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Abstract: In this study, we investigate the stability and asymptotic stability properties of Caputo
fractional time-dependent systems with delay by employing vector Lyapunov functions. Utilizing the
Caputo fractional Dini derivative on Lyapunov-like functions, along with a new comparison theorem
and differential inequalities, we derive and prove sufficient conditions for the stability and asymptotic
stability of these complex systems. An example is included to showcase the method’s practicality and
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and generalizes several existing findings in the literature.
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1. Introduction

Fractional calculus extends traditional differentiation and integration concepts to non-integer orders,
and it has gained considerable academic interest in recent decades due to its efficacy in modeling
various real-world systems. Fractional derivatives are instrumental in describing mechanical and
electrical properties of materials, as well as the behaviors of gases, liquids, and minerals across diverse
fields. For foundational understanding, refer to the monographs [1–4] and their cited references.
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Fractional time-dependent systems with delays have gained prominence for their enhanced accuracy
in capturing memory and hereditary behaviors. Studies have explored the existence and uniqueness of
solutions for fractional differential systems, both with and without delays, in works such as [5–8].
For instance, Deng et al. [9] derived stability criteria for fractional differential systems with multiple
time delays by employing the Laplace transform to convert fractional differential equations (FDEs)
into algebraic equations in the Laplace domain, analyzing stability based on the poles of the resulting
transfer function.

Cermak et al. [10] investigated the stability of solutions to FDEs with constant delays using
Lyapunov functional methods and fractional calculus tools. They derived stability conditions based
on the nonlinear function f , the delay τ, and the fractional order α. Their results indicate that if
specific conditions on f and τ are met, the zero solution of the FDE is asymptotically stable. They
also explored the asymptotic behavior of solutions, providing estimates for the rate of decay over time,
which depends on the fractional order α. Specifically, for 0 < α < 1, the solution decays at a rate
proportional to t−α as t → ∞.

Tuan [11] focused on the stability analysis of nonlinear delay fractional differential equations
(DFDEs) by developing a linearized stability theorem that extends classical results to FDEs with
delays. This theorem offers conditions under which equilibrium solutions of such systems are
asymptotically stable, providing a robust framework for analyzing equilibrium solutions in systems
with fractional dynamics and time delays. Similarly, Li and Wang [12] addressed the stability
analysis of fractional delay differential equations (FDDEs) by exploring delayed Mittag-Leffler type
matrix functions to determine conditions for convergence to an equilibrium point within a finite time.
Thanh [13] proposed new criteria for finite-time stability of systems with singular FDEs and time-
varying delays. Using a Lyapunov-Krasovskii functional designed to handle fractional orders and
time-varying delays, stability conditions are expressed in terms of linear matrix inequalities (LMIs),
which offer a convenient computational framework.

Following the discussion so far on stability, its critical importance in the dynamics of systems,
especially those with feedback control, deserves further attention. For linear fractional systems, various
reliable methods have been established to maintain stability (see [14–17]). Meanwhile, Lyapunov
stability theory provides a strong foundation for analyzing nonlinear systems. In particular, Lyapunov’s
second method, or direct method, is highly effective because it allows for stability assessment without
requiring the explicit solution of the system’s differential equations, making it a versatile tool for
stability analysis (see [18–21]).

In [22], Argawal et al. identified three types of fractional derivatives of Lyapunov functions used
in stability analysis of time-dependent systems with delay: the Dini fractional derivative, Caputo
fractional Dini derivative, and Dini fractional derivative. The Caputo fractional derivative is commonly
used and is defined as:

C
t0 Dαt V(t, g(t)) =

1
Γ(1 − α)

∫ t

t0
(t − ξ)−α

d
dξ

(
V(s, g(ξ))

)
dξ, t ∈ R+, α ∈ (0, 1).

However, this derivative has limitations, as it requires the use of the Razumikhin criterion over the
entire delay interval and differentiable Lyapunov functions. For studying stability characteristics,
primarily quadratic Lyapunov functions are used (see [23]). The Dini fractional derivative does not
have this drawback, maintaining the concept of fractional derivatives due to its memory property, and
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is defined as:

CDα+V(t, ϕ(0), ϕ) = lim sup
h→0+

1
hα

{
V(t, ϕ(0)) −

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
V(t − lh, ϕ(0) − hα f (t, ω(0)))

}
, (1.1)

t ∈ R+, α ∈ (0, 1), f ∈ C[R+ × Rn,Rn],

and the Caputo fractional Dini derivative is defined as:

C
t0 Dα+g(t) = lim

h→0+

1
hα

{
g(t) − g(t0) −

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)[
g(t − lh) − g(t0)

]}
, α ∈ (0, 1). (1.2)

The Caputo fractional Dini derivative has been used to analyze various stability types of Caputo
fractional time-dependent systems with and without delay (see [22,24–28]). Scalar Lyapunov functions
may not fully capture interactions among dimensions. Vector Lyapunov functions, on the other
hand, offer greater flexibility and precision in constructing stability criteria for complex systems,
providing a more detailed analysis of subsystems and their interactions. They are particularly useful
for examining nonlinear systems where interactions can be intricate and nonlinear relationships are
prevalent (see [29–32]).

Let R+ = [0,∞) and assume that t0 ≥ 0 ∈ R+. Let J0 = [−γ, 0], J = [−γ,∞), γ > 0 and I = [t0,T ]
be intervals in R. Let DN = C(J0,R

N) be the space of all continuous maps on J0, where RN is the
N-dimensional Euclidean vector space endowed with norm ∥.∥. For any ϕ ∈ DN , we define the norm of
ϕ by

∥ϕ∥0 = sup
s∈J0

∥ϕ(s)∥.

In this paper, we consider the retarded Caputo fractional time-dependent system of the formCDαg(t) = f (t, g(t), gt), t ≥ t0,

gt0 = ω0,
(1.3)

where CDα denotes the Caputo fractional derivative of order α ∈ (0, 1), t ∈ J, g ∈ RN , ω0 ∈ D
N , and

f ∈ C(R× Bρ ×DN ,RN). Here, gt ∈ D
N represents the history of the state from time t− γ to the present

time t, defined by gt(s) = g(t + s), s ∈ J0. In other words, gt = {g(τ) : τ ≤ t} represents the trajectory
of the solution in the past.

