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1. Introduction

Since the groundbreaking works of S. N. Bernstein and P. Chebyshev (among others) were
published more than a century ago, approximation theory has developed into a vast area of mathematics
with connections to numerous other scientific disciplines. It provides directions for future research and
is essential to analyzing numerical methods in the mathematical, physical, medical, engineering, and
social sciences.

In 1912, S. N. Bernstein discovered an operator to contribute to the proof of the Weierstrass theorem
as follows:

Bn( f ; x) =
n∑

k=0

bn,k(x) f
(

k
n

)
, (1.1)
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where bn,k(x) =
(

n
k

)
xk(1−x)n−k, f ∈ C[0, 1], and x ∈ [0, 1] ( [1]). Due to the significance of the Bernstein

operators, various researchers have discovered their multiple generalizations, as seen in ([2–5]).
The Chebyshev system is crucial in approximation theory. Approximations of complicated

functions by simpler functions are computed using Chebyshev polynomials. The function solution
in linear systems is made easier by the specific features of these systems, which also inherit numerous
approximation qualities (cf. [6, 7]).

That being said, discontinuous function approximation is not a good use for traditional Bernstein
operators. The construction of traditional Bernstein–Kantorovich operators for Lebesgue-integrable
function space is done as follows:

Kn( f ; x) = (n + 1)
n∑

k=0

bn,k(x)
∫ k+1

n+1

k
n+1

f (t)dt, (1.2)

where n ∈ N, f ∈ L1([0, 1]), and x ∈ [0, 1], (see [8, 9]).
Recently, generating functions of special families of polynomials for approximation by positive

linear operators have been extensively used by researchers. In 2016, Atakut and Buyukyazıcı defined
a generalization of Kantorovich-type operators using Brenke-type polynomials as follows:

Lαn,βn
n ( f ; x) =

βn

A(1)B(αnx)

∞∑
k=0

pk(αnx)
∫ k+1

βn

k
βn

f (t)dt,

and investigated their convergence properties [10]. In 2022, Sofyalıoglu and Kanat studied a
generalization of Szász–Baskakov operators involving Boas Buck polynomials as below:

D∗s( f ; x) =
s − 1

A(1)B(sxH(1))

∞∑
v=0

pv(sx)
∫ ∞

0

(
s + v − 1

v

)
tv

(1 + t)s+v f (t)dt,

and examined some convergence properties, such as the rate of convergence [11]. In 2023, Menekşe
Yılmaz gave generalized Kantorovich-type operators, including the generating functions of negative-
order Bernoulli-type polynomials in the following equation:

Ãn( f ; x) := n
e−nx

e − 1

n∑
k=0

β̃k(nx)
k!

k+1
n∫
k
n

f (t)dt,

and studied approximation properties of operators such as first-order modulus of continuity,
Voronovskaya type, and Grüss–Voronovskaya type asymptotic results [12].

In 2021, Simsek defined Frobenius–Euler–Simsek-type numbers and polynomials and investigated
relations and identities between these numbers and polynomials and special numbers and polynomials
such as Fubini numbers and polynomials and Bernoulli numbers and polynomials [13]. The
Frobenius–Euler–Simsek-type polynomials ℓn(x; v) are given by the following generating function:

Fℓ (x; w, v) :=
wv

v−1∏
j=0

(ew − j)
ewx =

∞∑
n=0

ℓn(x; v)
wn

n!
. (1.3)
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Putting x = 0, we give Frobenius–Euler–Simsek-type numbers in the following equation:

Fℓ (0; w, v) :=
wv

v−1∏
j=0

(ew − j)
=

∞∑
n=0

ℓn(0; v)
wn

n!
. (1.4)

Taking v = 2 into the above equation, we have

Fℓ (x; w, 2) :=
w2

ew (ew − 1)
ewx =

∞∑
n=0

ℓn(x; 2)
wn

n!
. (1.5)

By the motivation from the definition of Frobenius–Euler–Simsek-type polynomials at (1.5), we
consider Kantorovich-type operators at the following equation:

En( f ; x) := n(e2 − e)e−nx
∞∑

k=0

ℓk(nx; 2)
k!

