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1. Introduction

The development of the concept of quantum Markovianity significantly advances our
comprehension of quantum dynamics and serves as a critical link in connecting various related
disciplines [3–5, 19]. This concept not only broadens the theoretical landscape of quantum physics
but also catalyzes advancements in practical applications. By integrating rigorous mathematical
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frameworks with empirical investigations, quantum Markovianity facilitates novel insights into the
behavior and control of quantum systems [7, 15, 16].

In the seminal works [1,2], a comprehensive framework for quantum Markovianity was introduced,
extending the classical notion of Markov processes into the quantum domain. This advanced
framework provides a nuanced understanding of the temporal evolution of quantum systems under
Markovian conditions. Specifically, the authors constructed two pivotal classes of states to exemplify
this notion: QMCs and inverse QMCs. These states are defined on infinite tensor products of finite-
dimensional type I factors with a totally ordered index set, capturing different aspects of quantum
temporal dynamics. QMCs represent systems where the evolution from one state to another follows a
Markovian process, while inverse QMCs consider the reverse dynamics within the same framework.
Building on these foundational contributions, subsequent research has explored various definitions and
properties of QMCs, particularly in connection with quantum information theory.

Notable studies have explored the complex relationships between quantum Markovianity and
informational concepts, providing insights into how these chains model information flow within
quantum systems [8,9,13,19]. Specifically, research in [9] has developed a potential theory for QMCs,
examining their recurrence, transience, and irreducibility with applications to quantum random walks
and entangled states. Additionally, the study of Markov chains has been approached from various
perspectives, including quantum operations [13,14] and quantum conditional mutual information [12].

An analysis of the proofs reveals that the core constructions are applicable to infinite tensor products
of arbitrary C∗-algebras. Notably, in [2, 6], the distinction between forward and backward QMCs
(BQMCs) was deliberately circumvented. This decision was due to an overemphasis on interpreting
the index set as time, which could confine the framework. Instead, the term inverse QMC was adopted,
providing a more neutral terminology that is applicable to both probabilistic (i.e., dynamical) and
statistical mechanics interpretations. Despite this neutral approach, a more nuanced analysis shows
that within each category, QMC and inverse QMC, a natural distinction emerges between forward
(or inside) and backward (or outside) QMC. This differentiation highlights deeper structural aspects
within each class, suggesting that the evolution and properties of quantum systems can exhibit different
characteristics depending on the direction of time or perspective of the analysis.

In this paper, the framework of BQMCs and inverse BQMCs is thoroughly examined. It is shown
that for any sequence of backward transition expectations E(n) : Bn⊗Bn+1 → Bn, there exists at least one
BQMCs on A that aligns with this sequence. This result substantiates the feasibility of the backward
QMC model, demonstrating that quantum systems adhering to the specified transition expectations can
indeed be constructed.

Additionally, the study establishes that for any sequence of backward transition expectations
E(n) : Bn ⊗ B−∞ → B−∞, there is at least one inverse BQMCs on A that accommodates these
expectations.Moreover, concrete examples are provided to distinguish between the two Markovian
structures under consideration. Additionally, the paper demonstrates the connection between the
introduced QMCs and finitely correlated states, as discussed in [10, 11]. These examples and
connections offer valuable insights into the distinctions and relationships among various quantum
Markovian models.

This finding broadens the scope of quantum Markovianity by confirming the practicality of
inverse BQMCs models, thus expanding the theoretical understanding of quantum systems within this
framework. The obtained results extend QMCs into two-sided one-dimensional (1D) lattice.
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Our work advances the study of quantum Markov processes by establishing the existence of these
models and offering new perspectives on their dynamics. These advancements push the boundaries
of both theoretical and applied quantum physics, offering new insights and methodologies that
significantly impact our comprehension of quantum processes and their practical applications. Namely,
the present work is promising in connection with the recent development on hidden quantum Markov
processes [3, 4, 20].