We assume that the following conditions hold:

(1) The function f guarantees that for any initial condition (t0, ω0) ∈ R+ × DN , the system (1.3)
possesses a solution g(t0, ω0)(t) ∈ Cq([t0,T ],RN).

(2) f (t, 0, 0) = 0 for t ≥ t0.

We will utilize comparison results for the Caputo fractional time-varying system of the formCDαu(t) = ζ(t, u, ut), t ≥ t0,

ut0 = θ0,
(1.4)
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where u ∈ Rn, ζ ∈ C[R+ × Rn ×Dn,Rn], Dn = C(J0,R
n) and ζ(t, 0, 0) ≡ 0. The function ζ ensures that

for any initial values (t0, θ0) ∈ R+ ×Dn, the system (1.4) with the given initial condition has a solution
u(t0, θ0)(t) ∈ Cα([t0,T ],Rn).

This paper’s primary goal is to use vector Lyapunov functions to examine the stability characteristics
of Caputo fractional time-dependent systems with delay. This study utilizes the definition of the
Caputo fractional Dini derivative for Lyapunov-like functions as introduced in [22, 25], along with
the application of the comparison theorem and differential inequalities.

2. Preliminaries

In this paper, we adopt the Caputo (C) definition for fractional derivative, which is expressed as
follows:

C
t0 Dαt g(t) =

1
Γ(n − α)

∫ t

t0
(t − ξ)n−α−1g(n)(ξ)dξ, t ≥ t0.

It is important to note that the Caputo approach has the advantage that the initial conditions for
fractional differential equations using the Caputo derivative are expressed in the same form as those
for integer-order differentiation, which have well-established physical meanings. There exist various
definitions for fractional derivatives. Among the widely used definitions is the Grunwald-Letnikov
(GL) fractional derivative, which is expressed as:

GL
t0 Dαt g(t) = lim

h→0+

1
hα

[ (t−t0)
h ]∑

l=0

(−1)l

(
α

l

)
g(t − lh), t ≥ t0.

The Riemann-Liouville (RL) fractional derivative is of the form:

RL
t0 Dαt g(t) =

1
Γ(n − α)

dn

dtn

∫ t

t0
(t − ξ)n−α−1g(ξ)dξ, t ≥ t0.

In all the definitions given above, we have that n − 1 < α < n, α > 0, where n is a natural number
and Γ(·) represents the gamma function. In most applications, the order of α is often less than 1, so
that α ∈ (0, 1). For simplicity of notation, we will use CDα instead of C

t0 Dαt so that the Caputo fractional
derivative of order α of the function g(t) is given as

CDαg(t) =
1

Γ(1 − α)

∫ t

t0
(t − ξ)α−1g′(ξ)dξ, t ≥ t0. (2.1)

In this paper, we define the following sets:

Bρ = {g ∈ RN : ∥g∥ < ρ, ρ > 0},
S ρ = {g ∈ Rn : ∥g∥ < ρ, ρ > 0},
Cρ = {ω ∈ DN : ∥ω∥0 < ρ, ρ > 0}.

Remark 2.1. In the definitions mentioned above and throughout this paper, n ≤ N.
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Definition 2.1. [2] The Grunwald-Letnikov (GL) fractional Dini derivative is given by

GL
t0 Dα+g(t) = lim sup

h→0+

1
hα

[ (t−t0)
h ]∑

l=0

(−1)l

(
α

l

)
g(t − lh), t ≥ t0.

Definition 2.2. A function V(t, gt) : J ×Cρ → RN
+ is considered a vector Lyapunov function for (1.3) if

it is continuous on J × Cρ, satisfies V(t, 0) = 0, and is locally Lipschitz continuous with respect to the
second argument.

Definition 2.3. [22,25] Let (t0, ω0) ∈ R+ ×C[J0, Bρ] represent the initial condition of the initial value
problem (IVP) (1.3) with f ∈ C(R × Bρ × DN ,RN). The Caputo fractional Dini Derivative of the
Lyapunov function V(t, gt) is defined as

CDα+V(t, ω(0), ω) = lim sup
h→0+

1
hα

{
V(t, ω(0)) − V(t0, ω0(0)) −

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)
×

[
V(t − lh, ω(0) − hα f (t, ω(0))) − V(t0, ω0(0))

]}
,

(2.2)

where it is understood that ω(0) = g(t0, ω0)(t) is the state of the system (1.3) at the current time t. ω0(0)
is the initial condition of the system (1.3) at the beginning t = 0. Equivalently, (2.2) can be written as

CDα+V(t, ω(0), ω) = lim sup
h→0+

1
hα

{
V(t, ω(0)) +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
V(t − lh, ω(0) − hα f (t, ω(0)))

}
(2.3)

−
V(t0, ω0(0))

(t − t0)αΓ(1 − α)
.

Definition 2.4. A function G ∈ C[Rn,Rn] is considered quasi-monotone nondecreasing in x if,
whenever x ≤ y and xi = yi for 1 ≤ i ≤ n, it follows that Gi(x) ≤ Gi(y) for all i.

Definition 2.5. [30] A function a(r) is considered to be in the class K if a is a continuous function on
[0, ρ) with values in R+, a(0) = 0, and a(r) is strictly increasing in r.

Definition 2.6. [33] The zero solution of (1.3) is considered

(1) stable if, for every initial time t0 ∈ R+ and any ϵ > 0, there exists a δ = δ(ϵ, t0) > 0, continuous in
t0, such that for any initial function ω0 ∈ D

N with ∥ω0∥0 ≤ δ, it follows that ∥g(t0, ω0)(t)∥ < ϵ for
t ≥ t0.

(2) asymptotically stable if, for every initial time t0 ∈ R+ and any ϵ > 0, there exists a δ = δ(ϵ, t0) > 0,
continuous in t0, such that for any initial function ω0 ∈ D

N with ∥ω0∥0 ≤ δ, it follows that
∥g(t0, ω0)(t)∥ < ϵ for t ≥ t0 and lim

t→∞
∥g(t0, ω0)(t)∥ = 0.