∫ k+1
n

k
n

f (t)dt, (1.6)

where En : L1([0, 1])→ C1([0, 1]) and f ∈ L1([0, 1]).

2. Prelimineries

It is useful in this context to highlight particular outcomes and define a few terminologies.
Let a sequence of linear positive operators (Ln)n, Ln : V → F [a, b], where F [a, b] is the space

of all real-valued functions in the interval [a,b] and V is a linear subspace of F [a, b]. Suppose that
φ0, φ1, φ2 ∈ V ∩C[a, b] forms a Chebychev system on the interval [a, b], if we have

lim
n→∞

Ln(φ j) = φ j,

uniformly for j = 0, 1, 2, then
lim
n→∞

Ln( f ) = f ,

uniformly, for any f ∈ V ∩C[a, b] (see [14]).
The theorem of Bohman in [15] is the particular version of the above theorem when φ j = e j,

j = 0, 1, 2. The monomial functions denoted by e j are defined to be as:

e j(x) = x j,

where x ∈ [a, b] and j ∈ N ∪ 0. e j(x) functions are also called moment functions. Furthermore, the j-
order central moment function of the operator Ln is defined as follows:

Ln((e1 − e0x) j),

(cf. [ [15, 16]).
In approximation theory, moments and central moments are used to quantify and examine the

properties of functions, offering important insights into the performance and quality of approximations.
Moments and pivotal moments are important in several ways: Moments are frequently used to calculate
approximate formulas or assess how well an approximate fit a target function. Because they shed light
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on how well an approximation, while accounting for its key features, resembles the original function,
central moments are especially helpful in error analysis.

An analytical tool in approximation theory, the modulus of continuity measures how effectively a
function or series of functions can be approximated by another function or sequence inside a given
interval or domain. A series of approximating functions, like polynomials or trigonometric functions,
are evaluated for their ability to approximate functions using the modulus of continuity.

The definition of modulus of continuity is given as:
Definition 2.1. (cf. [17]) Let f be a uniformly continuous function on [0,∞) and δ > 0. The

modulus of continuity, ω( f , x), of the function of f is defined to be

ω( f , δ) := sup | f (x) − f (y)| , (2.1)

where x, y ∈ [0,∞) and |x − y| < δ.
Then for any δ > 0, and for each x ∈ [0,∞), the following relation holds

| f (x) − f (y)| ≤ ω( f , δ)
(
|x − y|
δ
+ 1

)
. (2.2)

The second-order continuity module in approximation theory offers a numerical representation of a
function’s behavior about its first derivative, also known as the gradient. This property explains how the
accuracy and quality of approximation approaches are impacted by the quadratic continuity module.

The definition of the second-order modulus of continuity is given below:
Definition 2.2. (cf. [18]) The continuity’s second-order modulus is given below:

ω2( f , δ) = sup
0<h≤δ

sup
x∈[0,∞)

| f (x + h) − 2 f (x) + f (x − h)| , (2.3)

where f ∈ CB[0,∞) and δ > 0.
The Lipschitz class is one of the mathematical tools in approximation theory that offers a framework

for comprehending and quantifying the regularity or smoothness of functions. Because of this trait,
Lipschitz functions yield good results since the Lipschitz constant also controls the approximation
errors.

The definition of the Lipschitz class with order α is given as follows:
Definition 2.3. (cf. [19]) Lip1(α,K), 0 < α ≤ 1, denotes the class of functions that verify the

inequality ω1(ϕ, σ) ≤ Kσα for all σ > 0 with positive K. Next, we have∣∣∣E∗n (ϕ; x) − ϕ (x)
∣∣∣ ≤ Kσαn (x). (2.4)

A quantitative indicator of the degree to which a linear operator T can approximate a function f in
a given function space X while accounting for both the approximation error and the smoothness (or
regularity) of the function f is provided by Peetre’s K-functional, a fundamental tool for analyzing and
comparing various approximation methods and their convergence properties.

