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1. Introduction

Information technology is the cornerstone of contemporary society, permeating nearly every facet
of daily life. The rapid expansion of today’s technological landscape generates an ever-increasing
volume of data. As this digital universe expands, the imperative to safeguard and preserve data privacy
intensifies, a concern shared by individuals and organizations alike. Security has long been a paramount
issue within the realm of computing, particularly concerning the secure transmission of information
and data across the Internet. Across various channels, whether via the Internet or through smart
devices, reports of data thefts and breaches have shown a consistent upward trend [1]. In response to
these challenges, researchers and cryptographers endeavour to innovate novel cryptographic models
and enhance existing cryptographic algorithms. These advancements are geared toward practical
implementation in real-world applications, aiming to enhance user privacy, fortify data security,
strengthen authentication mechanisms, and address many related features [2].

In the domain of cryptographic algorithms, the RSA public key cryptographic algorithm stands
out as one of the earliest and most widely adopted. Known as the RSA cryptosystem, it takes its
name from its creators: Ron Rivest, Adi Shamir, and Leonard Adleman, who introduced RSA in their
seminal 1977 paper [3]. Contemporary applications of the traditional RSA algorithm encompass key
exchanges, digital signatures, and secure communication protocols employed in web browsers, chat
applications, email services, VPNs, and other methods necessitating secure data transmission between
entities. Initially, a fundamental aspect of the RSA cryptosystem involves multiplying two random
prime numbers, denoted as p and q, resulting in the RSA modulus, represented by N. Selecting p and
q must adhere to the constraint q < p < 2q to prevent factorization using general factoring techniques.
Subsequently, the Euler’s totient function for N, denoted as φ(N), is computed as (p − 1)(q − 1). Once
φ(N) is determined, an integer e less than φ(N) is chosen. The private key component, d, is computed
such that ed ≡ 1 (mod φ(N)). Next, the pair (N, e) is made publicly available for any encryptor, and
the pair (d,N) is only available for the decryptor, with p, q, and φ(N) remaining as secret parameters.

RSA’s strength is primarily based on the significant challenge of addressing the integer
factorization problem (IFP) for a large integer N and the challenge of resolving the eth root problem.
While RSA is generally considered secure, several attacks have been designed to exploit the structure of
its key equation. The quadratic sieve (QS) is an efficient algorithm for factoring N, functioning in sub-
exponential time due to the use of large n-bit primes for RSA primes p and q [4]. Regarding algorithmic
efficiency, the general number field sieve (GNFS) is also highly effective within sub-exponential time,
typically with n set to 1024 bits [5]. Note that QS is favored for its simplicity over GNFS and is the
fastest method for factoring integers below 100 decimal digits. However, for integers in the 110 to 120
digits range, GNFS outperforms QS.

In 2013, the government digital IDs agenda with RSA keys of Taiwanese citizens was signed by
certificate authorities (CAs) and kept in the Citizen Digital Certificates (CDCs) database. As reported
in [6], an attack successfully obtained the prime factors of 184 distinct RSA keys of 1024-bit size,
revealing significant susceptibility in the RSA keys and emphasizing the need for robust cryptographic
practices. Similarly, in 2017, [7] identified vulnerabilities in both Belgium’s e-ID cards and Estonia’s
digital identity cards, compromising millions of RSA keys. This attack allowed the private key to be
derived from the public key, contradicting the RSA principle that factoring the primes of the public key
should be computationally infeasible. Due to shortcuts in key generation, it has become possible to
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factorize 1024-bit keys in minutes and 2048-bit keys in weeks. Ongoing research into RSA public key
aggregation is crucial to prevent such vulnerabilities. Note that both notorious cryptanalysis incidents
used Coppersmith’s partial-key-recovery technique.

In the context of related work, it is crucial to consider advancements in other areas of secure
communication and computational frameworks. For instance, the study in [8] explores using advanced
neural network architectures in the Internet of Things (IoT) for police applications. Using memristive
systems enhances neural networks’ dynamic analysis and performance, which can be crucial for real-
time data processing and security in IoT environments. Although this study focuses on a different
application area, the underlying principle of improving system robustness and security is highly
relevant to our work on RSA vulnerabilities. The techniques developed in memristive neural networks
could inspire new approaches to strengthening cryptographic systems. Similarly, [9] emphasizes the
importance of privacy protection in the Internet of Medical Things (IoMT). By leveraging hyperchaotic
behaviour in memristive Hopfield neural networks (HNN), this study addresses the need for secure data
transmission and storage in medical applications. This study’s emphasis on privacy and data protection
parallels our objective of identifying and mitigating vulnerabilities in RSA encryption, ensuring the
confidentiality and integrity of sensitive information. Additionally, [10] explores the design of complex
dynamical systems with hidden and hyperchaotic behaviours. Developing fractional-order systems
with multi-scroll attractors highlights the potential for creating intricate and secure communication
protocols. The insights gained from analysing these systems can be applied to cryptographic research,
particularly in developing new algorithms that resist attacks by leveraging the unpredictable nature of
hyperchaotic systems. This aligns with our study’s focus on addressing the inherent weaknesses in
RSA by exploring new mathematical models and techniques.

