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Abstract: The discrete Hopfield neural network 3-satisfiability (DHNN-3SAT) model represents an 

innovative application of deep learning techniques to the Boolean SAT problem. Existing research 

indicated that the DHNN-3SAT model demonstrated significant advantages in handling 3SAT 

problem instances of varying scales and complexities. Compared to traditional heuristic algorithms, 

this model converged to local minima more rapidly and exhibited enhanced exploration capabilities 

within the global search space. However, the model faced several challenges and limitations. As 

constraints in SAT problems dynamically increased, decreased, or changed, and as problem scales 

expanded, the model's computational complexity and storage requirements may increase dramatically, 

leading to reduced performance in handling large-scale SAT problems. To address these challenges, 

this paper first introduced a method for designing network synaptic weights based on fundamental 

logical clauses. This method effectively utilized the synaptic weight information from the original 

SAT problem within the DHNN network, thereby significantly reducing redundant computations. 

Concrete examples illustrated the design process of network synaptic weights when constraints were 

added, removed, or updated, offering new approaches for managing the evolving constraints in SAT 

problems. Subsequently, the paper presented a DHNN-3SAT model optimized by genetic algorithms 

combined with K-modes clustering. This model employed genetic algorithm-optimized K-modes 

clustering to effectively cluster the initial space, significantly reducing the search space. This 

approach minimized the likelihood of redundant searches and reduced the risk of getting trapped in 

local minima, thus improving search efficiency. Experimental tests on benchmark datasets showed 

that the proposed model outperformed traditional DHNN-3SAT models, DHNN-3SAT models 
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combined with genetic algorithms, and DHNN-3SAT models combined with imperialist competitive 

algorithms across four evaluation metrics. This study not only broadened the application of DHNN 

in solving 3SAT problems but also provided valuable insights and guidance for future research. 

Keywords: discrete Hopfield neural network; 3SAT; genetic algorithm; K-modes clustering 
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1. Introduction 

The Boolean satisfiability (SAT) problem is a classical issue in computational complexity theory 

and has been a significant research subject in computer science and artificial intelligence since the 

1970s [1]. In 1971, S. A. Cook [2] proved that the SAT problem is the world's first NP-complete 

problem, meaning any NP problem can be reduced to the SAT problem for a polynomial-time solution. 

The SAT problem serves as a benchmark for the difficulty of a category of problems known as the core 

of NP-complete problems. It plays a crucial role in various areas of computer science, including 

theoretical computer science, complexity theory, cryptosystems, and artificial intelligence [3–6]. With 

the advancements in computer hardware performance and algorithm design, traditional SAT solvers 

have become effective in many practical applications [7–10]. However, as problems grow in size and 

complexity, traditional methods often face challenges such as inefficiency and high consumption of 

computational resources. This has prompted researchers to explore new solution methods and 

techniques. Among these, the discrete Hopfield neural network (DHNN) [11], a classical neural 

network model, has shown significant potential and effectiveness in solving combinatorial 

optimization problems since its inception. Hopfield [11] demonstrated the stability of network 

dynamics, highlighting that the evolution of network states is essentially a process of energy 

minimization. When the association weights are symmetric, the system reaches a stable state. This 

stable equilibrium point aligns with the correct storage state, providing a clear physical explanation for 

associative memory. The network, by emphasizing the collective function of neurons from a systems 

perspective, offers preliminary insights into the nature of associative memory. Due to its robust 

memory capabilities and parallel processing power, the DHNN is particularly effective in addressing 

combinatorial optimization problems such as SAT [12–14]. 

In the study of SAT problems, the 3-satisfiability (3SAT) logic has received significant attention 

from researchers because higher-order Boolean SAT can be converted or reduced to the 3SAT form [15]. 

In the 3SAT problem, each clause contains three literals, making it more complex and closer to 

practical logic constraint problems. To address the 3SAT problem, researchers have mapped the 

variables and clauses of a Boolean formula into the neurons and energy functions of a discrete 

Hopfield network. In this network, each variable and clause is encoded as a neuron's state and 

connection weights [16–18]. A satisfying solution to the Boolean formula is then found by adjusting 

the neuron states to minimize the energy function. This method of solving the 3-SAT problem 

implemented in a DHNN is referred to as the DHNN-3SAT model. The DHNN-3SAT model has 

garnered extensive attention and research interest due to its significant improvement in solving 

ability and effectiveness on 3SAT problems [19,20]. Early research efforts focused on basic discrete 

Hopfield network structures, utilizing simple connection weights and update rules. As research 

progressed, scholars proposed various improvement and optimization strategies to enhance the 

network's performance and efficiency. In 1992, Wan Abdullah successfully integrated special logic 
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programming as symbolic rules into a DHNN [21], and in 2011, Sathasivam and Abdullah extended 

this approach and formally named it the Wan Abdullah method (WA method) [22]. In 2014, 

Sathasivam et al. embedded higher-order SAT into DHNN [23]. Kasihmuddin et al. [24] applied 

k-satisfiability planning in DHNN. In 2017, Mansor et al. [25] demonstrated the hybrid use of the 

DHNN artificial immune system for the 3-SAT problem. Subsequently, Kasihmuddin et al. [26] 

proposed a genetic algorithm for k-satisfiability logic programming based on DHNN. In 2021, 

Mansor and Sathasivam [12] proposed a DHNN-3SAT optimal performance index. In 2023, Azizan 

and Sathasivam [27] proposed a DHNN model with a 3SAT fuzzy logic model of DHNN. However, 

as researchers delved deeper into the DHNN-SAT model, they found that its computational 

efficiency is not optimal for large-scale problems due to the inherent limitations of the DHNN, with a 

tendency to fall into local minima. To address these issues, researchers have been working to 

integrate heuristic algorithms into the optimization process [28–31] to enhance the accuracy of the 

DHNN-SAT model. Currently, these research methods are achieving high global minimum ratios in 

DHNN-SAT models with fewer neurons. By adjusting the structure and parameters of the neural 

network, researchers [32] have been exploring various model variations and optimization strategies 

to further enhance the performance and generalizability of the model. These efforts not only offer a 

new perspective and approach to understanding and solving SAT problems but also make significant 

contributions and provide inspiration for the application of DHNNs in combinatorial optimization 

and discrete problem-solving. 

Although the DHNN-3SAT model has been successful in addressing certain problems, it still 

has some challenges and limitations. First, the model's computational complexity and storage 

requirements may increase significantly with the problem size, leading to performance issues when 

dealing with large-scale SAT problems. Second, the model's training and optimization process may 

be sensitive to parameter tuning and initialization, necessitating more experimental validation and 

tuning. Third, it may take a longer time to reach a stable solution when dealing with complex 

problems, which can impact its practical application in engineering and other fields. Lastly, in 

real-life scenarios, the constraints of SAT problems often change over time, leading to the need for 

network redesign and the generation of a large number of redundant computations with the increase, 

decrease, and update of large-scale constraints, ultimately limiting the traditional DHNN-3SAT 

model's performance. 

To address the changing constraints of the SAT problem and the increasing size and complexity 

of the network, this paper proposes a WA method based on basic logical clauses. This method utilizes 

information about the synaptic weights of the original SAT problem in the DHNN, leading to 

significant savings in repetitive calculations. In addition, to tackle the issue of increasing Boolean 

variables and logical clauses leading to a rapidly expanding solution space and the traditional 

DHNN-WA model being prone to oscillations and local minima, this paper introduces a DHNN 

3SAT model, based on a genetic algorithm-optimized K-modes clustering. This approach uses the 

genetic optimization K-modes clustering algorithm to cluster the initial space, reducing the retrieval 

space and avoiding repeated searches, thus improving retrieval efficiency. 

The paper is organized as follows: Section 2 introduces the knowledge related to the research, 

including 3SAT and DHNN. Section 3 details the implementation and workflow for determining the 

synaptic weights of the DHNN 3SAT model using the WA method. To address the issue of a large 

number of redundant computations caused by the changing constraints of the 3SAT problem, the 

basic logic clause-based WA (BLC-WA) method is proposed. Section 4 introduces the K-modes 

clustering algorithm optimized by a genetic algorithm. Section 5 details the implementation steps and 

development process of the DHNN 3SAT model based on genetic algorithm-optimized K-modes 
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clustering. Section 6 presents an experimental comparative analysis of the DHNN-3SAT model 

based on the genetic optimization K-modes clustering algorithm (DHNN-3SAT-GAKM) model 

proposed in this paper, and the three models DHNN-3SAT-WA, the DHNN-3SAT-WA model by 

using the Genetic Algorithm (DHNN-3SAT-GA), and the DHNN-3SAT-WA model by using  

Competition Algorithm (DHNN-3SAT-ICA), which are comprehensively evaluated using four 

evaluation metrics. Finally, Section 7 summarizes the work presented in this paper. 