The Peetre’s K-functional is defined as follows:
Definition 2.4. (cf. [20]) Peetre’s K-functional is provided in the following equation:

K( f ; δ) = in f {g ∈ C2
B[0,∞) : ∥ f − g∥CB + δ∥g∥C2

B
}, (2.5)
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where
C2

B[0,∞) = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)},

and
∥g∥C2

B
:= ∥g∥CB + ∥g

′∥CB + ∥g
′′∥CB .

The following inequality is obtained between Peetre’s K-functional and the second modulus of
continuity for any constant M that is independent of f and δ:

K( f ; δ) ≤ M{ω2( f ;
√
δ) + min(1, δ)∥ f ∥CB}. (2.6)

A continuous function f : [a, b] → R defined concerning a certain dimension (typically h) has
an average function known as the Steklov function. The following is the definition of the Steklov
function, (see [21]), or fh(x):

fh(t) =
1
h

∫ t+ h
2

t− h
2

f (u)du.

The Steklov function is a function that can be employed to achieve a smoother function by
aggregating the values at neighboring points. It finds extensive use in numerical analysis and data
processing applications, such as noise reduction and data smoothing.

There is a derivative for the Steklov function fh.

f ′h(t) =
1
h

(
f
(
t +

h
2

)
− f

(
t −

h
2

))
,

almost everywhere. We also give the following inequalities from [22]:

∥ fh − f ∥∞ ≤
3
4
ω2( f ; h), (2.7)

and
∥ f ′′h ∥∞ ≤

3
2
ω2( f ; h)

h2 , (2.8)

where function f ∈ C[a, b] and h ∈
(
0, b−a

2

)
are connected via the second-order Steklov function, fh.

The following definition, which is an enlarged form of the first modulus of the derivative for the
class of an arbitrary function, was provided in [15]:

ωd
2( f ; δ) = δ

{
sup

∣∣∣∣∣ f (x + t) − f (x)
t

∣∣∣∣∣ − ∣∣∣∣∣ f (y + s) − f (x)
s

∣∣∣∣∣ , s, t > 0, x, x + t, y + s ∈ [0, 1]
}
, (2.9)

where {max{x + t, y + s} − max{x, y} ≤ δ}.
Euler-type polynomials are used frequently in the applied sciences and combinatorics, particularly

in analytic number theory. For example, T. Kim and D. S. Kim studied degenerate hyperharmonic
numbers and investigated some relations and identities for special polynomials such as degenerate
Bernoulli, degenerate Euler, degenerate Bell, and degenerate Fubini polynomials [23]. In [24], the
authors derived some results involving Frobenius–Euler polynomials and derived some formulas by
using umbral calculus. For more information on current work in this area, (see [25–31]). There are
linear operators with generating functions of special polynomials in the literature. To integrate positive
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linear operators with the generating function technique, the purpose of this work is to investigate
Kantorovich–Szász-type positive linear operators.

The rest of this research is organized as follows:
In Section 3, we first determine results under the differential operator of Frobenius–Euler–Simsek-

type polynomials and derive the moment and central moment functions using the lemmas and
definitions from Section 2. Second, we use Korovkin’s theorem to demonstrate the uniform
convergence of our operator. In Section 4, we investigate several convergence properties of our
operator, including modulus of continuity, Lipschitz class, Peetre’s K functional, and second-order
continuity module. In Section 5, we use the modulus of continuity to compute the operator’s
convergence rate and provide some numerical examples. In Section 6, we present the findings and
conclusions of the study and discuss the uses of these findings and conclusions. In Section 7, our
results are summarized and recommendations for future work are presented.

3. Auxilary results

In this chapter, we obtain moment and central moment functions for En( f ; x). Additionally, we
show that En( f ; x) is uniformly convergence by using the Korovkin-Bohman theorem.

By using Eq (1.5), we obtain the following equalities:

d
dw

Fl(x; w, 2) =
wew(x−1)(−xw + ew(wx − 2w + 2) + w − 2)

(ew − 1)2 ,

and

d2

dw2 Fl(x; w, 2) =
ew(x − 1)
(ew − 1)3

[
− ew(w2(2x2 − 6x + 3) + 4w(2x − 3) + 4)

+w2(x − 1)2 + e2w(w2(x − 2)2 + 4w(x − 2) + 2) + 4w(x − 1) + 2
]
.