Moreover, [11] introduces a Fibonacci-like prime sequence for prime numbers, the study
showcases the utility of such sequences in predicting orbits within a fractal space. This concept relates
to our work because both studies use advanced mathematical techniques to solve complex problems.
In our cryptanalysis, the identification of weak RSA key equations and the concurrent factorization of
multiple RSA moduli are achieved through sophisticated mathematical approaches such as Diophantine
approximation and Coppersmith’s lattice-based method. The Fibonacci-like prime sequence offers a
novel perspective that could inspire further exploration of mathematical structures in cryptographic
applications, potentially leading to new methods for identifying and mitigating vulnerabilities. Thus,
integrating advanced mathematical techniques and dynamic system analysis, as seen in the referenced
studies, provides valuable insights that can be applied to cryptographic research. Our findings on
RSA vulnerabilities contribute to the ongoing efforts to enhance the security of encryption systems,
ensuring the protection of sensitive information in various applications, from IoT and IoMT to broader
communication frameworks. The practical implications of our study highlight the need for continuous
evaluation and improvement of cryptographic protocols to stay ahead of potential adversaries.

1.1. Our contributions

This cryptanalysis study explores an adversary’s ability to access k RSA moduli, Ni = piqi,
and their public exponents ei. We present two attacks exploiting weak RSA key equations. The
study demonstrates the simultaneous factorization of k RSA moduli (Ni, ei) using a constant r that
satisfies eir − (Ni − pi − qi + ui)si = ti. Our primary finding reveals that weaknesses in RSA
public-key pairs can be exploited under certain conditions, allowing an adversary to simultaneously
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factorize multiple RSA moduli Ni. Another vulnerability is identified when RSA parameters satisfy
eiri − s(Ni − pi − qi + ui) = ti, allowing concurrent factorization with small, unknown integers s, ri, ui,
and ti. Resolving the factorization of each RSA modulus, Ni, using lattice basis reduction enabled the
discovery of this vulnerability. Our study demonstrates this new attack and includes a comparative
evaluation with existing research, highlighting the novelty and significance of our findings, which
extend the comprehension of RSA vulnerabilities and its security measures.

1.2. Paper organization

The remainder of this paper is organized in the following manner. The essential background
information, including foundational theorems on continued fractions, lattice basis reduction,
simultaneous Diophantine approximations, and other relevant theorems, is provided in Section 2. Our
main work, including the proof of our primary attack and illustrative numerical examples, is presented
in Section 3. This is followed by a comparison of our results with previously documented attacks on k
RSA moduli instances in Section 4. Finally, the paper concludes with a summary of our findings and
key takeaways in Section 5.

2. Foundational information

First, we introduce an essential tool for solving Diophantine equations. Continued fractions
approximate rational and irrational numbers, forming the foundation for constructing the RSA
cryptanalysis (and its variants). Continued fractions are defined as follows:

Definition 2.1. Given any positive ξ ∈ R, start with ξ0 = ξ. For each i = 1, 2, . . . , n, define ξi as
bxic and let ξi+1 = 1

ξi−xi
until ξn ∈ Z. As a result, ξ can be represented as continued fractions in the

following form:

ξ = x0 +
1

x1 + 1
x2+ 1

x3+ 1
···+ 1

xn

. (2.1)

For simplicity, a continued fraction is an expression created by iteratively representing a number as the
sum of its integer part and the reciprocal of another number. This process is repeated by writing the
new number as the sum of its integer part and another reciprocal, and so on. A finite continued fraction,
or terminated continued fraction, stops this iteration after a certain number of steps, using an integer
instead of another continued fraction. Conversely, an infinite continued fraction continues indefinitely.
In both types, all integers in the sequence, except for the first, must be positive. The integers xi are
known as the coefficients or terms of the continued fraction.

The convergents x
y of ξ are fractions denoted by x

y = [x0, x1, · · · , xi] for i ≥ 0. Importantly, suppose
ξ = x

y is a rational number with gcd(x, y) = 1. In that case, the continued fraction expansion of ξ can
be determined using the Euclidean algorithm in O(log(y)) time.

According to Theorem 2.1 (Legendre’s theorem), the unknown integers m and n are guaranteed
to be among the list of convergents in the continued fraction expansion of a rational number χ, which
satisfies the inequality specified in (2.2).
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Theorem 2.1. Consider a rational number χ and let m and n be positive integers such that gcd(m, n) =

1. If the inequality ∣∣∣∣∣χ − m
n

∣∣∣∣∣ < 1
2n2 , (2.2)

is satisfied, then m
n is a convergent in the continued fraction expansion of χ.

Proof. Please see [12] for the proof.

The primes in the RSA cryptosystem’s key generation should be of the same bit size to enhance
its security. Allowing uneven factors is a potential security risk because the “small” factor could be
easily found. Hence, the notation q < p < 2q indicates that the primes p, q are balanced. Recalled that
in Lemma 2.1, we have fixed the lower and upper bounds of the RSA primes of modulus N as follows:

Lemma 2.1. For an RSA modulus N = pq with p and q being primes of equal bit length such that
q < p < 2q, the following inequality is satisfied:

√
2N
2

< q <
√

N < p <
√

2N.

Proof. Please see Lemma 1 of [13] for the proof.

In the subsequent Lemma 2.2, we demonstrate that the term p+q adheres to the inequalities given
in (2.3):

Lemma 2.2. For an RSA modulus N = pq with p and q being primes of equal bit length with the
condition q < p < 2q, the following statement is true:

2
√

N < p + q <
3
√

2N
2

. (2.3)

Proof. Please see Lemma 1 of [14] for the proof.