2. Theoretical background 

2.1. Boolean 3SAT Logic 

Definition 2.1. 3SAT is a satisfiability problem for a set of logical clauses consisting strictly of 3 

literal variables. 3SAT problems can be expressed in 3 conjunctive normal forms (CNFs). Let the set 

of Boolean variables be {𝑆1, 𝑆2, ⋯ , 𝑆𝑛} and the set of logical clauses be {𝐶1 , 𝐶2 , ⋯ , 𝐶𝑚}, then the 

general form of a CNF 3SAT formula 𝑃 containing 𝑛 Boolean variables and 𝑚 logical clauses is 

defined as: 

𝑃 = ⋀ 𝐶𝑘
𝑚
𝑘=1 ,                               (1) 

where the clause 𝐶𝑘  consists of 3 literals connected by the classical operator or (∨): 𝐶𝑘 = 𝑍(𝑘,1) ∨

𝑍(𝑘,2) ∨ 𝑍(𝑘,3), and the state of the literals can be either a positive variable or the negation of a positive 

variable, i.e., 𝑍(𝑘,𝑖) = 𝑆𝑗 or 𝑍(𝑘,𝑖) = ¬𝑆𝑗 ,1 ≤ 𝑘 ≤ 𝑚,1 ≤ 𝑖 ≤ 3,1 ≤ 𝑗 ≤ 𝑛. Each literal variable takes on 

the binary discrete value {1, −1}, where 1 denotes true and −1 denotes false. Each clause in 3SAT 

contains unique variables, meaning there is no repetition of the same variable (variable or negation of a 

variable) in clause 𝐶𝑘 . Additionally, there are no repeated logical clauses within logical rules. 

The problem denoted by 3SAT can be formally described as follows: Given a 3SAT formula, the 

task is to determine if there is an assignment of Boolean variables that makes the entire formula true. In 

particular, each clause in the formula must have at least one true literal for the whole formula to be true. 

Instance. Suppose that for given a 3SAT problem, the conversion to the CNF 3SAT formula is: 

𝑃 = (𝑆1 ∨ 𝑆2 ∨ 𝑆3) ∧ (¬𝑆1 ∨ 𝑆2 ∨ 𝑆3) ∧ (𝑆1 ∨ ¬𝑆2 ∨ 𝑆3) ∧ (𝑆1 ∨ 𝑆2 ∨ ¬𝑆3) ∧ (¬𝑆1 ∨ ¬𝑆2 ∨ 𝑆3) ∧ (¬𝑆1 ∨ 𝑆2 ∨

¬𝑆3) ∧ (𝑆1 ∨ ¬𝑆2 ∨ ¬𝑆3) ∧ (𝑆1 ∨ 𝑆2 ∨ 𝑆4).                (2) 

   In Eq (2), 𝑃 is satisfiable if there exists a set of values for the variable 𝑆1, 𝑆2 , 𝑆3, 𝑆4 such that 

𝑃 = 1; otherwise, 𝑃 is unsatisfiable. 

The problem regarding 3SAT is a fundamental issue in computational complexity theory. Its 

NP-completeness and wide range of applications make it a crucial subject of research in both 

theoretical and practical contexts. Through a thorough examination of the 3SAT problem, a better 

understanding of computational complexity theory can be achieved, and effective tools and methods 

for solving practical problems can be provided. This study contributes to the advancement of 

computer science by exploring solution methods for 3SAT problems. 

2.2. DHNN 

Neural networks can be divided into two types based on the flow of information: Feed-forward 

and feedback neural networks. The output of a feedforward neural network depends only on the 

current input vector and weight matrix, independent of the network's previous input state. An 
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example of this is the commonly used back propagation (BP) neural network. In 1982, physicist 

professor J. J. Hopfield proposed [11] a single-layer feedback neural network, later called the 

Hopfield neural network. This network is of two types: Continuous Hopfield neural network (CHNN) 

and discrete Hopfield neural network (DHNN) [33,34]. DHNN has garnered significant attention due 

to its concise network structure and powerful memory function. It holds potential practical value in 

image recovery and optimization problems [35–37]. Figure 1 depicts the topology of a DHNN 

network with 𝑛 neurons. Each neuron is functionally identical and interconnected in pairs. The 

neurons are represented by the set 𝑂 = {𝑜1, 𝑜2, ⋯ , 𝑜𝑛}, and their corresponding states are denoted by 

the vector 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), and the value of 𝑥𝑖 takes binary discrete values, typically {−1,1} 
or {0,1}. The state of the network is described as 𝑋(𝑡) = (𝑥1(𝑡), 𝑥1(𝑡),⋯ , 𝑥𝑛(𝑡)) at time 𝑡, and 

the DHNN is stimulated by an external input to start its evolution. The outputs of localized lots are 

generated before the final state. The output of the local lot of the double link is:  

ℎ𝑖(𝑡) = ∑ 𝑤𝑖𝑗𝑥𝑖(𝑡)𝑗 − 𝑤𝑖,                           (3) 

where 𝑤𝑖 denotes a predefined threshold. The output of higher-order linked local lots is represented 

by Eq (4) as proposed by Mansor et al [22]. 

ℎ𝑖(𝑡) = ⋯+ ∑ ∑ 𝑤𝑖𝑗𝑘𝑥𝑖(𝑡)𝑥𝑗(𝑡)𝑘𝑗 + ∑ 𝑤𝑖𝑗𝑥𝑖(𝑡)
𝑛
𝑗=1 − 𝑤𝑖.                  (4) 

The output state of the neuron 𝑜𝑖  at the time 𝑡 + 1 is denoted as: 

𝑥𝑖(𝑡 + 1) = 𝑠𝑔𝑛(ℎ𝑖(𝑡)) = {
1, ℎ𝑖(𝑡) ≥ 0,

−1, ℎ𝑖(𝑡) < 0,
                          (5) 

where "𝑠𝑔𝑛" denotes the sign function and 𝑤𝑖𝑗 denotes the connection weights of neuron 𝑜𝑖 and 

neuron 𝑜𝑗, with the weights specified as follows.  

𝑤𝑖𝑗 = {
𝑤𝑗𝑖 , 𝑖 ≠ 𝑗,

0, 𝑖 = 𝑗.
                                  (6) 

In the network training phase, the Hebbian rule is usually used to calculate the weights 𝑤𝑖𝑗 as: 

𝑤𝑖𝑗 = ∑ (2𝑥𝑖
𝑠 − 1)(2𝑥𝑗

𝑠 − 1)𝑚
𝑠=1 ,                       (7) 

where m denotes the number of samples to be memorized. 

The DHNN is essentially a nonlinear dynamical system. The network starts evolving from an 

initial state, and the DHNN is considered stable when its state no longer changes after a finite 

number of iterations. In DHNN, stability is determined by introducing the Lyapunov function as the 

energy function, which serves as an indicator of stability [38]. The system reaches stability when the 

energy function reaches a minimum point of invariance. The energy function in DHNN is defined as:  

𝐸(𝑋) = ⋯−
1

3
∑ ∑ ∑ 𝑤𝑖𝑗𝑘𝑘 𝑥𝑖𝑥𝑗𝑥𝑘𝑗𝑖 −

1

2
∑ ∑ 𝑤𝑖𝑗𝑗𝑖 𝑥𝑖𝑥𝑗 −∑ 𝑤𝑖𝑥𝑖𝑖 .           (8) 

In 1983, Cohen and S. Grossberg showed that DHNNs evolve with a decreasing energy function 

and that a stable state of the network corresponds to a minimal value of the energy function. 

Consequently, for each stable state, we can check whether this state represents a global minimum by 

determining whether the energy function has reached a minimum [28]. If Eq (9) is satisfied, the 

stable state is considered a global minimum; otherwise, it is a local minimum. 

|𝐸(𝑋) − 𝐸𝑚𝑖𝑛| < 𝛿,                          (9) 



28105 

AIMS Mathematics  Volume 9, Issue 10, 28100–28129. 

where 𝐸𝑚𝑖𝑛  denotes the minimum value of the energy function and 𝛿  is the user-defined 

tolerance value. 

 

Figure 1. DHNN topology. 

3. Design of DHNN-3SAT model weights 

In this section, we will start by determining the synaptic weights of the DHNN 3SAT model 

using the WA method [21]. This method is a computational approach for deriving the synaptic 

weights of a network by aligning the cost function with the DHNN energy function. Our study 

acknowledges some challenges in this comparative method of deriving network synaptic weights, 

particularly as the number of variables and logical clauses increase. Additionally, the addition, 

deletion, and updating of logical clauses result in a large number of redundant computations. To 

tackle these issues, this section will outline the cost function of the basic logical clauses and compute 

the network synaptic weights by establishing the basic logical clauses of the CNF 3SAT formulae. 

This approach will allow for a more adaptable implementation in computing the network synaptic 

weights of the 3SAT when incorporated in a DHNN. The method is termed the BLC-WA method. 

Furthermore, the detailed calculation process using the BLC-WA method will be demonstrated with 

specific examples as logical clauses are added, deleted, and updated. 

3.1. WA method 

The WA method introduces a cost function based on propositional logic rules for the first time. 

It derives the synaptic weights of the network by comparing the cost function with the DHNN energy 

function, presenting a novel approach to using DHNN for solving the SAT problem. In this study, the 

WA method is used to incorporate the 3SAT problem into the DHNN for computing the network 

synaptic weights. The flowchart illustrating the implementation of the WA method is shown in Figure 2. 

The specific steps are as follows: 

Step 1. Given any 3SAT problem, transform it into a CNF 3SAT formula 𝑃. Suppose the formula 𝑃 
contains 𝑛 Boolean variables and 𝑚 logical clauses. 

Step 2. The 3SAT formula 𝑃 is embedded into the DHNN, and for each Boolean variable, a unique 

neuron is specified. At moment 𝑡, the state of these neurons is denoted by {𝑆1
𝑡, 𝑆2

𝑡, ⋯ , 𝑆𝑛
𝑡}. 
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Step 3. Applying De. Morgan's law to obtain ¬𝑃. When ¬𝑃 = 0, correspond to the consistency 

interpretation of P; when ¬𝑃 =1, correspond to the fact that at least one clause of 𝑃 is not satisfied. 

