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of trigonometric identities. Furthermore, a group algebra isomorphism between C[D8] and C[Q8]
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1. Introduction

Given any finite group G and field F, denote as F[G] the group ring of G over F. When char F -

|G|, F[G] is semisimple by Maschke’s theorem. Then, by Wedderburn’s structure theorem, F[G] is
isomorphic to a direct sum of matrix algebras. The Wedderburn decomposition becomes a key tool for
studying group algebra problems [1–5]. For example, Macedo Ferreira et al. dealt with the Wedderburn
b-decomposition for alternative baric algebras [1]. Jespers et al. reduced the number of generators for
a subgroup of finite indexes in a certain kind of unit group U(Z[G]) by having a closer look at the
Wedderburn decomposition of Q[G] [3]. Olivieri et al. studied the automorphism group Aut(Q[G]) of
the rational group algebra Q[G] of a finite metacyclic group G by describing the simple components of
the Wedderburn decomposition of Q[G] [5].

As the main objects discussed throughout our paper, dihedral groups D2n describe 2-dimensional
objects that have rotational and reflective symmetry, such as regular polygons, and generalized
quaternion groups Q4m generalize the quaternion group Q8. In physics, the theory of rigid motion
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analysis and the practical problem of motion control are all related to quaternions, and many
applications in physics use the concept and extension of quaternions.

The Wedderburn decomposition of group algebras of these two families of groups has already
attracted much attention. For instance, Giraldo Vergara and Brochero Martı́nez gave an elementary
proof of the Wedderburn decomposition of rational quaternion and dihedral group algebras [6].
Giraldo Vergara used the classification of groups of order ≤ 32 and also computed the Wedderburn
decomposition of their rational group algebras in order to classify the rational group algebras of
dimension ≤ 32 [7]. Bakshi et al. calculated a complete set of primitive central idempotents and
the Wedderburn decomposition of the rational group algebra of a finite metabelian group [8]. Brochero
Martı́nez showed explicitly the primitive central idempotents of Fq[D2n] and an isomorphism between
the group algebra Fq[D2n] and its Wedderburn decomposition when every prime factor of n divides
q− 1 [9]. Gao and Yue focused on the algebraic structure of the generalized quaternion group algebras
Fq[Q4m] over finite field Fq [10].

Additionally, the study of primitive orthogonal idempotents of group algebras has ignited much
interest. For many classes of groups, such as nilpotent, monomial, and supersolvable groups,
a complete description of the idempotents of their group algebras was obtained by Berman (see
e.g., [11]). For example, Berman, in 1995, constructed the minimal central idempotents of the group
ring R(G, F) in terms of the central idempotents of R(H, F) when G is an abelian extension of a group
H. Furthermore, the complete system of minimal idempotents of R(G, F) was given in terms of such
a system for R(H, F) when G/H is cyclic [12]. After that, he characterized a complete system of
primitive orthogonal idempotents of F[G] for any solvable group G of class M1 by calculating linear
characters of its subgroups, where F is any field of characteristic prime to |G| containing a primitive
root of unity of |G| [13].

After nearly 40 years, a method somewhat different but closely related to Berman’s in calculating
primitive orthogonal idempotents of these group algebras was proposed. In 2004, Olivieri et al. gave
a character-free method to describe the primitive central idempotents of Q[G] when G is a monomial
group [14]. Later, an explicit and character-free construction of a complete set of primitive orthogonal
idempotents of Q[G] was provided in [15] for any finite nilpotent group G (see also [16] for the case
over finite fields) and in [17] for any finite strongly monomial group G such that there exists a complete
and non-redundant set of strong Shoda pairs with trivial twistings. See also [18, Chapter 13] for an
overall introduction to this topic.

In this paper, after calculating the primitive central idempotents of C[D2n] and C[Q4m] via
irreducible characters, we further consider their primitive decompositions of idempotents. Note that
dihedral groups D2n and generalized quaternion groups Q4m are not only supersolvable groups but also
strongly monomial groups. Their primitive decompositions of idempotents can certainly be obtained
using Berman’s method from [13]. Also, a complete set of primitive orthogonal idempotents for
any dihedral group can be constructed via strong Shoda pairs, though this is questionable for all
generalized quaternion groups [17, § 4]. In contrast, here, the computation of primitive decompositions
of idempotents mainly depends on matrix representations of groups and Wedderburn decompositions
of group algebras (Lemma 2.1). Such an approach is theoretically applicable to any semisimple
group algebra over an arbitrary field whenever a complete set of its non-equivalent irreducible matrix
representations have been obtained. In particular, it is directly available to examples of dihedral groups
and generalized quaternion groups.
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On the other hand, given two primitive decompositions of idempotents of two isomorphic group
algebras, it seems challenging to obtain a specific algebra isomorphism between them that makes the
two complete sets of primitive orthogonal idempotents correspond to each other. Here, we solve one
small but nontrivial case by establishing an explicit isomorphism between C[D8] and C[Q8], which
respects the list of primitive orthogonal idempotents we previously found. Indeed, there are plenty
of results for the group algebras of D8 and Q8. For example, Bagiński studied group algebras of
2-groups of maximal class over fields of characteristic 2, showing that F2[D8] and F2[Q8] are not
isomorphic as rings [19]. Coleman discussed group rings over the complex and real number fields and
over the ring of integers in [20], where it was demonstrated that C[Q8] � C[D8], but R[Q8] � R[D8]
and Z[Q8] � Z[D8]. As R is a field extension of Q, it also implies that Q[Q8] � Q[D8] . Tambara
and Yamagami pointed out that Q8 and D8 have the same representation ring, but non-isomorphic
representation categories as tensor categories [21].

