
AIMS Mathematics, 9(10): 28100–28129.

DOI: 10.3934/math.20241363

Received: 07 August 2024

Revised: 05 September 2024

Accepted: 18 September 2024

Published: 27 September 2024

https://www.aimspress.com/journal/Math

Research article

Modeling of 3 SAT discrete Hopfield neural network optimization

using genetic algorithm optimized K-modes clustering

Xiaojun Xie1,2, Saratha Sathasivam2,* and Hong Ma2,3

1 School of General Education, Guangzhou College of Technology and Business, 510850,

Guangzhou, China
2 School of Mathematical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia
3 School of Financial Mathematics and Statistics, Guangdong University of Finance, 510521,

Guangzhou, China

* Correspondence: Email: saratha@usm.my; Tel: +6046532428.

Abstract: The discrete Hopfield neural network 3-satisfiability (DHNN-3SAT) model represents an

innovative application of deep learning techniques to the Boolean SAT problem. Existing research

indicated that the DHNN-3SAT model demonstrated significant advantages in handling 3SAT

problem instances of varying scales and complexities. Compared to traditional heuristic algorithms,

this model converged to local minima more rapidly and exhibited enhanced exploration capabilities

within the global search space. However, the model faced several challenges and limitations. As

constraints in SAT problems dynamically increased, decreased, or changed, and as problem scales

expanded, the model's computational complexity and storage requirements may increase dramatically,

leading to reduced performance in handling large-scale SAT problems. To address these challenges,

this paper first introduced a method for designing network synaptic weights based on fundamental

logical clauses. This method effectively utilized the synaptic weight information from the original

SAT problem within the DHNN network, thereby significantly reducing redundant computations.

Concrete examples illustrated the design process of network synaptic weights when constraints were

added, removed, or updated, offering new approaches for managing the evolving constraints in SAT

problems. Subsequently, the paper presented a DHNN-3SAT model optimized by genetic algorithms

combined with K-modes clustering. This model employed genetic algorithm-optimized K-modes

clustering to effectively cluster the initial space, significantly reducing the search space. This

approach minimized the likelihood of redundant searches and reduced the risk of getting trapped in

local minima, thus improving search efficiency. Experimental tests on benchmark datasets showed

that the proposed model outperformed traditional DHNN-3SAT models, DHNN-3SAT models

28101

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

combined with genetic algorithms, and DHNN-3SAT models combined with imperialist competitive

algorithms across four evaluation metrics. This study not only broadened the application of DHNN

in solving 3SAT problems but also provided valuable insights and guidance for future research.

Keywords: discrete Hopfield neural network; 3SAT; genetic algorithm; K-modes clustering

Mathematics Subject Classification: 03B52, 68T27, 68N17, 68W99

1. Introduction

The Boolean satisfiability (SAT) problem is a classical issue in computational complexity theory

and has been a significant research subject in computer science and artificial intelligence since the

1970s [1]. In 1971, S. A. Cook [2] proved that the SAT problem is the world's first NP-complete

problem, meaning any NP problem can be reduced to the SAT problem for a polynomial-time solution.

The SAT problem serves as a benchmark for the difficulty of a category of problems known as the core

of NP-complete problems. It plays a crucial role in various areas of computer science, including

theoretical computer science, complexity theory, cryptosystems, and artificial intelligence [3–6]. With

the advancements in computer hardware performance and algorithm design, traditional SAT solvers

have become effective in many practical applications [7–10]. However, as problems grow in size and

complexity, traditional methods often face challenges such as inefficiency and high consumption of

computational resources. This has prompted researchers to explore new solution methods and

techniques. Among these, the discrete Hopfield neural network (DHNN) [11], a classical neural

network model, has shown significant potential and effectiveness in solving combinatorial

optimization problems since its inception. Hopfield [11] demonstrated the stability of network

dynamics, highlighting that the evolution of network states is essentially a process of energy

minimization. When the association weights are symmetric, the system reaches a stable state. This

stable equilibrium point aligns with the correct storage state, providing a clear physical explanation for

associative memory. The network, by emphasizing the collective function of neurons from a systems

perspective, offers preliminary insights into the nature of associative memory. Due to its robust

memory capabilities and parallel processing power, the DHNN is particularly effective in addressing

combinatorial optimization problems such as SAT [12–14].

In the study of SAT problems, the 3-satisfiability (3SAT) logic has received significant attention

from researchers because higher-order Boolean SAT can be converted or reduced to the 3SAT form [15].

In the 3SAT problem, each clause contains three literals, making it more complex and closer to

practical logic constraint problems. To address the 3SAT problem, researchers have mapped the

variables and clauses of a Boolean formula into the neurons and energy functions of a discrete

Hopfield network. In this network, each variable and clause is encoded as a neuron's state and

connection weights [16–18]. A satisfying solution to the Boolean formula is then found by adjusting

the neuron states to minimize the energy function. This method of solving the 3-SAT problem

implemented in a DHNN is referred to as the DHNN-3SAT model. The DHNN-3SAT model has

garnered extensive attention and research interest due to its significant improvement in solving

ability and effectiveness on 3SAT problems [19,20]. Early research efforts focused on basic discrete

Hopfield network structures, utilizing simple connection weights and update rules. As research

progressed, scholars proposed various improvement and optimization strategies to enhance the

network's performance and efficiency. In 1992, Wan Abdullah successfully integrated special logic

28102

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

programming as symbolic rules into a DHNN [21], and in 2011, Sathasivam and Abdullah extended

this approach and formally named it the Wan Abdullah method (WA method) [22]. In 2014,

Sathasivam et al. embedded higher-order SAT into DHNN [23]. Kasihmuddin et al. [24] applied

k-satisfiability planning in DHNN. In 2017, Mansor et al. [25] demonstrated the hybrid use of the

DHNN artificial immune system for the 3-SAT problem. Subsequently, Kasihmuddin et al. [26]

proposed a genetic algorithm for k-satisfiability logic programming based on DHNN. In 2021,

Mansor and Sathasivam [12] proposed a DHNN-3SAT optimal performance index. In 2023, Azizan

and Sathasivam [27] proposed a DHNN model with a 3SAT fuzzy logic model of DHNN. However,

as researchers delved deeper into the DHNN-SAT model, they found that its computational

efficiency is not optimal for large-scale problems due to the inherent limitations of the DHNN, with a

tendency to fall into local minima. To address these issues, researchers have been working to

integrate heuristic algorithms into the optimization process [28–31] to enhance the accuracy of the

DHNN-SAT model. Currently, these research methods are achieving high global minimum ratios in

DHNN-SAT models with fewer neurons. By adjusting the structure and parameters of the neural

network, researchers [32] have been exploring various model variations and optimization strategies

to further enhance the performance and generalizability of the model. These efforts not only offer a

new perspective and approach to understanding and solving SAT problems but also make significant

contributions and provide inspiration for the application of DHNNs in combinatorial optimization

and discrete problem-solving.

Although the DHNN-3SAT model has been successful in addressing certain problems, it still

has some challenges and limitations. First, the model's computational complexity and storage

requirements may increase significantly with the problem size, leading to performance issues when

dealing with large-scale SAT problems. Second, the model's training and optimization process may

be sensitive to parameter tuning and initialization, necessitating more experimental validation and

tuning. Third, it may take a longer time to reach a stable solution when dealing with complex

problems, which can impact its practical application in engineering and other fields. Lastly, in

real-life scenarios, the constraints of SAT problems often change over time, leading to the need for

network redesign and the generation of a large number of redundant computations with the increase,

decrease, and update of large-scale constraints, ultimately limiting the traditional DHNN-3SAT

model's performance.

To address the changing constraints of the SAT problem and the increasing size and complexity

of the network, this paper proposes a WA method based on basic logical clauses. This method utilizes

information about the synaptic weights of the original SAT problem in the DHNN, leading to

significant savings in repetitive calculations. In addition, to tackle the issue of increasing Boolean

variables and logical clauses leading to a rapidly expanding solution space and the traditional

DHNN-WA model being prone to oscillations and local minima, this paper introduces a DHNN

3SAT model, based on a genetic algorithm-optimized K-modes clustering. This approach uses the

genetic optimization K-modes clustering algorithm to cluster the initial space, reducing the retrieval

space and avoiding repeated searches, thus improving retrieval efficiency.

The paper is organized as follows: Section 2 introduces the knowledge related to the research,

including 3SAT and DHNN. Section 3 details the implementation and workflow for determining the

synaptic weights of the DHNN 3SAT model using the WA method. To address the issue of a large

number of redundant computations caused by the changing constraints of the 3SAT problem, the

basic logic clause-based WA (BLC-WA) method is proposed. Section 4 introduces the K-modes

clustering algorithm optimized by a genetic algorithm. Section 5 details the implementation steps and

development process of the DHNN 3SAT model based on genetic algorithm-optimized K-modes

28103

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

clustering. Section 6 presents an experimental comparative analysis of the DHNN-3SAT model

based on the genetic optimization K-modes clustering algorithm (DHNN-3SAT-GAKM) model

proposed in this paper, and the three models DHNN-3SAT-WA, the DHNN-3SAT-WA model by

using the Genetic Algorithm (DHNN-3SAT-GA), and the DHNN-3SAT-WA model by using

Competition Algorithm (DHNN-3SAT-ICA), which are comprehensively evaluated using four

evaluation metrics. Finally, Section 7 summarizes the work presented in this paper.

2. Theoretical background

2.1. Boolean 3SAT Logic

Definition 2.1. 3SAT is a satisfiability problem for a set of logical clauses consisting strictly of 3

literal variables. 3SAT problems can be expressed in 3 conjunctive normal forms (CNFs). Let the set

of Boolean variables be {𝑆1, 𝑆2, ⋯ , 𝑆𝑛} and the set of logical clauses be {𝐶1 , 𝐶2 , ⋯ , 𝐶𝑚}, then the

general form of a CNF 3SAT formula 𝑃 containing 𝑛 Boolean variables and 𝑚 logical clauses is

defined as:

𝑃 = ⋀ 𝐶𝑘
𝑚
𝑘=1 , (1)

where the clause 𝐶𝑘 consists of 3 literals connected by the classical operator or (∨): 𝐶𝑘 = 𝑍(𝑘,1) ∨

𝑍(𝑘,2) ∨ 𝑍(𝑘,3), and the state of the literals can be either a positive variable or the negation of a positive

variable, i.e., 𝑍(𝑘,𝑖) = 𝑆𝑗 or 𝑍(𝑘,𝑖) = ¬𝑆𝑗 ,1 ≤ 𝑘 ≤ 𝑚,1 ≤ 𝑖 ≤ 3,1 ≤ 𝑗 ≤ 𝑛. Each literal variable takes on

the binary discrete value {1, −1}, where 1 denotes true and −1 denotes false. Each clause in 3SAT

contains unique variables, meaning there is no repetition of the same variable (variable or negation of a

variable) in clause 𝐶𝑘 . Additionally, there are no repeated logical clauses within logical rules.