Step 4. Deriving the cost function 𝐸𝑃. When the literal variable in ¬𝑃 is represented by 
1

2
(1 − 𝑆𝑖) 

when it is ¬𝑆𝑖 and 
1

2
(1 + 𝑆𝑖) when it is 𝑆𝑖, the logical clauses are internally connected by the 

multiplication operation and between logical clauses by addition. This creates the cost function 𝐸𝑃. 

The magnitude of 𝐸𝑃 corresponds to the degree to which all logical clauses are satisfied. When 

𝐸𝑃 = 0 it represents a consistent interpretation of 𝑃. A larger value of 𝐸𝑃  represents a larger 

number of unsatisfied logical clauses. 

Step 5. Comparing the cost function 𝐸𝑃 with the energy function 𝐸(𝑋), the DHNN synaptic weight 

matrix 𝑊 corresponding to the 3SAT formula P is obtained. 

 

Figure 2. Design a flowchart of the real WA method. 

3.2. WA method applied to 3SAT instance 

In this section, we use the problem of Eq (2) in Section 2.1 as an example to illustrate the 

process of computing synaptic weights in the DHNN using the WA method of embedding logical 

clauses into the DHNN. 

To determine whether Eq (2) is satisfiable, the negation of Eq (2) is applied to De Morgan's law, 

which results in: 
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¬𝑃 = (¬𝑆1 ∧ ¬𝑆2 ∧ ¬𝑆3) ∨ (𝑆1 ∧ ¬𝑆2 ∧ ¬𝑆3) ∨ (¬𝑆1 ∧ 𝑆2 ∧ ¬𝑆3) ∨ (¬𝑆1 ∧ ¬𝑆2 ∧ 𝑆3) ∨ (𝑆1 ∧ 𝑆2 ∧ ¬𝑆3) ∨
(𝑆1 ∧ ¬𝑆2 ∧ 𝑆3) ∨ (¬𝑆1 ∧ 𝑆2 ∧ 𝑆3) ∨ (¬𝑆1 ∧ ¬𝑆2 ∧ ¬𝑆4).             (10) 

Since seeking a consistent interpretation of the terms of Eq (2) is the same as finding the smallest 

combination of inconsistent interpretations of Eq (10), the cost function can be defined as follows: 

 𝐸𝑃 =
1

2
(1 − 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 − 𝑆3) +

1

2
(1 + 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 − 𝑆3) +

1

2
(1 − 𝑆1)

1

2
(1 + 𝑆2)

1

2
(1 − 𝑆3) +

1

2
(1 − 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 + 𝑆3) +

1

2
(1 + 𝑆1)

1

2
(1 + 𝑆2)

1

2
(1 − 𝑆3) +

1

2
(1 + 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 + 𝑆3) +

1

2
(1 − 𝑆1)

1

2
(1 + 𝑆2)

1

2
(1 + 𝑆3) +

1

2
(1 − 𝑆1)

1

2
(1 − 𝑆2)

1

2
(1 − 𝑆4) 

= −
1

8
𝑆1𝑆2𝑆3 −

1

8
𝑆1𝑆2𝑆4 −

1

8
𝑆1𝑆3 +

1

8
𝑆1𝑆4 −

1

8
𝑆2𝑆3 +

1

8
𝑆2𝑆4 −

1

4
𝑆1 −

1

4
𝑆2 −

1

8
𝑆3 −

1

8
𝑆4 + 1      (11) 

When the formula of Eq (2) provided The 3SAT formula is satisfied, the cost function 𝐸𝑃 

reaches the minimum value of 0. At this point, the energy function for the corresponding DHNN 

converges to the global minimum, causing both the cost function and energy function to reach their 

minimum values. The network's synaptic weight matrix 𝑊𝑃, embedded in the DHNN by Eq (2), is 

derived by comparing the cost function (11) with the energy function (8) using the WA method, and 

the results are shown in Table 1. 

Table 1. WA method for 3SAT. 

Weights 𝑤123 𝑤124 𝑤134 𝑤234 𝑤12 𝑤13 𝑤14 𝑤23 𝑤24 𝑤34 𝑤1 𝑤2 𝑤3 𝑤4 

𝑃 
1

16
 

1

16
 0 0 0 

1

8
 −

1

8
 

1

8
 −

1

8
 0 

1

4
 

1

4
 

1

8
 

1

8
 

3.3. BLC-WA method  

Definition 3.1. For any CNF formula containing n Boolean variables and m logical clauses, it can be 

viewed as consisting of the following eight basic logical clauses: 

𝐶1
𝑙 = (𝑆𝑖 ∨ 𝑆𝑗 ∨ 𝑆𝑘), 𝐶2

𝑙 = (¬𝑆𝑖 ∨ 𝑆𝑗 ∨ 𝑆𝑘), 

𝐶3
𝑙 = (𝑆𝑖 ∨ ¬𝑆𝑗 ∨ 𝑆𝑘), 𝐶4

𝑙 = (𝑆𝑖 ∨ 𝑆𝑗 ∨ ¬𝑆𝑘), 

𝐶5
𝑙 = (¬𝑆𝑖 ∨ ¬𝑆𝑗 ∨ 𝑆𝑘), 𝐶6

𝑙 = (¬𝑆𝑖 ∨ 𝑆𝑗 ∨ ¬𝑆𝑘), 

𝐶7
𝑙 = (𝑆𝑖 ∨ ¬𝑆𝑗 ∨ ¬𝑆𝑘), 𝐶8

𝑙 = (¬𝑆𝑖 ∨ ¬𝑆𝑗 ∨ ¬𝑆𝑘),                    (12) 

where 𝑙 denotes the index at which the basic logical clause is looked up. 

Applying De Morgan's law to the eight basic logical clauses in Eq (12) yields the corresponding 

negative basic logical clauses: 

¬𝐶1
𝑙 = (¬𝑆𝑖 ∧ ¬𝑆𝑗 ∧ ¬𝑆𝑘), ¬𝐶2

𝑙 = (𝑆𝑖 ∧ ¬𝑆𝑗 ∧ ¬𝑆𝑘), 

¬𝐶3
𝑙 = (¬𝑆𝑖 ∧ 𝑆𝑗 ∧ ¬𝑆𝑘), 𝐶4

𝑙 = (¬𝑆𝑖 ∧ ¬𝑆𝑗 ∧ 𝑆𝑘), 

¬𝐶5
𝑙 = (𝑆𝑖 ∧ 𝑆𝑗 ∧ ¬𝑆𝑘), ¬𝐶6

𝑙 = (𝑆𝑖 ∧ ¬𝑆𝑗 ∧ 𝑆𝑘), 
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¬𝐶7
𝑙 = (¬𝑆𝑖 ∧ 𝑆𝑗 ∧ 𝑆𝑘), ¬𝐶8

𝑙 = (𝑆𝑖 ∧ 𝑆𝑗 ∧ 𝑆𝑘).                       (13) 

The consistency clause of each basic logic clause in seeking pair Eq (12) is equal to the 

minimum of the inconsistency clause of the negated basic logic clause in seeking pair Eq (13). The 

corresponding cost function for each basic logic clause is defined as follows: 

𝐸𝐶1𝑙 =
1

2
(1 − 𝑆𝑖)

1

2
(1 − 𝑆𝑗)

1

2
(1 − 𝑆𝑘), 𝐸𝐶2𝑙 =

1

2
(1 + 𝑆𝑖)

1

2
(1 − 𝑆𝑗)

1

2
(1 − 𝑆𝑘), 

𝐸𝐶3𝑙 =
1

2
(1 − 𝑆𝑖)

1

2
(1 + 𝑆𝑗)

1

2
(1 − 𝑆𝑘), 𝐸𝐶4𝑙 =

1

2
(1 − 𝑆𝑖)

1

2
(1 − 𝑆𝑗)

1

2
(1 + 𝑆𝑘), 

𝐸𝐶5𝑙
=

1

2
(1 + 𝑆𝑖)

1

2
(1 + 𝑆𝑗)

1

2
(1 − 𝑆𝑘), 𝐸𝐶6𝑙 =

1

2
(1 + 𝑆𝑖)

1

2
(1 − 𝑆𝑗)

1

2
(1 + 𝑆𝑘), 

𝐸𝐶7𝑙 =
1

2
(1 − 𝑆𝑖)

1

2
(1 + 𝑆𝑗)

1

2
(1 + 𝑆𝑘), 𝐸𝐶8𝑙 =

1

2
(1 + 𝑆𝑖)

1

2
(1 + 𝑆𝑗)

1

2
(1 + 𝑆𝑘).          (14) 

Each basic logic clause is embedded into a DHNN separately. When each basic logic clause is 

satisfiable, the corresponding DHNN converges to the global minimum. At this point, the cost 

function and the corresponding energy function of the basic logic clause reach their minimum values. 

By comparing the cost function (14) of the basic logic clauses with the energy function (8), the basic 

logic clause weight matrix of the 3SAT formula can be derived. This weight matrix is abbreviated as 

3SAT-BLCWM, and the results are shown in Table 2. 

Table 2. 3SAT-BLCWM. 