Here is the layout of the paper. In Sections 2 and 3, the primitive central idempotents of dihedral
groups and generalized quaternion groups are calculated by their irreducible characters. Furthermore,
primitive decompositions of idempotents corresponding to their two-dimensional representations are
analyzed. In Section 4, two sets of general trigonometric identities reflecting the orthogonality
relations of irreducible characters of dihedral groups and generalized quaternion groups are given.
In Section 5, a group algebra isomorphism between C[Q8] and C[D8] is described, which also provides
a correspondence between their primitive orthogonal idempotents previously established.

2. A primitive decomposition of idempotents of C[D2n]

2.1. Conjugacy classes of D2n

Let D2n be the dihedral group of order 2n, i.e.,

D2n = {r, s | rn = s2 = 1, srs = r−1}.

When n is an odd number, namely n = 2m + 1, D2n has the following conjugacy classes:

[1] = {1}, [ri] = {r±i | 1 ≤ i ≤ m}, [s] = {s, rs, . . . , rn−1s}.

When n is an even number, namely n = 2m, D2n has the following conjugacy classes:

[1] = {1}, [rm] = {rm}, [ri] = {r±i | 1 ≤ i ≤ m−1}, [s] = {r2ks | 0 ≤ k ≤ m−1}, [rs] = {r2k+1s | 0 ≤ k ≤ m−1}.

2.2. Character table of D2n

(i) n = 2m + 1. We look at the one-dimensional representations first. Note that D2n/〈r〉 � 〈s〉,
which is abelian, hence the derived subgroup D′2n ⊆ 〈r〉. Clearly, s−1r−1sr = r2 ∈ D′2n, thus we have
D′2n ⊇ 〈r

2〉. Note that r2m = r−1 ∈ 〈r2〉, therefore 〈r2〉 = 〈r〉. Then, D′2n = 〈r〉. As a result, D2n has two
one-dimensional representations and D2n/〈r〉 � C2, where C2 is the cyclic group of order 2.

Next, we introduce these two-dimensional irreducible representations of D2n from its natural
geometric description [22, Part I, 5.3]. We can set up a rectangular coordinate system, where the origin
is the center of a regular n-sided polygon, and the angular bisector in the first and third quadrants is
one of the symmetry axes of the regular n-sided polygon. Since D2n is a permutation group of regular
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n-sided polygons, the matrices of r, s with respect to the standard basis can be given. Then, we have
the following natural representations:

ρk(r) =

cos 2kπ
n − sin 2kπ

n

sin 2kπ
n cos 2kπ

n

 , ρk(s) =

(
0 1
1 0

)
, 1 ≤ k ≤ m, (2.1)

which are m mutually non-equivalent two-dimensional irreducible representations of D2n. Thus, when

n is an odd number, we set θ =
2π
n

, and list the character table of D2n (Table 1):

Table 1. Irreducible characters of D2n (n = 2m + 1).

1 s r r2 r3 · · · rm−1 rm

(1) (n) (2) (2) (2) · · · (2) (2)
χ1 1 1 1 1 1 · · · 1 1
χ2 1 −1 1 1 1 · · · 1 1
χρ1 2 0 2 cos θ 2 cos 2θ 2 cos 3θ · · · 2 cos(m − 1)θ 2 cos mθ
...

...
...

...
...

...
...

...
...

χρm 2 0 2 cos mθ 2 cos 2mθ 2 cos 3mθ · · · 2 cos(m − 1)mθ 2 cos m2θ

(ii) n = 2m. Similarly, 〈r2〉 is a normal subgroup of D2n as sr2s−1 = r−2 ∈ 〈r2〉, and |D2n/〈r2〉| = 4,
then D2n/〈r2〉 is abelian, and thus D′2n ⊆ 〈r

2〉. Clearly, r2 = s−1r−1sr ∈ D′2n, we also have D′2n ⊇ 〈r
2〉, so

D′2n = 〈r2〉. As a result, D2n has four one-dimensional representations and D2n/〈r2〉 � C2 ×C2.
If n is an even number, we can also obtain m − 1 pairwise non-equivalent two-dimensional

irreducible representations of D2n:

ρk(r) =

cos 2kπ
n − sin 2kπ

n

sin 2kπ
n cos 2kπ

n

 , ρk(s) =

(
0 1
1 0

)
, 1 ≤ k ≤ m − 1. (2.2)

Thus, when n is an even number, we set θ =
2π
n

, and list the character table of D2n (Table 2):

Table 2. Irreducible characters of D2n (n = 2m).

1 s sr r r2 . . . rm−1 rm

(1) (m) (m) (2) (2) . . . (2) (1)
χ1 1 1 1 1 1 . . . 1 1
χ2 1 1 −1 −1 1 · · · (−1)m−1 (−1)m

χ3 1 −1 1 −1 1 · · · (−1)m−1 (−1)m

χ4 1 −1 −1 1 1 · · · 1 1
χρ1 2 0 0 2 cos θ 2 cos 2θ · · · 2 cos(m − 1)θ −2
...