3. Main result

In this section, we present our findings on the stability and asymptotic stability of Caputo fractional
time-dependent systems with delay. Our results are structured around lemmas and theorems that define
the necessary conditions for stability and asymptotic stability.
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Lemma 3.1. Assume p(t), r(t) ∈ C([t0,T ),RN) and suppose there exists τ∗ ∈ (t0,T ] such that p(τ∗) =
r(τ∗) and p(t) < r(t) for t ∈ [t0, τ∗). The inequality CDα+p(τ∗) >C Dα+r(τ∗) holds if the Caputo fractional
Dini derivative of p and r exists at t = τ∗ for α ∈ (0, 1).

Proof. Applying the definition of the Caputo Dini derivative in (2.3), we have

CDα+p(τ∗) −C Dα+r(τ∗)

= lim sup
h→0+

1
hα

{
p(τ∗) +

[ τ−τ0h ]∑
l=1

(−1)l

(
α

l

)
p(τ∗ − lh)

}
−

p(τ0)(τ − τ0)−α

Γ(1 − α)

−

(
lim sup

h→0+

1
hα

{
r(τ∗) +

[ τ−τ0h ]∑
l=1

(−1)l

(
α

l

)
r(τ∗ − lh)

}
−

r(τ0)(τ − τ0)−α

Γ(1 − α)

)
.

It is clear from the hypothesis of the lemma that for τ∗ ∈ (τ0,T ], p(τ∗) − r(τ∗) = 0 so that

CDα+p(τ∗) −C Dα+r(τ∗) = lim sup
h→0+

1
hα

{[ τ−τ0h ]∑
l=1

(−1)l

(
α

l

)[
p(τ∗ − lh) − r(τ∗ − lh)

]}
−

(p(τ0) − r(τ0))(τ − τ0)−α

Γ(1 − α)
.

Taking limit as h→ 0+, we have

CDα+p(τ∗) −C Dα+r(τ∗) = −
(p(τ0) − r(τ0))(τ − τ0)−α

Γ(1 − α)
.

Again by the hypothesis of the lemma, for τ = τ0, p(τ0) − r(τ0) < 0 together with the fact that
(τ−τ0)−α

Γ(1−α) > 0, leads to
CDα+p(τ∗) >C Dα+r(τ∗)

hence the result. □

Lemma 3.2. Let w, s : [t0 − γ,T ] → Rn be continuous on [t0,T ], and let ζ ∈ C([t0,T ] × Rn × Cq,R
n)

be quasi-monotone nondecreasing in wt for each (t,w) ∈ Rn. Additionally, for each t, we have

(i) CDα+w(t) ≤ ζ(t,w,wt),
(ii) CDα+s(t) > ζ(t, s, st), t ∈ [t0,T ].

Then
wt0 < st0 , (3.1)

implies
w(t) < s(t), t ∈ [t0,T ]. (3.2)

Proof. Assume that the conclusion (3.2) of the theorem is false. Then, there would be a t1 > t0 such
that

w(t1) = s(t1) and w(t) < s(t) for t ∈ [t0, t1). (3.3)
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Applying Lemma 3.1, we obtain
CDα+w(t1) >C Dα+s(t1). (3.4)

Furthermore, from (3.1) and (3.3), we deduce that

wt1 ≤ st1 . (3.5)

Combining condition (i), (3.4), condition (ii), (3.5), and the quasi-monotonicity of G, we have that at
t = t1

ζ(t1,w,wt1) ≥
C Dα+w(t1) >C Dα+s(t1) ≥ ζ(t1, s, st1) ≥ ζ(t1,w,wt1),

which is a contradiction, thus (3.5) is true. □

Theorem 3.1. Let ζ ∈ C[Rc,R
n], where Rc ⊂ R+ × R

n × Cq such that Rc := {(t, u, ξ) : t0 ≤ t ≤
t0 + a, ∥u − θ0(0)∥ ≤ b, ∥ξ − θ0∥0 ≤ b, u ∈ Rn, ξ ∈ Cq := {ξ ∈ Dn : ∥ξ∥ < q, q > 0}, θ0 ∈ Dn, a, b > 0}
and ∥ζ(t, u, ut)∥ ≤ H on Rc. Assume that ζ(t, u, ut) is quasi-monotone nondecreasing in ut for every
(t, u) ∈ R+ × Rn. Then, the IVP (1.4) has a maximal solution h(t, (t0, θ0)) defined on the interval

[t0, t0 + q], where q = min
{
a,

(
bΓ(α+1)

2H+b

) 1
α

}
and α ∈ (0, 1).

Proof. Let η ∈ Rn
+ be a small arbitrary vector, such that ∥η∥ < b

2e, where e = (1, 1, ...1)T with ∥e∥ = 1.
Consider the IVP for the following Caputo fractional time-dependent system of the form:CDαuη = ζη(t, u, ut) + η,

ut0 = θ0 + η,
(3.6)

where ζη(t, u, ut) + ϵ is continuous on Rη and is given by Rη = {Rη := {(t, u, ξ) : t0 ≤ t ≤ t0 + a, ∥u −
(θ0(0) + η)∥ ≤ b

2 , ∥ξ − (θ0 + η)∥0 ≤ b
2 , u ∈ Rn, ξ ∈ Cq, θ ∈ D

n, a, b > 0} and ∥ζη(t, u, ut) + η∥ ≤ H on Rη
with Rη ⊂ Rc.

Integrating (3.6) from t0 to t in the Caputo sense, we obtain

uη(t0, θ0)(t) = θ0 + η +
1
Γ(α)

∫ t

t0
(t − ξ)α−1

(
ζη(ξ, u(ξ), uξ) + η

)
dξ. (3.7)

Now, consider the family of solutions {uη(t0, θ0)(t)} on [t0, t0 + q]. Then from (3.7)

∥uη(t0, θ0)(t)∥ =
∥∥∥∥∥θ0 + η + 1

Γ(α)

∫ t

t0
(t − ξ)α−1

(
ζη(ξ, u(ξ), uξ) + η

)∥∥∥∥∥dξ

≤ ∥θ0∥0 + ∥η∥ +
1
Γ(α)

∫ t

t0
(t − ξ)α−1

(∥∥∥∥∥ζη(ξ, u(ξ), uξ)
∥∥∥∥∥ + ∥η∥)dξ

≤ ∥θ0∥0 +
b
2
+

1
Γ(α)

(2H + b
2

)aα

α
= K.