Weights 𝐶1
𝑙 𝐶2

𝑙 𝐶3
𝑙 𝐶4

𝑙 𝐶5
𝑙 𝐶6

𝑙 𝐶7
𝑙  𝐶8

𝑙  

𝑤𝑖 1 8⁄  −1 8⁄  1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  
𝑤𝑗 1 8⁄  1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  

𝑤𝑘 1 8⁄  1 8⁄  1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  −1 8⁄  
𝑤𝑖𝑗 −1 8⁄  1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  1 8⁄  1 8⁄  −1 8⁄  
𝑤𝑖𝑘 −1 8⁄  −1 8⁄  1 8⁄  1 8⁄  1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  
𝑤𝑗𝑘 −1 8⁄  1 8⁄  −1 8⁄  1 8⁄  1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  

𝑤𝑖𝑗𝑘 1 16⁄  −1 16⁄  −1 16⁄  −1 16⁄  1 16⁄  1 16⁄  1 6⁄  −1 16⁄  

Any 3SAT formula can be seen as made up of the basic logical clauses in Eq (12). Each logical 

clause in the 3SAT formula corresponds to a basic logical clause. So, when the DHNN learns a new 

logical clause, it only needs to identify the corresponding basic logical clauses, then refer to Table 2, 

and combine and calculate the network weight values to derive the network synaptic weights after 

adding a new logical clause. Figure 3 illustrates the flowchart of calculating network synaptic 

weights using the BLC-WA method. The specific steps for calculating network synaptic weights 

using the BLC-WA method are as follows: 

Step 1. Given any 3SAT problem, transform it into CNF 3SAT formula 𝑃, which is assumed to 

contain N Boolean variables and M logical clauses; 

Step 2. The 3SAT-BLCWM was established using the WA method (Table 2); 

Step 3. Analyze CNF 3SAT formula 𝑃 to map each logical clause to the basic logical clause; 

Step 4. Based on Table 2 (3SAT-BLCWM), the weights corresponding to each logical clause of the 

3SAT formula 𝑃 are found. These weights are then spelled out by columns into the indexed result 

weight matrix 𝑊′; 

Step 5 The weight matrix 𝑊 of formula 𝑃 for 3SAT is obtained by combining and summing the 
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result weight matrices 𝑊′ by columns. 

 

 

Figure 3. Flowchart of calculating connection weights based on the BLC-WA method. 

Next, we compute the 3SAT instances of Section 2.1 using the BLC-WA method based on Eq (2) 

which can be written in correspondence with the basic logical clause as: 

𝑃 = 𝐶1
1 ∧ 𝐶2

1 ∧ 𝐶3
1 ∧ 𝐶4

1 ∧ 𝐶5
1 ∧ 𝐶6

1 ∧ 𝐶7
1 ∧ 𝐶1

2.                        (15) 

According to Table 2 (3SAT-BLCWM), the network synaptic weights corresponding to each 

logical clause of formula 𝑃 can be found by indexing the results of the weight matrix 𝑊′ using the 

columns. The results are shown in Table 3. The network synaptic weight matrix 𝑊𝑃 for the 3SAT 

formula 𝑃 can be obtained by merging and adding the indexing results according to the columns, 

which are also shown in Table 3. 
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Table 3. Calculation of synaptic weights of CNF 3SAT network based on BLC-WA method. 

Weights 𝐶1
1 𝐶2

1 𝐶3
1 𝐶4

1 𝐶5
1 𝐶6

1 𝐶7
1 𝐶1

2 𝑃 
𝑤1 1 8⁄  −1 8⁄  1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  1 8⁄  1 8⁄  1 4⁄  
𝑤2 1 8⁄  1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  1 8⁄  1 4⁄  
𝑤3 1 8⁄  1 8⁄  1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  0 1 8⁄  
𝑤4 0 0 0 0 0 0 0 1 8⁄  1 8⁄  
𝑤12 −1 8⁄  1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  1 8⁄  1 8⁄  −1 8⁄  0 
𝑤13 −1 8⁄  −1 8⁄  1 8⁄  1 8⁄  1 8⁄  −1 8⁄  1 8⁄  0 1 8⁄  
𝑤14 0 0 0 0 0 0 0 −1 8⁄  −1 8⁄  
𝑤23 −1 8⁄  1 8⁄  −1 8⁄  1 8⁄  1 8⁄  −1 8⁄  1 8⁄  0 1 8⁄  
𝑤24 0 0 0 0 0 0 0 −1 8⁄  −1 8⁄  
𝑤34 0 0 0 0 0 0 0 0 0 
𝑤123 1 16⁄  −1 16⁄  −1 16⁄  −1 16⁄  1 16⁄  1 16⁄  1 16⁄  0 1 16⁄  
𝑤124 0 0 0 0 0 0 0 1 16⁄  1 16⁄  
𝑤234 0 0 0 0 0 0 0 0 0 

3.4. Design of weights for dynamic constraints for the 3SAT problem  

In SAT problems, the constraints often change, with constraints increasing, decreasing, and 

updating. The traditional DHNN-SAT method requires redesigning the weights of the SAT problem 

and constructing a new DHNN when facing this type of problem, which does not utilize the original 

SAT problem's information. As the original SAT problem's constraints increase, the corresponding 

original CNF formulation also increases the logical clauses, leading to a large number of redundant 

computations when dealing with large-scale logical clauses. This severely limits the effectiveness of 

the traditional DHNN-SAT method in solving problems with large-scale increasing constraints. To 

address this issue, this study proposes the BLC-WA method, a new design method for the SAT 

problem with changing constraints. This method utilizes the synaptic weight information of the 

original SAT problem in DHNN, saving a significant amount of repeated calculations. In the 

following section, the network synaptic weight design method for SAT problems with increasing, 

decreasing, and updating constraints will be introduced, providing a new approach for solving SAT 

problems with constantly changing constraints. 

3.4.1. Adding constraints 

The addition of constraints to the original SAT problem is equivalent to adding logical clauses 

to the CNF SAT formula. 

There is a 3SAT problem that translates into the CNF 3SAT formula: 

𝑃 = 𝐶1
𝑙1 ∧ 𝐶2

𝑙2 ∧ ⋯ ∧ 𝐶𝑚
𝑙𝑚 .                               (16) 

When 𝑟 logical clauses are added, the original CNF 3SAT formula becomes: 

𝑃𝑎𝑑𝑑 = 𝐶1
𝑙1 ∧ 𝐶2

𝑙2 ⋯∧ 𝐶𝑚
𝑙𝑚 ∧ 𝐶𝑚+1

𝑙𝑚+1 ∧ 𝐶𝑚+2
𝑙𝑚+2 ∧ ⋯∧ 𝐶𝑚+𝑟

𝑙𝑚+2.               (17) 

Figure 4 depicts the flowchart of the BLC-WA method for solving the original 3SAT problem 

with additional constraints. This method is implemented as follows: 

Step 1. Let the original CNF 3SAT formula 𝑃 become 𝑃𝑎𝑑𝑑 by adding 𝑟 logical clauses (Eq 14); 
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Step 2. The basic logical clauses were mapped to the additional logical clauses, and the synaptic 

weights of the additional logical clauses were determined based on Table 2 (3SAT-BLCWM); 

Step 3. The synaptic weights of the CNF 3SAT formula 𝑃𝑎𝑑𝑑  after adding the 𝑟 logical clauses 

were calculated using the following Eq (18). 

𝑊𝑎𝑑𝑑=𝑊𝑃 + 𝑊𝑎𝑑𝑑(1) + 𝑊𝑎𝑑𝑑(2) + ⋯+ 𝑊𝑎𝑑𝑑(𝑟).                     (18) 

The following is a concrete demonstration of the implementation process using the 3SAT 

instance from Section 2.1. 

Assuming that Eq (2) combines the logical clauses 𝐶2
2 = ¬𝑆1 ∨ 𝑆2 ∨ 𝑆4 and 𝐶3

2 = 𝑆1 ∨ ¬𝑆2 ∨ 𝑆4, 

the new CNF formula at this point is notated as 𝑃add, specifically, as follows: 

𝑃𝑎𝑑𝑑 = 𝐶1
1 ∧ 𝐶2

1 ∧ 𝐶3
1 ∧ 𝐶4

1 ∧ 𝐶5
1 ∧ 𝐶6

1 ∧ 𝐶7
1 ∧ 𝐶1

2 ∧ 𝐶2
2 ∧ 𝐶3

2 .                    (19) 

In Section 3.3, the synaptic weights (𝑊𝑃) of the formula 𝑃 in the network have been obtained 

using the BLC-WA method. Then, the synaptic weights of the newly added logical clauses (𝐶2
2 and 

𝐶3
2) are obtained by searching for Table 2 (3SAT-BLCWM) and then combined and summed with the 

synaptic weights (𝑊𝑃) of the formula 𝑃 to obtain the new synaptic weights (𝑊𝑎𝑑𝑑) of the CNF 

formula 3SAT 𝑃𝑎𝑑𝑑. The calculation results are shown in Table 4. 

Table 4. Synaptic weights after adding, subtracting, and updating logical clauses. 