Lemma 3.1. For the operators En, one has

En(1; x) := 1,

En(x; x) := x +
e − 3

2n(e − 1)
,

and

En(x2; x) := x2 +
e − 2

n(e − 1)
x +
−5e2 + 7e + 1

3(e − 1)2n2 .

Proof. For the proof, we assume x→ nx and w = 1.
Let f (x) = 1. Applying the definition of En( f ; x), we have

En(1; x) = n(e2 − e)e−nx
∞∑

k=0

ℓk(nx; 2)
k!

∫ k+1
n

k
n

dt = n(e2 − e)e−nx enx

n(e2 − e)
= 1.

Let f (x) = x. The above equation reduces to the following equation:

AIMS Mathematics Volume 9, Issue 10, 28195–28210.
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En(x; x) = n(e2 − e)e−nx
∞∑

k=0

ℓk(nx; 2)
k!

∫ k+1
n

k
n

tdt

=
n(e2 − e)

2n2 e−nx
∞∑

k=0

ℓk(nx; 2)
k!

(2k + 1)

=
n(e2 − e)

2n2 e−nx

(
enx−1(enx − nx − 1)

(e − 1)2 +
enx

e2 − e

)
= x +

e − 3
2n(e − 1)

.

Let f (x) = x2, we also obtain

En(x2; x) = n(e2 − e)e−nx
∞∑

k=0

ℓk(nx; 2)
k!

∫ k+1
n

k
n

t2dt

=
n(e2 − e)

3n3 e−nx
∞∑

k=0

ℓk(nx; 2)
k!

(3k2 + 3k + 1)

= x2 +

(
−x

(e − 1)x
+

x
n

)
+

(
1

3n2 −
1

n2(e − 1)
+
−2e2 + 4e − 1

n2(e − 1)2

)
= x2 +

e − 2
n(e − 1)

x +
−5e2 + 7e + 1

3(e − 1)2n2 .

□

Lemma 3.2. Let x ∈ [0,∞). For the operators En, we obtain the following equalities:

En((e1 − e0x), x) =
e − 3

2n(e − 1)
, (3.1)

and

En((e1 − e0x)2, x) =
x

(e − 1)n
+
−5e2 + 7e + 1

3(e − 1)2n2 . (3.2)

Proof. Using En’s linearity feature, we have ascertained

En((e1 − e0x), x) = En(x, x) − xEn(1, x) =
e − 3

2n(e − 1)
, (3.3)

and

En((e1 − e0x)2, x) = En(x2, x) − 2xEn(x, x) + x2En(1, x) =
x

(e − 1)n
+
−5e2 + 7e + 1

3(e − 1)2n2 . (3.4)

□
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With the help of any calculator, the following result is obtained for the 1st and 2nd-order central
moment functions.

Corollary 3.3. For all x ∈ [0, 1] and n ∈ N, we have

En((e1 − e0x), x) ≤ κn

and
En((e1 − e0x)2, x) ≤ ϱn,

where
κn =

−81
1000n

,

and
ϱn =

581
1000n

−
191

100n2 .

Corollary 3.4. The following statements are accurate.

lim
n→∞

nEn((e1 − e0x), x) =
e − 3

2n(e − 1)
,

and

lim
n→∞

nEn((e1 − e0x)2, x) =
x

e − 1
.

With the help of the moment functions in Lemma 3.1, the uniform convergence of the operator is
given in the following theorem using the Korovkin–Bohman theorem.

Theorem 3.5. Let f ∈ L1([0,∞)).

lim
n→∞
En( f , x) = f (x) (3.5)

uniformly on C([0,∞)).
Proof. Based on Lemma 3.1, it is clear that for any j = 0, 1, 2,

lim
n→∞
En(x j, x) = x j.

According to the Korovkin–Bohman theorem ( [15]), easy-to-get operators En( f , x) are uniformly
convergent on C([0,∞)). The desired result is obtained.