Therefore
∥uη(t0, θ0)(t)∥ ≤ K.
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Thus, the set of solutions {uη(t0, θ0)(t)} has a uniform bound with bound K. We take t1, t2 ∈ [t0, t0+q],
with t1 < t2, and produce the following estimate to demonstrate that the family of solutions {uη(t0, θ0)(t)}
is equi-continuous.

∥uη(t0, θ0)(t2) − uη(t0, θ0)(t1)∥ =
∥∥∥∥∥θ0 + η + 1

Γ(α)

∫ t2

t0
(t2 − ξ)α−1

(
ζη(ξ, u(ξ), uξ) + η

)
−

(
θ0 + η +

1
Γ(α)

∫ t1

t0
(t1 − ξ)α−1

(
ζη(ξ, u(ξ), uξ) + η

))∥∥∥∥∥dξ

=
1
Γ(α)

∥∥∥∥∥ ∫ t2

t0
(t2 − ξ)α−1

(
ζη(ξ, u(ξ), uξ) + η

)
−

∫ t1

t0
(t1 − ξ)α−1

(
ζη(ξ, u(ξ), uξ) + η

)∥∥∥∥∥dξ

=
1
Γ(α)

∥∥∥∥∥( ∫ t1

t0
(t2 − ξ)α−1 −

∫ t1

t0
(t1 − ξ)α−1

)(
ζη(ξ, u(ξ), uξ) + η

)
dξ

+

∫ t2

t1
(t2 − ξ)α−1

(
ζη(ξ, u(ξ), uξ) + η

)∥∥∥∥∥dξ

≤
2H + b
2Γ(α)

[∣∣∣∣∣ ∫ t1

t0
(t2 − ξ)α−1 −

∫ t1

t0
(t1 − ξ)α−1

∣∣∣∣∣dξ + ∣∣∣∣∣ ∫ t2

t1
(t2 − ξ)α−1

∣∣∣∣∣dξ]
=

2H + b
2αΓ(α)

[
(t1 − t0)α + (t2 − t1)α − (t2 − t0)α + (t2 − t1)α

]
≤

2H + b
Γ(α + 1)

(t2 − t1)α < ϵ,

provided |t2 − t1| < δ(ϵ) = ( ϵΓ(α+1)
2H+b )

1
α , hence the family {uη(t0, θ0)(t)} is equi-continuous on [t0, t0 + q].

Then, by the Arzela-Ascoli theorem, lim
i→∞

uηi(t0, θ0)(t) = h(t0, θ0)(t) uniformly on [t0, t0 + q] for every
decreasing sequence {ηi}, ηi → 0 as i→ ∞.. The uniform continuity of ζ implies that ζ(t, ut(t0, θ0))+ηi

tends uniformly to ζ(t, ht(t0, θ0)) as ηi → ∞. Taking limit as i→ ∞ in (3.7) leads to

h(t0, θ0)(t) = θ0 +
1
Γ(α)

∫ t

t0
(t − ξ)α−1ζ(ξ, h(ξ), hξ)dξ,

which demonstrates that the limit h(t0, θ0)(t) is truly a solution of (1.4) on the interval [t0, t0 + q].
It is left to show that h(t0, θ0)(t) is the maximal solution of the comparison system (1.4). Let

u(t0, θ0)(t) be any solution of the IVP (1.4) on [t0, t0 + q]. Then in light of Lemma 3.2, we have
that

CDα+u(t0, θ0)(t) ≤ ζ(t, (t0, θ0), ut)
CDα+uηi(t0, θ0)(t) + ηi > ζ(t, (t0, θ0), ut) + ηi.

Then θ0 < θ0 + η, η > 0 implies that u(t0, θ0)(t) < uηi(t0, θ0)(t) + ηi.
Since lim

i→∞
uηi(t0, θ0)(t) = h(t0, θ0)(t) uniformly on [t0, t0 + q], it follows by taking limits that

u(t0, θ0)(t) < lim
i→∞
{uηi(t0, θ0)(t) + ηi} = h(t0, θ0)(t) and so the result follows. □

Theorem 3.2. Assume that

(1) V ∈ C[(−γ,∞)×Cρ,RN
+ ], where V(t, gt) is locally Lipschitz continuous with respect to the second

argument.
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(2) ζ ∈ C[R+ × Rn ×Dq,R
n] and ζ(t, u, ut) is quasi-monotone nondecreasing with respect to ut.

(3) CDα+V(t, ω(0), ω) ≤ ζ(t,V(t, ω(0)),Vt) for all t ∈ R+, where Vt = V(t + s, ω(s)), ξ ∈ J0.

If h(t0, θ0)(t) is the maximal solution of (1.4) and g(t0, ω0)(t) is any solution of (1.3) defined in the
future such that

sup
ξ∈J0

V(t0, ω0)(ξ) ≤ θ0, (3.8)

then the inequality
V(t, g(t0, ω0)(t)) ≤ h(t0, θ0)(t), t ≥ t0, (3.9)

holds.

Proof. Let g(t0, ω0)(t) be any solution of (1.3) such that (3.8) holds.
For an arbitrary vector η ∈ Rn

+ of sufficiently small magnitude, we examine the IVP associated with
the Caputo fractional time-dependent system with delay as follows.CDαuη = ζη(t, u, ut) + η,

ut0 = θ0 + η,
(3.10)

for t ∈ R+, where the solution uη(t0, θ0)(t) exists as long as the maximal solution h(t0, θ0)(t) to the right
of t0 and satisfies the Volterra integral equation

uη(t0, θ0)(t) = θ0 + η +
1
Γ(α)

∫ t

t0
(t − ξ)α−1

(
ζη(ξ, u(ξ), uξ) + η

)
dξ, t ∈ R+. (3.11)

Let y(t) = V(t, g(t0, ω0)).
Since lim

η→0
uη(t0, θ0)(t) = h(t0, θ0)(t), it is sufficient to show that

y(t) < uη(t0, θ0)(t), for t ≥ t0. (3.12)

In the event that the inequality (3.12) is false, there would be a point τ > t0 such that

y(τ) = uη(τ, (t0, ω0)) and y(t) < uη(t, (t0, ω0)) for t ∈ [t0, τ).