Weights 𝑃 𝐶2
2 𝐶3

2 𝑃add 𝐶2
1 𝐶3

1 𝑃𝑑𝑒𝑐 𝐶7
1 𝐶1

2 𝐶8
1 𝐶1

3 𝑃𝑢𝑝𝑑 

𝑤1 1 4⁄  −1 8⁄  1 8⁄  1 4⁄  −1 8⁄  1 8⁄  1 4⁄  1 8⁄  1 8⁄  −1 8⁄  0 −1 8⁄  
𝑤2 1 4⁄  1 8⁄  −1 8⁄  1 4⁄  1 8⁄  −1 8⁄  1 4⁄  −1 8⁄  1 8⁄  −1 8⁄  1 8⁄  1 4⁄  
𝑤3 1 8⁄  0 0 1 8⁄  1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  0 −1 8⁄  1 8⁄  1 4⁄  
𝑤4 1 8⁄  1 8⁄  1 8⁄  3 8⁄  0 0 1 8⁄  0 1 8⁄  0 1 8⁄  1 8⁄  
𝑤12 0 1 8⁄  1 8⁄  1 4⁄  1 8⁄  1 8⁄  −1 4⁄  1 8⁄  −1 8⁄  −1 8⁄  0 −1 8⁄  
𝑤13 1 8⁄  0 0 1 8⁄  −1 8⁄  1 8⁄  1 8⁄  1 8⁄  0 −1 8⁄  0 −1 8⁄  
𝑤14 −1 8⁄  −1 8⁄  1 8⁄  −1 8⁄  0 0 −1 8⁄  0 −1 8⁄  0 0 0 
𝑤23 1 8⁄  0 0 1 8⁄  1 8⁄  −1 8⁄  1 8⁄  1 8⁄  0 −1 8⁄  −1 8⁄  −1 4⁄  
𝑤24 −1 8⁄  1 8⁄  −1 8⁄  −1 8⁄  0 0 −1 8⁄  0 −1 8⁄  0 −1 8⁄  −1 8⁄  
𝑤34 0 0 0 0 0 0 0 0 0 0 −1 8⁄  −1 8⁄  
𝑤123 1 16⁄  0 0 1 16⁄  −1 16⁄  −1 16⁄  3 16⁄  1 16⁄  0 −1 16⁄  0 −1 16⁄  
𝑤124 1 16⁄  −1 16⁄  −1 16⁄  −1 16⁄  0 0 1 16⁄  0 1 16⁄  0 0 0 
𝑤234 0 0 0 0 0 0 0 0 0 0 1 16⁄  1 16⁄  

3.4.2. Declining constraints 

Setting the original CNF 3SAT formula (16) reduces d logical clauses, and the original CNF 

3SAT formula becomes: 

𝑃𝑑𝑒𝑐 = 𝐶1
𝑙1 ∧ 𝐶2

𝑙2 ∧ ⋯ ∧ 𝐶𝑚−𝑑
𝑙𝑚−𝑑 .                         (20) 

The flowchart for solving the original 3SAT problem with reduced constraints based on the 

BLC-WA method is also shown in Figure 4. It is implemented as follows: 

Step 1. The original CNF 3SAT formula 𝑃 is reduced by 𝑑 logical clauses to 𝑃𝑑𝑒𝑐; 

Step 2. The basic logical clauses were mapped to the reduced logical clauses, and the synaptic 

weights of the reduced logical clauses were determined based on Table 2 (3SAT-BLCWM); 

Step 3. The synaptic weights of the CNF 3SAT formula 𝑃𝑑𝑒𝑐 after declining the 𝑑 logical clauses 
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were calculated using the following Eq (21). 

𝑊𝑑𝑒𝑐 = 𝑊𝑃 − 𝑊𝑑𝑒𝑐(1) − 𝑊𝑑𝑒𝑐(2) − ⋯−𝑊𝑑𝑒𝑐(𝑑).                  (21) 

 

Figure 4. Flowchart of synaptic weights design based on state constraints of BLC-WA method. 

The following is a concrete demonstration of the implementation process using the 3SAT 

instance from Section 2.1. 

Assuming that Eq (2) reduces the logical clauses 𝐶2
1 = ¬𝑆1 ∨ 𝑆2 ∨ 𝑆3 and 𝐶3

1 = 𝑆1 ∨ ¬𝑆2 ∨ 𝑆3, 

the new CNF formula at this point is notated as 𝑃𝑑𝑒𝑐, specifically, as follows: 

𝑃𝑑𝑒𝑐 = 𝐶1
1 ∧ 𝐶4

1 ∧ 𝐶5
1 ∧ 𝐶6

1 ∧ 𝐶7
1 ∧ 𝐶1

2 .                        (22) 
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To start, the synaptic weights for the reduced logical clauses 𝐶2
1 and 𝐶3

1 are determined by 

searching for Table 2 (3SAT-BLCWM). Next, the synaptic weights 𝑊𝑃  of the original 3SAT 

formula 𝑃 are subtracted from the synaptic weights of the reduced logical clauses. This process 

yields the synaptic weights 𝑊𝑑𝑒𝑐 for the new CNF 3SAT formula 𝑃𝑑𝑒𝑐. The computational results 

are also displayed in Table 4. 

3.4.3. Updating constraints 

When the original CNF formula (16) is updated with 𝑢 logical clauses, it can be regarded as a 

reduction of 𝑢 logical clauses from the original formula and the addition of 𝑢 new logical clauses. 

The updated CNF formula is: 

𝑃𝑢𝑝𝑑 = 𝐶1
𝑙1 ∧ 𝐶2

𝑙2 ∧ ⋯ ∧ 𝐶𝑚−𝑢
𝑙𝑚−𝑢 ∧ 𝐶𝑚−𝑢+1

𝑙𝑚−𝑢+1
′

∧ 𝐶𝑚+2

𝑙𝑚−𝑢+2
′

∧ ⋯ ∧ 𝐶𝑚
𝑙𝑚
′

               (23) 

The flowchart when updating the constraints based on the BLC-WA method is also shown in 

Figure 4, which is implemented as follows: 

Step 1. The original CNF 3SAT formula 𝑃 is updated by 𝑢 logical clauses to 𝑃𝑢𝑝𝑑 ; 

Step 2. The basic logical clauses were mapped to the updated  logical clauses, and the synaptic 

weights of the updated logical clauses were determined based on Table 2 (3SAT-BLCWM); 

Step 3. The synaptic weights of the CNF 3SAT formula 𝑃𝑢𝑝𝑑  after updating the 𝑢 logical clauses 

were calculated using the following Eq (24). 

𝑊𝑢𝑝𝑑 = 𝑊𝑃 − 𝑊𝑑𝑒𝑐(1) − 𝑊𝑑𝑒𝑐(2) − ⋯− 𝑊𝑑𝑒𝑐(𝑢) + 𝑊𝑎𝑑𝑑(1) + 𝑊𝑎𝑑𝑑(2) + ⋯+𝑊𝑎𝑑𝑑(𝑢).     (24) 

The following is a concrete demonstration of the implementation process using the 3SAT 

instance from Section 2.1. 

Suppose the logical clauses 𝐶7
1 = 𝑆1 ∨ ¬𝑆2 ∨ ¬𝑆3  and 𝐶1

2 = 𝑆1 ∨ 𝑆2 ∨ 𝑆4 in the original CNF 

3SAT formula 𝑃 are updated to 𝐶8
1 = ¬𝑆1 ∨ ¬𝑆2 ∨ ¬𝑆3 and 𝐶1

3 = 𝑆2 ∨ 𝑆3 ∨ 𝑆4, and the updated CNF 

3SAT formula is now denoted as 𝑃𝑢𝑝𝑑, specifically for: 

𝑃𝑢𝑝𝑑 = 𝐶1
1 ∧ 𝐶2

1 ∧ 𝐶3
1 ∧ 𝐶4

1 ∧ 𝐶5
1 ∧ 𝐶6

1 ∧ 𝐶8
1 ∧ 𝐶1

3 .                     (25) 

To begin, find the synaptic weights of logical clauses 𝐶7
1, 𝐶1

2, 𝐶8
1 and 𝐶1

3 by searching for 

Table 2 (3SAT-BLCWM). Then, subtract the synaptic weights of logical clause 𝐶7
1, 𝐶1

2 from the 

original SAT formula 𝑃. Finally, the synaptic weights of logical clause 𝐶8
1,𝐶1

3 are added to obtain the 

network synaptic weights 𝑊𝑢𝑝𝑑 of the updated 3SAT formula 𝑃𝑢𝑝𝑑. The results of the computation 

are also displayed in Table 4. 

4. Optimized K-modes clustering algorithm 

4.1. K-modes clustering algorithm 

The K-modes clustering algorithm is a method specifically designed for handling discrete 

data [39–42]. It extends the traditional K-means algorithm, which is mainly used for datasets with 

continuous attributes. The K-modes algorithm uses the Hamming distance as a metric [43], where 

this distance measures the number of differing attribute values between two sample points. In this 

algorithm, the Hamming distance is computed by adding the number of different attribute values 
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between two samples, representing the degree of difference for a given sample compared to a 

clustering center. Finally, the samples are classified into the category that belongs to the clustering 

center with the smallest degree of difference. We can see the clustering process of the K-modes 

algorithm in Figure 5. 

 

Figure 5. Clustering process of K-modes clustering algorithm. 

