution, by Definition 2.5 it is clear that limn→∞ zn = z̄ = 1.

If the solution {zn}
∞
n=−4 of (1.2) is a nontrivial solution, then there are two cases.

Case (i): Non-oscillatory solution.
Case (ii): Oscillatory solution.

If Case (i) occurs, noting Remark 2, for the initial conditions zi ∈ (0, 1), i = 0,−1,−2,−3,−4, the
solution {zn}

∞
n=−4 must be eventually negative. Namely, there exists an integer N ≥ 1 such that zn < 1

for n ≥ N.
From the second inequality of Lemma 2.2, the solution {zn}

∞
n=−4 has two subsequences {z2n+1} and

{z2n+2}, n ∈ N, which are increasing and have upper bound 1, so limn→∞ z2n+1 and limn→∞ z2n+2 exist.
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Suppose that limn→∞ z2n+1 = M and limn→∞ z2n+2 = H. According to Eq (1.2),

z2n+1 =
z2n−1z2n−2z2n−4 + z2n−1 + z2n−2 + z2n−4 + b

z2n−1z2n−2 + z2n−1z2n−4 + z2n−2z2n−4 + 1 + b
, (3.2)

z2n+2 =
z2nz2n−1z2n−3 + z2n + z2n−1 + z2n−3 + b
z2nz2n−1 + z2nz2n−3 + z2nz2n−3 + 1 + b

. (3.3)

Taking the limit on both sides of (3.2) and (3.3), we have

M =
MH2 + M + H + H + b
MH + MH + H2 + 1 + b

and H =
HM2 + H + M + M + b

HM + HM + M2 + 1 + b
.

From which it follows that
M = 1 and H = 1,

so limn→∞ zn = z̄ = 1.
For the initial conditions zi ∈ (1,∞), i = 0,−1,−2,−3,−4, the solution {zn}

∞
n=−4 is eventually

positive. Namely, there exists an integer N ≥ 1 such that zn > 1 for n ≥ N, so the solution {zn}
∞
n=−4 has

two subsequences {z2n+1} and {z2n+2} which are decreasing and have lower bound 1, hence limn→∞ z2n+1

and limn→∞ z2n+2 exist.
Suppose that limn→∞ z2n+1 = G and limn→∞ z2n+2 = T . Then,

z2n+1 =
z2n−1z2n−2z2n−4 + z2n−1 + z2n−2 + z2n−4 + b

z2n−1z2n−2 + z2n−1z2n−4 + z2n−2z2n−4 + 1 + b
, (3.4)

z2n+2 =
z2nz2n−1z2n−3 + z2n + z2n−1 + z2n−3 + b

z2nz2n−1 + z2nz2n−3 + z2n−1z2n−3 + 1 + b
. (3.5)

Taking the limit on both sides of (3.4) and (3.5), we have

G =
GT 2 + G + T + T + b

GT + GT + T 2 + 1 + b
and T =

TG2 + T + G + G + b
TG + TG + G2 + 1 + b

.

From which it follows that
G = 1 and T = 1,

so limn→∞ zn = z̄ = 1.
If Case (ii) occurs and {zn} is an oscillatory solution, then the continuous length of positive and

negative semi-cycles appears periodically in different prime periods: 2,3,4,6,12. The rule is
Subcase (i) · · · , 1+, 1−, 1+, 1−, · · · .
Subcase (ii) · · · , 2+, 1−, 2+, 1−, · · · .
Subcase (iii) · · · , 2−, 1+, 2−, 1+, · · · .

Subcase (iv) · · · , 4+, 1−, 1+, 4−, 1+, 1−, 4+, 1−, 1+, 4−, 1+, 1−, · · · .
Subcase (v) · · · , 2+, 2−, 2+, 2−, · · · .
Subcase (vi) · · · , 3+, 3−, 3+, 3−, · · · .