4. Local approximation characteristics of En( f ; x)

In this section, we give some convergence results for the operator En, such as modulus of continuity,
Lipschitz class, Peetre’s K functional, and second-order continuity module. We also give estimates for
the approximation of our operator with the help of the Steklov function and the extended continuity
module for nondifferentiable functions.

Theorem 4.1. Let f ∈ C([0,∞)) and x ∈ [0,∞). The operators En provide

|En( f ; x) − f (x)| ≤ 2ω1

√
δn(x),

where δn(x) := En((e1 − e0x)2, x).

AIMS Mathematics Volume 9, Issue 10, 28195–28210.
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Proof. Utilizing the linearity characteristic of operators En and Lemma 3.1, we compose

|En( f ; x) − f (x)| ≤ n(e2 − e)e−nx
∞∑

k=0

ℓk(x; 2)
k!

∫ k+1
n

k
n

| f (t) − f (x)|dt. (4.1)

However, we give properties of the first modulus of continuity as below:

| f (t) − f (x)| ≤ ω1( f ; |t − x|), (4.2)

and
ω1( f ; mδ) ≤ (1 + m)ω1( f ; δ),m ≥ 0. (4.3)

With the help of (4.2) and (4.3), we obtain

| f (t) − f (x)| ≤ ω1( f ; |t − x|) ≤ (1 + δ−2(t − x)2)ω1( f ; δ). (4.4)

We should examine two cases here, respectively:
For |t − x| ≤ δ, (4.4) is evident.
For |t − x| ≥ δ, by taking into account the property (3.2), we have

(1 + m)ω1( f ; δ) ≤ (1 + m2)ω1( f ; δ), (4.5)

where m = δ−1(t − x) replaces in (4.5).
(4.3) also using (4.4), we have

|En( f ; x) − f (x)| ≤ n(e2 − e)e−nx
∞∑

k=0

ℓk(x; 2)
k!

∫ k+1
n

k
n

(1 + δ−2(t − x)2)ω1( f ; δ)dt

≤ (En(e0; x) + δ−2En((e1 − e0(x))2; x))ω1( f ; δ),

where δ > 0 and x ∈ [0, 1].
By applying Lemmas 3.1 and 3.2, we obtain

|En( f ; x) − f (x)| ≤ (1 + δ−2δn(x))ω1( f ; δ). (4.6)

If we choose δ =
√
δn, the intended outcome is attained. □

Theorem 4.2. Let f be in LipM(α). For x ≥ 0, here are

|En( f ; x) − f (x)| ≤ Mδ∗(x), (4.7)

where δ∗(x) :=
√
En((s − x)2, x).

Proof. By using En’s monotonicity properties, we may derive the following:

|En ( f ; x) − f (x)| ≤ MEn(|s − x|α ; x). (4.8)

From (4.8), one can be deduced by using the Hölder inequality.

|En ( f ; x) − f (x)| ≤ M(En((s − x)2; x))
α
2 . (4.9)

The proof of the theorem is therefore completed. □
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Theorem 4.3. The following statement is true for any f ∈ CB(0,∞) and x ∈ (0,∞):

|En ( f ; x) − f (x)| ≤ 2K( f ; λn(x)), (4.10)

where λn(x) = x
2n +

−5e2+7e+4
6n2(e−1)2 +

e−3
2n(e−1) .

Proof. Let h ∈ C2
B(0,∞). With the aid of Taylor’s expansion and the linearity property of En operators,

we can

En ( f ; x) − f (x) = f ′(x)Enn ((s − x); x) +
f ′(η)

2
En

(
(s − x)2; x

)
, η ∈ (x, s). (4.11)

Lemma 3.2 allows us to have

|En ( f ; x) − f (x)| ≤
(

x
2n
+

(2n + 1)(1 − e) + (−1 + 5e − 2e2

2n2(e + 1)

)
∥h∥C2

B(0,∞). (4.12)

Conversely, if we utilize Lemma 3.1 and formula (4.12), we acquire at

|En ( f ; x) − f (x)| ≤ |En ( f − h; x)| + |En (h; x) − h (x)| + | f (x) − h(x)| (4.13)

≤ 2∥ f − h∥CB(0,∞) + |En (h; x) − h (x)|

≤ 2(∥ f − h∥CB(0,∞) + λn(x)∥h∥C2
B(0,∞)).