...
...

...
...

...
...

...
...

χρm−1 2 0 0 2 cos(m − 1)θ 2 cos 2(m − 1)θ · · · 2 cos(m − 1)2θ 2(−1)m−1
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2.3. A primitive decomposition of idempotents

Theorem 2.1. (Wedderburn structure theorem). Let F be any field such that char F - |G|. Then

F[G]
ϕ
� Mn1(D1) ⊕ · · · ⊕ Mns(Ds)

as algebras, where Dk is a division F-algebra, and each matrix algebra Mnk(Dk) uniquely determines
an irreducible representation ρk of G up to equivalence, and nk is equal to its dimension over Dk for
k = 1, . . . , s.

According to Theorem 2.1, we obtain the following useful lemma.

Lemma 2.1. For any semisimple finite group algebra F[G], let eρk be the primitive central idempotent
of F[G] corresponding to ρk. The group homomorphism ρk : G → GL(nk,Dk) can be linearly extended
to the following algebra homomorphism

F[G]
ϕ
� Mn1(D1) ⊕ · · · ⊕ Mns(Ds)

pk
→ Mnk(Dk),

which is an isomorphism when restricted on F[G]eρk . In particular, the preimages of the matrix units
E11, . . . , Enk ,nk of Mnk(Dk) under this isomorphism provide a primitive decomposition of eρk in F[G].
Here, we denote pk the natural projection.

Also, it is well-known that all primitive central idempotents of the semisimple group algebra F[G]
of a finite group G can be obtained by its character table (see e.g., [23, Theorem 3.6.2]), namely

eχ =
1
|G|

∑
g∈G

χ(1)χ(g−1)g, ∀χ ∈ Irr(G). (2.3)

Applying Eq (2.3) to Tables 1 and 2 of dihedral group D2n, we immediately have

Proposition 2.1. Let D2n be the dihedral group of order 2n. The primitive central idempotents
corresponding to the one-dimensional irreducible representations of D2n are as follows.

(i) When n is an odd number, namely n = 2m + 1,

e1 =
1

4m + 2
(
2m+1∑
l=1

rl +

2m+1∑
l=1

rls),

e2 =
1

4m + 2
(
2m+1∑
l=1

rl −

2m+1∑
l=1

rls).

(ii) When n is an even number, namely n = 2m,

e1 =
1

4m
(

2m∑
l=1

rl +

2m∑
l=1

rls),

e2 =
1

4m
[1 +

2m∑
l=1

(−1)l · rls +

m−1∑
l=1

(−1)l · (rl + r−l) + (−1)m · rm],
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e3 =
1

4m
[1 +

2m∑
l=1

(−1)l+1 · rls +

m−1∑
l=1

(−1)l · (rl + r−l) + (−1)m · rm],

e4 =
1

4m
(

2m∑
l=1

rl −

2m∑
l=1

rls).

In order to obtain a primitive decomposition of idempotents of C[D2n], we mainly need to deal
with its primitive idempotents corresponding to two-dimensional irreducible representations.

Theorem 2.2. Let D2n be the dihedral group of order 2n. We have the following primitive
decomposition eρk = e′ρk

+ e′′ρk
of the primitive central idempotent eρk corresponding to the two-

dimensional irreducible representation (C2, ρk) of D2n defined in Eqs (2.1) and (2.2) for k =

1, . . . , b(n − 1)/2c.

(i) When n is an odd number, namely n = 2m + 1,

eρk =
2

2m + 1

2m+1∑
l=1

cos lkθ · rl,

e′ρk
=

1
2m + 1

(1 +

2m∑
l=1

cos lkθ · rl +

2m∑
l=1

sin lkθ · rls),

e′′ρk
=

1
2m + 1

(1 +

2m∑
l=1

cos lkθ · rl −

2m∑
l=1

sin lkθ · rls),

with θ =
2π
n

and 1 ≤ k ≤ m;

(ii) When n is an even number, namely n = 2m,

eρk =
1
m

2m∑
l=1

cos lkθ · rl,

e′ρk
=

1
2m

(1 +

2m−1∑
l=1

cos lkθ · rl +

2m−1∑
l=1

sin lkθ · rls),

e′′ρk
=

1
2m

(1 +

2m−1∑
l=1

cos lkθ · rl −

2m−1∑
l=1

sin lkθ · rls),

with θ =
2π
n

and 1 ≤ k ≤ m − 1.

Proof. Under the group homomorphism ρk : D2n → GL(2,C), k = 1, . . . , b(n − 1)/2c, we have

r 7→
cos 2kπ

n − sin 2kπ
n

sin 2kπ
n cos 2kπ

n

 , s 7→
(
0 1
1 0

)
, 1 7→

(
1 0
0 1

)
.

Therefore,

rs 7→
− sin 2kπ

n cos 2kπ
n

cos 2kπ
n sin 2kπ

n

 , cos
2kπ
n

s − rs 7→
(
sin 2kπ

n 0
0 − sin 2kπ

n

)
.
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Thus,

sin
2kπ
n

1 − (cos
2kπ
n

s − rs) 7→
(
0 0
0 2 sin 2kπ

n

)
,

sin
2kπ
n

1 + (cos
2kπ
n

s − rs) 7→
(
2 sin 2kπ

n 0
0 0

)
.