Given an accurate approximation of any multiple of a divisor of N, Coppersmith’s general result
directly offers an efficient factoring method, as shown in Theorems 2.2 and 2.3. These theorems
demonstrate that the remaining bits can be determined if a significant portion of p bits are known.

Theorem 2.2. Consider an RSA modulus N = pq with p > q. Suppose there is an unknown integer b
that is not divisible by q and an approximation p̃ of bp such that

|bp − p̃| < N
1
4 . (2.4)

In this case, N can be factorized in polynomial time relative to log N.

Proof. Please see [15] for the proof.

Theorem 2.3. Suppose N = pq is an RSA modulus with p > q. Let b be an unknown integer that does
not divide by q. Given an approximation p̃ of bp satisfying

|bp − p̃| <
√

2N
1
4 , (2.5)

then N can be factorized in polynomial time relative to log N.
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Proof. Please see [15] for the proof.

As a result, having an approximation of p + q allows us to determine an integer p.

Lemma 2.3. Suppose N = pq is a valid RSA modulus satisfying q < p < 2q. Let S denote the
approximation of p + q where S > 2N

1
2 and fulfills:

|p + q − S | <
p − q

3(p + q)
N

1
4 .

Then an integer p can be estimated as:

P̃ =

(
S +
√

S 2 − 4N
)

2
.

This approximation guarantees that:
|p − P̃| < N

1
4 .

Proof. Suppose that S > 2N
1
2 and let D =

√
S 2 − 4N. We have

|(p − q)2 − D2| = |(p − q)2 − (S 2 − 4N)|
= |p2 − 2pq + q2 − S 2 + 4pq|

= |p2 + 2pq + q2 − S 2|

= |(p + q)2 − S 2|. (2.6)

Observe that (2.6) can also be written as:

(p − q + D)|p − q − D| = (p + q + S )|p + q − S |. (2.7)

Dividing (2.7) by (p − q + D) will yield

|p − q − D| =
|p + q − S |(p + q + S )

(p − q + D)
.

Next, suppose |p + q − S | <
p − q

3(p + q)
N

1
4 . Since

p − q
3(p + q)

N
1
4 < N

1
4 , then

p + q + S < 2(p + q) + N
1
4 < 3(p + q).

Considering p − q + D > p − q, we infer that:

|p − q − D| <
3(p + q)|p + q − S |

p − q

<
3(p + q)

p − q
·

p − q
3(p + q)

N
1
4

= N
1
4 .
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Next, set p̃ =
S + D

2
which yields:

∣∣∣p − p̃
∣∣∣ =

∣∣∣∣∣p − S + D
2

∣∣∣∣∣
=
|p + q − S + p − q − D|

2

≤
|p + q − S |

2
+
|p − q − D|

2

<
1
2
·

p − q
3(p + q)

N
1
4 +

1
2

N
1
4

< N
1
4 ,

where we used
1
2
·

p − q
3(p + q)

<
1
2

.

Using Lemma 2.2, we can straightforwardly deduce:

φ(N) = N + 1 − (p + q) > N + 1 −
3
√

2N
2

>
1
2

N.

Suppose we satisfy specific conditions for approximating the term p + q via S . We can apply the
same concept when estimating an integer p via P̃, ensuring the error is less than N1/4. A notable benefit
of the LLL algorithm, as discussed in [16], is its proficiency in addressing simultaneous Diophantine
approximations (see Theorem 2.4).

Theorem 2.4. Let α1, α2, . . . , αn be a set of rational numbers, and let 0 < ε < 1. Suppose there
exists an algorithm capable of efficiently computing a sequence of integers pi and an integer q with a
computation time that is polynomial in log(pi) such that i = 1, 2, . . . , k. The theorem holds under the
following conditions:

max
i
|qαi − pi| < ε and q ≤ 2k(k−3)/4 · 3k · ε−k.

Proof. Refer to [17] for the proof.

A method for factoring the prime numbers pi and qi by solving equations involving multiple RSA
moduli is detailed in Theorem 2.5.

Theorem 2.5. Suppose there are k RSA moduli Ni = piqi, with N being the smallest among them, and k
public exponents ei for i = 1, 2, . . . , k, where k ≥ 2. Let δ as δ = k

2(k+1) . If there exists an integer x < Nδ

and k integers yi < Nδ and |zi| <
pi−qi

3(pi+qi)
yiN1/4, satisfying the Diophantine equation eix − yiφ(Ni) = zi,

then k RSA moduli, specifically, N1, . . . ,Nk, can be factorized in polynomial time.

Proof. Refer to [17] for the proof.

3. Successful cryptanalysis on the system of weak RSA key equations

This section describes conditions under which an attacker can factorize k RSA moduli Ni

concurrently. This vulnerability occurs when the attacker accesses RSA public-key pairs with
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specific vulnerabilities, allowing each Ni to be efficiently factored in polynomial time. Notably, this
vulnerability was identified by employing the lattice basis reduction method to solve the factorization
of each RSA modulus Ni. The RSA keys under consideration have parameters that meet the
following equations:

• Case I: eir − si(Ni − pi − qi + ui) = ti.

• Case II: eiri − s(Ni − pi − qi + ui) = ti.