Let us outline the organization of the paper. Following an introduction to the preliminary concepts
in Section 2, Section 3 is dedicated to the study of BQMCs. Section 4 focuses on inverse BQMCs. In
Section 5, the paper elucidates the distinct structural properties inherent to both inverse and backward
Markov chains. Section 6 establishes a connection between the obtained QMCs and finitely correlated
states, further elaborating on the relationships and implications of these models. Finally, Section 7
provide concluding remarks.

2. Tensor BQMCs on 1D lattice

In the following, all C∗–algebras are unital and separable unless otherwise stated.

Definition 1. Given two ∗–algebrasA, B and an integer n ∈ N, a ∗-map
P: A → B is called n–positive (n ∈ N∗) if ∀ b1, . . . , bn ∈ B, ∀ a1, . . . , an ∈ A

n∑
j,k=1

b∗j P(a∗j ak)bk ≥ 0 (1)

1–positive maps are called positive; n–positive maps for each natural integer n are called completely
positive.

Definition 2. A quasi–conditional expectation with respect to the triplet of ∗-algebras C ⊆ B ⊆ A is
a completely positive linear map E : A → B, such that

E(ca) = cE(a) , ∀a ∈ A ∀c ∈ C (2)

If E(1) = 1, E is called a normalized-quasi–conditional expectation.

Definition 3. Let B, C be C∗–algebras. A completely positive, identity–preserving linear operator
E : B → C is called a Markov operator. A Markov operator E : B ⊗ C → B is called a backward
transition expectation from B ⊗ C to B.

It is notationally convenient to introduce the notations

E2;b(c) := E(b ⊗ c) =: E1;c(b) ; b ∈ B , c ∈ C

Every backward transition expectation E : B ⊗ C → B defines two Markov operators: the E–forward
Markov operator (acting on the 1–st factor of the product):

E1 : b ∈ B → E1(b) := E(b ⊗ 1C) = E1;1C(b) = E2;b(1C) ∈ B
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and the E–backward Markov operator (acting on the 2-d factor of the product):

E2 : c ∈ C → E2(c) := E(1B ⊗ c) = E2;1B(c) = E1;c(1B) ∈ B

In the following (Bn)n∈Z will denote a sequence of C∗–algebras and

A :=
⊗
n∈Z

Bn

jn : Bn → jn(Bn) =: An ⊆ A ; n ∈ N

with their infinite tensor product with respect to a fixed family of cross norms and the associated
embeddings (see [18] Definition 1.23.11). For example, we can assume that each algebra Bn is realized
on a Hilbert space Hn and that the tensor products are those induced by the tensor products of the
corresponding spaces.

In the sequel, by S(A) we denote the set of states onA, 1Bn the identity of Bn, and 1n := jn(1Bn) =

1A the identity ofAn.

Definition 4. A state ϕbackw onA is called a BQMC if there exist:

(i) a sequence of backward transition expectations E(n) : Bn ⊗ Bn+1 → Bn (n ∈ Z),

(ii) a sequence ψn ∈ S(Bn) (n ∈ Z), called a sequence of boundary conditions for ϕbackw, such that
for all m ≤ n ∈ Z and bh ∈ Bh, h ∈ {m, . . . , n}:

ϕbackw( jm(bm) · · · jn(bn)) := ψm(E(m)(bm ⊗ · · · E
(n−1)(bn−1 ⊗ E

(n)(bn ⊗ 1Bn+1)))

= ψm(E(m)
2;bm
◦ · · · ◦ E

(n)
2;bn

(1Bn+1)) (3)

3. Backward Markov Chains

Given a sequence of backward transition expectations E(n) : Bn ⊗ Bn+1 → Bn, define iteratively the
vector spaces:

S backw
[n,n] := S backw

[n] := E(n) (Bn ⊗ 1Bn+1

)
= E

(n)
1 (Bn) = Range(E(n)

1 ) ⊆ Bn

and, for k ∈ {1, . . . , n − m},

S backw
[n−k,n] := E(n−k)

(
Bn−k ⊗ S backw

[n−k+1,n]