Considering Subcase (i), for integer q ≥ 0, the terms of a positive semi-cycle of length one is
denoted by {zq}

+ and the negative semi-cycle of length one is denoted by {zq+1}
−. Since the positive and

negative semi-cycles appear continuously, the rule is {zq+2n}
+, {zq+2n+1}

−, n ∈ N.
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By the second inequality of Lemma 2.2, there is zq+2n+2 < zq+2n, zq+2n+1 < zq+2n+3, from which
it can be inferred that the sequence {zq+2n}

∞
n=0 is decreasing and has lower bound 1 and the sequence

{zq+2n+1}
∞
n=0 is increasing and has upper bound 1. Therefore, the limits of two sequences exist.

Suppose that limn→∞ zq+2n = W and limn→∞ zq+2n+1 = G. Then,

zq+2n =
zq+2n−2zq+2n−3zq+2n−5 + zq+2n−2 + zq+2n−3 + zq+2n−5 + b
zq+2n−2zq+2n−3 + zq+2n−2zq+2n−5 + zq+2n−3zq+2n−5 + 1 + b

, (3.6)

zq+2n+1 =
zq+2n−1zq+2n−2zq+2n−4 + zq+2n−1 + zq+2n−2 + zq+2n−4 + b
zq+2n−1zq+2n−2 + zq+2n−1zq+2n−4 + zq+2n−2zq+2n−4 + 1 + b

. (3.7)

Taking the limit on both sides of (3.6) and (3.7), one has

W =
WG2 + W + G + G + b

WG + WG + G2 + 1 + b
and G =

GW2 + G + W + W + b
GW + GW + W2 + 1 + b

.

From which it follows that
W = 1 and G = 1,

so limn→∞ zn = z̄ = 1.
Considering Subcase (ii), for integer q ≥ 0, the terms of a positive semi-cycle of length two are

denoted by {zq, zq+1}
+ and the negative semi-cycle of length one is denoted by {zq+2}

−. Due to the
positive and negative semi-cycles appearing continuously, the rule is {zq+3n, zq+3n+1}

+, {zq+3n+2}
−, n ∈ N.

From the third inequality of Lemma 2.2, it follows that zq+3n+3 < zq+3n, zq+3n+4 < zq+3n+1, zq+3n+2 <

zq+3n+5, so the sequences {zq+3n}
∞
n=0 and {zq+3n+1}

∞
n=0 are decreasing and have lower bound 1 and the

sequence {zq+3n+2}
∞
n=0 is increasing and has upper bound 1. Then, the limits of the three sequences exist.

Suppose that limn→∞ zq+3n = W, limn→∞ zq+3n+1 = E, and limn→∞ zq+3n+2 = D. Then,

zq+3n =
zq+3n−2zq+2n−3zq+2n−5 + zq+2n−2 + zq+2n−3 + zq+2n−5 + b
zq+2n−2zq+2n−3 + zq+2n−2zq+2n−5 + zq+2n−3zq+2n−5 + 1 + b

, (3.8)

zq+3n+1 =
zq+3n−1zq+3n−2zq+3n−4 + zq+3n−1 + zq+3n−2 + zq+3n−4 + b
zq+3n−1zq+3n−2 + zq+3n−1zq+3n−4 + zq+3n−2zq+3n−4 + 1 + b

, (3.9)

zq+3n+2 =
zq+3nzq+3n−1zq+3n−3 + zq+3n + zq+3n−1 + zq+3n−3 + b
zq+3nzq+3n−1 + zq+3nzq+3n−3 + zq+3n−1zq+3n−3 + 1 + b

. (3.10)

Taking the limit on the both sides of (3.8)–(3.10), we have

W =
EWE + E + W + E + b
EW + E2 + WE + 1 + b

, E =
DED + D + E + D + b
DE + D2 + ED + 1 + b

,

D =
WDW + W + D + W + b
WD + W2 + DW + 1 + b

.