Let 𝑋 = {𝑋1, 𝑋2, ⋯ , 𝑋𝑚} represent the set of samples to be clustered, and 𝑋𝑖 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 
represent the 𝑛-dimensional vector with each component taking discrete values. 𝑍 = {𝑍1, 𝑍2, ⋯ , 𝑍𝑘} 
represents the clustering center and 𝑍𝑗 = (𝑧1, 𝑧2, ⋯ , 𝑧𝑛), 𝑗 = 1,2,⋯ , 𝑘. The objective function of the 

K-modes clustering algorithm is defined as: 

𝐹(𝛷, 𝑍)∑ ∑ 𝜙𝑖𝑗𝐷(𝑋𝑖, 𝑍𝑗)
𝑚
𝑖=1

𝑘
𝑗=1 ,                         (26)   

where 𝜙𝑖𝑗 ∈ {0,1}, ∑ 𝜙𝑖𝑗
𝑘
𝑗=1 = 1, 1 ≤ 𝑖 ≤ 𝑛, 𝛷  is the matrix of one, 𝑘  denotes the number of 

clusters, 𝜙𝑖𝑗 = 1 if the ith object is classified in the 𝑗-th class, otherwise 𝜙𝑖𝑗 = 0. 𝑍𝑗 is the center 

of the 𝑗-th class. 𝐷(𝑋𝑖, 𝑍𝑗) denotes the computation of the Hamming distance between 𝑋𝑖 and 𝑍𝑗: 

    𝐷(𝑋𝑖, 𝑍𝑗) = ∑ 𝑑(𝑥𝑖, 𝑧𝑖),
𝑛
𝑖=1                         (27)  

where 𝑑(𝑥𝑖, 𝑧𝑖) = {
0, 𝑥𝑖 = 𝑧𝑖
1, 𝑥𝑖 ≠ 𝑧𝑖

. 

The classification process must meet the following conditions: (1) every family must contain at 

least one sample; (2) each sample must belong to one and only one class. The fundamental steps of 

the K-modes clustering algorithm are as follows: 

Step 1. Randomly identifying k clustering centers 𝑍1, 𝑍2, ⋯ , 𝑍𝑘. 

Step 2. For each sample 𝑋𝑖(𝑖 = 1,2,⋯ ,𝑚) in the dataset, its Hamming distance from the 𝑘 

clustering centers is calculated separately using Eq (27), and the sample 𝑋𝑖 is classified into the 

category closest to the centroid. 

Step 3. After dividing all the samples into clusters, the cluster center "𝑍𝑗" is recalculated, and each 

center component is updated to its plural. 

Step 4. Repeat the process of Steps 2 and 3 above until the objective function 𝐹 no longer changes. 
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4.2.  K-modes clustering algorithm optimized by genetic algorithm 

To address the limitations of the K-modes clustering algorithm, which make it difficult to 

determine the optimal number of clusters and easy to get stuck at a local optimum, researchers have 

incorporated a genetic algorithm with adaptive global optimization search capabilities into the 

K-modes clustering algorithm [44,45]. This involves using a fitness function to carry out genetic 

operations, primarily mutation, to automatically learn the cluster centroids for the K-modes 

algorithm. Figure 6. shows the workflow diagram of the K-modes clustering algorithm for genetic 

optimization, which was developed in the following steps: 

Step 1. Parameter initialization. Set relevant parameters: Initial cluster number 𝑘, population size m, 

crossover probability 𝑝𝑐, variation probability 𝑝𝑚, maximum number of iterations 𝑡. 

Step 2. Randomly generate the initial population. Randomly generate k initial clustering centers 

𝑍1, 𝑍2, ⋯ , 𝑍𝑘  as initial population individuals. 

Step 3. Take the population individual 𝑍1, 𝑍2, ⋯ , 𝑍𝑘 as the clustering center and use K-modes 

clustering algorithm for clustering. 

Step 4. Calculate the fitness value of individuals in the population. Here the fitness function is 

defined as follows: 

𝑓 =
𝐷𝑚𝑖𝑛

𝐷(𝑋)
,                                     (28)   

where 𝐷𝑚𝑖𝑛 is the minimum class spacing and 𝐷(𝑋) is the average class spacing which is defined 

as follows: 

𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛
𝑖,𝑗=1

𝐷(𝑍𝑖, 𝑍𝑗).                               (29) 

𝐷(𝑋) =
1

𝑘
∑ ∑

𝐷(𝑋𝑖,𝑍𝑗)

𝑚𝑗
.

𝑚𝑗

𝑖=1
𝑘
𝑗=1                             (30) 

This fitness function is based on the idea that class separation should be maximized while 

intra-class spacing should be minimized. In other words, the goal is to maximize the distance 

between classes (𝐷𝑚𝑖𝑛 ) and minimize the variability within classes (𝐷(𝑋)). Throughout the 

evolutionary process, the individual population size is represented by the k value. If the 𝑘 value is 

less than the optimal number of clusters, increasing 𝑘 leads to a decrease in 𝐷𝑚𝑖𝑛 and 𝐷(𝑋), but 

the clustering division is not optimal. The decrease in 𝐷(𝑋) is more significant than 𝐷𝑚𝑖𝑛, resulting 

in an increase in the fitness function value. Conversely, if the k value exceeds the optimal number 

of clusters, the change in 𝐷(𝑋) is not significant, and the intra-class spacing becomes very small 

due to secondary clustering. As a result, 𝐷𝑚𝑖𝑛 becomes very small, leading to a decrease in the 

overall fitness function value. Therefore, this fitness function can guide the 𝑘 value toward the 

optimal number of clusters when the initial clustering center is optimized. 

Step 5. Perform selection, crossover, and mutation operations to generate a new generation population. 

Step 6. Repeat Step 3 to Step 5 until the maximum number of iterations is reached. 

Step 7. Calculate the fitness value for each individual in the population and select the output with the 

highest fitness value. 
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Figure 6. Workflow diagram of K-modes clustering optimized by genetic algorithm. 

5. Development of DHNN-3SAT model based on genetic optimization K-modes clustering algorithm 

The conventional DHNN-3SAT-WA model uses an exhaustive search (ES) during the retrieval 

phase [46], aiming to conduct a random search among individual candidate solutions to find a 

consistent interpretation that satisfies the 3SAT terms. Some researchers have proposed optimizing 

the traditional DHNN-3SAT-WA model by using heuristic algorithms such as the GA and ICA, 

denoted as DHNN-3SAT-GA [26] and DHNN-3SAT-ICA [38]. These methods can expedite the 

search for global or feasible solutions. However, unguided random initial assignment of candidate 

solutions leads to numerous repeated invalid solutions and fails to converge, often falling into a local 

optimum after DHNN evolution. Furthermore, as the number of Boolean variables and logical 

clauses increases, the size and logical complexity of the network expands, resulting in a rapid growth 

of the solution space. This makes the model susceptible to oscillations and more likely to land in 
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local minima. Therefore, reducing the DHNN-3SAT-WA model’s search time and preventing it from 

falling into local minima is a significant challenge in this field. The implementation process of the 

traditional DHNN-3SAT-WA, DHNN-3SAT-GA, and DHNN-3SAT-ICA models is depicted in Figure 7. 

This study proposes a new solution to address these challenges: the DHNN-3SAT model based 

on the genetic optimization K-modes clustering algorithm referred to as DHNN-3SAT-GAKM. In 

this model, candidate solutions in the allocation space are clustered using the K-modes clustering 

algorithm, leading to initial allocation through a random search from each class. By reducing 

repeated initial candidate solutions and avoiding local optima to some extent, this process accelerates 

the search for the global minimum, improving the efficiency of global minimum retrieval. To 

determine the optimal number of clusters for the K-modes clustering algorithm, the genetic algorithm 

with adaptive global optimization search capability is introduced. The number of clusters is 

determined by calculating the value of the constructed fitness function, further enhancing global 

search capability. 

The DHNN-3SAT-GAKM model aims to find a consistent set of Boolean variable values for the 

3SAT problem. During the model's initialization phase, each neuron in the DHNN is connected to a 

specific Boolean variable in the CNF, and the connection weights represent the relationship between 

the variable and the clause. A WA method using basic logical clauses will be employed to determine 

the cost during the learning phase. In the retrieval phase, the DHNN is utilized to evolve, update, and 

iterate until the network reaches a stable equilibrium state, signified by a minimal energy function 

value. The energy function's primary purpose is to indicate whether this stable state corresponds to a 

global minimum of the 3SAT problem, which in turn represents a consistent interpretation of the 

CNF. Please see Figure 8 for the flowchart of the DHNN-3SAT-GAKM model development, and the 

implementation steps are summarized as follows: 

Step 1. Model Preparation. For a given 3SAT problem, transform it into the corresponding CNF 

formulation, denoted as 𝑃 . Assume it contains 𝑛  Boolean variables and 𝑚  logical clauses. 

Initialize the optimization algorithm parameters. 

Step 2. Each Boolean variable of the 3SAT formula is uniquely assigned a Hopfield neuron in the 

DHNN design, which consists of 𝑛  neurons 𝑂 = {𝑜1, 𝑜2, ⋯ , 𝑜𝑛}, with the state at moment 𝑡 
denoted 𝑋(𝑡) = (𝑥1(𝑡), 𝑥1(𝑡),⋯ , 𝑥𝑛(𝑡)). 

Step 3. The BLC-WA method was used to calculate the 3SAT formula 𝑃 synaptic weights and 

derive its cost function 𝐸𝑝. When 𝑃 = 1, 𝐸𝑝 = 0, at which time the energy function reaches its 

minimum value, giving 𝐸𝑚𝑖𝑛 = −
𝑚

8
. 

Step 4. Generate an initial candidate solution space by randomly creating m initial candidate 

solutions {𝑋1(𝑡), 𝑋2(𝑡),⋯ , 𝑋𝑚(𝑡)}. 
Step 5. The initial candidate solution {𝑋1(𝑡), 𝑋2(𝑡),⋯ , 𝑋𝑚(𝑡)} is clustered using the K-modes 

clustering algorithm based on genetic optimization to obtain the optimal number of clusters 𝑘. 