Clearly, 0 <
2kπ
n

< π, we have

1
2 sin 2kπ

n

(sin
2kπ
n

1 − cos
2kπ
n

s + rs) 7→
(
0 0
0 1

)
,

1
2 sin 2kπ

n

(sin
2kπ
n

1 + cos
2kπ
n

s − rs) 7→
(
1 0
0 0

)
.

By Lemma 2.1, we know that F[G]eρk � Mnk(F) as algebras, and thus

e′ρk
= eρk ·

1
2 sin 2kπ

n

(sin
2kπ
n

1 − cos
2kπ
n
· s + rs)

=
1
2

eρk · (1 − cot kθ · s + csc kθ · rs),

e′′ρk
=

1
2

eρk · (1 + cot kθ · s − csc kθ · rs).

We can verify that

eρk = e′ρk
+ e′′ρk

, e′ρk
· e′′ρk

= 0, e′ρk
· e′ρk

= e′ρk
, e′′ρk

· e′′ρk
= e′′ρk

.

(i) If n = 2m + 1, the primitive central idempotents eρk are given as follows by Eq (2.3) and the
character table of D2n:

eρk =
2

2m + 1

2m+1∑
l=1

cos lkθ · rl, 1 ≤ k ≤ m.

Thus,

e′ρk
=

1
2m + 1

(1 +

2m∑
l=1

cos lkθ · rl +

2m∑
l=1

sin lkθ · rls), 1 ≤ k ≤ m.

Similarly,

e′′ρk
=

1
2m + 1

(1 +

2m∑
l=1

cos lkθ · rl −

2m∑
l=1

sin lkθ · rls), 1 ≤ k ≤ m.

(ii) If n = 2m, the primitive central idempotents of D2n are given by

eρk =
1
m

2m∑
l=1

cos lkθ · rl, 1 ≤ k ≤ m − 1.
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Therefore,

e′ρk
=

1
2m

(1 +

2m−1∑
l=1

cos lkθ · rl +

2m−1∑
l=1

sin lkθ · rls), 1 ≤ k ≤ m − 1.

Similarly,

e′′ρk
=

1
2m

(1 +

2m−1∑
l=1

cos lkθ · rl −

2m−1∑
l=1

sin lkθ · rls), 1 ≤ k ≤ m − 1.

�

Example 2.1. Let D8 be a dihedral group with order 8. Then, m = 2, k = 1, n = 4, there is a primitive
decomposition of idempotents as follows.

eρ1 =
1
2

(1 − r2),

e′ρ1
=

1
4

(1 − r2 + rs − r3s),

e′′ρ1
=

1
4

(1 − r2 − rs + r3s).

3. A primitive decomposition of idempotents of C[Q4m]

3.1. Conjugacy classes of Q4m

Let Q4m be the generalized quaternion group of order 4m, i.e.,

Q4m = {a, b | a2m = 1, am = b2, b−1ab = a−1}.

Q4m has the following conjugacy classes:

[1] = {1}, [am] = {am}, [ar] = {a±r | 1 ≤ r ≤ m − 1}, [b] = {a2kb | 0 ≤ k ≤ m − 1}, [ab] = {a2k−1b | 0 ≤ k ≤ m − 1}.

3.2. Character table of Q4m

The derived subgroup Q′4m = 〈a2〉. Indeed, 〈a2〉 is a normal subgroup of Q4m, and |Q4m/〈a2〉| = 4,
hence Q4m/〈a2〉 is abelian and 〈a2〉 ⊇ Q′4m. Clearly, b−1a−1b = a, thus b−1a−1ba = a2 ∈ Q′4m, as
〈a2〉 ⊆ Q′4m.

As |Q4m/〈a2〉| = 4, Q4m/〈a2〉 � C4 or Q4m/〈a2〉 � C2 × C2, and Q4m has four irreducible one-
dimensional representations. Also, it has m − 1 mutually non-equivalent two-dimensional irreducible
representations [24, Exs. 17.6, 18.3, 23.5]. We recall these two-dimensional irreducible representations
of Q4m as follows.

Let ε B eπi/m ∈ C with i B
√
−1. For each k with 1 ≤ k ≤ m − 1, denote matrices

Ak =

(
εk 0
0 ε−k

)
, Bk =

(
0 1

(−1)k 0

)
,

which satisfy the following relations:

A2m
k = I, Am

k = B2
k , B−1

k AkBk = A−1
k .
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Hence, it follows that

ρk : Q4m → GL(2,C) (3.1)

defined by
a 7→ Ak, b 7→ Bk

is a group homomorphism, and we obtain a representation (C2, ρk) of Q4m.
(i) When m is an odd number, as 2 - m, we know that b2 = am < Q′4m, hence the order of b cannot

be 2. Then, b is of order 4, so Q4m/〈a2〉 � C4. We set ϑ =
π

m
, and list the character table of Q4m

(Table 3):

Table 3. Irreducible characters of Q4m (2 - m).