From which it follows that
W = 1, E = 1 and D = 1,

so limn→∞ zn = z̄ = 1. The proof of Subcase (iii) is similar to that of Subcase (ii).
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Considering Subcase (iv), for integer q ≥ 0, the terms of a positive semi-cycle of length four
are denoted by {zq, zq+1, zq+2, zq+3}

+, the negative semi-cycle of length one by {zq+4}
−, the term of

a positive semi-cycle of length one by {zq+5}
+, a negative semi-cycle of length four is denoted by

{zq+6, zq+7, zq+8, zq+9}
−, the terms of a positive semi-cycle of length one by {zq+10}

+, and a negative semi-
cycle of length one by {zq+11}

−. With the positive and negative semi-cycles appearing continuously,
we can see the rule is as follows: {zq+12n, zq+12n+1, zq+12n+2, zq+12n+3}

+, {zq+12n+4}
−, {zq+12n+5}

+,

{zq+12n+6, zq+12n+7, zq+12n+8, zq+12n+9}
−, {zq+12n+10}

+, {zq+12n+11}
−, n ∈ N.

By the second, third, and fourth inequalities of Lemma 2.2, the following inequalities are true.
(1b) zq+12n > zq+12n+2 > zq+12n+5 > zq+12n+10 > zq+12n+12 > zq+12n+14 > zq+12n+17 > zq+12n+22.

(2b) zq+12n+1 > zq+12n+3 > zq+12n+5 > zq+12n+10 > zq+12n+13 > zq+12n+15 > zq+12n+17 > zq+12n+22.

(3b) zq+12n+4 < zq+12n+6 < zq+12n+8 < zq+12n+11 < zq+12n+16 < zq+12n+18 < zq+12n+20 < zq+12n+23.

(4b) zq+12n+7 < zq+12n+9 < zq+12n+11 < zq+12n+16 < zq+12n+19 < zq+12n+21.

According to (1b) and (2b), it follows that the subsequences

{zq+12n}
∞
n=0, {zq+12n+2}

∞
n=0, {zq+12n+5}

∞
n=0, {zq+12n+10}

∞
n=0,

and
{zq+12n+1}

∞
n=0, {zq+12n+3}

∞
n=0, {zq+12n+5}

∞
n=0, {zq+12n+10}

∞
n=0,

are monotonically decreasing and have lower bound 1, so the limits exist.
Let

lim
n→∞

zq+12n = lim
n→∞

zq+12n+2 = lim
n→∞

zq+12n+5 = lim
n→∞

zq+12n+10 = E, (3.11)

lim
n→∞

zq+12n+1 = lim
n→∞

zq+12n+3 = lim
n→∞

zq+12n+5 = lim
n→∞

zq+12n+10 = Q. (3.12)

It follows that E = Q.
Since

zq+12n+5 =
zq+12n+3zq+12n+2zq+12n + zq+12n+3 + zq+12n+2 + zq+12n + b
zq+12n+3zq+12n+2 + zq+12n+3zq+12n + zq+12n+2zq+12n + 1 + b

,

from (3.11) and (3.12), we have

E =
QEE + Q + E + E + b

QE + QE + EE + 1 + b
.

It follows that E = Q = 1.
From (3b) and (4b), one has that the subsequences

{zq+12n+4}
∞
n=0, {zq+12n+6}

∞
n=0, {zq+12n+8}

∞
n=0, {zq+12n+11}

∞
n=0,

and
{zq+12n+7}

∞
n=0, {zq+12n+9}

∞
n=0, {zq+12n+11}

∞
n=0,

are monotonically increasing and have upper bound 1, hence the limits exist.
Let

lim
n→∞

zq+12n+4 = lim
n→∞

zq+12n+6 = lim
n→∞

zq+12n+8 = lim
n→∞

zq+12n+11 = D, (3.13)

lim
n→∞

zq+12n+7 = lim
n→∞

zq+12n+9 = lim
n→∞

zq+12n+11 = P. (3.14)
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It follows that D = P.
Since

zq+12n+7 =
zq+12n+5zq+12n+4zq+12n+2 + zq+12n+5 + zq+12n+4 + zq+12n+2 + b

zq+12n+5zq+12n+4 + zq+12n+5zq+12n+2 + zq+12n+4zq+12n+2 + 1 + b
,

from (3.13) and (3.14), we have

P =
EDE + E + D + E + b

ED + EE + DE + 1 + b
.