The problem denoted by 3SAT can be formally described as follows: Given a 3SAT formula, the

task is to determine if there is an assignment of Boolean variables that makes the entire formula true. In

particular, each clause in the formula must have at least one true literal for the whole formula to be true.

Instance. Suppose that for given a 3SAT problem, the conversion to the CNF 3SAT formula is:

𝑃 = (𝑆1 ∨ 𝑆2 ∨ 𝑆3) ∧ (¬𝑆1 ∨ 𝑆2 ∨ 𝑆3) ∧ (𝑆1 ∨ ¬𝑆2 ∨ 𝑆3) ∧ (𝑆1 ∨ 𝑆2 ∨ ¬𝑆3) ∧ (¬𝑆1 ∨ ¬𝑆2 ∨ 𝑆3) ∧ (¬𝑆1 ∨ 𝑆2 ∨

¬𝑆3) ∧ (𝑆1 ∨ ¬𝑆2 ∨ ¬𝑆3) ∧ (𝑆1 ∨ 𝑆2 ∨ 𝑆4). (2)

 In Eq (2), 𝑃 is satisfiable if there exists a set of values for the variable 𝑆1, 𝑆2 , 𝑆3, 𝑆4 such that

𝑃 = 1; otherwise, 𝑃 is unsatisfiable.

The problem regarding 3SAT is a fundamental issue in computational complexity theory. Its

NP-completeness and wide range of applications make it a crucial subject of research in both

theoretical and practical contexts. Through a thorough examination of the 3SAT problem, a better

understanding of computational complexity theory can be achieved, and effective tools and methods

for solving practical problems can be provided. This study contributes to the advancement of

computer science by exploring solution methods for 3SAT problems.

2.2. DHNN

Neural networks can be divided into two types based on the flow of information: Feed-forward

and feedback neural networks. The output of a feedforward neural network depends only on the

current input vector and weight matrix, independent of the network's previous input state. An

28104

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

example of this is the commonly used back propagation (BP) neural network. In 1982, physicist

professor J. J. Hopfield proposed [11] a single-layer feedback neural network, later called the

Hopfield neural network. This network is of two types: Continuous Hopfield neural network (CHNN)

and discrete Hopfield neural network (DHNN) [33,34]. DHNN has garnered significant attention due

to its concise network structure and powerful memory function. It holds potential practical value in

image recovery and optimization problems [35–37]. Figure 1 depicts the topology of a DHNN

network with 𝑛 neurons. Each neuron is functionally identical and interconnected in pairs. The

neurons are represented by the set 𝑂 = {𝑜1, 𝑜2, ⋯ , 𝑜𝑛}, and their corresponding states are denoted by

the vector 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), and the value of 𝑥𝑖 takes binary discrete values, typically {−1,1}
or {0,1}. The state of the network is described as 𝑋(𝑡) = (𝑥1(𝑡), 𝑥1(𝑡),⋯ , 𝑥𝑛(𝑡)) at time 𝑡, and

the DHNN is stimulated by an external input to start its evolution. The outputs of localized lots are

generated before the final state. The output of the local lot of the double link is:

ℎ𝑖(𝑡) = ∑ 𝑤𝑖𝑗𝑥𝑖(𝑡)𝑗 − 𝑤𝑖, (3)

where 𝑤𝑖 denotes a predefined threshold. The output of higher-order linked local lots is represented

by Eq (4) as proposed by Mansor et al [22].

ℎ𝑖(𝑡) = ⋯+ ∑ ∑ 𝑤𝑖𝑗𝑘𝑥𝑖(𝑡)𝑥𝑗(𝑡)𝑘𝑗 + ∑ 𝑤𝑖𝑗𝑥𝑖(𝑡)
𝑛
𝑗=1 − 𝑤𝑖. (4)

The output state of the neuron 𝑜𝑖 at the time 𝑡 + 1 is denoted as:

𝑥𝑖(𝑡 + 1) = 𝑠𝑔𝑛(ℎ𝑖(𝑡)) = {
1, ℎ𝑖(𝑡) ≥ 0,

−1, ℎ𝑖(𝑡) < 0,
 (5)

where "𝑠𝑔𝑛" denotes the sign function and 𝑤𝑖𝑗 denotes the connection weights of neuron 𝑜𝑖 and

neuron 𝑜𝑗, with the weights specified as follows.

𝑤𝑖𝑗 = {
𝑤𝑗𝑖 , 𝑖 ≠ 𝑗,

0, 𝑖 = 𝑗.
 (6)

In the network training phase, the Hebbian rule is usually used to calculate the weights 𝑤𝑖𝑗 as:

𝑤𝑖𝑗 = ∑ (2𝑥𝑖
𝑠 − 1)(2𝑥𝑗

𝑠 − 1)𝑚
𝑠=1 , (7)

where m denotes the number of samples to be memorized.

The DHNN is essentially a nonlinear dynamical system. The network starts evolving from an

initial state, and the DHNN is considered stable when its state no longer changes after a finite

number of iterations. In DHNN, stability is determined by introducing the Lyapunov function as the

energy function, which serves as an indicator of stability [38]. The system reaches stability when the

energy function reaches a minimum point of invariance. The energy function in DHNN is defined as:

𝐸(𝑋) = ⋯−
1

3
∑ ∑ ∑ 𝑤𝑖𝑗𝑘𝑘 𝑥𝑖𝑥𝑗𝑥𝑘𝑗𝑖 −

1

2
∑ ∑ 𝑤𝑖𝑗𝑗𝑖 𝑥𝑖𝑥𝑗 −∑ 𝑤𝑖𝑥𝑖𝑖 . (8)

In 1983, Cohen and S. Grossberg showed that DHNNs evolve with a decreasing energy function

and that a stable state of the network corresponds to a minimal value of the energy function.

Consequently, for each stable state, we can check whether this state represents a global minimum by

determining whether the energy function has reached a minimum [28]. If Eq (9) is satisfied, the

stable state is considered a global minimum; otherwise, it is a local minimum.

|𝐸(𝑋) − 𝐸𝑚𝑖𝑛| < 𝛿, (9)

28105

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

where 𝐸𝑚𝑖𝑛 denotes the minimum value of the energy function and 𝛿 is the user-defined

tolerance value.

Figure 1. DHNN topology.

3. Design of DHNN-3SAT model weights

In this section, we will start by determining the synaptic weights of the DHNN 3SAT model

using the WA method [21]. This method is a computational approach for deriving the synaptic

weights of a network by aligning the cost function with the DHNN energy function. Our study

acknowledges some challenges in this comparative method of deriving network synaptic weights,

particularly as the number of variables and logical clauses increase. Additionally, the addition,

deletion, and updating of logical clauses result in a large number of redundant computations. To

tackle these issues, this section will outline the cost function of the basic logical clauses and compute

the network synaptic weights by establishing the basic logical clauses of the CNF 3SAT formulae.

This approach will allow for a more adaptable implementation in computing the network synaptic

weights of the 3SAT when incorporated in a DHNN. The method is termed the BLC-WA method.

Furthermore, the detailed calculation process using the BLC-WA method will be demonstrated with

specific examples as logical clauses are added, deleted, and updated.

3.1. WA method

The WA method introduces a cost function based on propositional logic rules for the first time.

It derives the synaptic weights of the network by comparing the cost function with the DHNN energy

function, presenting a novel approach to using DHNN for solving the SAT problem. In this study, the

WA method is used to incorporate the 3SAT problem into the DHNN for computing the network

synaptic weights. The flowchart illustrating the implementation of the WA method is shown in Figure 2.

The specific steps are as follows:

Step 1. Given any 3SAT problem, transform it into a CNF 3SAT formula 𝑃. Suppose the formula 𝑃
contains 𝑛 Boolean variables and 𝑚 logical clauses.

Step 2. The 3SAT formula 𝑃 is embedded into the DHNN, and for each Boolean variable, a unique

neuron is specified. At moment 𝑡, the state of these neurons is denoted by {𝑆1
𝑡, 𝑆2

𝑡, ⋯ , 𝑆𝑛
𝑡}.

28106

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

Step 3. Applying De. Morgan's law to obtain ¬𝑃. When ¬𝑃 = 0, correspond to the consistency

interpretation of P; when ¬𝑃 =1, correspond to the fact that at least one clause of 𝑃 is not satisfied.

Step 4. Deriving the cost function 𝐸𝑃. When the literal variable in ¬𝑃 is represented by
1

2
(1 − 𝑆𝑖)

when it is ¬𝑆𝑖 and
1

2
(1 + 𝑆𝑖) when it is 𝑆𝑖, the logical clauses are internally connected by the

multiplication operation and between logical clauses by addition. This creates the cost function 𝐸𝑃.

The magnitude of 𝐸𝑃 corresponds to the degree to which all logical clauses are satisfied. When

𝐸𝑃 = 0 it represents a consistent interpretation of 𝑃. A larger value of 𝐸𝑃 represents a larger

number of unsatisfied logical clauses.

Step 5. Comparing the cost function 𝐸𝑃 with the energy function 𝐸(𝑋), the DHNN synaptic weight

matrix 𝑊 corresponding to the 3SAT formula P is obtained.

Figure 2. Design a flowchart of the real WA method.

3.2. WA method applied to 3SAT instance

In this section, we use the problem of Eq (2) in Section 2.1 as an example to illustrate the

process of computing synaptic weights in the DHNN using the WA method of embedding logical

clauses into the DHNN.

To determine whether Eq (2) is satisfiable, the negation of Eq (2) is applied to De Morgan's law,

which results in:

28107

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

¬𝑃 = (¬𝑆1 ∧ ¬𝑆2 ∧ ¬𝑆3) ∨ (𝑆1 ∧ ¬𝑆2 ∧ ¬𝑆3) ∨ (¬𝑆1 ∧ 𝑆2 ∧ ¬𝑆3) ∨ (¬𝑆1 ∧ ¬𝑆2 ∧ 𝑆3) ∨ (𝑆1 ∧ 𝑆2 ∧ ¬𝑆3) ∨
(𝑆1 ∧ ¬𝑆2 ∧ 𝑆3) ∨ (¬𝑆1 ∧ 𝑆2 ∧ 𝑆3) ∨ (¬𝑆1 ∧ ¬𝑆2 ∧ ¬𝑆4). (10)

Since seeking a consistent interpretation of the terms of Eq (2) is the same as finding the smallest

combination of inconsistent interpretations of Eq (10), the cost function can be defined as follows:

 𝐸𝑃 =
1

2
(1 − 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 − 𝑆3) +

1

2
(1 + 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 − 𝑆3) +

1

2
(1 − 𝑆1)

1

2
(1 + 𝑆2)

1

2
(1 − 𝑆3) +

1

2
(1 − 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 + 𝑆3) +

1

2
(1 + 𝑆1)

1

2
(1 + 𝑆2)

1

2
(1 − 𝑆3) +

1

2
(1 + 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 + 𝑆3) +

1

2
(1 − 𝑆1)

1

2
(1 + 𝑆2)

1

2
(1 + 𝑆3) +

1

2
(1 − 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 − 𝑆4)

= −
1

8
𝑆1𝑆2𝑆3 −

1

8
𝑆1𝑆2𝑆4 −

1

8
𝑆1𝑆3 +

1

8
𝑆1𝑆4 −

1

8
𝑆2𝑆3 +

1

8
𝑆2𝑆4 −

1

4
𝑆1 −

1

4
𝑆2 −

1

8
𝑆3 −

1

8
𝑆4 + 1 (11)

When the formula of Eq (2) provided The 3SAT formula is satisfied, the cost function 𝐸𝑃

reaches the minimum value of 0. At this point, the energy function for the corresponding DHNN

converges to the global minimum, causing both the cost function and energy function to reach their

minimum values. The network's synaptic weight matrix 𝑊𝑃, embedded in the DHNN by Eq (2), is

derived by comparing the cost function (11) with the energy function (8) using the WA method, and

the results are shown in Table 1.