1 a a2 · · · am−1 am b ab
(1) (2) (2) · · · (2) (1) (m) (m)

χ1 1 1 1 . . . 1 1 1 1
χ2 1 1 1 · · · 1 1 −1 −1
χ3 1 −1 1 · · · (−1)m−1 −1 i −i
χ4 1 −1 1 · · · (−1)m−1 −1 −i i
χρ1 2 2 cosϑ 2 cos 2ϑ · · · 2 cos(m − 1)ϑ −2 0 0
...

...
...

...
...

...
...

...
...

χρm−1 2 2 cos(m − 1)ϑ 2 cos 2(m − 1)ϑ · · · 2 cos(m − 1)2ϑ 2(−1)m−1 0 0

(ii) When m is an even number, as 2 |m, we have b2 = am ∈ Q′4m. Therefore, Q4m/〈a2〉 � C2 × C2.

We set ϑ =
π

m
, and list the character table of Q4m (Table 4):

Table 4. Irreducible characters of Q4m (2 |m).

1 a a2 · · · am−1 am b ab
(1) (2) (2) · · · (2) (1) (m) (m)

χ1 1 1 1 · · · 1 1 1 1
χ2 1 1 1 · · · 1 1 −1 −1
χ3 1 −1 1 · · · (−1)m−1 1 1 −1
χ4 1 −1 1 · · · (−1)m−1 1 −1 1
χρ1 2 2 cosϑ 2 cos 2ϑ · · · 2 cos(m − 1)ϑ −2 0 0
...

...
...

...
...

...
...

...
...

χρm−1 2 2 cos(m − 1)ϑ 2 cos 2(m − 1)ϑ · · · 2 cos(m − 1)2ϑ 2(−1)m−1 0 0

3.3. A primitive decomposition of idempotents

First applying Eq (2.3) to Tables 3 and 4 of generalized quaternion group Q4m, we have

Proposition 3.1. Let Q4m be the generalized quaternion group of order 4m. The primitive central
idempotents corresponding to the one-dimensional irreducible representations of Q4m are as follows.
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(i) When m is an odd number,

e1 =
1

4m
(

2m∑
l=1

al +

2m∑
l=1

alb),

e2 =
1

4m
(

2m∑
l=1

al −

2m∑
l=1

alb),

e3 =
1

4m
[1 + i

2m∑
l=1

(−1)l · alb +

m−1∑
l=1

(−1)l · (al + a−l) − am],

e4 =
1

4m
[1 + i

2m∑
l=1

(−1)l+1 · alb +

m−1∑
l=1

(−1)l · (al + a−l) − am].

(ii) When m is an even number,

e1 =
1

4m
(

2m∑
l=1

al +

2m∑
l=1

alb),

e2 =
1

4m
(

2m∑
l=1

al −

2m∑
l=1

alb),

e3 =
1

4m
[1 +

2m∑
l=1

(−1)l · alb +

m−1∑
l=1

(−1)l · (al + a−l) + am],

e4 =
1

4m
[1 +

2m∑
l=1

(−1)l+1 · alb +

m−1∑
l=1

(−1)l · (al + a−l) + am].

For other primitive idempotents corresponding to two-dimensional irreducible representations of
Q4m, we have

Theorem 3.1. Let Q4m be the generalized quaternion group of order 4m. Then, we have the following
primitive decomposition eρk = e′ρk

+ e′′ρk
of the primitive central idempotent eρk corresponding to the

two-dimensional irreducible representation (C2, ρk) of Q4m defined in Eq (3.1) for k = 1, . . . ,m − 1.

(i) When k is an odd number,

eρk =
1
m

2m∑
l=1

cos lkϑ · al,

e′ρk
= −

1
2mi sin kϑ

2m∑
l=1

(εkam+l − am+l−1) cos lkϑ,

e′′ρk
= −

1
2mi sin kϑ

2m∑
l=1

(am+l−1 − ε−kam+l) cos lkϑ,

with ϑ =
π

m
and 1 ≤ k ≤ m − 1;
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(ii) When k is an even number,

eρk =
1
m

2m∑
l=1

cos lkϑ · al,

e′ρk
=

1
2mi sin kϑ

2m∑
l=1

(εkam+l − am+l−1) cos lkϑ,

e′′ρk
=

1
2mi sin kϑ

2m∑
l=1

(am+l−1 − ε−kam+l) cos lkϑ,

with ϑ =
π

m
and 1 ≤ k ≤ m − 1.

Proof. (i) When k is an odd number, under the group homomorphism ρk : Q4m → GL(2,C), we have

a 7→
(
εk 0
0 ε−k

)
, b 7→

(
0 1
−1 0

)
.

Then,

ab 7→
(

0 εk

−ε−k 0

)
, εkb 7→

(
0 εk

−εk 0

)
, ε−kb 7→

(
0 ε−k

−ε−k 0

)
.

Therefore,

εkb − ab 7→
(

0 0
ε−k − εk 0

)
, ε−kb − ab 7→

(
0 ε−k − εk

0 0

)
.

As ε−k − εk , 0, it implies that

1
ε−k − εk (εkb − ab) 7→

(
0 0
1 0

)
,

1
ε−k − εk (ε−kb − ab) 7→

(
0 1
0 0

)
.