It follows from Lemma (3.1) that

CDα+y(τ) −C Dα+uη(τ, (t0, ω0)) > 0.

Thus,
CDα+y(τ) >C Dα+uη(τ, (t0, ω0)),

and using (3.10) we obtain

CDα+y(τ) >C Dα+uη(τ, (t0, ω0)) = ζη(τ, u(τ), uτ) + η > ζ(τ, u(τ), uτ).

Therefore,
CDα+y(τ) > ζ(τ, u(τ), uτ). (3.13)
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Let g(t) = g(t0, ω0)(t) be any solution of (1.3) such that (3.8) holds. Using the Caputo fractional Dini
derivative (1) for y(t), we then obtain for t ∈ [t0,T ] the following

CDα+y(t) = lim sup
h→0+

1
hα

{
y(t) − y(t0) −

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)[
y(t − lh) − y(t0)

]}

= lim sup
h→0+

1
hα

{
V(t, g(t)) − V(t0, ω0(0)) −

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)[
V(t − lh, g(t − lh)) − V(t0, ω0(0))

]}

= lim sup
h→0+

1
hα

{
V(t, g(t)) − V(t0, ω0(0)) −

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)[
V(t − lh, ω(0) − hα f (t, ω(0), ω)) − V(t0, ω0(0))

]

+

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)[
V(t − lh, ω(0) − hα f (t, ω(0), ω)) − V(t0, ω0(0))

]

−

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)
V(t − lh, g(t − lh)) − V(t0, ω0(0))

}

= lim sup
h→0+

1
hα

{
V(t, g(t)) − V(t0, ω0(0)) −

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)[
V(t − lh, ω(0) − hα f (t, ω(0))) − V(t0, ω0(0))

]}

− lim sup
h→0+

1
hα

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)[
V(t − lh, ω(0) − hα f (t, ω(0))) − V(t − lh, g(t − lh))

]

= CDα+V(t, g(t)) − lim sup
h→0+

1
hα

[ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)[
V(t − lh, ω(0) − hα f (t, ω(0))) − V(t − lh, g(t − lh))

]
.

Given that V is locally Lipschitz in the second variable with a Lipschitz constant L > 0, we derive

CDα+y(t) ≤ CDαV(t, ω(0), ω) − L lim sup
h→0+

1
hα

∣∣∣∣∣ [ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)∣∣∣∣∣∥∥∥ω(0) − hα f (t, ω(0)) − g(t − lh)
∥∥∥

≤ CDαV(t, ω(0), ω) − L lim sup
h→0+

1
hα

∣∣∣∣∣ [ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)∣∣∣∣∣∥∥∥ω(0)
∥∥∥ + hα

∥∥∥ f (t, ω(0))
∥∥∥ + ∥∥∥g(t)

∥∥∥
= CDαV(t, ω(0), ω) − L

∣∣∣∣∣ [ t−t0
h ]∑

l=1

(−1)l+1
(
α

l

)∣∣∣∣∣∥∥∥ω(0)
∥∥∥ + ∥∥∥ f (t, ω(0))

∥∥∥ + ∥∥∥g(t)
∥∥∥.

Let

M =
∣∣∣∣∣ [ t−t0

h ]∑
l=1

(−1)l+1
(
α

l

)∣∣∣∣∣∥∥∥ω(0)
∥∥∥ + ∥∥∥ f (t, ω(0))

∥∥∥ + ∥∥∥g(t)
∥∥∥ > 0,

so that
CDα+y(t) ≤ CDαV(t, ω(0), ω) − LM
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≤ CDαV(t, ω(0), ω).

Therefore, using condition 3 of the theorem, we have that

CDα+y(t) ≤C DαV(t, ω(0), ω) ≤ ζ(t,V(t, ω(0),Vt)) = ζ(t, y(t)). (3.14)

Now (3.14) with t = τ gives
CDα+y(τ) ≤ ζ(τ, y(τ)), (3.15)

which contradicts (3.13), and hence (3.12) is true.
From the proof of Theorem 3.1, it can be concluded that the set of solutions {uη(t0, θ0)(t)}

is uniformly bounded and equi-continuous on the interval [t0,T ]. Therefore, according to the
Arzelà-Ascoli theorem, there exist a decreasing subsequence {uηk(t0, θ0)(t)} and a continuous function
p(t0, θ0)(t) that serves as the uniform limit of uηk(t0, θ0)(t) on the interval [t0,T ]. From (3.11) we have

uηk(t0, θ0)(t) = θ0 + ηk +
1
Γ(α)

∫ t

t0
(t − ξ)α−1

(
ζηk(ξ, u(ξ), uξ) + ηk

)
dξ, t ∈ R+. (3.16)

Taking the limit as k → ∞ in (3.16) leads to

p(t0, θ0)(t) = θ0 +
1
Γ(α)

∫ t

t0
(t − ξ)α−1ζ(ξ, p(ξ), pξ)dξ, (3.17)

which demonstrates that p(t0, θ0)(t) serves as a solution to (1.4) over the interval [t0,T ]. We claim that
p(t0, θ0)(t) converges to the maximal solution h(t0, θ0)(t) on [t0,T ]. In order to demonstrate this, we
take the limit in (3.12) for η = ηk as k → ∞. From there, we get V(t, (t0, ω0)(t)) ≤ h(t0, θ0)(t). □

Theorem 3.3. Assume that

(1) ζ ∈ C(R+ × Rn ×Dn,Rn), and ζ(t, u, ut) is quasi-monotone nondecreasing in ut with ζ(t, 0, 0) = 0.
(2) V ∈ C[(−γ,∞) ×Cρ,RN

+ ], V(t, 0) = 0, and V(t, gt) is locally Lipschitz continuous in gt such that

CDα+V(t, ω(0), ω) ≤ ζ(t, ω(0),Vt), (3.18)

holds for all (t, g) ∈ R+ × Bρ.
(3) a(∥g∥) ≤ V0(t, gt), where a ∈ K and V0(t, gt) =

∑N
i=1 Vi(t, gt).