Table 1. WA method for 3SAT.

Weights 𝑤123 𝑤124 𝑤134 𝑤234 𝑤12 𝑤13 𝑤14 𝑤23 𝑤24 𝑤34 𝑤1 𝑤2 𝑤3 𝑤4

𝑃
1

16

1

16
 0 0 0

1

8
 −

1

8

1

8
 −

1

8
 0

1

4

1

4

1

8

1

8

3.3. BLC-WA method

Definition 3.1. For any CNF formula containing n Boolean variables and m logical clauses, it can be

viewed as consisting of the following eight basic logical clauses:

𝐶1
𝑙 = (𝑆𝑖 ∨ 𝑆𝑗 ∨ 𝑆𝑘), 𝐶2

𝑙 = (¬𝑆𝑖 ∨ 𝑆𝑗 ∨ 𝑆𝑘),

𝐶3
𝑙 = (𝑆𝑖 ∨ ¬𝑆𝑗 ∨ 𝑆𝑘), 𝐶4

𝑙 = (𝑆𝑖 ∨ 𝑆𝑗 ∨ ¬𝑆𝑘),

𝐶5
𝑙 = (¬𝑆𝑖 ∨ ¬𝑆𝑗 ∨ 𝑆𝑘), 𝐶6

𝑙 = (¬𝑆𝑖 ∨ 𝑆𝑗 ∨ ¬𝑆𝑘),

𝐶7
𝑙 = (𝑆𝑖 ∨ ¬𝑆𝑗 ∨ ¬𝑆𝑘), 𝐶8

𝑙 = (¬𝑆𝑖 ∨ ¬𝑆𝑗 ∨ ¬𝑆𝑘), (12)

where 𝑙 denotes the index at which the basic logical clause is looked up.

Applying De Morgan's law to the eight basic logical clauses in Eq (12) yields the corresponding

negative basic logical clauses:

¬𝐶1
𝑙 = (¬𝑆𝑖 ∧ ¬𝑆𝑗 ∧ ¬𝑆𝑘), ¬𝐶2

𝑙 = (𝑆𝑖 ∧ ¬𝑆𝑗 ∧ ¬𝑆𝑘),

¬𝐶3
𝑙 = (¬𝑆𝑖 ∧ 𝑆𝑗 ∧ ¬𝑆𝑘), 𝐶4

𝑙 = (¬𝑆𝑖 ∧ ¬𝑆𝑗 ∧ 𝑆𝑘),

¬𝐶5
𝑙 = (𝑆𝑖 ∧ 𝑆𝑗 ∧ ¬𝑆𝑘), ¬𝐶6

𝑙 = (𝑆𝑖 ∧ ¬𝑆𝑗 ∧ 𝑆𝑘),

28108

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

¬𝐶7
𝑙 = (¬𝑆𝑖 ∧ 𝑆𝑗 ∧ 𝑆𝑘), ¬𝐶8

𝑙 = (𝑆𝑖 ∧ 𝑆𝑗 ∧ 𝑆𝑘). (13)

The consistency clause of each basic logic clause in seeking pair Eq (12) is equal to the

minimum of the inconsistency clause of the negated basic logic clause in seeking pair Eq (13). The

corresponding cost function for each basic logic clause is defined as follows:

𝐸𝐶1𝑙 =
1

2
(1 − 𝑆𝑖)

1

2
(1 − 𝑆𝑗)

1

2
(1 − 𝑆𝑘), 𝐸𝐶2𝑙 =

1

2
(1 + 𝑆𝑖)

1

2
(1 − 𝑆𝑗)

1

2
(1 − 𝑆𝑘),

𝐸𝐶3𝑙 =
1

2
(1 − 𝑆𝑖)

1

2
(1 + 𝑆𝑗)

1

2
(1 − 𝑆𝑘), 𝐸𝐶4𝑙 =

1

2
(1 − 𝑆𝑖)

1

2
(1 − 𝑆𝑗)

1

2
(1 + 𝑆𝑘),

𝐸𝐶5𝑙
=

1

2
(1 + 𝑆𝑖)

1

2
(1 + 𝑆𝑗)

1

2
(1 − 𝑆𝑘), 𝐸𝐶6𝑙 =

1

2
(1 + 𝑆𝑖)

1

2
(1 − 𝑆𝑗)

1

2
(1 + 𝑆𝑘),

𝐸𝐶7𝑙 =
1

2
(1 − 𝑆𝑖)

1

2
(1 + 𝑆𝑗)

1

2
(1 + 𝑆𝑘), 𝐸𝐶8𝑙 =

1

2
(1 + 𝑆𝑖)

1

2
(1 + 𝑆𝑗)

1

2
(1 + 𝑆𝑘). (14)

Each basic logic clause is embedded into a DHNN separately. When each basic logic clause is

satisfiable, the corresponding DHNN converges to the global minimum. At this point, the cost

function and the corresponding energy function of the basic logic clause reach their minimum values.

By comparing the cost function (14) of the basic logic clauses with the energy function (8), the basic

logic clause weight matrix of the 3SAT formula can be derived. This weight matrix is abbreviated as

3SAT-BLCWM, and the results are shown in Table 2.

Table 2. 3SAT-BLCWM.

Weights 𝐶1
𝑙 𝐶2

𝑙 𝐶3
𝑙 𝐶4

𝑙 𝐶5
𝑙 𝐶6

𝑙 𝐶7
𝑙 𝐶8

𝑙

𝑤𝑖 1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄
𝑤𝑗 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄

𝑤𝑘 1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄ −1 8⁄
𝑤𝑖𝑗 −1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄
𝑤𝑖𝑘 −1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄
𝑤𝑗𝑘 −1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄

𝑤𝑖𝑗𝑘 1 16⁄ −1 16⁄ −1 16⁄ −1 16⁄ 1 16⁄ 1 16⁄ 1 6⁄ −1 16⁄

Any 3SAT formula can be seen as made up of the basic logical clauses in Eq (12). Each logical

clause in the 3SAT formula corresponds to a basic logical clause. So, when the DHNN learns a new

logical clause, it only needs to identify the corresponding basic logical clauses, then refer to Table 2,

and combine and calculate the network weight values to derive the network synaptic weights after

adding a new logical clause. Figure 3 illustrates the flowchart of calculating network synaptic

weights using the BLC-WA method. The specific steps for calculating network synaptic weights

using the BLC-WA method are as follows:

Step 1. Given any 3SAT problem, transform it into CNF 3SAT formula 𝑃, which is assumed to

contain N Boolean variables and M logical clauses;

Step 2. The 3SAT-BLCWM was established using the WA method (Table 2);

Step 3. Analyze CNF 3SAT formula 𝑃 to map each logical clause to the basic logical clause;

Step 4. Based on Table 2 (3SAT-BLCWM), the weights corresponding to each logical clause of the

3SAT formula 𝑃 are found. These weights are then spelled out by columns into the indexed result

weight matrix 𝑊′;

Step 5 The weight matrix 𝑊 of formula 𝑃 for 3SAT is obtained by combining and summing the

28109

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

result weight matrices 𝑊′ by columns.

Figure 3. Flowchart of calculating connection weights based on the BLC-WA method.

Next, we compute the 3SAT instances of Section 2.1 using the BLC-WA method based on Eq (2)

which can be written in correspondence with the basic logical clause as:

𝑃 = 𝐶1
1 ∧ 𝐶2

1 ∧ 𝐶3
1 ∧ 𝐶4

1 ∧ 𝐶5
1 ∧ 𝐶6

1 ∧ 𝐶7
1 ∧ 𝐶1

2. (15)

According to Table 2 (3SAT-BLCWM), the network synaptic weights corresponding to each

logical clause of formula 𝑃 can be found by indexing the results of the weight matrix 𝑊′ using the

columns. The results are shown in Table 3. The network synaptic weight matrix 𝑊𝑃 for the 3SAT

formula 𝑃 can be obtained by merging and adding the indexing results according to the columns,

which are also shown in Table 3.

28110

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

Table 3. Calculation of synaptic weights of CNF 3SAT network based on BLC-WA method.

Weights 𝐶1
1 𝐶2

1 𝐶3
1 𝐶4

1 𝐶5
1 𝐶6

1 𝐶7
1 𝐶1

2 𝑃
𝑤1 1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ 1 4⁄
𝑤2 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ 1 4⁄
𝑤3 1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄ 0 1 8⁄
𝑤4 0 0 0 0 0 0 0 1 8⁄ 1 8⁄
𝑤12 −1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ 0
𝑤13 −1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ 0 1 8⁄
𝑤14 0 0 0 0 0 0 0 −1 8⁄ −1 8⁄
𝑤23 −1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ 0 1 8⁄
𝑤24 0 0 0 0 0 0 0 −1 8⁄ −1 8⁄
𝑤34 0 0 0 0 0 0 0 0 0
𝑤123 1 16⁄ −1 16⁄ −1 16⁄ −1 16⁄ 1 16⁄ 1 16⁄ 1 16⁄ 0 1 16⁄
𝑤124 0 0 0 0 0 0 0 1 16⁄ 1 16⁄
𝑤234 0 0 0 0 0 0 0 0 0

3.4. Design of weights for dynamic constraints for the 3SAT problem

In SAT problems, the constraints often change, with constraints increasing, decreasing, and

updating. The traditional DHNN-SAT method requires redesigning the weights of the SAT problem

and constructing a new DHNN when facing this type of problem, which does not utilize the original

SAT problem's information. As the original SAT problem's constraints increase, the corresponding

original CNF formulation also increases the logical clauses, leading to a large number of redundant

computations when dealing with large-scale logical clauses. This severely limits the effectiveness of

the traditional DHNN-SAT method in solving problems with large-scale increasing constraints. To

address this issue, this study proposes the BLC-WA method, a new design method for the SAT

problem with changing constraints. This method utilizes the synaptic weight information of the

original SAT problem in DHNN, saving a significant amount of repeated calculations. In the

following section, the network synaptic weight design method for SAT problems with increasing,

decreasing, and updating constraints will be introduced, providing a new approach for solving SAT

problems with constantly changing constraints.