As a result, we have

b
ε−k − εk (εkb − ab) 7→

(
0 0
0 1

)
,

−
b

ε−k − εk (ε−kb − ab) 7→
(
1 0
0 0

)
.

Now, one can compute the primitive central idempotents eρk via the character table, and then get their
desired primitive decompositions by the similar argument as in the proof of Theorem 2.2.

(ii) When k is an even number, by similar arguments as in the case when k is an odd number. �

Example 3.1. Let Q8 be a generalized quaternion group of order 8, then k = 1, m = 2. Therefore,

eρ1 =
1
2

(1 − a2),

e′ρ1
= −

1
4i

(a3 + i · a2 − a − i · 1),

e′′ρ1
= −

1
4i

(−a3 + i · a2 + a − i · 1).
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4. Trigonometric identities

Here, we find the following two sets of trigonometric identities covering the orthogonality
relations in the character tables of dihedral groups and generalized quaternion groups.

Proposition 4.1. For any n ≥ 1 and 1 ≤ k ≤ n − 1, and any angle θ that is not an integer multiple of
2π, we have

(i)
n−1∑
r=0

(−1)r cos
rkπ
n

=

1, n + k odd,

0, n + k even;

(ii)
n∑

r=1

cos rθ =
sin( θ2 + nθ)

2 sin θ
2

−
1
2

.

Proof. (i) Note that

cos(
rkπ
n
±

kπ
2n

) = cos
rkπ
n

cos
kπ
2n
∓ sin

rkπ
n

sin
kπ
2n

imply the following product-to-sum identity

cos
rkπ
n

cos
kπ
2n

=
1
2

[cos
(2r + 1)kπ

2n
+ cos

(2r − 1)kπ
2n

].

As a result, we have

n−1∑
r=0

(−1)r cos
rkπ
n

cos
kπ
2n

= cos
kπ
2n

+

n−1∑
r=1

(−1)r ·
1
2

[cos
(2r + 1)kπ

2n
+ cos

(2r − 1)kπ
2n

]

= cos
kπ
2n

+
1
2

n−1∑
r=1

(−1)r cos
(2r + 1)kπ

2n
+

1
2

n−2∑
r=0

(−1)r+1 cos
(2r + 1)kπ

2n

= cos
kπ
2n

+
1
2

(−1)n−1 cos
(2n − 1)kπ

2n
−

1
2

cos
kπ
2n

=
1
2

cos
kπ
2n

+
1
2

(−1)n−1 cos(kπ −
kπ
2n

)

=
1
2

[1 + (−1)n+k−1] cos
kπ
2n
.

Since cos
kπ
2n

, 0 for any 1 ≤ k ≤ n − 1, we see that

n−1∑
r=0

(−1)r cos
rkπ
n

=
1
2

[1 + (−1)n+k−1] =

1, n + k odd,
0, n + k even.

(ii) Similarly by product-to-sum identities, we see that

2 sin
θ

2

n∑
r=1

cos rθ = 2 sin
θ

2
cos θ + · · · + 2 sin

θ

2
cos nθ

= sin
3θ
2
− sin

θ

2
+ · · · + sin(nθ +

θ

2
) − sin(nθ −

θ

2
)
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= sin(nθ +
θ

2
) − sin

θ

2
.

Since θ is not an integer multiple of 2π, we obtain that

n∑
r=1

cos rθ =
sin( θ2 + nθ)

2 sin θ
2

−
1
2
.

�

Next, we clarify how these identities are connected to the character tables of dihedral groups and
generalized quaternion groups.

Example 4.1. Using the first orthogonality relation in the character tables of D2n in Table 1 when

n = 2m + 1 and θ =
2π

2m + 1
, we have

〈χ1, χρk〉 =
1

4m + 2
[2 + 4

m∑
r=1

cos krθ] = 0, 1 ≤ k ≤ m.

The resulting identities
m∑

r=1

cos krθ = −
1
2
, 1 ≤ k ≤ m,

and the identities due to 〈χ1, χρk〉 = 0 in Table 2 are all special cases of Prop. 4.1 (ii). Additionally,

〈χρa , χρb〉 =
1

4m + 2
[4 + 8

m∑
r=1

cos arθ cos brθ] = 0, 1 ≤ a, b ≤ m, a , b.

That is,
m∑

r=1

cos arθ cos brθ = −
1
2
,

which can also be deduced by Prop. 4.1 (ii).

Example 4.2. Using the first orthogonality relation in the character tables of Q4m in Tables 3 and 4,
when m is an odd number,

〈χ3, χρk〉 =
1

4m
[2 + 4

m−1∑
r=1

(−1)r cos
krπ
m

+ 2(−1)k+1] = 0, 1 ≤ k ≤ m − 1.

When m is an even number,

〈χ3, χρk〉 =
1

4m
[2 + 4

m−1∑
r=1

(−1)r cos
krπ
m

+ 2(−1)k] = 0, 1 ≤ k ≤ m − 1.

That means
m−1∑
r=1

(−1)r cos
krπ
m

=

0, m + k odd,

−1, m + k even,
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equivalent to Prop 4.1 (i). The identities by 〈χ3, χρk〉 = 0 in Table 2 are the same. Also, we have

〈χρa , χρb〉 =
1

4m
[4 + 8

m−1∑
r=1

cos
arπ
m

cos
brπ
m

+ 4(−1)a+b] = 0, 1 ≤ a, b ≤ m − 1, a , b.