The stability of the trivial solution g = 0 of the system (1.3) is therefore implied by the stability of
the trivial solution u = 0 of the system (1.4).

Proof. Given ϵ ∈ (0, ρ] and t0 ∈ R+, the stability of the trivial solution u = 0 of (1.4) indicates that for
any a(ϵ) > 0, t0 ∈ R+, and initial function θ0 ∈ Dn, there exists a δ = δ(t0, ϵ) > 0 which is continuous
in t0 such that

θ0 =

∥∥∥∥∥ n∑
i=1

θi0

∥∥∥∥∥
0
< δ implies

n∑
i=1

ui(t0, θ0)(t) ≤ a(ϵ), t ≥ t0, (3.19)

where u(t0, θ0)(t) is any solution of (1.4). With V(t, 0) = 0 and the continuity of V(t0, θ0(0)), it is
ensured that there exists a δ1 = δ1(t0, δ) > 0 such that

∥θ0∥0 < δ1 implies V0(t0, θ0(0))(t) < δ. (3.20)
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Let g(t0, ω0)(t) be any solution of (1.3), with ∥ω0∥0 < δ1.
Claim:

∥g(t0, ω0)(t)∥0 < ϵ, t ≥ t0. (3.21)

Assuming (3.21) does not hold, there exists a τ > t0 such that ∥g(t0, ω0(0))(τ)∥0 = ϵ and
∥g(t0, ω0(0))(t)∥0 < ϵ for t ∈ [t0, τ).

Let θ0 = V0(t0, ω0). Then, from (3.19), we have V0(t0, ω0) < δ < ϵ.
Let hm(t0, θ0)(t) =

∑n
i=1 hi(t0, θ0)(t) with h0(t0, θ0) < δ be the maximal solution of (1.4) such that

V0(t0, ω0(0))(t) ≤ hm(t0, θ0)(t). (3.22)

Therefore at t = τ, we have that ∥g(t0, ω0(0))(τ)∥0 = ϵ. Combining condition 3 of the theorem, (3.19)
and (3.22) we obtain

a(∥g(τ0, ω0(0))(τ)) ≤ V0(τ0, ω0(0))(τ) ≤ hm(τ0, θ0)(τ) < a(ϵ).

This yields
a(ϵ) ≤ V0(t0, ω0(0))(τ) ≤ hm(t0, θ0)(τ) < a(ϵ),

which is a contradiction. Thus, (3.21) holds, leading us to conclude that the trivial solution g = 0
of (1.3) is stable. □

Theorem 3.4. Assume that

(1) ζ ∈ C(R+ × Rn ×Dn,Rn), and ζ(t, u, ut) is quasi-monotone nondecreasing in ut with ζ(t, 0, 0) = 0.
(2) V ∈ C[(−γ,∞) ×Cρ,RN

+ ], V(t, 0) = 0, and V(t, gt) is locally Lipschitzian in gt such that

CDα+V(t, ω(0), ω) ≤ −cV(t, ω(0)), (3.23)

holds for all (t, g) ∈ R+ × Bρ.
(3) a(∥g∥) ≤ V0(t, gt), where a ∈ K and V0(t, gt) =

∑N
i=1 Vi(t, gt).

Consequently, the asymptotic stability of the trivial solution g = 0 of the system (1.3) is implied
by the asymptotic stability of the trivial solution u = 0 of the system (1.4).

Proof. According to Theorem (1.3), the trivial solution of (1.4) is stable. Condition (ii) of the theorem
ensures that V(t, ω(0)) is monotonically decreasing, and condition (iii) further ensures that it is bounded
below by zero. Therefore, there exists a limit

lim
t→∞

V(t, ω(0), ω) = G0(say). (3.24)

Claim: G0 = 0
Assume that the claim is false. In other words, if we assume G0 , 0, then c(G0) , 0 because c ∈

K . V(t, ω(0)) being monotonically decreasing combined with (3.24) guarantees that V(t, ω(0)) > G0.
Given that c(r) is a monotonically increasing function of r, we can state that

c(V(t, ω(0))) > c(G0),

so that
−c(V(t, ω(0))) < −c(G0).
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In terms of (3.23) we have
CDα+V(t, ω(0)) ≤ −c(G0). (3.25)

Integrating (3.25) from t0 to t we have

V(t, ω(0), ω) ≤ V(t0, ω(0), ω) −
c(G0)
Γ(α)

( ∫ t

t0
(t − ξ)α−1dξ

)
IN ,

where IN denotes an identity matrix of order N.
This implies that

V(t0, ω(0), ω) ≤ V(t0, ω(0), ω) −
c(G0)
αΓ(α)

(
(t − t0)α

)
IN , (3.26)

so that as t → ∞ in (3.26), we have that c(G0)
αΓ(q)

(
(t − t0)α

)
IN → ∞ so that V(t, ω(0), ω) → −∞. This

contradicts condition (3) of the theorem and so our claim that V0 = 0 is true, that is lim
t→∞

V(t, ω(0), ω) =
0. This demonstrates that the zero solution u = 0 of (1.4) is asymptotically stable. □

4. Example

We demonstrate the benefit of employing the vector Lyapunov function over the scalar Lyapunov
function with this example.

Consider the system of retarded nonlinear Caputo fractional differential equations

CDαg1(t) = 8g1(t − 2) cos g2(t − 2) + g2(t − 2) sin2 g1(t − 2),
CDαg2(t) = − 4g2(t − 2) sin2 g1(t − 2) + 2g1(t − 2) cos2 g2(t − 2),

(4.1)

for t ≥ t0, with initial functions

g1(s) = ω1(s), g2(s) = ω2(s), f or s ∈ [−2, 0],

where ω1(s) and ω2(s) are the initial functions defined on −2 ≤ s ≤ 0.We recall that the initial function
ω1(s) and ω2(s) captures the state of the system at time t+ s. In this example, g1(t) = ω1(s) = g1(t+ s),
so that at s = −2 we have g1(t) = ω1(−2) = g1(t− 2). Similarly, g2(t) = ω2(−2) = g2(t− 2). With these,
the system (4.1) can therefore be written as

CDαg1(t) = 8ω1(−2) cosω2(−2) + ω2(−2) sin2 ω1(−2),
CDαg2(t) = − 4ω2(−2) sin2 ω1(−2) + 2ω1(−2) cos2 ω2(−2).