3.1. Case I: Successful cryptanalysis on the system of weak RSA key equations

Based on the earlier motivation, we introduce another vulnerability in the RSA cryptosystem.
This newly discovered weakness is revealed when an attacker acquires a collection of RSA key pairs
with specific flaws, enabling each Ni to be factored within polynomial time. Assume the RSA public
tuples (Ni, ei) fulfil the following system of equations:

eir − (Ni − pi − qi + ui)si = ti,

where concurrent factorization of the system is possible if the integers r, ui, si, and ti are suitably
small and unknown. This vulnerability was identified by factorizing each RSA modulus Ni using
the lattice basis reduction method. The following theorem outlines the specific conditions for this
cryptanalysis approach.

Theorem 3.1. Examine k RSA moduli, each represented as Ni = piqi, where this holds true for each
i from 1 to k, with k ≥ 3. Denote by N the smallest among these moduli and by ei the corresponding
public exponents. Assume there exists a fixed integer r < Nδ, k integers si < Nδ, and positive integers
ui such that ui + |ti |

si
< pi−qi

pi+qi
N0.25 for each i, where δ = k

2(k+1) . If the values meet the conditions of the
system of equations

eir − (Ni − pi − qi + ui)si = ti,

then it is possible to efficiently factor the primes of k RSA moduli Ni.

Proof. Assume k ≥ 3 where k RSA moduli Ni = piqi are valid for i = 1, · · · , k. The equation eir −
(Ni − pi − qi + ui)si = ti can be rewritten as:

eir − Nisi − (−pi − qi + ui)si = ti

eir − Nisi = ti − (pi + qi − ui)si. (3.1)

Dividing (3.1) with Ni + ui will yield∣∣∣∣∣eir
Ni
− si

∣∣∣∣∣ =
|ti − (pi + qi − ui)si|

Ni
. (3.2)

From (3.1), let N = min Ni and assume that si < Nδ, ui > 0, and ui + |ti |
si
< pi−qi

pi+qi
N0.25. Then we can

have |ti| <
pi−qi
pi+qi

siN0.25 < siN0.25 < NδN0.25 < Nδ+0.25. Since from Lemma 2.2, pi + qi <
3
√

2N
2 , hence

we obtain

|ti − (pi + qi − ui)si|

Ni
≤
|ti| + |(pi + qi − ui)si|

N
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<
|ti| + |(pi + qi)si|

N

<
Nδ+0.25 + Nδ · 3

√
2N

2

N

=
Nδ+0.25 + 3

√
2

2 Nδ+0.5

N

<

√
5Nδ+0.5

N
=
√

5Nδ−0.5. (3.3)

Plugging (3.3) into (3.2), we get ∣∣∣∣∣ eir
Ni + ui

− si

∣∣∣∣∣ < √5Nδ−0.5.

The existence of an integer r is demonstrated as follows. Let δ = k
2(k+1) and ε =

√
5Nδ− 1

2 . Here, we get:

Nδ · εk = Nδ · Nkδ− k
2 · (
√

5)k = Nδ(1+k)− k
2 · (
√

5)k. (3.4)

Since δ = k
2(k+1) , (3.4) becomes

N
k

2(k+1) (1+k)− k
2 · (
√

5)k = N0 · (
√

5)k = (
√

5)k < 2
k(k−3)

4 · 3k. (3.5)

Combining (3.4) and (3.5), we obtain

Nδ < 2
k(k−3)

4 · 3k · ε−k.

Hence, if r < Nδ, it follows that r < 2
k(k−3)

4 · 3k · ε−k. Consequently, it holds that:∣∣∣∣∣eir
Ni
− si

∣∣∣∣∣ < ε, r < 2
k(k−3)

4 · 3k · ε−k,

which meets the conditions stated in Theorem 2.4, allowing for the successful determination of r ∈ Z
and si ∈ Z. Subsequently, via the equation eir − (Ni − pi − qi + ui)si = ti will lead us to:

eir + si(pi + qi) − si(Ni + ui) = ti

eir
si

+ pi + qi − Ni − ui =
ti

si

pi + qi −

(
Ni −

eir
si

)
=

ti

si
+ ui∣∣∣∣∣pi + qi −

(
Ni −

eir
si

)∣∣∣∣∣ =

∣∣∣∣∣ ti

si
+ ui

∣∣∣∣∣.
Given that |ti |si

+ ui <
pi−qi
pi+qi

N
1
4 and Xi = Ni −

eir
si

is an integer close to the sum of pi + qi with an absolute

difference smaller than pi−qi
pi+qi

N
1
4 , it is possible to approximate pi via P̃i = 1

2 (Xi +

√
X2

i − 4Ni), where

|pi − P̃i| < N
1
4
i . Therefore, Theorem 2.5 states that it is possible to concurrently determine the prime

factors of N1,N2, . . . ,Nk within polynomial time.
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Algorithm 1 is introduced next to demonstrate the process of factorizing Ni = piqi according to
the approach described in Theorem 3.1.

Algorithm 1: Simultaneous factorization of k RSA moduli via theorem 3.1
Input: A set of k ≥ 3 RSA public tuples (Ni, ei) for each i from 1 to k.
Output: The corresponding prime numbers pi and qi or ⊥.

1: Choose N to be the minimum of N1,N2, · · · ,Nk.
2: Calculate the value of δ via δ = k

2(k+1) .

3: Calculate the value of ε via ε =
√

5Nδ− 1
2 .

4: Determine C via C =
[
2

(k+1)(k−4)
4 · 3k+1 · ε−(k+1)] and ci =

[
−

C·ei
Ni

]
.