That is,
m−1∑
r=1

cos
arπ
m

cos
brπ
m

=

0, a + b odd,

−1, a + b even,

which can also be deduced by Prop. 4.1 (ii).

5. A group algebra isomorphism between C[Q8] and C[D8]

In this section, we would like to specifically describe a group algebra isomorphism between
C[Q8] and C[D8], offering a correspondence between two complete sets of their primitive orthogonal
idempotents given in Prop. 2.1, Theorem 2.2 and Prop. 3.1, Theorem 3.1.

Theorem 5.1. There is an algebra isomorphism

ψ : C[Q8]→ C[D8]

mapping any α = x0 · 1 + x1 · a2 + x2 · a + x3 · a3 + x4 · b + x5 · a2b + x6 · ab + x7 · a3b to

ψ(α) = x0 · 1 + x7 · r + x1 · r2 + x6 · r3 +
1
2

(x2 + x3 − ix4 + ix5) · s +
1
2

(−ix2 + ix3 + x4 + x5) · rs

+
1
2

(x2 + x3 + ix4 − ix5) · r2s +
1
2

(ix2 − ix3 + x4 + x5) · r3s,

with i B
√
−1 and xi ∈ C.

Proof. We note that the generalized quaternion group Q4m and the dihedral group D2n have the same
character table when n = 2m and 2 |m. In particular, the smallest case Q8 and D8 have the same values
in the first column, and consequently C[Q8] � C[D8] as algebras by Lemma 2.1.

The primitive central idempotents corresponding to the two-dimensional irreducible
representations of C[Q8] and C[D8] are

1
2

(1 − a2),
1
2

(1 − r2).

Under any algebra isomorphism from C[Q8] to C[D8], we must have

1 7→ 1, a2 7→ r2.

On the other hand, by Prop. 3.1, all primitive central idempotents corresponding to the four one-
dimensional representations of C[Q8] are as follows:

e1 =
1
8

(1 + a2 + a + a3 + b + a2b + ab + a3b),
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e2 =
1
8

(1 + a2 + a + a3 − b − a2b − ab − a3b),

e3 =
1
8

(1 + a2 − a − a3 + b + a2b − ab − a3b),

e4 =
1
8

(1 + a2 − a − a3 − b − a2b + ab + a3b).

That is, 
e1

e2

e3

e4

 =
1
8


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




1 + a2

a + a3

b + a2b
ab + a3b

 .
By Prop. 2.1, all primitive central idempotents corresponding to the four one-dimensional
representations of C[D8] are as follows:

e1 =
1
8

(1 + r + r2 + r3 + s + rs + r2s + r3s),

e2 =
1
8

(1 − r + r2 − r3 + s − rs + r2s − r3s),

e3 =
1
8

(1 − r + r2 − r3 − s + rs − r2s + r3s),

e4 =
1
8

(1 + r + r2 + r3 − s − rs − r2s − r3s).

Namely, 
e1

e2

e3

e4

 =
1
8


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




1 + r2

s + r2s
rs + r3s
r + r3

 .
Therefore, we can assume that our desired algebra isomorphism ψ : C[Q8]→ C[D8] satisfies

ab + a3b 7→ r + r3,

a + a3 7→ s + r2s,

b + a2b 7→ rs + r3s.

Furthermore, since ψ(ξ1ξ2) = ψ(ξ1)ψ(ξ2) for any ξ1, ξ2 ∈ C[Q8], the map ψ also satisfies:

ψ(abab) = ψ(b2) = ψ(a2) = r2 = ψ(ab)2,

ψ(ab + a3b) = ψ(ab)(1 + r2) = r + r3 = r(1 + r2).

That is, ψ(ab)2 = r2,

ψ(ab) − r ∈ (1 − r2),
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as the principal ideal (1 − r2) is the annihilator of 1 + r2. Similarly,ψ(a)2 = r2,

ψ(a) − s ∈ (1 − r2),

ψ(b)2 = r2,

ψ(b) − rs ∈ (1 − r2).

Therefore, we can set 
ψ(ab) = r + (k1 · 1 + k2 · r + k3 · rs + k4 · s)(1 − r2),
ψ(a) = s + (k9 · 1 + k10 · r + k11 · rs + k12 · s)(1 − r2),
ψ(b) = rs + (k5 · 1 + k6 · r + k7 · rs + k8 · s)(1 − r2),

with k1, . . . , k12 ∈ C, and obtain the following system of equations,

k1k3 = 0, k1k4 = 0,
4k1k2 + 2k1 = 0,
2k2

1 + 2k2
3 + 2k2

4 − 2k2
2 − 2k2 = 0;

k5k6 = 0, k5k8 = 0,
4k5k7 + 2k5 = 0,
2k2

5 + 2k2
7 + 2k2

8 − 2k2
6 + 1 + 2k7 = 0;

k9k10 = 0, k9k11 = 0,
4k9k12 + 2k9 = 0,
2k2

9 + 2k2
11 + 2k2

12 − 2k2
10 + 1 + 2x12 = 0.