Choosing the infimum on the right side of the equation above yields overall h ∈ C2
B(0,∞). This is the

desired outcome:
|En ( f ; x) − f (x)| ≤ 2K( f ; λn(x)). (4.14)

□

Theorem 4.4. Let f ∈ CB[0,∞). The following inequality is provided:

|En ( f ; x) − f (x)| ≤ 2K{ω2( f ;
√
δ) + min(1, δ)∥ f ∥CB(0,∞)}, (4.15)

where δ = 1
2λn(x) and K is a constant that doesn’t depend on f and δ.

Proof. Assume that g ∈ C2
B[0,∞). Using Theorem 4.3, we can compose

|En( f ; x) − f (x)| ≤ |En (( f − g); x)| + |En (g; x) − g (x)| + |g(x) − f (x)|
≤ 2∥ f − g∥CB(0,∞) + λn∥g∥C2

B(0,∞)

= 2
(
∥ f − g∥CB(0,∞) + λn∥g∥C2

B(0,∞)

)
.

Since the left side of the above inequality is independent on the function g ∈ C2
B[0,∞), we have

|En( f ; x) − f (x)| ≤ 2K(f ; δ),

where K(f ; δ) is Peetre’s K-functional defined by (2.11).
By using the relationship between the second modulus of smoothness and Peetre’s K-functional,

which is provided by (2.6)
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|En ( f ; x) − f (x)| ≤ 2K{ω2( f ;
√
δ) + min(1, δ)∥ f ∥CB(0,∞)}.

Thus, the proof is completed. □

We now use the second-order modulus of continuity to address the rate of convergence of the
operators En( f ; x) at the following theorem:

Theorem 4.5. Let f ∈ C[0, a]. The following equality is true:

|En ( f ; x) − f (x)| ≤
2
a

h2
n∥ f ∥∞ +

3
4

(h2
n + 2 + a)ω2( f ; hn), (4.16)

where hn =
(
En(e1 − e0x)2; x)

) 1
4 .

Proof. The Steklov function that corresponds to function f is denoted by fh. As En(1; x) = 1, we are
left with

|En ( f ; x) − f (x)| ≤ 2∥ f − fh∥∞ + |En ( f ; x) − fh(x)|. (4.17)

Starting with [32], we have

∥ f
′

h∥∞ ≤
2
a
∥ fh∥∞ +

a
2
∥ f
′′

h ∥∞,

and employing (2.8), we provide

∥ f
′

h∥∞ ≤
2
a
∥ fh∥∞ +

3a
4
ω2( f ; h)

h2

≤
2
a
∥ f ∥∞ +

3a
4
ω2( f ; h)

h2 . (4.18)

If we use (4.17) and (4.18) and assume that f ∈ C, we can observe that

|En ( fh; x) − fh(x)| ≤
√
En((e1 − e0x)2, x)∥ f

′

h∥∞ +
1
2
En((e1 − e0x)2, x)∥ f

′′

h ∥∞

≤

(
2
a
∥ fh∥∞ +

3a
4
ω2( f ; h)

h2

) √
En((e1 − e0x)2, x)

+
3a
4
ω2( f ; h)

h2 En((e1 − e0x)2, x)∥ f
′′

h ∥∞.

With h = hn =
(
En((e1 − e0x)2, x)

) 1
4 selected, it entails that

|En ( f ; x) − f (x)| ≤
2
a

h2
n∥ f ∥∞ +

3
4

(h2
n + 2 + a)ω2( f ; hn). (4.19)

The desired inequality is obtained, and the theorem’s proof is completed by writing the
inequalities (2.7) and (4.19) in (4.17). □
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Let f be a non-differentiable function. We obtain an estimate for f at the following theorem:
Theorem 4.6. Let f ∈ C([0, 1]). The inequality that follows is true:

|En ( f ; x) − f (x)| ≤
κn
√
λn
ω1( f ; δ) +

9
8
ωd

2( f ; δ).