Since E = Q = 1, P = D = 1. Namely, E = Q = P = D = 1, so limn→∞ zn = z̄ = 1.
Considering Subcase (v), for integer q ≥ 0, the terms of a positive semi-cycle of length two are

denoted by {zq, zq+1}
+, and the negative semi-cycle of length two by {zq+2, zq+3}

−. As the positive and
negative semi-cycles appear continuously, the rule is {zq+4n, zq+4n+1}

+, {zq+4n+2, zq+4n+3}
−, n ∈ N.

From the third and fourth inequalities of Lemma 2.2, for positive integers k, g, h, and p, one has:
(1c)

zq+4n > zq+4n+5 > zq+4n+8×1+0 > zq+4n+8×1+5 > zq+4n+8×2+0

> zq+4n+8×2+5 > · · · > zq+4n+8×k+0 > zq+4n+8×k+5 > · · · > 1.

(2c)

zq+4n+1 > zq+4n+4 > zq+4n+8×1+1 > zq+4n+8×1+4 > zq+4n+8×2+1

> zq+4n+8×2+4 > · · · > zq+4n+8×g+1 > zq+4n+8×g+4 > · · · > 1.

(3c)

zq+4n+2 < zq+4n+7 < zq+4n+8×1+2 < zq+4n+8×1+7 < zq+4n+8×2+2

< zq+4n+8×2+7 < · · · < zq+4n+8×h+2 < zq+4n+8×h+7 < · · · < 1.

(4c)

zq+4n+3 < zq+4n+6 < zq+4n+8×1+3 < zq+4n+8×1+6 < zq+4n+8×2+3

< zq+4n+8×2+6 < · · · < zq+4n+8×p+3 < zq+4n+8×p+6 < · · · < 1.

From (1c) and (2c), we have that the two subsequences of the positive semi-cycles are monotonically
decreasing and have lower bound 1, so the limits of two subsequences exist, denoted as M and W.
Similarly, from (3c) and (4c), the two subsequences of the negative semi-cycles are monotonically
increasing and have upper bound 1, so the limits of two subsequences exist, denoted as Q and L. In
other words, the following limits can be obtained:

lim
n→∞

zq+4n = lim
n→∞

zq+4n+5 = lim
n→∞

zq+4n+8 = lim
n→∞

zq+4n+13 = lim
n→∞

zq+4n+16 = M. (3.15)

lim
n→∞

zq+4n+1 = lim
n→∞

zq+4n+4 = lim
n→∞

zq+4n+9 = lim
n→∞

zq+4n+12 = lim
n→∞

zq+4n+17 = W. (3.16)

lim
n→∞

zq+4n+2 = lim
n→∞

zq+4n+7 = lim
n→∞

zq+4n+10 = lim
n→∞

zq+4n+15 = lim
n→∞

zq+4n+18 = Q. (3.17)

lim
n→∞

zq+4n+3 = lim
n→∞

zq+4n+6 = lim
n→∞

zq+4n+11 = lim
n→∞

zq+4n+14 = lim
n→∞

zq+4n+19 = L. (3.18)
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Utilizing Eq (1.2), we have that