3.4.1. Adding constraints

The addition of constraints to the original SAT problem is equivalent to adding logical clauses

to the CNF SAT formula.

There is a 3SAT problem that translates into the CNF 3SAT formula:

𝑃 = 𝐶1
𝑙1 ∧ 𝐶2

𝑙2 ∧ ⋯ ∧ 𝐶𝑚
𝑙𝑚 . (16)

When 𝑟 logical clauses are added, the original CNF 3SAT formula becomes:

𝑃𝑎𝑑𝑑 = 𝐶1
𝑙1 ∧ 𝐶2

𝑙2 ⋯∧ 𝐶𝑚
𝑙𝑚 ∧ 𝐶𝑚+1

𝑙𝑚+1 ∧ 𝐶𝑚+2
𝑙𝑚+2 ∧ ⋯∧ 𝐶𝑚+𝑟

𝑙𝑚+2. (17)

Figure 4 depicts the flowchart of the BLC-WA method for solving the original 3SAT problem

with additional constraints. This method is implemented as follows:

Step 1. Let the original CNF 3SAT formula 𝑃 become 𝑃𝑎𝑑𝑑 by adding 𝑟 logical clauses (Eq 14);

28111

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

Step 2. The basic logical clauses were mapped to the additional logical clauses, and the synaptic

weights of the additional logical clauses were determined based on Table 2 (3SAT-BLCWM);

Step 3. The synaptic weights of the CNF 3SAT formula 𝑃𝑎𝑑𝑑 after adding the 𝑟 logical clauses

were calculated using the following Eq (18).

𝑊𝑎𝑑𝑑=𝑊𝑃 + 𝑊𝑎𝑑𝑑(1) + 𝑊𝑎𝑑𝑑(2) + ⋯+ 𝑊𝑎𝑑𝑑(𝑟). (18)

The following is a concrete demonstration of the implementation process using the 3SAT

instance from Section 2.1.

Assuming that Eq (2) combines the logical clauses 𝐶2
2 = ¬𝑆1 ∨ 𝑆2 ∨ 𝑆4 and 𝐶3

2 = 𝑆1 ∨ ¬𝑆2 ∨ 𝑆4,

the new CNF formula at this point is notated as 𝑃add, specifically, as follows:

𝑃𝑎𝑑𝑑 = 𝐶1
1 ∧ 𝐶2

1 ∧ 𝐶3
1 ∧ 𝐶4

1 ∧ 𝐶5
1 ∧ 𝐶6

1 ∧ 𝐶7
1 ∧ 𝐶1

2 ∧ 𝐶2
2 ∧ 𝐶3

2 . (19)

In Section 3.3, the synaptic weights (𝑊𝑃) of the formula 𝑃 in the network have been obtained

using the BLC-WA method. Then, the synaptic weights of the newly added logical clauses (𝐶2
2 and

𝐶3
2) are obtained by searching for Table 2 (3SAT-BLCWM) and then combined and summed with the

synaptic weights (𝑊𝑃) of the formula 𝑃 to obtain the new synaptic weights (𝑊𝑎𝑑𝑑) of the CNF

formula 3SAT 𝑃𝑎𝑑𝑑. The calculation results are shown in Table 4.

Table 4. Synaptic weights after adding, subtracting, and updating logical clauses.

Weights 𝑃 𝐶2
2 𝐶3

2 𝑃add 𝐶2
1 𝐶3

1 𝑃𝑑𝑒𝑐 𝐶7
1 𝐶1

2 𝐶8
1 𝐶1

3 𝑃𝑢𝑝𝑑

𝑤1 1 4⁄ −1 8⁄ 1 8⁄ 1 4⁄ −1 8⁄ 1 8⁄ 1 4⁄ 1 8⁄ 1 8⁄ −1 8⁄ 0 −1 8⁄
𝑤2 1 4⁄ 1 8⁄ −1 8⁄ 1 4⁄ 1 8⁄ −1 8⁄ 1 4⁄ −1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ 1 4⁄
𝑤3 1 8⁄ 0 0 1 8⁄ 1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄ 0 −1 8⁄ 1 8⁄ 1 4⁄
𝑤4 1 8⁄ 1 8⁄ 1 8⁄ 3 8⁄ 0 0 1 8⁄ 0 1 8⁄ 0 1 8⁄ 1 8⁄
𝑤12 0 1 8⁄ 1 8⁄ 1 4⁄ 1 8⁄ 1 8⁄ −1 4⁄ 1 8⁄ −1 8⁄ −1 8⁄ 0 −1 8⁄
𝑤13 1 8⁄ 0 0 1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ 1 8⁄ 0 −1 8⁄ 0 −1 8⁄
𝑤14 −1 8⁄ −1 8⁄ 1 8⁄ −1 8⁄ 0 0 −1 8⁄ 0 −1 8⁄ 0 0 0
𝑤23 1 8⁄ 0 0 1 8⁄ 1 8⁄ −1 8⁄ 1 8⁄ 1 8⁄ 0 −1 8⁄ −1 8⁄ −1 4⁄
𝑤24 −1 8⁄ 1 8⁄ −1 8⁄ −1 8⁄ 0 0 −1 8⁄ 0 −1 8⁄ 0 −1 8⁄ −1 8⁄
𝑤34 0 0 0 0 0 0 0 0 0 0 −1 8⁄ −1 8⁄
𝑤123 1 16⁄ 0 0 1 16⁄ −1 16⁄ −1 16⁄ 3 16⁄ 1 16⁄ 0 −1 16⁄ 0 −1 16⁄
𝑤124 1 16⁄ −1 16⁄ −1 16⁄ −1 16⁄ 0 0 1 16⁄ 0 1 16⁄ 0 0 0
𝑤234 0 0 0 0 0 0 0 0 0 0 1 16⁄ 1 16⁄

3.4.2. Declining constraints

Setting the original CNF 3SAT formula (16) reduces d logical clauses, and the original CNF

3SAT formula becomes:

𝑃𝑑𝑒𝑐 = 𝐶1
𝑙1 ∧ 𝐶2

𝑙2 ∧ ⋯ ∧ 𝐶𝑚−𝑑
𝑙𝑚−𝑑 . (20)

The flowchart for solving the original 3SAT problem with reduced constraints based on the

BLC-WA method is also shown in Figure 4. It is implemented as follows:

Step 1. The original CNF 3SAT formula 𝑃 is reduced by 𝑑 logical clauses to 𝑃𝑑𝑒𝑐;

Step 2. The basic logical clauses were mapped to the reduced logical clauses, and the synaptic

weights of the reduced logical clauses were determined based on Table 2 (3SAT-BLCWM);

Step 3. The synaptic weights of the CNF 3SAT formula 𝑃𝑑𝑒𝑐 after declining the 𝑑 logical clauses

28112

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

were calculated using the following Eq (21).

𝑊𝑑𝑒𝑐 = 𝑊𝑃 − 𝑊𝑑𝑒𝑐(1) − 𝑊𝑑𝑒𝑐(2) − ⋯−𝑊𝑑𝑒𝑐(𝑑). (21)

Figure 4. Flowchart of synaptic weights design based on state constraints of BLC-WA method.

The following is a concrete demonstration of the implementation process using the 3SAT

instance from Section 2.1.

Assuming that Eq (2) reduces the logical clauses 𝐶2
1 = ¬𝑆1 ∨ 𝑆2 ∨ 𝑆3 and 𝐶3

1 = 𝑆1 ∨ ¬𝑆2 ∨ 𝑆3,

the new CNF formula at this point is notated as 𝑃𝑑𝑒𝑐, specifically, as follows:

𝑃𝑑𝑒𝑐 = 𝐶1
1 ∧ 𝐶4

1 ∧ 𝐶5
1 ∧ 𝐶6

1 ∧ 𝐶7
1 ∧ 𝐶1

2 . (22)

28113

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

To start, the synaptic weights for the reduced logical clauses 𝐶2
1 and 𝐶3

1 are determined by

searching for Table 2 (3SAT-BLCWM). Next, the synaptic weights 𝑊𝑃 of the original 3SAT

formula 𝑃 are subtracted from the synaptic weights of the reduced logical clauses. This process

yields the synaptic weights 𝑊𝑑𝑒𝑐 for the new CNF 3SAT formula 𝑃𝑑𝑒𝑐. The computational results

are also displayed in Table 4.

3.4.3. Updating constraints

When the original CNF formula (16) is updated with 𝑢 logical clauses, it can be regarded as a

reduction of 𝑢 logical clauses from the original formula and the addition of 𝑢 new logical clauses.

The updated CNF formula is:

𝑃𝑢𝑝𝑑 = 𝐶1
𝑙1 ∧ 𝐶2

𝑙2 ∧ ⋯ ∧ 𝐶𝑚−𝑢
𝑙𝑚−𝑢 ∧ 𝐶𝑚−𝑢+1

𝑙𝑚−𝑢+1
′

∧ 𝐶𝑚+2

𝑙𝑚−𝑢+2
′

∧ ⋯ ∧ 𝐶𝑚
𝑙𝑚
′

 (23)

The flowchart when updating the constraints based on the BLC-WA method is also shown in

Figure 4, which is implemented as follows:

Step 1. The original CNF 3SAT formula 𝑃 is updated by 𝑢 logical clauses to 𝑃𝑢𝑝𝑑 ;

Step 2. The basic logical clauses were mapped to the updated logical clauses, and the synaptic

weights of the updated logical clauses were determined based on Table 2 (3SAT-BLCWM);

Step 3. The synaptic weights of the CNF 3SAT formula 𝑃𝑢𝑝𝑑 after updating the 𝑢 logical clauses

were calculated using the following Eq (24).

𝑊𝑢𝑝𝑑 = 𝑊𝑃 − 𝑊𝑑𝑒𝑐(1) − 𝑊𝑑𝑒𝑐(2) − ⋯− 𝑊𝑑𝑒𝑐(𝑢) + 𝑊𝑎𝑑𝑑(1) + 𝑊𝑎𝑑𝑑(2) + ⋯+𝑊𝑎𝑑𝑑(𝑢). (24)

The following is a concrete demonstration of the implementation process using the 3SAT

instance from Section 2.1.