(4.2)

Now we consider a scalar Lyapunov function for (4.1) given by

V(t, ω) = |ω1(−2)| + |ω2(−2)|.

Then according to (2.3) we obtain

CDα+V = lim sup
h→0+

1
hα

{
|ω1(−2)| + |ω2(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)[
|ω1(−2) − hα f1(t, ω1(0))|
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+|ω2(−2) − hα f2(t, ω2(0))|
]}
−

[
|ω01(−2)| + |ω02(−2)|

]
tαΓ(1 − α)

≤ lim sup
h→0+

1
hα

{
|ω1(−2)| + |ω2(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
|ω1(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)

×hα| f1(t, ω1(0))| +
[ t−t0

h ]∑
l=1

(−1)l

(
α

l

)
|ω2(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
hα| f2(t, ω2(0))|

}

−

[
|ω01(−2)| + |ω02(−2)|

]
tαΓ(1 − α)

= lim sup
h→0+

1
hα

{ [ t−t0
h ]∑

l=0

(−1)l

(
α

l

)
|ω1(−2)| +

[ t−t0
h ]∑

l=0

(−1)l

(
α

l

)
|ω2(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)

×hα
[
| f1(t, ω1(0))| + | f2(t, ω2(0))|

]}
−

[
|ω01(−2)| + |ω02(−2)|

]
tαΓ(1 − α)

= lim sup
h→0+

1
hα

[ t−t0
h ]∑

l=0

(−1)l

(
α

l

)
|ω1(−2)| + lim sup

h→0+

1
hα

[ t−t0
h ]∑

l=0

(−1)l

(
α

l

)
|ω2(−2)|

+

[
| f1(t, ω1(0))| + | f2(t, ω2(0))|

]
lim sup

h→0+

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
−

[
|ω01(−2)| + |ω02(−2)|

]
tαΓ(1 − α)

.

Applying Eqs (3.7) and (3.8) in [26], we obtain

CDα+V ≤
|ω1(−2)|

tαΓ(1 − α)
+
|ω2(−2)|

tαΓ(1 − α)
−

[
|ω01(−2)| + |ω02(−2)|

]
tαΓ(1 − α)

−

[
| f1(t, ω1(0))| + | f2(t, ω2(0)|

]
≤
|ω1(−2)|

tαΓ(1 − α)
+
|ω2(−2)|

tαΓ(1 − α)
−

[
| f1(t, ω1(0))| + | f2(t, ω2(0))|

]
≤
|ω1(−2)|

tαΓ(1 − α)
+
|ω2(−2)|

tαΓ(1 − α)
+

[
| f1(t, ω1(0))| + | f2(t, ω2(0))|

]
.

As t → ∞, the first two terms tend to zero, and using (4.2) we have

CDα+V ≤

[
| f1(t, ω1(0))| + | f2(t, ω2(0))|

]
=

[
|8ω1(−2) cosω2(−2) + ω2(−2) sin2 ω1(−2)| + | − 4ω2(−2) sin2 ω1(−2)

+2ω1(−2) cos2 ω2(−2)|
]

≤

[
8|ω1(−2)|| cosω2(−2)| + |ω2(−2)|| sin2 ω1(−2)| + 4|ω2(−2)|| sin2 ω1(−2)|

+2|ω1(−2)|| cos2 ω2(−2)|
]
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≤

[
8|ω1(−2)| + |ω2(−2)| + 4|ω2(−2)| + 2|ω1(−2)|

]
=

[
10|ω1 − (2)| + 5|ω2(−2)|

]
= 10|ω1(−2)| + 5|ω2(−2)| ≤ 10|ω1(−2)| + 10|ω2(−2)|

= 10(|ω1(−2)| + |ω2(−2)|) = 10V(t, ω).

Therefore, we have
CDα+V ≤ 10V(t, ω) = ζ(t,V(t, ω)). (4.3)

Now consider the scalar comparison equation

CDαu = ζ(t, u(t), u(t − 2)) = 10u(t − 2),
u(s) = θ(s) = θ0, f or s ∈ [−2, 0],

(4.4)

where θ0 = 2 remains constant throughout the given interval. Solving (4.4) by the Laplace transform
method and noting that u(t − 2) is a Heaviside step function, we obtain the following:

L(CDαu) = 10L(u(t − 2)).

This implies that

sαU(s) −
n−1∑
k=0

sα−k−1Uk(0) = 10
e−2s

s
,

so that

sαU(s) − 2sα−1 = 10
e−2s

s
,

sαU(s) = 2sα−1 + 10
e−2s

s
,

U(s) =
2
s
+ 10

e−2s

sα+1 .

Taking the inverse Laplace transforms we obtain

L−1U(s) = L−1
(2

s

)
+ 10L−1

( e−2s

sα+1

)
,

so that

u(t) = 2 + 10L−1
( e−2s

sα+1

)
.

Using the fact that L(tα) = Γ(α+1)
sα+1 , we have

u(t) = 2 + 10(t − 2)
1
Γ(α) u(t − 2). (4.5)

We observe that
|u(t)| = |2 + 10(t − 2)

1
Γ(α) u(t − 2)|with |θ0| = 2.
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As t increases, the term 10(t − 2)
1
Γ(α) grows causing u(t) to be unbounded. This indicates that for any

nonzero initial condition θ0, u(t) will eventually grow without bound as t increases. Hence for any
small δ > 0 such that ∥θ0∥0 < δ, there exist some t > 0 at which u(t) becomes unbounded. This means
that no matter how small we choose δ, u(t) will eventually exceed any prescribed ϵ.

All the conditions of Theorem 3.3 are satisfied, except that the trivial solution u = 0 of (4.5) is not
stable (also see Figure 1). Therefore Theorem 3.3 cannot yield any stability information for the zero
solution of (4.4).