zq+4n+16 =
zq+4n+14zq+4n+13zq+4n+11 + zq+4n+14 + zq+4n+13 + zq+4n+11 + b

zq+4n+14zq+4n+13 + zq+4n+14zq+4n+11 + zq+4n+13zq+4n+11 + 1 + b
,

zq+4n+12 =
zq+4n+10zq+4n+9zq+4n+7 + zq+4n+10 + zq+4n+9 + zq+4n+7 + b

zq+4n+10zq+4n+19 + zq+4n+10zq+4n+7 + zq+4n+9zq+4n+7 + 1 + b
,

zq+4n+10 =
zq+4n+8zq+4n+7zq+4n+5 + zq+4n+8 + zq+4n+7 + zq+4n+5 + b

zq+4n+8zq+4n+7 + zq+4n+8zq+4n+5 + zq+4n+7zq+4n+5 + 1 + b
,

zq+4n+11 =
zq+4n+9zq+4n+8zq+4n+6 + zq+4n+9 + zq+4n+8 + zq+4n+6 + b

zq+4n+9zq+4n+8 + zq+4n+9zq+4n+6 + zq+4n+8zq+4n+6 + 1 + b
.

From (3.15)–(3.18), we have

M =
LML + L + M + L + b

LM + LL + ML + 1 + b
, W =

QWQ + Q + W + Q + b
QW + QQ + WQ + 1 + b

,

Q =
MQM + M + Q + M + b

MQ + MM + QM + 1 + b
, L =

WML + W + M + L + b
WM + WL + ML + 1 + b

.

By simple calculations, we have that

Q = L = M = W = 1.

So, limn→∞ zn = z̄ = 1.
Considering Subcase (vi), for integer q ≥ 0, the terms of a positive semi-cycle of length

three are denoted by {zq, zq+1, zq+2}
+, and the negative semi-cycle of length three by {zq+3, zq+4, zq+5}

−.
Because the positive and negative semi-cycles appear continuously, the rule is {zq+6n, zq+6n+1, zq+6n+2}

+,

{zq+6n+3, zq+6n+4, zq+6n+5}
−.

From the second, third, and fourth inequalities of Lemma 2.2, for some nonnegative integers
k, g, h, p, t, and m, we have
(1d)

zq+6n > zq+6n+2 > zq+6n+7 > zq+6n+12×1+0 > zq+6n+12×1+2 > zq+6n+12×1+7

> zq+6n+12×2+0 > zq+6n+12×2+2 > zq+6n+12×2+7 > · · · > zq+6n+12×k+0

> zq+6n+12×k+2 > zq+6n+12×k+7 > · · · > 1.

(2d)

zq+6n+1 > zq+6n+6 > zq+6n+8 > zq+6n+12×1+1 > zq+6n+12×1+6 > zq+6n+12×1+8

> zq+6n+12×2+1 > zq+6n+12×2+6 > zq+6n+12×2+8 > · · · > zq+6n+12×g+1

> zq+6n+12×g+6 > zq+6n+12×g+8 > · · · > 1.

(3d)

zq+6n+2 > zq+6n+7 > zq+6n+12 > zq+6n+12×1+2 > zq+6n+12×1+7 > zq+6n+12×1+12
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> zq+6n+12×2+2 > zq+6n+12×2+7 > zq+6n+12×2+12 > · · · > zq+6n+12×h+2

> zq+6n+12×h+7 > zq+6n+12×h+12 > · · · > 1.

(4d)

zq+6n+3 < zq+6n+5 < zq+6n+10 < zq+6n+12×1+3 < zq+6n+12×1+5 < zq+6n+12×1+10

< zq+6n+12×2+3 < zq+6n+12×2+5 < zq+6n+12×2+10 < · · · < zq+6n+12×p+3

< zq+6n+12×p+5 < zq+6n+12×p+10 < · · · < 1.

(5d)

zq+6n+4 < zq+6n+9 < zq+6n+11 < zq+6n+12×1+4 < zq+6n+12×1+9 < zq+6n+12×1+11

< zq+6n+12×2+4 < zq+6n+12×2+9 < zq+6n+12×2+11 < · · · < zq+6n+12×t+4

< zq+6n+12×t+9 < zq+6n+12×t+11 < · · · < 1.