Suppose the logical clauses 𝐶7
1 = 𝑆1 ∨ ¬𝑆2 ∨ ¬𝑆3 and 𝐶1

2 = 𝑆1 ∨ 𝑆2 ∨ 𝑆4 in the original CNF

3SAT formula 𝑃 are updated to 𝐶8
1 = ¬𝑆1 ∨ ¬𝑆2 ∨ ¬𝑆3 and 𝐶1

3 = 𝑆2 ∨ 𝑆3 ∨ 𝑆4, and the updated CNF

3SAT formula is now denoted as 𝑃𝑢𝑝𝑑, specifically for:

𝑃𝑢𝑝𝑑 = 𝐶1
1 ∧ 𝐶2

1 ∧ 𝐶3
1 ∧ 𝐶4

1 ∧ 𝐶5
1 ∧ 𝐶6

1 ∧ 𝐶8
1 ∧ 𝐶1

3 . (25)

To begin, find the synaptic weights of logical clauses 𝐶7
1, 𝐶1

2, 𝐶8
1 and 𝐶1

3 by searching for

Table 2 (3SAT-BLCWM). Then, subtract the synaptic weights of logical clause 𝐶7
1, 𝐶1

2 from the

original SAT formula 𝑃. Finally, the synaptic weights of logical clause 𝐶8
1,𝐶1

3 are added to obtain the

network synaptic weights 𝑊𝑢𝑝𝑑 of the updated 3SAT formula 𝑃𝑢𝑝𝑑. The results of the computation

are also displayed in Table 4.

4. Optimized K-modes clustering algorithm

4.1. K-modes clustering algorithm

The K-modes clustering algorithm is a method specifically designed for handling discrete

data [39–42]. It extends the traditional K-means algorithm, which is mainly used for datasets with

continuous attributes. The K-modes algorithm uses the Hamming distance as a metric [43], where

this distance measures the number of differing attribute values between two sample points. In this

algorithm, the Hamming distance is computed by adding the number of different attribute values

28114

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

between two samples, representing the degree of difference for a given sample compared to a

clustering center. Finally, the samples are classified into the category that belongs to the clustering

center with the smallest degree of difference. We can see the clustering process of the K-modes

algorithm in Figure 5.

Figure 5. Clustering process of K-modes clustering algorithm.

Let 𝑋 = {𝑋1, 𝑋2, ⋯ , 𝑋𝑚} represent the set of samples to be clustered, and 𝑋𝑖 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)
represent the 𝑛-dimensional vector with each component taking discrete values. 𝑍 = {𝑍1, 𝑍2, ⋯ , 𝑍𝑘}
represents the clustering center and 𝑍𝑗 = (𝑧1, 𝑧2, ⋯ , 𝑧𝑛), 𝑗 = 1,2,⋯ , 𝑘. The objective function of the

K-modes clustering algorithm is defined as:

𝐹(𝛷, 𝑍)∑ ∑ 𝜙𝑖𝑗𝐷(𝑋𝑖, 𝑍𝑗)
𝑚
𝑖=1

𝑘
𝑗=1 , (26)

where 𝜙𝑖𝑗 ∈ {0,1}, ∑ 𝜙𝑖𝑗
𝑘
𝑗=1 = 1, 1 ≤ 𝑖 ≤ 𝑛, 𝛷 is the matrix of one, 𝑘 denotes the number of

clusters, 𝜙𝑖𝑗 = 1 if the ith object is classified in the 𝑗-th class, otherwise 𝜙𝑖𝑗 = 0. 𝑍𝑗 is the center

of the 𝑗-th class. 𝐷(𝑋𝑖, 𝑍𝑗) denotes the computation of the Hamming distance between 𝑋𝑖 and 𝑍𝑗:

 𝐷(𝑋𝑖, 𝑍𝑗) = ∑ 𝑑(𝑥𝑖, 𝑧𝑖),
𝑛
𝑖=1 (27)

where 𝑑(𝑥𝑖, 𝑧𝑖) = {
0, 𝑥𝑖 = 𝑧𝑖
1, 𝑥𝑖 ≠ 𝑧𝑖

.

The classification process must meet the following conditions: (1) every family must contain at

least one sample; (2) each sample must belong to one and only one class. The fundamental steps of

the K-modes clustering algorithm are as follows:

Step 1. Randomly identifying k clustering centers 𝑍1, 𝑍2, ⋯ , 𝑍𝑘.

Step 2. For each sample 𝑋𝑖(𝑖 = 1,2,⋯ ,𝑚) in the dataset, its Hamming distance from the 𝑘

clustering centers is calculated separately using Eq (27), and the sample 𝑋𝑖 is classified into the

category closest to the centroid.

Step 3. After dividing all the samples into clusters, the cluster center "𝑍𝑗" is recalculated, and each

center component is updated to its plural.

Step 4. Repeat the process of Steps 2 and 3 above until the objective function 𝐹 no longer changes.

28115

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

4.2. K-modes clustering algorithm optimized by genetic algorithm

To address the limitations of the K-modes clustering algorithm, which make it difficult to

determine the optimal number of clusters and easy to get stuck at a local optimum, researchers have

incorporated a genetic algorithm with adaptive global optimization search capabilities into the

K-modes clustering algorithm [44,45]. This involves using a fitness function to carry out genetic

operations, primarily mutation, to automatically learn the cluster centroids for the K-modes

algorithm. Figure 6. shows the workflow diagram of the K-modes clustering algorithm for genetic

optimization, which was developed in the following steps:

Step 1. Parameter initialization. Set relevant parameters: Initial cluster number 𝑘, population size m,

crossover probability 𝑝𝑐, variation probability 𝑝𝑚, maximum number of iterations 𝑡.

Step 2. Randomly generate the initial population. Randomly generate k initial clustering centers

𝑍1, 𝑍2, ⋯ , 𝑍𝑘 as initial population individuals.

Step 3. Take the population individual 𝑍1, 𝑍2, ⋯ , 𝑍𝑘 as the clustering center and use K-modes

clustering algorithm for clustering.

Step 4. Calculate the fitness value of individuals in the population. Here the fitness function is

defined as follows:

𝑓 =
𝐷𝑚𝑖𝑛

𝐷(𝑋)
, (28)

where 𝐷𝑚𝑖𝑛 is the minimum class spacing and 𝐷(𝑋) is the average class spacing which is defined

as follows:

𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛
𝑖,𝑗=1

𝐷(𝑍𝑖, 𝑍𝑗). (29)

𝐷(𝑋) =
1

𝑘
∑ ∑

𝐷(𝑋𝑖,𝑍𝑗)

𝑚𝑗
.

𝑚𝑗

𝑖=1
𝑘
𝑗=1 (30)

This fitness function is based on the idea that class separation should be maximized while

intra-class spacing should be minimized. In other words, the goal is to maximize the distance

between classes (𝐷𝑚𝑖𝑛) and minimize the variability within classes (𝐷(𝑋)). Throughout the

evolutionary process, the individual population size is represented by the k value. If the 𝑘 value is

less than the optimal number of clusters, increasing 𝑘 leads to a decrease in 𝐷𝑚𝑖𝑛 and 𝐷(𝑋), but

the clustering division is not optimal. The decrease in 𝐷(𝑋) is more significant than 𝐷𝑚𝑖𝑛, resulting

in an increase in the fitness function value. Conversely, if the k value exceeds the optimal number

of clusters, the change in 𝐷(𝑋) is not significant, and the intra-class spacing becomes very small

due to secondary clustering. As a result, 𝐷𝑚𝑖𝑛 becomes very small, leading to a decrease in the

overall fitness function value. Therefore, this fitness function can guide the 𝑘 value toward the

optimal number of clusters when the initial clustering center is optimized.

Step 5. Perform selection, crossover, and mutation operations to generate a new generation population.

Step 6. Repeat Step 3 to Step 5 until the maximum number of iterations is reached.

Step 7. Calculate the fitness value for each individual in the population and select the output with the

highest fitness value.

28116

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

Figure 6. Workflow diagram of K-modes clustering optimized by genetic algorithm.

5. Development of DHNN-3SAT model based on genetic optimization K-modes clustering algorithm

The conventional DHNN-3SAT-WA model uses an exhaustive search (ES) during the retrieval

phase [46], aiming to conduct a random search among individual candidate solutions to find a

consistent interpretation that satisfies the 3SAT terms. Some researchers have proposed optimizing

the traditional DHNN-3SAT-WA model by using heuristic algorithms such as the GA and ICA,

denoted as DHNN-3SAT-GA [26] and DHNN-3SAT-ICA [38]. These methods can expedite the

search for global or feasible solutions. However, unguided random initial assignment of candidate

solutions leads to numerous repeated invalid solutions and fails to converge, often falling into a local

optimum after DHNN evolution. Furthermore, as the number of Boolean variables and logical

clauses increases, the size and logical complexity of the network expands, resulting in a rapid growth

of the solution space. This makes the model susceptible to oscillations and more likely to land in

28117

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

local minima. Therefore, reducing the DHNN-3SAT-WA model’s search time and preventing it from

falling into local minima is a significant challenge in this field. The implementation process of the

traditional DHNN-3SAT-WA, DHNN-3SAT-GA, and DHNN-3SAT-ICA models is depicted in Figure 7.

This study proposes a new solution to address these challenges: the DHNN-3SAT model based

on the genetic optimization K-modes clustering algorithm referred to as DHNN-3SAT-GAKM. In

this model, candidate solutions in the allocation space are clustered using the K-modes clustering

algorithm, leading to initial allocation through a random search from each class. By reducing

repeated initial candidate solutions and avoiding local optima to some extent, this process accelerates

the search for the global minimum, improving the efficiency of global minimum retrieval. To

determine the optimal number of clusters for the K-modes clustering algorithm, the genetic algorithm

with adaptive global optimization search capability is introduced. The number of clusters is

determined by calculating the value of the constructed fitness function, further enhancing global

search capability.

The DHNN-3SAT-GAKM model aims to find a consistent set of Boolean variable values for the

3SAT problem. During the model's initialization phase, each neuron in the DHNN is connected to a

specific Boolean variable in the CNF, and the connection weights represent the relationship between

the variable and the clause. A WA method using basic logical clauses will be employed to determine

the cost during the learning phase. In the retrieval phase, the DHNN is utilized to evolve, update, and

iterate until the network reaches a stable equilibrium state, signified by a minimal energy function

value. The energy function's primary purpose is to indicate whether this stable state corresponds to a

global minimum of the 3SAT problem, which in turn represents a consistent interpretation of the

CNF. Please see Figure 8 for the flowchart of the DHNN-3SAT-GAKM model development, and the

implementation steps are summarized as follows:

Step 1. Model Preparation. For a given 3SAT problem, transform it into the corresponding CNF

formulation, denoted as 𝑃 . Assume it contains 𝑛 Boolean variables and 𝑚 logical clauses.

Initialize the optimization algorithm parameters.

Step 2. Each Boolean variable of the 3SAT formula is uniquely assigned a Hopfield neuron in the

DHNN design, which consists of 𝑛 neurons 𝑂 = {𝑜1, 𝑜2, ⋯ , 𝑜𝑛}, with the state at moment 𝑡
denoted 𝑋(𝑡) = (𝑥1(𝑡), 𝑥1(𝑡),⋯ , 𝑥𝑛(𝑡)).

Step 3. The BLC-WA method was used to calculate the 3SAT formula 𝑃 synaptic weights and

derive its cost function 𝐸𝑝. When 𝑃 = 1, 𝐸𝑝 = 0, at which time the energy function reaches its

minimum value, giving 𝐸𝑚𝑖𝑛 = −
𝑚

8
.