5: Form a lattice L using the matrixA elements.
6: Execute the LLL algorithm on matrixA to generate a reduced basis matrix B.
7: Determine matrixD by calculatingD = BA−1.
8: Assign labels to each element in the first row ofD from left to right, denoting them as

r, s1, · · · , sk.
9: For i = 1, 2, · · · , k do.

10: Calculate Xi =

[
Ni −

eir
si

]
.

11: Calculate P̃i = 1
2

(
Xi +

√
X2

i − 4Ni
)
.

12: Utilize Coppersmith’s method on P̃i to determine the value of pi.
13: Complete the factorization of Ni by computing qi = Ni

pi
.

14: If qi is an integer, then return pi, qi.
15: Else the algorithm has failed or return ⊥.
16: end for

To demonstrate the attack detailed in Theorem 3.1 and implemented via Algorithm 1, we present
the following example. This attack was performed on a Windows 10 system, utilizing a computer
equipped with an Intel (R) Core (TM) i5-8265U CPU running at 1.60 GHz and 12.0 GB of RAM.

Example 3.1. Assume an attacker has obtained three different RSA-256 moduli Ni, each paired with
its respective public exponent ei, given by:

N1 = 15498671550097317874000325521713072888209815771283424082567740030
449146537211,

e1 = 81245063373805154907667111014578746534000355820591249888260833580
61484367919;

N2 = 45466924318058459709686176924439022552298711950594090013987406587
074535233259,

e2 = 16102198214541781444411489979036444827470504513008138816987321564
651598410513;

N3 = 17437304443824569053279135598346130164658710365272925391550310539
916852737229,
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e3 = 56057343129015128757933539159879687812104132823267331547289832991
78754886809.

Start by selecting N as the smallest among N1–N3.

N = 15498671550097317874000325521713072888209815771283424082567740030
449146537211.

Setting k = 3, we compute δ using the formula δ = k
2(k+1) = 0.3750. Subsequently, ε is determined by

√
5Nδ− 1

2 ≈ 5.852 × 10−10. The next step involves calculating:

C =
[
2

(k+1)(k−4)
4 · 3k+1 · ε−(k+1)] = 345332739100000000000000000000000000000.

Additionally, for i = 1, 2, 3, we compute:

ci =

[
−

C · ei

(Ni + 1)

]
,

which yielded the following results:

c1 = −181025710381307170556997940432250134516,
c2 = −122300250090817968499412983989936080793,
c3 = −111017364591963408590726358270037864780.

Proceeding to step 5, a lattice L is generated by the entries of the matrixA.

A =


1 c1 c2 c3

0 C 0 0
0 0 C 0
0 0 0 C

 .
Subsequently, the LLL algorithm is executed on matrixA to generate a reduced basis matrix B:

B =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B34 B44

 ,
which has the following entries:

B11 = 13412150344881302146887292871, B31 = 45330317096288856394830337626,
B12 = 40256743631042325819162164564, B32 = -14695828243710685836196099016,
B13 = 15327238423192297988691073297, B33 = 47776834763861826340596182582,
B14 = 20336643543331691800644016620, B34 = -62897224685379110891534212280,
B21 = -19462069970085913825063307624, B41 = 84302773261406976645446061769,
B22 = -45912856885306627310111650016, B42 = -39164202860686498472694918804,
B23 = 32382937827588556411876865832, B43 = -54753406998703645880452502817,
B24 = 57878066634331431109255082720, B44 = 46025141824011067239250404180.
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In step 7, we compute the matrixD by performingD = B · A−1.

D =


D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D34 D44

 ,
where

D11 = 13412150344881302146887292871,
D12 = 7030738094079049587443387317,
D13 = 4749938698860636698956625881,
D14 = 4311730155329241101548919906,
D21 = −19462069970085913825063307624,
D22 = −10202146054867081511116066681,
D23 = −6892529306169411609547369167,
D24 = −6256654735992653191546062897,
D31 = 45330317096288856394830337626,
D32 = 23762452629170958168210402367,
D33 = 16053818505655285318475071292,
D34 = 14572763512847056441589021734,
D41 = 84302773261406976645446061769,
D42 = 44192072424217091812394937682,
D43 = 29855988401476166908699067823,
D44 = 27101605656233717030337027181.

In step 8, assign the labels r, s1–s3 from left to right to the elements in the first row ofD as follows:

r = D21 = 13412150344881302146887292871,
s1 = D22 = 7030738094079049587443387317,
s2 = D23 = 4749938698860636698956625881,
s3 = D24 = 4311730155329241101548919906.

Now, compute Xi via the formula Xi =

[
Ni −

eir
si

]
which outputs:

X1 = 269402126838606667907066115287494725655,
X2 = 439723656699230572089169064734715107754,
X3 = 274132486228506946820442084641848440683.

Then, we compute P̃i = 1
2 (Xi +

√
X2

i − 4Ni) resulting in the following output:

P̃1 = 186137479859349591396353749057276843688,
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P̃2 = 273455664256156219005798240539525803548,
P̃3 = 173806555546663035866787592776739545043.

Observe that the value P̃i is an approximation of the prime pi and satisfies |pi − P̃i| < N0.25. Therefore,
we utilize Coppersmith’s method on P̃i to determine pi:

p1 = 186137479859349591396353749057276843697,
p2 = 273455664256156219005798240539525803553,
p3 = 173806555546663035866787592776739545059.