Note that there is more than one solution for this system of equations, and any one of these solutions
must also satisfy: 

ψ(a)ψ(b) = ψ(ab),
ψ(b)ψ(ab) = ψ(a),
ψ(ab)ψ(a) = ψ(b).

However, these three additional equalities fail to hold simultaneously for any solution in which k1, k5,
and k9 are not all zero. Instead, we find the solution below satisfying all these equations:

k1 = k3 = k4 = 0, k2 = −1, k5 = k6 = 0,

k7 = −
1
2
, k8 = −

i
2
, k9 = k10 = 0, k11 = −

i
2
, k12 = −

1
2
.

That is,

ab 7→ r3,

a 7→
1
2

(r2s + s − i · rs + i · r3s),

b 7→
1
2

(rs + r3s − i · s + i · r2s).
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Then

a3b 7→ r,

a2b 7→
1
2

(rs + r3s + i · s − i · r2s),

a3 7→
1
2

(r2s + s + i · rs − i · r3s).

Now, we specifically verify that the stated linear map ψ : C[Q8] → C[D8] is an algebra isomorphism
as desired:

ψ(a)2 =
1
4

(r2s + s − irs + ir3s)2

=
1
4

(1 + r2 − ir + ir3 + r2 + 1 − ir3 + ir − ir3 − ir − 1 + r2 + ir + ir3 + r2 − 1)

= r2 = ψ(a2);

ψ(a)3 = ψ(a2)ψ(a) = r2 ·
1
2

(r2s + s − irs + ir3s) =
1
2

(r2s + s + irs − ir3s) = ψ(a3);

ψ(a)4 = ψ(a2)2 = (r2)2 = r4 = 1;

ψ(a)ψ(b) =
1
4

(r2s + s − irs + ir3s)(rs + r3s − is + ir2s)

=
1
4

(r + r3 − ir2 + i1 + r3 + r − i1 + ir2 − i1 − ir2 − r + r3 + ir2 + i1 + r3 − r)

= r3 = ψ(ab);

ψ(a)2ψ(b) = ψ(a2)ψ(b) = r2 ·
1
2

(rs + r3s − is + ir2s) =
1
2

(r3s + rs − ir2s + is) = ψ(a2b);

ψ(a)3ψ(b) = ψ(a2)ψ(ab) = r2 · r3 = r = ψ(a3b);

ψ(b)2 =
1
4

(rs + r3s − is + ir2s)2

=
1
4

(1 + r2 − ir + ir3 + r2 + 1 − ir3 + ir − ir3 − ir − 1 + r2 + ir + ir3 + r2 − 1)

= r2 = ψ(a2);

ψ(a)ψ(b)ψ(a) = ψ(ab)ψ(a) = r3 ·
1
2

(r2s + s − irs + ir3s) =
1
2

(rs + r3s − is + ir2s) = ψ(b). �

According to Prop. 2.1, Theorem 2.2 and Prop. 3.1, Theorem 3.1, we have two complete sets of
primitive orthogonal idempotents of C[Q8] and C[D8], respectively. There are primitive idempotents
e1, . . . , e4 corresponding to one-dimensional irreducible representations of Q8, and Example 3.1
has calculated the primitive decomposition of idempotents that is given by ρ1 for the unique two-
dimensional irreducible representation of Q8 up to equivalence.

eρ1 =
1
2

(1 − a2) = e′ρ1
+ e′′ρ1

,

e′ρ1
= −

1
4i

(a3 + i · a2 − a − i · 1),

e′′ρ1
= −

1
4i

(−a3 + i · a2 + a − i · 1).
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There are primitive idempotents ē1, . . . , ē4 corresponding to one-dimensional irreducible
representations of D8, and we see by Example 2.1 that the unique two-dimensional irreducible
representation ρ1 of D8 up to equivalence provides

ēρ1 =
1
2

(1 − r2) = ē′ρ1
+ ē′′ρ1

,

ē′ρ1
=

1
4

(1 − r2 + rs − r3s),

ē′′ρ1
=

1
4

(1 − r2 − rs + r3s).

Here, we use bar notation to distinguish the complete set of primitive orthogonal idempotents of C[Q8]
from that of C[D8].

The proof of Theorem 5.1 has shown that ψ(ei) = ēi for 1 ≤ i ≤ 4. Now, we further check that

ψ(e′ρ1
) = ψ

(
−

1
4i

(a3 + i · a2 − a − i · 1)
)

=
1
4

(1 − r2 − rs + r3s) = ē′′ρ1
,

ψ(e′′ρ1
) = ψ

(
−

1
4i

(−a3 + i · a2 + a − i · 1)
)

=
1
4

(1 − r2 + rs − r3s) = ē′ρ1
.

Question. In general, we wonder how to find algebra isomorphisms between C[Q4m] and C[D2n] when
n = 2m and 2 |m, making a one-to-one correspondence between the two complete sets of their primitive
orthogonal idempotents given in this paper.

6. Conclusions

Overall, we obtain the formulas for the primitive decompositions of idempotents of the dihedral
group algebras C[D2n] and generalized quaternion group algebras C[Q4m]. Then we present two sets of
trigonometric identities by the orthogonality relations of the character tables of these two families of
groups. Additionally, we explicitly describe a group algebra isomorphism between C[D8] and C[Q8].
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