Step 6. Determine the candidate subset for retrieval. Candidate subset denoted as 

{𝑌1(𝑡), 𝑌2(𝑡),⋯ , 𝑌𝑐(𝑡)}，where 𝑐 = 𝑚 𝑘⁄ ，𝑌𝑙(𝑡) = (𝑦1(𝑡), 𝑥、𝑦2(𝑡),⋯ , 𝑦𝑛(𝑡)) , 𝑙 = 1,2,⋯ , 𝑐. 𝑦𝑖(𝑡) 

corresponds to the state of 𝑡 at the moment of the neuron 𝑜𝑖. 
Step 7. DHNN Evolution. For 𝑌𝑙(𝑡) = (𝑦1(𝑡), 𝑦1(𝑡),⋯ , 𝑦𝑛(𝑡))，𝑙 = 0, 𝑡 = 0, state updates are 

performed using Eq (5) until a stable state is reached. If 𝑌𝑙(𝑡 + 1) ≠ 𝑌𝑙(𝑡), then 𝑡 = 𝑡 + 1, and if 

𝑌𝑙(𝑡 + 1) = 𝑌𝑙(𝑡), the network reaches a steady state. Proceed to the next step. 

Step 8. Retrieval Phase. Check if the energy of the steady state satisfies |𝐸 − 𝐸𝑚𝑖𝑛| < 𝛿. If it does, 

store the steady-state 𝑌𝑙(𝑡) as a global minimum. If it doesn't, 𝑙 = 𝑙 + 1, consider it as a local 
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minimum and go back to Step 6. 

Step 9. Model Evaluation. The model is assessed using the metrics of global minimum ratio, 

Hamming distance, CPU time, steady-state retrieval rate, and global minimum retrieval rate. 

 
Figure 7. Implementation process of conventional DHNN-3SAT-WA, DHNN-3SAT-GA and 

DHNN-3SAT-ICA models. 
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Figure 8. Flowchart for the development of DHNN-3SAT model based on K-modes clustering 

algorithm for genetic optimization. 
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6. Data experiments 

To thoroughly evaluate the performance of the DHNN-3SAT-GAKM model and its ability to 

solve real-world application problems, this section examines its performance alongside the 

conventional DHNN-3SAT-WA, DHNN-3SAT-GA, and DHNN-3SAT-ICA models on a benchmark 

dataset. Experimental analyses were conducted to compare their performance and demonstrate the 

superiority of the DHNN-3SAT-GAKM model proposed in this study. The experiments were carried 

out using MATLAB R2023b on a laptop computer running the Windows 10 operating system, 

equipped with an AMD Razor R5-3500U processor and 8 GB of RAM. 

6.1.  Description of the dataset 

This study utilizes the DIMACS Benchmark Instances AIM dataset from SATLIB, provided by 

Kazuo Iwama et al. (https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html). The AIM dataset 

comprises of 48 instances, with 24 being satisfiable and 24 unsatisfiable. To create a representative 

set of instances, 12 of these satisfiable instances are chosen for this study. Each instance contains 

three clauses, and you can find specific descriptions of the instances in Table 5. 

Table 5. Description of example data. 

No. Instance variables Clauses No. Instance variables Clauses 

1 aim-50-1_6-yes1-1 50 80 7 aim-100-3_4-yes1-1 100 340 

2 aim-50-2_0-yes1-1 50 100 8 aim-100-6_0-yes1-1 100 600 

3 aim-50-3_4-yes1-1 50 170 9 aim-200-1_6-yes1-1 200 320 

4 aim-50-6_0-yes1-1 50 300 10 aim-200-2_0-yes1-1 200 400 

5 aim-100-1_6-yes1-1 100 160 11 aim-200-3_4-yes1-1 200 680 

6 aim-100-2_0-yes1-1 100 200 12 aim-200-6_0-yes1-1 200 1200 

6.2. Parameter setting 

In the search phase, the traditional DHNN-3SAT-WA model directly examines 10,000 different 

combinations of initial neuron assignments [46]. DHNN-3SAT-GA and DHNN-3SAT-ICA guide the 

search among these 10,000 combinations using a genetic algorithm and an imperialistic competition 

algorithm, respectively. This paper introduces the DHNN-3SAT-GAKM model, which utilizes 

genetic optimization K-modes clustering to preprocess these 10000 neuron initial allocation 

combinations. It then selects a candidate subset for search. This approach reduces the actual search 

space and minimizes repeated local searches to avoid getting stuck in local minima, thereby 

improving the efficiency of retrieving the global minimum. The tolerance values for the conventional 

DHNN-3SAT-WA model align with Sathasivam's work [16]. The CPU time thresholds are based on 

Zamri's settings [47]. The parameter settings can be found in Table 6. The parameter settings for the 

DHNN-3SAT-GA model are in line with Kasihmuddin's work [26] and are listed in Table 7. The 

parameter settings for the DHNN-3SAT-ICA model remain consistent with Shazli's work [38], as 

shown in Table 8. Table 9 details the parameter settings of the model in this paper, with optimization 

of the relevant parameters through iterative tuning. 
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Table 6. DHNN-3SAT-WA model parameter settings. 

parametric parameter value parametric parameter value 

Initial assigned amount 10000 tolerance value 𝛿 0.001 

CPU time threshold 24 hours - - 

Table 7. DHNN-3SAT-GA model parameter settings. 

parametric parameter value parametric parameter value 

Initial assigned amount 10000 probability of mutation 𝑝𝑚 0.05 

population size 50 Maximum Iterations 𝑡 100 

crossover probability 𝑝𝑐 0.6 - - 

Table 8. DHNN-3SAT-ICA model parameter settings. 

parametric parameter value parametric parameter value 

Initial assigned amount 10000 revolutionary rate 𝛼 0.3 

population size 50 Maximum Iterations 𝑡 100 

Table 9. DHNN-3SAT-GAKM model parameter settings. 

parametric parameter value parametric parameter value 

Initial assigned amount 10000 crossover probability 𝑝𝑐 0.6 

population size 50 probability of mutation 𝑝𝑚 0.05 

Initial number of clusters 3 Maximum Iterations 𝑡 100 

6.3. Experimental results and discussion 

We use the global minimum ratio (GMR) [16] and the mean CPU time (MCT) to assess the 

model's performance in this paper. To provide a more comprehensive evaluation of the model's 

ability to find the global minimum, we introduce 2 new evaluation metrics: the mean minimum 

Hamming distance (MMHD) and the mean logical satisfiability ratio (MLSR). This study will utilize 

a total of 4 evaluation metrics, as detailed in Table 10. The calculations are based on the average of 

100 repeated experiment runs for each instance, and the results are displayed in Tables 11 and 12. 

Figures 9 to 12 compare our model, DHNN-3SAT-GAKM, with the models DHNN-3SAT-WA, 

DHNN-3SAT-GA, and DHNN-3SAT-ICA across the 4 evaluation metrics. 
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Table 10. Assessment indicators. 

 

  

Indicators calculation formula instructions 

GMR 𝐺𝑀𝑅 =
𝑁𝐺𝑀
𝑇

 

GMR represents the ratio of the global minimum solution 

to the total number of runs [16]. GMR is an effective 

metric for assessing the efficiency of an algorithm. A 

model is considered robust when its GMR value is close 

to 1 [23]. Here, 𝑁𝐺𝑀 represents the number of times the 

global minimum is converged, and 𝑇 represents the total 

number of runs. 

MCT 𝑀𝐶𝑇 =
1

𝑁𝐺𝑀
∑𝑁𝑇𝑖

𝑇𝐺𝑀

𝑖

 

The MCT refers to the average time needed for each 

model to reach the global minimum. A smaller MCT 

indicates that the model is more efficient in finding the 

global minimum. 𝑁𝑇𝑖 represents the CPU time needed to 

find the global minimum at the 𝑖th retrieval result, and 

𝑁𝐺𝑀 represents the number of times the global minimum 

converged. 

MMHD 

𝑀𝑀𝐻𝐷

=
1

𝑇
∑𝑚𝑖𝑛

𝑗
𝐷(𝑋𝑖 , 𝑍𝑗)

𝑇

𝑖

 

The MMHD value represents the mean minimum 

Hamming distance, which is the average of the smallest 

bit difference between the retrieval result of each run and 

the global minimum. When the MMHD value is closer to 

0, it indicates that the model retrieves a result closer to the 

global minimum. In this context, 𝐷(𝑋𝑖, 𝑍𝑗) represents 

the Hamming distance between the retrieval result of the 

𝑖th run and the global minimum, and 𝑇 represents the 

total number of runs. 

MLSR 𝑀𝐿𝑆𝑅 =
1

𝑇
∑

𝑁𝑠𝑎𝑡(𝑖)

𝑚

𝑇

𝑖

 

The MLSR value indicates the average proportion of the 

total number of clauses that can be satisfied by the 

retrieval results. The closer the MLSR value is to 1, the 

closer the model retrieval results are to the global 

minimum. Here, 𝑁𝑠𝑎𝑡(𝑖) denotes the number of satisfying 

clauses for the 𝑖th retrieval result, and 𝑚 denotes the 

total number of clauses. 
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Table 11. Comparison of experimental results. 

 

No. 