Figure 1. Plot of u(t) = 2 + 10(t − 2)
1
Γ(α) u(t − 2), α = 0.2, 0.4, 0.6 and 0.8.

We now examine a vector Lyapunov function with the following form:

V(t, ω(0)) = (V1,V2)T =

(
|ω1(−2)|, |ω2(−2)|

)T

, (4.6)

where V1 = |ω1(−2)| and V2 = |ω2(−2)|, with ω = (ω1, ω2) ∈ R2, so that the associated norm ∥ω∥ =√
ω2

1 + ω
2
2.

Now,

V0 =

2∑
i=1

Vi = |ω1(−2)| + |ω2(−2)|,

and so a(∥ω∥) ≤ V0(t, xt) with a(r) = r, implying that a ∈ K . We compute the Caputo fractional Dini
derivative for V1 = |ω1(−2)| using (2.3) as follows:

CDα+V1 = lim sup
h→0+

1
hα

{
|ω1(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)∣∣∣ω1(−2) − hα f1(t, ω1(0))
∣∣∣} − |ω01(−2)|

tαΓ(1 − α)

≤ lim sup
h→0+

1
hα

{
|ω1(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)[
|ω1(−2)| + |hα f1(t, ω1(0))|

]}
−
|ω01(−2)|

tαΓ(1 − α)

= lim sup
h→0+

1
hα

{
|ω1(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
|ω1(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
|hα f1(t, ω1(0))|

}
−
|ω01(−2)|

tαΓ(1 − α)

= |ω1(−2)| lim sup
h→0+

1
hα

[ t−t0
h ]∑

l=0

(−1)l

(
α

l

)
+ | f1(t, ω1(0))| lim sup

h→0+

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
−
|ω01(−2)|

tαΓ(1 − α)
.
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Applying Eqs (3.7) and (3.8) in [26], we obtain

CDα+V1 ≤

(
|ω1(−2)| − |ω01(−2)|

)
tαΓ(1 − α)

− | f1(t, ω1(0))|.

As t → ∞, the first term tends to zero, and using (4.2) we obtain

CDα+V1 ≤ −|8ω1(−2) cosω2(−2) + ω2(−2) sin2 ω1(−2)|

≤ −

(
|8ω1(−2)|| cosω2(−2)| + |ω2(−2)|| sin2 ω1(−2)|

)
≤ −

(
8|ω1(−2)| + |ω2(−2)|

)
= −8|ω1(−2)| − |ω2(−2)| = −8V1 − V2 ≤ −8V1 + V2.

Therefore
CDq
+V1 ≤ −8V1 + V2. (4.7)

Similarly, we compute the Caputo fractional Dini derivative for V2 = |ω2(−2)| using (2.3) as follows:

CDα+V2 = lim sup
h→0+

1
hα

{
|ω2(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)∣∣∣ω2(−2) − hα f2(t, ω2(0))
∣∣∣} − |ω20(−2)|

tαΓ(1 − α)

≤ lim sup
h→0+

1
hα

{
|ω2(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)[
|ω2(−2)| + |hα f2(t, ω2(0))|

]}
−
|ω20(−2)|

tαΓ(1 − α)

= lim sup
h→0+

1
hα

{
|ω2(−2)| +

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
|ω2(−2)| +

[ t−t0
h ]∑

l=1

(−1)l(
(
α

l

)
)|hα f2(t, ω2(0))| −

|ω20(−2)|
tαΓ(1 − α)

}

= |ω2(−2)| lim sup
h→0+

1
hα

[ t−t0
h ]∑

l=0

(−1)l

(
α

l

)
+ | f2(t, ω2(0))| lim sup

h→0+

[ t−t0
h ]∑

l=1

(−1)l

(
α

l

)
−
|ω20(−2)|

tαΓ(1 − α)
.

Applying Eqs (3.7) and (3.8) in [26], we obtain

CDα+V2 ≤

(
|ω2(−2)| − |ω20(−2)|

)
tαΓ(1 − α)

− | f2(t, ω2(0))|.

As t → ∞, the first term tends to zero, and using (4.2) we obtain

CDα+V2 ≤ −| − 4ω2(−2) sin2 ω1(−2) + 2ω1(−2) cos2 ω2(−2)|

≤ −

(
| − 4ω2(−2) sin2 ω1(−2)| + |2ω1(−2) cos2 ω2(−2)|

)
≤ −

(
4|ω2(−2)|| sin2 ω1(−2)| + 2|ω1(−2)|| cos2 ω2(−2)|

)
≤ −

(
4|ω2(−2)| + 2|ω1(−2)|

)
= −4|ω2(−2)| − 2|ω1(−2)| = −2V1 − 4V2 ≤ 2V1 − 4V2.

Therefore,
CDq
+V1 ≤ 2V1 − 4V2. (4.8)
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Combining (4.7) and (4.8), we obtain

CDα+V ≤
(
−8 1
2 −4

) (
V1

V2

)
= ζ(t,V(t, ω)). (4.9)

Now consider the comparison system

CDαu = ζ(t, u(t − 2)) = Au(t − 2), (4.10)

where A =
(
−8 1
2 −4

)
, u(ξ) = θ0 for ξ ∈ [−2, 0], with θ0 = (2, 2)T being a constant function defined

over the interval.
The vector inequality (4.9), along with the required conditions for using vector Lyapunov functions

as outlined in Theorem 3.3, is fulfilled by (4.6). In fact, the eigenvalues of A have negative real
components. Consequently, by Theorem 3.3, we can conclude that the zero solution g = 0 of the
system (4.1) is not only stable but also asymptotically stable.

5. Conclusions

Due to the increasing scholarly interest in fractional time-dependent systems with delay, known
for their improved accuracy in modeling problems with hereditary and memory behaviors, this paper
examines the stability and asymptotic stability dynamics of Caputo fractional time-dependent systems
with delays using vector Lyapunov functions. By applying the Caputo fractional Dini derivative and
introducing a new comparison theorem, we have established robust stability and asymptotic stability
conditions for these systems. Our method advances beyond traditional scalar Lyapunov function
approaches and enhances existing stability results. The provided example highlights the practical
benefits and improved accuracy of our approach, representing a significant advancement in the field.
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