Finally, we factor N1–N3 by identifying q1–q3 such that qi = Ni
pi

. The obtained values are as follows:

q1 = 83264646979257076510712366230217881963,
q2 = 166267992443074353083370824195189304203,
q3 = 100325930681843910953654491865108895631.

Remark 3.1. It is crucial to observe that in Example 3.1, the value of r, which approximates N0.369,
exceeds the thresholds set by previous research. Notably, it surpasses the limit of x < 1

3 N0.25 as reported
in [18], as well as the bounds of x ≈ N0.344 found in [17] and d ≈ N0.345 in [19].

3.2. Case II: Successful cryptanalysis on the system of weak RSA key equations

Given the earlier motivation discussed, we highlight an additional vulnerability in the RSA
encryption system. That is when an adversary obtains a collection of RSA public key pairs exhibiting
certain vulnerabilities, this newfound weakness permits the simultaneous factorization of each Ni in
polynomial time. In particular, the RSA keys in this collection include parameters that satisfy the
conditions of the following system of equations:

eiri − s(Ni − pi − qi + ui) = ti,

allowing for concurrent factorization if suitably small, unknown integers s, ui, ri, and ti are present.
Notably, this vulnerability was discovered by successfully factoring each RSA modulus Ni via the
lattice basis reduction method. The theorem below details this cryptanalytic technique.

Theorem 3.2. Consider k RSA moduli of the form Ni = piqi for each i from 1 to k, with k ≥ 3. Let N
denote the largest modulus among these, and let ei be k public exponents where min ei = Nα. Suppose
there exists an integer s with s |ti |si

+ ui <
pi−qi
pi+qi

N
1
4 , where δ =

k(2α−1)
2(k+1) . These conditions must satisfy

the equation
eiri − s(Ni − pi − qi + ui) = ti.

Under these conditions, the factorization of all k RSA moduli can be performed simultaneously in
polynomial time.

Proof. Rewrite the equation eiri − s(Ni − pi − qi + ui) = ti as eiri − sNi = ti − s(pi + qi − ui) and divide
both sides of the equation by ei. Subsequently, take the absolute value on both sides of the equation,
resulting in: ∣∣∣∣∣Nis

ei
− ri

∣∣∣∣∣ =
|ti − s(pi + qi − ui)|

ei
. (3.6)
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Choose N = max{Ni} and assume that s < Nδ, ui > 0, and |ti |
s + ui <

pi−qi
pi+qi

N
1
4 . Consequently, |ti| <

pi−qi
pi+qi

sN
1
4 < sN

1
4 < NδN

1
4 < Nδ+ 1

4 . Utilizing Lemma 2.2, which asserts pi +qi <
3
√

2
√

N
2 , and considering

min ei = Nα, we derive:

|ti − s(pi + qi − ui)|
ei

≤
|ti| + s(pi + qi − ui)

Nα

<
|ti| + s(pi + qi)

Nα

<
Nδ+ 1

4 + Nδ · 3
√

2
2 N

1
2

Nα

<

√
5Nδ+ 1

2

Nα
=
√

5Nδ+ 1
2−α. (3.7)

Substituting (3.7) into (3.6), we obtain ∣∣∣∣∣Nis
ei
− ri

∣∣∣∣∣ < √5Nδ+ 1
2−α.

Our goal now is to verify the existence of an integer s. Define δ =
k(2α−1)
2(k+1) and ε =

√
5Nδ+ 1

2−α. The
subsequent calculations unfold as follows:

Nδ · εk = Nδ · Nkδ+ k
2−kα · (

√
5)k

= Nδ(1+k)+ k
2−kα · (

√
5)k

= N
k(2α−1)
2(k+1) (1+k)+ k

2−kα
· (
√

5)k

= N0 · (
√

5)k

= (
√

5)k

< 2
k(k−3)

4 · 3k.

Consequently, we derive
Nδ < 2

k(k−3)
4 · 3k · ε−k.

If s < Nδ, then s < 2
k(k−3)

4 · 3k · ε−k. Now, we summarize for:∣∣∣∣∣Nis
ei
− ri

∣∣∣∣∣ < ε, s < 2
k(k−3)

4 · 3k · ε−k.

Thus, the conditions of Theorem 2.4 are satisfied, which enables us to determine s and ri. Subsequently,
using the equation eiri − s(Ni − pi − qi + ui) = ti, we obtain:

eiri + s(pi + qi) − s(Ni + ui) = ti

eiri

s
+ pi + qi − Ni − ui =

ti

s

pi + qi − (Ni −
eiri

s
) =

ti

s
+ ui

|pi + qi − (Ni −
eiri

s
)| = |

ti

s
+ ui|.
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Since |ti |s + ui <
pi−qi
pi+qi

N
1
4 , it follows that | tis + ui| <

|ti |
s + ui <

pi−qi
pi+qi

N
1
4 and Ai = Ni−

eir
s approximates pi + qi

with an error less than pi−qi
pi+qi

N
1
4 . Therefore, according to Lemma 2.3, let Bi =

√
|A2

i − 4Ni|, and we can

determine an approximation P̃i = 1
2 (Ai + Bi) of pi satisfying |pi − P̃i| < N

1
4 .

As a result, for each i = 1, 2, · · · , k, we can determine pi using Theorem 2.5, thereby achieving
the factorization of N1,N2, · · · ,Nk.

Next, Algorithm 2 is provided to explain the steps involved in factorizing Ni = piqi using the
methodology described in Theorem 3.2.