GMR MCT MMHD MLSR 

DHNN-3

SAT-WA 

DHNN-3

SAT-GA 

DHNN-3

SAT-WA 

DHNN-3

SAT-GA 

DHNN-3S

AT-WA 

DHNN-3

SAT-GA 

DHNN-3

SAT-WA 

DHNN-3

SAT-GA 

1 1.0000 1.0000 4.83 2.51 0.0000 0.0000 1 1 

2 0.9123 0.9323 16.67 11.70 1.1000 1.0900 0.9744 0.9745 

3 0.8234 0.8456 26.67 22.83 3.6000 3.4900 0.9355 0.9578 

4 0.5802 0.6204 48.82 45.80 3.7200 3.7100 0.8923 0.8966 

5 1.0000 1.0000 11.72 6.31 0.0000 0.0000 1 1 

6 0.8812 0.9011 46.51 16.01 2.5000 2.4000 0.9433 0.9533 

7 0.5467 0.6041 113.28 35.50 3.6200 3.6100 0.9288 0.9363 

8 0.2018 0.2188 440.39 171.23 4.7400 4.2300 0.9139 0.9231 

9 0.4114 0.4222 537.92 431.04 4.8600 4.4500 0.9835 0.9844 

10 0.2261 0.2352 978.78 773.75 5.9800 5.6700 0.9312 0.9474 

11 0.1616 0.1653 1369.44 1100.94 7.1000 6.8900 0.8537 0.8775 

12 0.1413 0.1518 1566.18 1198.85 8.2200 8.1100 0.8234 0.8641 

Table 12. Comparison of experimental results. 

 

No. 

GMR MCT MMHD MLSR 

DHNN-3

SAT-ICA 

DHNN-

3SAT-G

AKM 

DHNN-3SA

T-ICA 

DHNN-3S

AT-GAKM 

DHNN-3

SAT-ICA 

DHNN-

3SAT-G

AKM 

DHNN-3

SAT-ICA 

DHNN

-3SAT-

GAKM 

1 1.0000 1.0000 2.49 2.21 0.0000 0.0000 1 1 

2 0.9441 0.9658 10.64 8.29 1.0700 1.0400 0.9761 0.9783 

3 0.8542 0.9126 20.45 15.08 3.2700 1.1400 0.9662 0.9751 

4 0.6356 0.7229 40.18 26.87 3.3700 2.9700 0.8978 0.9354 

5 1.0000 1.0000 5.49 4.68 0.0000 0.0000 1 1 

6 0.9124 0.9256 14.02 11.06 2.2000 2.1000 0.9644 0.9881 

7 0.6205 0.6898 30.59 22.03 3.2000 2.9300 0.9375 0.9523 

8 0.2291 0.3211 141.54 74.60 3.9800 3.7600 0.9251 0.9336 

9 0.4301 0.4503 435.12 396.82 4.0800 3.8900 0.9851 0.9928 

10 0.2488 0.2632 752.20 678.91 5.0800 4.7200 0.9488 0.9557 

11 0.1689 0.2203 1108.03 935.02 6.0800 5.5500 0.8809 0.9028 

12 0.1612 0.2097 1160.96 982.28 7.0800 6.3800 0.8732 0.8822 

Tables 11 and 12 show the computational results of the DHNN-3SAT-GAKM model in this 

paper, as well as the DHNN-3SAT-WA, DHNN-3SAT-GA, and DHNN-3SAT-ICA models. The 

results are presented in terms of GMR, MCT, MMHD, and MLSR. These calculations are based on 

the metrics formulas provided in Table 10. Figures 9 to 12 illustrate the performance differences 

between this paper's DHNN-3SAT-GAKM model and the DHNN-3SAT-WA, DHNN-3SAT-GA, and 

DHNN-3SAT-ICA models. These differences are shown in the four evaluation metrics through 

radargram-based visualization. The DHNN-3SAT-GAKM model outperforms the DHNN-3SAT-WA, 
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DHNN-3SAT-GA, and DHNN-3SAT-ICA models. 

Figure 9 shows the GMR of each model in solving 3-SAT instances with varying levels of complexity. In this 

paper, the DHNN-3SAT-GAKM model achieved the highest GMR value, indicating its superior global 

retrieval ability and ability to avoid falling into local minima to some extent. Additionally, the 

DHNN-3SAT-GA and DHNN-3SAT-ICA models also demonstrated an improved ability over the 

traditional DHNN-3SAT-WA model to retrieve the global minimum to some extent. As the 

complexity of SAT problems, Boolean variables, and logical clauses increases, the GMRs of each 

model decrease rapidly. Hence, further optimization and improvement of the algorithms and 

architectures of the DHNN-3SAT models are needed to enhance their performance and efficiency 

when dealing with large-scale and complex SAT problems in the future. 

In Figure 10, we can see the average time taken by each model to reach the global minimum. 

The MTC value of the DHNN-3SAT-GAKM model in this paper is the smallest, indicating that this 

model is more efficient in finding the global minimum. This is because the model initially clusters 

the allocation space using the K-modes clustering algorithm, enabling it to escape local minima more 

quickly and avoid repetitive retrieval of local minima. As a result, a large number of redundant 

calculations are reduced, leading to improved efficiency in converging to the global minimum. On 

the other hand, the traditional DHNN-3SAT-WA is more prone to getting stuck in local minima, 

especially as the number of local minimum solutions increases, resulting in a substantial number of 

repetitive evolutions and computations, ultimately affecting the efficiency of converging to the 

global minimum. While the DHNN-3SAT-GA and DHNN-3SAT-ICA models also use heuristic 

algorithms for guided search to some extent, helping to reduce the search space and speed up 

retrieval of the global minimum, the rapidly expanding search space due to the increasing complexity 

of the SAT problem can lead to longer retrieval times or even search failure. Consequently, for 

large-scale SAT problems, further improving the efficiency of searching for the global minimum is a 

future priority. 

In dealing with large-scale SAT problems, the increasing logic complexity results in a 

progressively smaller solution space, making it very challenging to find a global minimum solution 

within a limited timeframe. Most attempts only end up finding the local minimum solution. The goal 

of model optimization at this stage is to make each retrieval result as close as possible to the global 

minimum solution. To evaluate the proximity of the model retrieval results to the global minimum 

solution, two new evaluation criteria are introduced in this study: the MMHD and the MLSR. These 

criteria reflect the proximity of the model retrieval results to the global optimum. A lower MMHD 

value and a higher MLSR value indicate that the model retrieval results are closer to the global 

minimum solution. Figures 11 and 12 illustrate the relationship between the MMHD and MLSR 

values of each model. These figures show that the DHNN-3SAT-GAKM model in this paper has the 

smallest MMHD value and the largest MLSR value, indicating that its retrieval results are closer to 

the global minimum than those of the DHNN-3SAT-WA, DHNN-3SAT-GA, and DHNN-3SAT-ICA 

models. This suggests that the retrieval results of the DHNN-3SAT-GAKM model are closer to the 

global minimum solution overall. Conversely, the DHNN-3SAT-GA and DHNN-3SAT-ICA models 

are closer to the global minimum than the overall retrieval results of the conventional 

DHNN-3SAT-WA. 

Based on the combined analyses above, it can be observed that the DHNN-3SAT-GAKM model, 

introduced in this paper, exhibits significant improvements when compared to the traditional 

DHNN-3SAT-WA model, as well as the DHNN-3SAT-GA and DHNN-3SAT-ICA models that 
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directly utilize heuristic algorithms for bootstrap retrieval. This demonstrates the superior 

performance of the DHNN-3SAT-GAKM model in retrieving the global minima in the SAT problem, 

while also highlighting its potential for practical applications. 

 

  

Figures 9. GMR. Figures 10. MCT. 

 

  
Figures 11. MMHD. Figures 12. MLSR. 

 

7. Conclusions 

This paper introduces a method for designing network synaptic weights based on basic logical 

clauses to handle dynamic changes in constraints in the SAT problem. This method aims to utilize 

synaptic weight information efficiently, reducing the need for repetitive calculations in the DHNN 

network. Additionally, it proposes a DHNN-3SAT model based on genetic algorithm optimized 

K-modes clustering to address the limitations of the traditional DHNN-3SAT-WA, which tends to get 

stuck in local minima. The new model uses genetic algorithms to cluster the initial space, effectively 

reducing the retrieval space and improving retrieval efficiency. Experimental results show that the 
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DHNN-3SAT-GAKM model outperforms DHNN-3SAT-WA, DHNN-3SAT-GA, and 

DHNN-3SAT-ICA in terms of various evaluation metrics, including GMR, MCT, MMHD, and 

MLSR. This study not only expands the application of DHNN in solving the SAT problem but also 

offers valuable insights for future research. 

The DHNN-3SAT model is an innovative approach to using deep learning technology to solve 

SAT problems, offering insights and potential for future research and applications. There are several 

areas for future work: first, optimizing and enhancing the algorithm and architecture of the 

DHNN-3SAT model to improve its performance on large-scale and complex SAT problems; second, 

exploring the model's extension to other NP-complete problems to demonstrate its versatility and 

applicability; and finally, conducting thorough research on the model in specific domains and 

practical applications to further promote the use of deep learning techniques in combinatorial 

optimization and decision-making problems. In summary, the proposal and study of the 

DHNN-3SAT model not only enhances methods in the field of SAT problem-solving but also 

provides new ideas and tools for solving complex problems using deep learning techniques. With 

ongoing technological and theoretical progress, the application of deep learning in combinatorial 

optimization problem-solving is expected to bring about broader development and deliver effective 

solutions for real-life complex problems. 
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