Step 4. Generate an initial candidate solution space by randomly creating m initial candidate

solutions {𝑋1(𝑡), 𝑋2(𝑡),⋯ , 𝑋𝑚(𝑡)}.
Step 5. The initial candidate solution {𝑋1(𝑡), 𝑋2(𝑡),⋯ , 𝑋𝑚(𝑡)} is clustered using the K-modes

clustering algorithm based on genetic optimization to obtain the optimal number of clusters 𝑘.

Step 6. Determine the candidate subset for retrieval. Candidate subset denoted as

{𝑌1(𝑡), 𝑌2(𝑡),⋯ , 𝑌𝑐(𝑡)}，where 𝑐 = 𝑚 𝑘⁄ ，𝑌𝑙(𝑡) = (𝑦1(𝑡), 𝑥、𝑦2(𝑡),⋯ , 𝑦𝑛(𝑡)) , 𝑙 = 1,2,⋯ , 𝑐. 𝑦𝑖(𝑡)

corresponds to the state of 𝑡 at the moment of the neuron 𝑜𝑖.
Step 7. DHNN Evolution. For 𝑌𝑙(𝑡) = (𝑦1(𝑡), 𝑦1(𝑡),⋯ , 𝑦𝑛(𝑡))，𝑙 = 0, 𝑡 = 0, state updates are

performed using Eq (5) until a stable state is reached. If 𝑌𝑙(𝑡 + 1) ≠ 𝑌𝑙(𝑡), then 𝑡 = 𝑡 + 1, and if

𝑌𝑙(𝑡 + 1) = 𝑌𝑙(𝑡), the network reaches a steady state. Proceed to the next step.

Step 8. Retrieval Phase. Check if the energy of the steady state satisfies |𝐸 − 𝐸𝑚𝑖𝑛| < 𝛿. If it does,

store the steady-state 𝑌𝑙(𝑡) as a global minimum. If it doesn't, 𝑙 = 𝑙 + 1, consider it as a local

28118

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

minimum and go back to Step 6.

Step 9. Model Evaluation. The model is assessed using the metrics of global minimum ratio,

Hamming distance, CPU time, steady-state retrieval rate, and global minimum retrieval rate.

Figure 7. Implementation process of conventional DHNN-3SAT-WA, DHNN-3SAT-GA and

DHNN-3SAT-ICA models.

28119

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

Figure 8. Flowchart for the development of DHNN-3SAT model based on K-modes clustering

algorithm for genetic optimization.

28120

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

6. Data experiments

To thoroughly evaluate the performance of the DHNN-3SAT-GAKM model and its ability to

solve real-world application problems, this section examines its performance alongside the

conventional DHNN-3SAT-WA, DHNN-3SAT-GA, and DHNN-3SAT-ICA models on a benchmark

dataset. Experimental analyses were conducted to compare their performance and demonstrate the

superiority of the DHNN-3SAT-GAKM model proposed in this study. The experiments were carried

out using MATLAB R2023b on a laptop computer running the Windows 10 operating system,

equipped with an AMD Razor R5-3500U processor and 8 GB of RAM.

6.1. Description of the dataset

This study utilizes the DIMACS Benchmark Instances AIM dataset from SATLIB, provided by

Kazuo Iwama et al. (https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html). The AIM dataset

comprises of 48 instances, with 24 being satisfiable and 24 unsatisfiable. To create a representative

set of instances, 12 of these satisfiable instances are chosen for this study. Each instance contains

three clauses, and you can find specific descriptions of the instances in Table 5.

Table 5. Description of example data.

No. Instance variables Clauses No. Instance variables Clauses

1 aim-50-1_6-yes1-1 50 80 7 aim-100-3_4-yes1-1 100 340

2 aim-50-2_0-yes1-1 50 100 8 aim-100-6_0-yes1-1 100 600

3 aim-50-3_4-yes1-1 50 170 9 aim-200-1_6-yes1-1 200 320

4 aim-50-6_0-yes1-1 50 300 10 aim-200-2_0-yes1-1 200 400

5 aim-100-1_6-yes1-1 100 160 11 aim-200-3_4-yes1-1 200 680

6 aim-100-2_0-yes1-1 100 200 12 aim-200-6_0-yes1-1 200 1200

6.2. Parameter setting

In the search phase, the traditional DHNN-3SAT-WA model directly examines 10,000 different

combinations of initial neuron assignments [46]. DHNN-3SAT-GA and DHNN-3SAT-ICA guide the

search among these 10,000 combinations using a genetic algorithm and an imperialistic competition

algorithm, respectively. This paper introduces the DHNN-3SAT-GAKM model, which utilizes

genetic optimization K-modes clustering to preprocess these 10000 neuron initial allocation

combinations. It then selects a candidate subset for search. This approach reduces the actual search

space and minimizes repeated local searches to avoid getting stuck in local minima, thereby

improving the efficiency of retrieving the global minimum. The tolerance values for the conventional

DHNN-3SAT-WA model align with Sathasivam's work [16]. The CPU time thresholds are based on

Zamri's settings [47]. The parameter settings can be found in Table 6. The parameter settings for the

DHNN-3SAT-GA model are in line with Kasihmuddin's work [26] and are listed in Table 7. The

parameter settings for the DHNN-3SAT-ICA model remain consistent with Shazli's work [38], as

shown in Table 8. Table 9 details the parameter settings of the model in this paper, with optimization

of the relevant parameters through iterative tuning.

28121

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

Table 6. DHNN-3SAT-WA model parameter settings.

parametric parameter value parametric parameter value

Initial assigned amount 10000 tolerance value 𝛿 0.001

CPU time threshold 24 hours - -

Table 7. DHNN-3SAT-GA model parameter settings.

parametric parameter value parametric parameter value

Initial assigned amount 10000 probability of mutation 𝑝𝑚 0.05

population size 50 Maximum Iterations 𝑡 100

crossover probability 𝑝𝑐 0.6 - -

Table 8. DHNN-3SAT-ICA model parameter settings.

parametric parameter value parametric parameter value

Initial assigned amount 10000 revolutionary rate 𝛼 0.3

population size 50 Maximum Iterations 𝑡 100

Table 9. DHNN-3SAT-GAKM model parameter settings.

parametric parameter value parametric parameter value

Initial assigned amount 10000 crossover probability 𝑝𝑐 0.6

population size 50 probability of mutation 𝑝𝑚 0.05

Initial number of clusters 3 Maximum Iterations 𝑡 100

6.3. Experimental results and discussion

We use the global minimum ratio (GMR) [16] and the mean CPU time (MCT) to assess the

model's performance in this paper. To provide a more comprehensive evaluation of the model's

ability to find the global minimum, we introduce 2 new evaluation metrics: the mean minimum

Hamming distance (MMHD) and the mean logical satisfiability ratio (MLSR). This study will utilize

a total of 4 evaluation metrics, as detailed in Table 10. The calculations are based on the average of

100 repeated experiment runs for each instance, and the results are displayed in Tables 11 and 12.

Figures 9 to 12 compare our model, DHNN-3SAT-GAKM, with the models DHNN-3SAT-WA,

DHNN-3SAT-GA, and DHNN-3SAT-ICA across the 4 evaluation metrics.

28122

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

Table 10. Assessment indicators.

Indicators calculation formula instructions

GMR 𝐺𝑀𝑅 =
𝑁𝐺𝑀
𝑇

GMR represents the ratio of the global minimum solution

to the total number of runs [16]. GMR is an effective

metric for assessing the efficiency of an algorithm. A

model is considered robust when its GMR value is close

to 1 [23]. Here, 𝑁𝐺𝑀 represents the number of times the

global minimum is converged, and 𝑇 represents the total

number of runs.

MCT 𝑀𝐶𝑇 =
1

𝑁𝐺𝑀
∑𝑁𝑇𝑖

𝑇𝐺𝑀

𝑖

The MCT refers to the average time needed for each

model to reach the global minimum. A smaller MCT

indicates that the model is more efficient in finding the

global minimum. 𝑁𝑇𝑖 represents the CPU time needed to

find the global minimum at the 𝑖th retrieval result, and

𝑁𝐺𝑀 represents the number of times the global minimum

converged.

MMHD

𝑀𝑀𝐻𝐷

=
1

𝑇
∑𝑚𝑖𝑛

𝑗
𝐷(𝑋𝑖 , 𝑍𝑗)

𝑇

𝑖

The MMHD value represents the mean minimum

Hamming distance, which is the average of the smallest

bit difference between the retrieval result of each run and

the global minimum. When the MMHD value is closer to

0, it indicates that the model retrieves a result closer to the

global minimum. In this context, 𝐷(𝑋𝑖, 𝑍𝑗) represents

the Hamming distance between the retrieval result of the

𝑖th run and the global minimum, and 𝑇 represents the

total number of runs.

MLSR 𝑀𝐿𝑆𝑅 =
1

𝑇
∑

𝑁𝑠𝑎𝑡(𝑖)

𝑚

𝑇

𝑖

The MLSR value indicates the average proportion of the

total number of clauses that can be satisfied by the

retrieval results. The closer the MLSR value is to 1, the

closer the model retrieval results are to the global

minimum. Here, 𝑁𝑠𝑎𝑡(𝑖) denotes the number of satisfying

clauses for the 𝑖th retrieval result, and 𝑚 denotes the

total number of clauses.

28123

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

Table 11. Comparison of experimental results.

No.

GMR MCT MMHD MLSR

DHNN-3

SAT-WA

DHNN-3

SAT-GA

DHNN-3

SAT-WA

DHNN-3

SAT-GA

DHNN-3S

AT-WA

DHNN-3

SAT-GA

DHNN-3

SAT-WA

DHNN-3

SAT-GA

1 1.0000 1.0000 4.83 2.51 0.0000 0.0000 1 1

2 0.9123 0.9323 16.67 11.70 1.1000 1.0900 0.9744 0.9745

3 0.8234 0.8456 26.67 22.83 3.6000 3.4900 0.9355 0.9578

4 0.5802 0.6204 48.82 45.80 3.7200 3.7100 0.8923 0.8966

5 1.0000 1.0000 11.72 6.31 0.0000 0.0000 1 1

6 0.8812 0.9011 46.51 16.01 2.5000 2.4000 0.9433 0.9533

7 0.5467 0.6041 113.28 35.50 3.6200 3.6100 0.9288 0.9363

8 0.2018 0.2188 440.39 171.23 4.7400 4.2300 0.9139 0.9231

9 0.4114 0.4222 537.92 431.04 4.8600 4.4500 0.9835 0.9844

10 0.2261 0.2352 978.78 773.75 5.9800 5.6700 0.9312 0.9474

11 0.1616 0.1653 1369.44 1100.94 7.1000 6.8900 0.8537 0.8775

12 0.1413 0.1518 1566.18 1198.85 8.2200 8.1100 0.8234 0.8641

Table 12. Comparison of experimental results.

No.