(6d)

zq+6n+5 < zq+6n+10 < zq+6n+15 < zq+6n+12×1+5 < zq+6n+12×1+10 < zq+6n+12×1+15

< zq+6n+12×2+5 < zq+6n+12×2+10 < zq+6n+12×2+15 < · · · < zq+6n+12×m+5

< zq+6n+12×m+10 < zq+6n+12×m+15 < · · · < 1.

According to (1d)–(3d), the three subsequences of the positive semi-cycles are monotonically
decreasing and have lower bound 1, hence the limits of the three subsequences exist, denoted by M,W,
and B, repectively. Similarly, from (4d)–(6d), we have that three subsequences of the negative semi-
cycles are monotonically increasing and have upper bound 1, hence the limits of the three subsequences
exist, denoted by H, L, and V , repectively. That is,

lim
n→∞

zq+6n = lim
n→∞

zq+6n+2 = lim
n→∞

zq+6n+7 = lim
n→∞

zq+6n+12 = lim
n→∞

zq+6n+14 = M. (3.19)

lim
n→∞

zq+6n+1 = lim
n→∞

zq+6n+6 = lim
n→∞

zq+6n+8 = lim
n→∞

zq+6n+13 = lim
n→∞

zq+6n+18 = W. (3.20)

lim
n→∞

zq+6n+2 = lim
n→∞

zq+6n+7 = lim
n→∞

zq+6n+12 = lim
n→∞

zq+6n+14 = lim
n→∞

zq+6n+19 = B. (3.21)

lim
n→∞

zq+6n+3 = lim
n→∞

zq+6n+5 = lim
n→∞

zq+6n+10 = lim
n→∞

zq+6n+15 = lim
n→∞

zq+6n+17 = H. (3.22)

lim
n→∞

zq+6n+4 = lim
n→∞

zq+6n+9 = lim
n→∞

zq+6n+11 = lim
n→∞

zq+6n+16 = lim
n→∞

zq+6n+21 = L. (3.23)

lim
n→∞

zq+6n+5 = lim
n→∞

zq+6n+10 = lim
n→∞

zq+6n+15 = lim
n→∞

zq+6n+17 = lim
n→∞

zq+6n+22 = V. (3.24)

From Eq (1.2), we have

zq+6n+12 =
zq+6n+10zq+6n+9zq+6n+7 + zq+6n+10 + zq+6n+9 + zq+6n+7 + b
zq+6n+10zq+6n+9 + zq+6n+10zq+6n+7 + zq+6n+9zq+6n+7 + 1 + b

.

zq+6n+13 =
zq+6n+11zq+6n+10zq+6n+8 + zq+6n+11 + zq+6n+10 + zq+6n+8 + b

zq+6n+11zq+6n+10 + zq+6n+11zq+6n+8 + zq+6n+10zq+6n+8 + 1 + b
.
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zq+6n+14 =
zq+6n+12zq+6n+11zq+6n+9 + zq+6n+12 + zq+6n+11 + zq+6n+9 + b

zq+6n+12zq+6n+11 + zq+6n+12zq+6n+9 + zq+6n+11zq+6n+9 + 1 + b
.

zq+6n+15 =
zq+6n+13zq+6n+12zq+6n+10 + zq+6n+13 + zq+6n+12 + zq+6n+10 + b

zq+6n+13zq+6n+12 + zq+6n+13zq+6n+10 + zq+6n+12zq+6n+10 + 1 + b
.

zq+6n+11 =
zq+6n+9zq+6n+8zq+6n+6 + zq+6n+9 + zq+6n+8 + zq+6n+6 + b

zq+6n+9xq+6n+8 + zq+6n+9zq+6n+6 + zq+6n+8zq+6n+6 + 1 + b
.

zq+6n+10 =
zq+6n+8zq+6n+7zq+6n+5 + zq+6n+8 + zq+6n+7 + zq+6n+5 + b

zq+6n+8xq+6n+7 + zq+6n+8zq+6n+5 + zq+6n+7zq+6n+5 + 1 + b
.