Algorithm 2: Simultaneous factorization of k RSA moduli using theorem 3.2
Input: k ≥ 3 set of RSA public key sets (Ni, ei) such that i = 1, 2, · · · , k.
Output: The corresponding prime numbers pi and qi or ⊥.

1: Select N as the maximum among N1,N2, · · · ,Nk.
2: Determine α such that Nα = min(e1, e2, · · · , ek).
3: Compute δ using δ =

k(2α−1)
2(k+1) .

4: Evaluate ε =
√

5Nδ+ 1
2−α.

5: Calculate C = [3k+1 · 2
(k+1)(k−4)

4 · ε−k−1] and ci = [−C·Ni
ei

].
6: Form the lattice L using the elements of matrix M .
7: Apply the LLL algorithm to matrix L to obtain matrix K .
8: Evaluate a matrix H via H = K ·M −1.
9: Extract each element from the first row of matrix H and denote them as s, r1, r2, · · · , rk.

10: For i = 1, 2, · · · , k do.
11: Compute Ai = Ni −

eiri
s and Bi =

√
|A2

i − 4Ni|.

12: Compute p̃i = 1
2 (Ai + Bi).

13: Utilize Coppersmith’s method on P̃i to determine the value of pi.
14: Calculate qi = Ni

pi
.

15: If qi ia an integer, then output pi, qi.
16: Else algorithm has failed or output ⊥.
17: end for

In this section, we illustrate to clarify the methodology outlined in Theorem 3.2, employing
Algorithm 2. The attack detailed in Theorem 3.2 was executed on a Windows 10 system, using a
computer equipped with an Intel(R) Core(TM) i5-8265U CPU operating at 1.60 GHz and 12.0 GB
of RAM.

Example 3.2. Suppose an attacker has acquired three distinct pairs of RSA-140 moduli Ni, each
associated with its corresponding public exponent ei as follows:

N1 = 207721379736588191166934250883799623994063,
e1 = 14947091956444666045808009203078043358579,
N2 = 800733525531802006632923165295502784854571,
e2 = 52536194339797485372565490843212651987313,
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N3 = 679910618939422296290429319442096304194471,
e3 = 7785970602573890898951075644388056538126.

Start by selecting N as the maximum among N1–N3 and e = min(e1, e2, e3).

N = max(N1,N2,N3) = 800733525531802006632923165295502784854571,
e = min(e1, e2, e3) = 7785970602573890898951075644388056538126.

Since Nα = min(e1, e2, e3), we can get α = 0.951981. Let k = 3. Following this, we obtain
δ =

k(2α−1)
2(k+1) = 0.338985 and ε =

√
5Nδ+ 1

2−α ≈ 0.0000411678.

Next, the following calculation is performed:

C = [3k+1 · 2
(k+1)(k−4)

4 · ε−k−1] = 14100171250000000000.

Then, we calculate the following for i = 1, 2, 3:

ci = [−
C · Ni

ei
],

which yields the following results:

c1 = −195951629595035077864,
c2 = −214908597348891597486,
c3 = −1231298787407458103035.

Proceeding to step 6, we form a lattice using the entries of the matrix M as its generating elements.

M =


1 c1 c2 c3

0 C 0 0
0 0 C 0
0 0 0 C


=


1 −195951629595035077864 −214908597348891597486 −1231298787407458103035
0 14100171250000000000 0 0
0 0 14100171250000000000 0
0 0 0 14100171250000000000

 .
Subsequently, the LLL algorithm is executed on matrix M to generate a reduced basis matrix K :

K =


32672235172336 −34621218770304 −333554347296 −86682869639760
27174390840652 51618763472672 136997250199128 21007117421180
−243277378527129 −252743848627544 84350599197694 40874624736515
346203828870367 −294259007256088 10140562902638 286245255736155

 .
Next, compute matrix H = K ·M −1:

H =


32672235172336 454049643158161 497975812395885 2853106025190199
27174390840652 377645496218931 414180091562724 2373006249170991
−243277378527129 −3380852467731491 −3707926610180756 −21244220078824867
346203828870367 4811232660680562 5276686214668937 30232282085503183

 .
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Observe the first row of the matrix H as follows:[
32672235172336 454049643158161 497975812395885 2853106025190199

]
.

Now, deduce the elements in the first row of H as s, r1–r3 from left to right as follows:

s = 32672235172336, r1 = 454049643158161, r2 = 497975812395885, s3 = 2853106025190199.

Then, define Ai = Ni −
eiri

s and Bi =

√
|A2

i − 4Ni| which yield the following outputs:

A1 = 1195802353093372472503,
A2 = 1802897344297980320018,
A3 = 1710450864196376374599,
B1 = 773988209675892859456,
B2 = 217955802743359334967,
B3 = 453871879578853827542.

Then, compute p̃i = 1
2 (Ai + Bi), which returns:

p̃1 = 984895281384632665980,
p̃2 = 1010426573520669827493,
p̃3 = 1082161371887615101071.

Observe that the value P̃i is an approximation of the prime pi and satisfies |pi − P̃i| < N0.25. Therefore,
we utilize Coppersmith’s method on p̃i to determine pi. Finally, we complete the factorization of N1–N3

by identifying q1–q3 such that qi = Ni
pi

. The obtained values are as follows:

p1 = 984895281384632665981, q1 = 210907071708739806523,
p2 = 792470770777310492489, q2 = 1010426573520669827539,
p3 = 1082161371887615101073, q3 = 628289492308761273527.