GMR MCT MMHD MLSR

DHNN-3

SAT-ICA

DHNN-

3SAT-G

AKM

DHNN-3SA

T-ICA

DHNN-3S

AT-GAKM

DHNN-3

SAT-ICA

DHNN-

3SAT-G

AKM

DHNN-3

SAT-ICA

DHNN

-3SAT-

GAKM

1 1.0000 1.0000 2.49 2.21 0.0000 0.0000 1 1

2 0.9441 0.9658 10.64 8.29 1.0700 1.0400 0.9761 0.9783

3 0.8542 0.9126 20.45 15.08 3.2700 1.1400 0.9662 0.9751

4 0.6356 0.7229 40.18 26.87 3.3700 2.9700 0.8978 0.9354

5 1.0000 1.0000 5.49 4.68 0.0000 0.0000 1 1

6 0.9124 0.9256 14.02 11.06 2.2000 2.1000 0.9644 0.9881

7 0.6205 0.6898 30.59 22.03 3.2000 2.9300 0.9375 0.9523

8 0.2291 0.3211 141.54 74.60 3.9800 3.7600 0.9251 0.9336

9 0.4301 0.4503 435.12 396.82 4.0800 3.8900 0.9851 0.9928

10 0.2488 0.2632 752.20 678.91 5.0800 4.7200 0.9488 0.9557

11 0.1689 0.2203 1108.03 935.02 6.0800 5.5500 0.8809 0.9028

12 0.1612 0.2097 1160.96 982.28 7.0800 6.3800 0.8732 0.8822

Tables 11 and 12 show the computational results of the DHNN-3SAT-GAKM model in this

paper, as well as the DHNN-3SAT-WA, DHNN-3SAT-GA, and DHNN-3SAT-ICA models. The

results are presented in terms of GMR, MCT, MMHD, and MLSR. These calculations are based on

the metrics formulas provided in Table 10. Figures 9 to 12 illustrate the performance differences

between this paper's DHNN-3SAT-GAKM model and the DHNN-3SAT-WA, DHNN-3SAT-GA, and

DHNN-3SAT-ICA models. These differences are shown in the four evaluation metrics through

radargram-based visualization. The DHNN-3SAT-GAKM model outperforms the DHNN-3SAT-WA,

28124

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

DHNN-3SAT-GA, and DHNN-3SAT-ICA models.

Figure 9 shows the GMR of each model in solving 3-SAT instances with varying levels of complexity. In this

paper, the DHNN-3SAT-GAKM model achieved the highest GMR value, indicating its superior global

retrieval ability and ability to avoid falling into local minima to some extent. Additionally, the

DHNN-3SAT-GA and DHNN-3SAT-ICA models also demonstrated an improved ability over the

traditional DHNN-3SAT-WA model to retrieve the global minimum to some extent. As the

complexity of SAT problems, Boolean variables, and logical clauses increases, the GMRs of each

model decrease rapidly. Hence, further optimization and improvement of the algorithms and

architectures of the DHNN-3SAT models are needed to enhance their performance and efficiency

when dealing with large-scale and complex SAT problems in the future.

In Figure 10, we can see the average time taken by each model to reach the global minimum.

The MTC value of the DHNN-3SAT-GAKM model in this paper is the smallest, indicating that this

model is more efficient in finding the global minimum. This is because the model initially clusters

the allocation space using the K-modes clustering algorithm, enabling it to escape local minima more

quickly and avoid repetitive retrieval of local minima. As a result, a large number of redundant

calculations are reduced, leading to improved efficiency in converging to the global minimum. On

the other hand, the traditional DHNN-3SAT-WA is more prone to getting stuck in local minima,

especially as the number of local minimum solutions increases, resulting in a substantial number of

repetitive evolutions and computations, ultimately affecting the efficiency of converging to the

global minimum. While the DHNN-3SAT-GA and DHNN-3SAT-ICA models also use heuristic

algorithms for guided search to some extent, helping to reduce the search space and speed up

retrieval of the global minimum, the rapidly expanding search space due to the increasing complexity

of the SAT problem can lead to longer retrieval times or even search failure. Consequently, for

large-scale SAT problems, further improving the efficiency of searching for the global minimum is a

future priority.

In dealing with large-scale SAT problems, the increasing logic complexity results in a

progressively smaller solution space, making it very challenging to find a global minimum solution

within a limited timeframe. Most attempts only end up finding the local minimum solution. The goal

of model optimization at this stage is to make each retrieval result as close as possible to the global

minimum solution. To evaluate the proximity of the model retrieval results to the global minimum

solution, two new evaluation criteria are introduced in this study: the MMHD and the MLSR. These

criteria reflect the proximity of the model retrieval results to the global optimum. A lower MMHD

value and a higher MLSR value indicate that the model retrieval results are closer to the global

minimum solution. Figures 11 and 12 illustrate the relationship between the MMHD and MLSR

values of each model. These figures show that the DHNN-3SAT-GAKM model in this paper has the

smallest MMHD value and the largest MLSR value, indicating that its retrieval results are closer to

the global minimum than those of the DHNN-3SAT-WA, DHNN-3SAT-GA, and DHNN-3SAT-ICA

models. This suggests that the retrieval results of the DHNN-3SAT-GAKM model are closer to the

global minimum solution overall. Conversely, the DHNN-3SAT-GA and DHNN-3SAT-ICA models

are closer to the global minimum than the overall retrieval results of the conventional

DHNN-3SAT-WA.

Based on the combined analyses above, it can be observed that the DHNN-3SAT-GAKM model,

introduced in this paper, exhibits significant improvements when compared to the traditional

DHNN-3SAT-WA model, as well as the DHNN-3SAT-GA and DHNN-3SAT-ICA models that

28125

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

directly utilize heuristic algorithms for bootstrap retrieval. This demonstrates the superior

performance of the DHNN-3SAT-GAKM model in retrieving the global minima in the SAT problem,

while also highlighting its potential for practical applications.

Figures 9. GMR. Figures 10. MCT.

Figures 11. MMHD. Figures 12. MLSR.

7. Conclusions

This paper introduces a method for designing network synaptic weights based on basic logical

clauses to handle dynamic changes in constraints in the SAT problem. This method aims to utilize

synaptic weight information efficiently, reducing the need for repetitive calculations in the DHNN

network. Additionally, it proposes a DHNN-3SAT model based on genetic algorithm optimized

K-modes clustering to address the limitations of the traditional DHNN-3SAT-WA, which tends to get

stuck in local minima. The new model uses genetic algorithms to cluster the initial space, effectively

reducing the retrieval space and improving retrieval efficiency. Experimental results show that the

28126

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

DHNN-3SAT-GAKM model outperforms DHNN-3SAT-WA, DHNN-3SAT-GA, and

DHNN-3SAT-ICA in terms of various evaluation metrics, including GMR, MCT, MMHD, and

MLSR. This study not only expands the application of DHNN in solving the SAT problem but also

offers valuable insights for future research.

The DHNN-3SAT model is an innovative approach to using deep learning technology to solve

SAT problems, offering insights and potential for future research and applications. There are several

areas for future work: first, optimizing and enhancing the algorithm and architecture of the

DHNN-3SAT model to improve its performance on large-scale and complex SAT problems; second,

exploring the model's extension to other NP-complete problems to demonstrate its versatility and

applicability; and finally, conducting thorough research on the model in specific domains and

practical applications to further promote the use of deep learning techniques in combinatorial

optimization and decision-making problems. In summary, the proposal and study of the

DHNN-3SAT model not only enhances methods in the field of SAT problem-solving but also

provides new ideas and tools for solving complex problems using deep learning techniques. With

ongoing technological and theoretical progress, the application of deep learning in combinatorial

optimization problem-solving is expected to bring about broader development and deliver effective

solutions for real-life complex problems.

Author contributions

Xiaojun Xie: Writing-review & editing, Writing-original draft, Methodology, Formal analysis,

Conceptualization. Saratha Sathasivam: Writing-review & editing, Methodology, Funding

acquisition, Conceptualization, Validation, Supervision. Hong Ma: Writing-review & editing,

Writing-original draft, Methodology, Investigation, Formal analysis, Conceptualization. All authors

have read and approved the final version of the manuscript for publication.

Acknowledgments

This research was supported by the Ministry of Higher Education Malaysia (MOHE) through

the Fundamental Research Grant Scheme (FRGS), FRGS/1/2022/STG06/USM/02/11, and University

Sains Malaysia.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. M. Järvisalo, B. D. Le, O. Roussel, L. Simon, The international SAT solver competitions, Ai

Mag., 33 (2012), 89–92. https://doi.org/10.1609/aimag.v33i1.2395

2. S. A Cook, The complexity of theorem-proving procedures, Logic automata computat. Complex.,

2023, 143152.

3. J. Rintanen, Planning as satisfiability: Heuristics, Artif. Intell., 193 (2012), 45–86.

https://doi.org/10.1016/j.artint.2012.08.001

https://doi.org/10.1609/aimag.v33i1.2395
https://doi.org/10.1016/j.artint.2012.08.001

28127

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

4. V. Popov, An approach to the design of DNA smart programmable membranes, Adv. Mater. Res.,

934 (2014), 173–176. https://doi.org/10.4028/www.scientific.net/AMR.934.173

5. X. Zhang, J. Bussche, F. Picalausa, On the satisfiability problem for SPARQL patterns, J. Artif.

Intell. Res., 56 (2016), 403–428. https://doi.org/10.1613/jair.5028

6. A. Armando, L. Compagna, SAT-based model-checking for security protocols analysis, Int. J. Inf.

Secur., 7 (2008), 3–32. https://doi.org/10.1007/s10207-007-0041-y

7. C. Luo, S. Cai, W. Wu, K. Su, Double configuration checking in stochastic local search for

satisfiability, Proc. AAAI Conf. Artif. Intell., 28 (2014), 2703–2709.

https://doi.org/10.1609/aaai.v28i1.9110

8. X. Wang, A novel approach of solving the CNF-SAT problem, Arxiv. Prepr. Arxiv., 1307 (2013),

6291. https://doi.org/10.48550/arXiv.1307.6291

9. D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: Artificial bee

colony (ABC) algorithm and applications, Artif. Intell. Rev., 42 (2014), 21–57.

https://doi.org/10.1007/s10462-012-9328-0

10. E. A. Hirsch, A. Kojevnikov, UnitWalk: A new SAT solver that uses local search guided by

unit clause elimination, Ann. Math. Artif. Intell., 43 (2005), 91–111.

https://doi.org/10.1007/s10472-005-0421-9

11. J. J. Hopfield, Neural networks and physical systems with emergent collective computational

abilities, Proc. Natl. Acad. Sci., 79 (1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554

12. M. A. Mansor, S. Sathasivam, Optimal performance evaluation metrics for satisfiability logic

representation in discrete Hopfield neural network, Int. J. Math. Comput. Sci., 16 (2021),

963–976.