From (3.19)–(3.24) and the above equations, we have

M =
HLM + H + L + M + b
HL + HM + LM + 1 + b

, W =
LHW + L + H + W + b

LH + LW + HW + 1 + b
,

B =
BLL + B + L + L + b

BL + BL + LL + 1 + b
, H =

WBH + W + B + H + b
WB + WH + BH + 1 + b

,

L =
LWW + L + W + W + b

LW + LW + WW + 1 + b
, V =

WBH + W + B + H + b
WB + WH + BH + 1 + b

.

By simple calculations, one has M = W = B = H = L = V = 1, so limn→∞ zn = z̄ = 1.
Based on the above discussion, it follows that the unique equilibrium point z̄ = 1 of (1.2) is GAS.

The proof is complete.

4. Two examples

In this section, we give two numerical examples to demonstrate the effectiveness of
theoretic analysis.
Example 4.1. With initial values z0 = 1.12, z−1 = 0.87, z−2 = 1.13, z−3 = 0.9, z−4 = 1.1, and b = 13, it
is clear that the equilibrium z̄ = 1 is GAS (See Figure 1).

Figure 1. The equilibrium z̄ = 1 is GAS.
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Example 4.2. With initial conditions z0 = 1.2, z−1 = 0.7, z−2 = 0.8, z−3 = 1.9, z−4 = 1.01, and b = 8 for
n ≥ 9, zn = 1, in other words, limn→∞ zn = 1, i.e., the equilibrium z̄ = 1 is GAS (See Figure 2).

Figure 2. The equilibrium z̄ = 1 is GAS.

Analyzing the two examples above, we set the model parameters as z0 = 1.12, z−1 = 0.87, z−2 =

1.13, z−3 = 0.9, z−4 = 1.1, and b = 13 for n ≥ 8, we can get zn = 1, which implies that limn→∞ zn = 1,
so Theorem 3.1 is valid (See Figure 1). Setting the model parameters as z0 = 1.2, z−1 = 0.7, z−2 =

0.8, z−3 = 1.9, z−4 = 1.01, and b = 8 for n ≥ 8, zn = 1, in other words, limn→∞ zn = 1, and Theorem 3.1
is valid (See Figure 2).

Reviewing Figures 1 and 2, for different initial parameters, it is obvious that the solution of Eq (1.2)
converges to the equilibrium point at different values. In view of Theorem 3.1, system (1.2) is GAS,
and there exists a positive integer m for n ≥ m, zn = 1. Through these graphics, we have verified the
validity of the conclusions drawn in this article.

5. Conclusions

In this article, using the semi-cycle analysis method, we obtain the main results as follows.
(i) If the solution {zn}

∞
n=−4 of (1.2) is a trivial solution or nontrivial non-oscillatory solution, then the

equilibrium z̄ = 1 of (1.2) is GAS.
(ii) If the solution {zn}

∞
n=−4 of (1.2) is an oscillatory solution, for a prime period, the successive

lengths of positive and negative semi-cycles of any nontrivial solution occur periodically: 2,3,4,6,12.
In detail, for period 2, the rule is 1+, 1−; for period 3, the rule is 2−, 1+ or 2+, 1−; for period 4, the rule
is 2+, 2−; for period 6, the rule is 3+, 3−; for period 12, the rule is 4+, 1−, 1+, 4−, 1+, 1−. Moreover, the
equilibrium z̄ = 1 of (1.2) is GAS.

The semi-cycle analysis method is one of most effective approaches for studying the dynamical
behaviors of difference equations. However, it also has limitations: For some rational difference
equations, using the known semi-cycle analysis method, special semi-cycle rules may appear, but some
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28271

orbital structures of rational difference equations cannot be obtained using the semi-cycle analysis
method. Moreover, there are dozens of possibilities for the distribution of terms in the positive and
negative semi-cycle rules of these equations, which can be slightly complex and make it difficult to
qualitatively analyze the trajectory structure rules of the solution of the systems. Therefore, other
means are needed, such as establishing auxiliary equations and fixed point theorems or using a
subsequence analysis method.
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