Remark 3.2. In Example 3.2, we observe that min(r1, r2, r3) ≈ N0.350 surpasses the limits set by
previous research. Specifically, it exceeds the bounds established by Blömer-May (x < 1

3 N0.25) as
documented in [18], by Ariffin et al. (d ≈ N0.336) as reported in [19], and by Nitaj et al. (x ≈ N0.337) as
mentioned in [17].

4. Comparing results

As shown in Table 1, our findings are compared with established cryptanalysis on multiple
instances of RSA moduli, each represented as Ni = piqi. We classify these attacks based on the specific
modifications made to the key equation’s structure and the corresponding requirements to execute them.
The table highlights the specific conditions and parameters under which these attacks succeed.

Our comparison criteria include the type of RSA moduli, weaknesses exploited in the key
generation process, and mathematical techniques, such as lattice basis reduction or Coppersmith’s

AIMS Mathematics Volume 9, Issue 10, 28211–28231.



28228

method. Our findings demonstrate broader applicability and robustness compared to previously
documented attacks requiring specific conditions. This analysis underscores the significant impact
of our contributions to cryptanalysis and the need to revisit RSA-based systems’ security assumptions.

In summary, Table 1 illustrates the advancements made by our study about existing cryptanalysis,
reinforcing the importance of ongoing research to enhance RSA encryption security.

Table 1. Comparison of our attacks with established cryptanalysis of RSA moduli.

Cryptanalysis Manipulated Key Equation Associated Requirements
Hinek eid − kiφ(Ni) = 1 The exponent d where d < Nδ

k ,
(2009, [20]) δ < 1

2 −
k

2(k+1) − ε

where ε = logNk
(6)

Nitaj et al. eixi − yφ(Ni) = zi Fixed unknown y where y < Nδ,

(2014, [17]) xi < Nδ, |zi| <
pi−qi

3(pi+qi)
yN0.25,

where δ =
k(2α−1)
2(k+1) , xi, y ∈ Z

Ariffin et al. eids − kφ(Ns) = zs Fixed unknown k where k < Nγ,
(2019, [19]) ds < Nγ, zs < Nγ,

where γ =
t(1+2α)
2(4t+1)

Ruzai et al. eix2 − y2
i φ(Ni) = zi Fixed unknown x where x2 < Nδ,

(2022, [2]) y2
i < Nδ, |zi| <

pi−qi
3(pi+qi)

y2
i N

1
4 ,

where δ = k
2(k+1) , x2, y2

i ∈ Z

Ruzai et al. eix2
i − y2φ(Ni) = zi Fixed unknown y where y2 < Nδ,

(2024, [21]) x2
i < Nδ, |zi| <

pi−qi
3(pi+qi)

y2N
1
4 ,

where δ =
k(2α−1)
2(k+1) , x2, y2

i ∈ Z

Our result: Case I eir − si(Ni − pi − qi + ui) = ti Fixed unknown r where r < Nδ,
(Theorem 3.1) si < Nδ, ui > 0, |ti |si

+ ui <
pi−qi

(pi+qi)
N

1
4 ,

where δ = k
2(k+1)

Our result: Case II eiri − s(Ni − pi − qi + ui) = ti Fixed unknown s where s < Nδ,
(Theorem 3.2) ri < Nδ, ui > 0, |ti |si

+ ui <
pi−qi

(pi+qi)
N

1
4 ,

where min ei = Nα, δ =
k(2α−1)
2(k+1)

5. Conclusions

In conclusion, our research has effectively shown the simultaneous factorization of (Ni, ei) for k
RSA moduli instances. This was achieved by utilizing a constant value r that meets the weak RSA key
equation eir− (Ni− pi−qi + ui)si = ti. Our study’s key finding is that, given certain detailed conditions,
an attacker can concurrently factorize multiple RSA moduli Ni. The defect occurs once the attacker
obtains a collection of RSA key pairs with specific flaws, enabling each Ni to be factored concurrently
in polynomial time, given the existence of suitably small, unknown integers r, si, ui, and ti.

Additionally, we discovered another weakness where an adversary can exploit RSA parameters
that satisfy the system of equations eiri − (Ni − pi − qi + ui)s = ti. These parameters can be factored
simultaneously if the necessary small, unknown integers s, ri, ui, and ti are present. It is essential
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to note that this vulnerability was identified through the factorization of each RSA modulus Ni using
Diophantine approximation and Coppersmith’s lattice-based technique. Furthermore, our cryptanalysis
demonstrates this new attack and provides a comparative analysis with existing research.

Significantly, the results of this work broaden the scope of insecure RSA decryption exponents.
For example, consider the case of rogue certificate authorities (RCAs). RCA can issue seemingly
legitimate but compromised certificates, introducing hidden vulnerabilities into the public key
infrastructure. These certificates can be exploited between issuance and discovery to compromise
private keys. The existence of RCAs underscores the importance of identifying weak public keys.
Since the weak keys often meet standard key generation criteria, the cryptosystem may continue
operating undetected. If an adversary uncovers these certificates, they can exploit them to derive private
keys, even without direct access to private information. Certificate authorities and organizations must
adopt proactive strategies to mitigate these risks. Strengthening key generation practices, avoiding
predictable patterns, and addressing weak keys as vulnerabilities can help reduce the risks. This
paper explores a potential RCA methodology for the RSA cryptosystem, offering practical solutions to
enhance cryptosystem resilience.
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