Proof. By applying Theorem 2.3.7 for r = 2 in [15], we have

|En ( f ; x) − f (x)| ≤ δ−1|En((e1 − e0x); x)|ω1( f ; δ) +
[
1
8
En(1, x) + δ−2En((e1 − e0x)2; x)ωd

2( f ; δ)
]
. (4.20)

If the values of En(1, x), En((e1 − e0x); x), and En((e1 − e0x)2; x) are substituted in (4.18)

|En ( f ; x) − f (x)| ≤ δ−1κnω1( f ; δ) +
[
1
8
+ δ−2λn

]
ωd

2( f ; δ).

By choosing δ =
√
λn, we obtain the intended outcome. □

5. Numerical examples

We calculate the error estimate of the approximation speed of the operator for some special
functions such as trigonometric, rational, and exponential functions.

Example 5.1. We provide the approximation of En ( f ; x) to f (x) = sin(πx) and its numerical results
at Table 1:

Table 1. The error of approximation of the operators En ( f ; x) to f (x) = sin(πx) for n = 1...7.

n Estimation by ω( f , δ)
10 0.2450440082
102 0.03536477702
103 0.003644664930
104 0.0003655467420
105 0.00003656547490
106 0.000003656655494
107 0.0000003656666294

Example 5.2. We show the approximation of En ( f ; x) to f (x) = x
√

x2+1
and its numerical results at

Table 2:
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Table 2. The error of approximation of the operators En ( f ; x) to f (x) = x
√

x2+1
for n = 1...7.

n Estimation by ω( f , δ)
10 0.07813671190
102 0.01125736652
103 0.001160133326
104 0.0001163571424
105 0.00001163915215
106 0.000001163949594
107 0.0000001163953032

Example 5.3. We obtain the approximation of En ( f ; x) to f (x) = x2e−2x and its numerical results at
Table 3:

Table 3. The error of approximation of the operators En ( f ; x) to f (x) = x2e−2x for n = 1...7.

n Estimation by ω( f , δ)
10 0.01801480579
102 0.002595711044
103 0.0002675028378
104 0.00002682961434
105 0.000002683670778
106 0.0000002683779152
107 0.00000002687615848

Based on the results of the three examples above, we can say that the error of the approximation
speed decreases as the values of n increase. These results show that our operator can be used in applied
fields and engineering, etc. instead of trigonometric, rational, and exponential functions.

6. Discussion

These results show that a generalized Kantorovich type Szász operator is obtained by using
the generating functions of polynomials of Frobenius–Euler–Simsek-type. Considering that special
polynomials with generating functions have important applications in combinatorics, engineering, and
statistics, our findings show that generating functions can be presented as solutions to problems in
approximation theory. We have shown the uniform convergence of the operator we have defined with
the help of the Korovkin–Bohman theorem. We have also presented the convergence properties of
the operator with approximation tools such as the continuity module, Lipschtz class, and Peetre’s K
functional, second-order continuity module. In doing so, we have used the moment and central moment
functions of the operator. We think that our operator can be an alternative to trigonometric, exponential,
etc. functions used in computational sciences with the help of the properties we have obtained.
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7. Conclusions

This paper investigates the convergence properties of Szász–Kantorovich type operators involving
the generating functions of Frobenius–Euler–Simsek-type polynomials. The moment and central
moment functions that will be used to determine the convergence properties of the obtained operator
are obtained. The basic approximation properties of the operator such as approximation speed and
approximation error estimation, are examined, and the results are given as theorems. Finally, for
trigonometric, rational, and exponential functions, we calculated the approximation error rate of the
operator to these special functions with the help of the Maple scientific computing program and
presented the results in tabular form.

In future works, the q analogue of Frobenius–Euler–Simsek-type polynomials can be defined,
positive linear operators can be constructed with the help of their generating functions, and the
convergence properties of these operators can be studied.
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