13. C. C. Feng, S. Sathasivam, A novel processor for dynamic evolution of constrained SAT problems:

The dynamic evolution variant of the discrete Hopfield neural network satisfiability model, J. King

Saud Univ., Comput. Inf. Sci., 36 (2024), 101927. https://doi.org/10.1016/j.jksuci.2024.101927

14. S. A. Karim, M. S. M Kasihmuddin, S. Sathasivam, M. A. Mansor, S. Z. M. Jamaludin, M. R.

Amin, A novel multi-objective hybrid election algorithm for higher-order random satisfiability

in discrete hopfield neural network, Mathematics, 10 (2022), 1963.

https://doi.org/10.3390/math10121963

15. M. A. Mansor, S. Sathasivam, Accelerating activation function for 3-satisfiability logic

programming, Int.J. Intell. Syst. Appl., 8 (2016), 44. https://doi.org/10.5815/ijisa.2016.10.05.

16. S. Sathasivam, Upgrading logic programming in Hopfield network, Sains Malays., 39 (2010),

115–118.

17. M. A. Mansor, M. S. M Kasihmuddin, S. Sathasivam, Artificial immune system paradigm in the

Hopfield network for 3-Satisfiability problem, Pertanika J. Sci. Technol., 25 (2017), 1173–1188.

18. B. Bünz, M. Lamm. Graph neural networks and boolean satisfiability, Arxiv. Prepr. Arxiv., 1702

(2017), 03592. https://doi.org/10.48550/arXiv.1702.03592

19. H. Xu, S. Koenig, T. K. S. Kumar, Towards effective deep learning for constraint satisfaction

problems, Int. Conf. Princ. Pract. Constraint Program., 2018, 588–597.

https://doi.org/10.1007/978-3-319-98334-9_38

20. H. E. Dixon, M. L. Ginsberg, Combining satisfiability techniques from AI and OR, Knowl. Eng.

Rev., 15 (2000), 31–45. https://doi.org/10.1017/S0269888900001041

21. W. A. Abdullah, Logic programming on a neural network, Int. J. Intell. Syst., 7 (1992), 513–519.

https://doi.org/10.1002/int.4550070604

https://doi.org/10.4028/www.scientific.net/AMR.934.173
https://doi.org/10.1613/jair.5028
https://doi.org/10.1007/s10207-007-0041-y
https://doi.org/10.1609/aaai.v28i1.9110
https://doi.org/10.48550/arXiv.1307.6291
https://so1.linfen3.top/citations?user=Ot3jrBwAAAAJ&hl=zh-CN&oi=sra
https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1007/s10472-005-0421-9
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1016/j.jksuci.2024.101927
https://doi.org/10.3390/math10121963
https://doi.org/10.48550/arXiv.1702.03592
https://doi.org/10.1007/978-3-319-98334-9_38
https://doi.org/10.1017/S0269888900001041
https://doi.org/10.1002/int.4550070604

28128

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

22. S. Sathasivam, W. A. Abdullah, Logic mining in neural network: Reverse analysis method,

Computing, 91 (2011), 119–133. https://doi.org/10.1007/s00607-010-0117-9

23. S. Sathasivam, N. P. Fen, M. Velavan, Reverse analysis in higher order Hopfield network for

higher order horn clauses, Appl. Math. Sci., 8 (2014), 601–612.

http://dx.doi.org/10.12988/ams.2014.310565

24. M. S. M. Kasihmuddin, M. A. Mansor, S. Sathasivam, Discrete Hopfield neural network in

restricted maximum k-satisfiability logic programming, Sains Malays., 47 (2018), 1327–1335.

http:/ldx.doi.org110.17576/jsm-2018-4706-30

25. M. A. Mansor, M. S. M. Kasihmuddin, S. Sathasivam, Robust artificial immune system in the

hopfield network for maximum k-satisfiability. Int. J. Inter. Mult. Artif. Intell., 4 (2017), 63–71.

26. M. S. M. Kasihmuddin, M. A. Mansor, S. Sathasivam, Hybrid genetic algorithm in the hopfield

network for logic satisfiability problem. Pertanika J. Sci. Technol., 25 (2017), 139–152.

27. F. L. Azizan, S. Sathasivam M. K. M. Ali, N. Roslan, C. Feng, Hybridised network of fuzzy

logic and a genetic algorithm in solving 3-Satisfiability Hopfield neural networks, Axioms, 12

(2023), 250. https://doi.org/10.3390/axioms12030250

28. M. A. Mansor, M. S. M. Kasihmuddin, S. Sathasivam, Grey wolf optimization algorithm with

discrete hopfield neural network for 3 Satisfiability analysis, J. Phys. Conf. Ser., 1821 (2021),

012038. https://doi.org/10.1088/1742-6596/1821/1/012038

29. M. A. Mansor, M. S. M. Kasihmuddin, S. Sathasivam, Modified lion optimization algorithm

with discrete Hopfield neural network for higher order Boolean satisfiability programming,

Malays. J. Math. Sci., 14 (2020), 47–61.

30. N. Cao, X. J. Yin, S. T. Bai, Breather wave, lump type and interaction solutions for a high

dimensional evolution model, Chaos, Solitons Fract., 172 (2023), 113505.

https://doi.org/10.1016/j.chaos.2023.113505

31. C. C. Feng, S. Sathasivam, N. Roslan, M. Velavan, 2-SAT discrete Hopfield neural networks

optimization via Crow search and fuzzy dynamical clustering approach, AIMS Math., 9 (2024),

9232–9266. https://doi.org/10.1016/10.3934/math.2024450

32. S. Bai, X. Yin, N. Cao, L. Xu, A high dimensional evolution model and its rogue wave solution,

breather solution and mixed solutions Nonlinear Dyn., 111 (2023), 12479–12494.

https://doi.org/10.1007/s11071-023-08467-x

33. G. He, P. Tang, X. Pang, Neural network approaches to implementation of optimum multiuser

detectors in code-division multiple-access channels, Int. J. Electron., 80 (1996), 425-431.

https://doi.org/10.1080/002072196137264

34. H. Yang, Z. Li, Z. Liu, A method of routing optimization using CHNN in MANET, J. Ambient

Intell. Hum. Comput., 10 (2019), 1759–1768. https://doi.org/10.1007/s12652-017-0614-1

35. B. Bao, H. Tang, Y. Su, H. Bao, M. Chen, Q. Xu, Two-Dimensional discrete Bi-Neuron Hopfield

neural network with polyhedral Hyperchaos, IEEE Trans. Circuits Syst., (2024), 1–12.

https://doi.org/10.1109/TCSI.2024.3382259

36. W. Ma, X. Li, T. Yu, Z. Wang, A 4D discrete Hopfield neural network-based image encryption

scheme with multiple diffusion modes, Optik, 291 (2023), 171387.

https://doi.org/10.1016/j.ijleo.2023.171387

37. Q. Deng, C. Wang, H. Lin, Memristive Hopfield neural network dynamics with heterogeneous

activation functions and its application, Chaos Solitons Fract., 178 (2024), 114387.

https://doi.org/10.1016/j.chaos.2023.114387

https://doi.org/10.1007/s00607-010-0117-9
http://dx.doi.org/10.12988/ams.2014.310565
http://ldx.doi.org110.17576/jsm-2018-4706-30
https://so1.linfen3.top/citations?user=nqfThIAAAAAJ&hl=zh-CN&oi=sra
https://doi.org/10.3390/axioms12030250
https://doi.org/10.1088/1742-6596/1821/1/012038
https://doi.org/10.1016/j.chaos.2023.113505
https://xs.typicalgame.com/citations?user=nqfThIAAAAAJ&hl=zh-CN&oi=sra
https://xs.typicalgame.com/citations?user=Lj4T5S0AAAAJ&hl=zh-CN&oi=sra
https://doi.org/10.3934/math.2024450
https://doi.org/10.1007/s11071-023-08467-x
https://doi.org/10.1080/002072196137264
https://doi.org/10.1007/s12652-017-0614-1
https://doi.org/10.1109/TCSI.2024.3382259
https://doi.org/10.1016/j.ijleo.2023.171387
https://doi.org/10.1016/j.chaos.2023.114387

28129

AIMS Mathematics Volume 9, Issue 10, 28100–28129.

38. Z. S. Shazli, M. B. Tahoori, Using boolean satisfiability for computing soft error rates in early design

stages, Microelectr. Reliab., 50 (2010), 149–159. https://doi.org/10.1016/j.microrel.2009.08.006

39. N. Sharma, N. Gaud, K-modes clustering algorithm for categorical data, Int. J. Comput. Appl.,

127 (2015), 1–6. https://doi.org/10.1016/10.5120/ijca2015906708

40. F. Cao J. Liang, D. Li, L. Bai, C. Dang, A dissimilarity measure for the K-Modes clustering

algorithm, Knowl. Based Syst., 26 (2012), 120–127. https://doi.org/10.1016/j.knosys.2011.07.011

41. M. K. Ng, M. J. Li, J. Z. Huang, Z. He, On the impact of dissimilarity measure in k-modes

clustering algorithm, IEEE Trans. Pattern Anal. Mach. intell., 29 (2007), 503–507.

https://doi.org/10.1109/TPAMI.2007.53

42. S. S. Khan, A. Ahmad, Cluster center initialization algorithm for K-modes clustering, Pattern

Recognit. Lett., 25 (2004), 1293–1302. https://doi.org/10.1016/j.patrec.2004.04.007

43. R. J. Kuo, Y. R. Zheng, T. P. Q. Nguyen, Metaheuristic-based possibilistic fuzzy k-modes

algorithms for categorical data clustering, Inf. Sci., 557 (2021), 1–15.

https://doi.org/10.1016/j.ins.2020.12.051

44. G. Gan, J. Wu, Z. Yang, A genetic fuzzy k-Modes algorithm for clustering categorical data,

Expert Syst. Appl., 36 (2009), 1615–1620. https://doi.org/10.1007/11527503_23

45. F. S. Gharehchopogh, S. Haggi, An Optimization K-modes clustering algorithm with elephant

herding optimization algorithm for crime clustering, J. Adv. Comput. Eng. Technol., 6 (2020),

79–90.

46. J. Gu, Local search for satisfiability (SAT) problem, IEEE Trans. Syst., 23 (1993), 1108–1129.

https://doi.org/10.1109/21.247892

47. N. E. Zamri, M. A, Mansor, M. S. M. Kasihmuddin, A. Always, S. A. Alzaeemi, Amazon

employees resources access data extraction via clonal selection algorithm and logic mining

approach, Entropy, 22 (2020), 596. https://doi.org/10.3390/e22060596

© 2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (https://creativecommons.org/licenses/by/4.0)

https://ui.adsabs.harvard.edu/link_gateway/2015IJCA..127q...1S/doi:10.5120/ijca2015906708
https://doi.org/10.1016/j.knosys.2011.07.011
https://doi.org/10.1109/TPAMI.2007.53
https://doi.org/10.1016/j.patrec.2004.04.007
https://doi.org/10.1016/j.ins.2020.12.051
https://doi.org/10.1007/11527503_23
https://doi.org/10.1109/21.247892
https://doi.org/10.3390/e22060596