)
⊆ Bn−k

S backw
[m :=

∨
n≥m

S backw
[m,n] ⊆ Bm

where the righthand side denotes the linear sub–space of Bm generated by S backw
[m,n] for n ≥ m. The above

defined spaces are operator spaces in the sense of [17] with identity, so it makes sense to speak of states
on them. The operator space S backw

[m is the domain of the boundary condition ψm and since

S backw
[m,n] = lin.{E(m+1)

2;bm
◦ · · · ◦ E

(n)
2;bn

(1Bn+1) : b j ∈ B j , j ∈ {m, . . . , n}} (4)

is a measure of the non–surjectivity of the sequence of transition expectations {E(n)}n≥m. In particular,
if all the E(n)

1 and all the {E(n)}n≥m are surjective, then S backw
[m = Bm.
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Definition 5.
A sequence (ϕ[0,n]) of states on A is called convergent in the strongly finite sense if, for any a ∈ A,
there exists na ∈ N such that for any n ≥ na,

ϕ[0,n](a) = ϕ[0,na](a)

Lemma 1. For a sequence of backward transition expectations
E(n) : Bn ⊗ Bn+1 → Bn, the following statements are true.
(B1) For each n < N ∈ Z, the map

EN],N−1] := idAN−2] ⊗
(

jN−1 ◦ E
(N−1) ◦ ( jN−1 ⊗ jN)−1

)
: AN] → AN−1]

is a Markov quasi–conditional expectation with respect to the Markov localization{
AN−2] ⊆ AN−1] ⊆ AN] , A[N , AN

}
(B2) For each n < N ∈ Z, the limit

En] := lim
N→+∞

En+1],n] ◦ En+2],n+1] · · · ◦ EN],N−1] : AN] → An]

exists point-wise in the strongly finite sense on Aloc and defines a Markov quasi–conditional
expectation with respect to the Markov localization{

An−1] ⊆ An] ⊆ A , A[n , An
}

Moreover,
En](A[n) = S backw

[n

Proof. (B1) and (B2) follow from standard arguments on QMC. �

Lemma 2. Let ϕbackw be backward QMC on A with sequence of transition expectations {E(n)}n∈Z and
boundary conditions (ψn). Then:

(B3) The sequence (ψn) satisfies the compatibility condition

ψm ◦ E
(m)
2 (b) = ψm+1(b) , ∀b ∈ S backw

[m , ∀m ∈ Z (5)

In particular, if all the {E(n)
1 }n≥m and all the transition expectations {E(n)}n≥m are surjective, then ψm ◦

E
(m)
2 = ψm+1.

(B4) The marginal distributions of ϕbackw are

ϕn := ϕbackw ◦ jn = ψn−1 ◦ E
(n)
1 = ψn ◦ E

(n)(( · ) ⊗ 1Bn+1) ∈ S(Bn) ; n ∈ Z (6)

(B5) For any m0 ∈ Z choosing arbitrarily ψm0 , the state onA[m0 defined by

ϕbackw;[m0 := ψm0 ◦ Em0]

where Em0] is defined by Lemma 1, is a one–sided backward QMC with the sequence of boundary
conditions ψm (m > m0) defined by (5).
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Proof. (B3) follows from (4) and:

ϕbackw( jm(1Bm) jm+1(bm+1) · · · jn(bn)) = ψm(E(m)
2 ◦ E

(m+1)
2;bm+1

◦ · · · ◦ E
(n)
2;bn

(1Bn+1))

= ψm+1(E(m+1)
2;bm+1

◦ · · · ◦ E
(n)
2;bn

(1Bn+1))

(B4) follows from

ϕn(bn) := ϕ( jn(bn)) = ψn(E(n)
2;bn

(1n+1)) = ψn−1(E(n−1)
2 ◦ E

(n)
2;bn

(1n+1)) ; ∀bn ∈ Bn

(B5) follows from standard arguments on QMC. �

Theorem 1. Given a sequence of backward transition expectations
E(n) : Bn ⊗ Bn+1 → Bn, the set of backward QMC on A admitting (E(n)) as sequence transition
expectations is not empty.

Proof. Let ψn ∈ S(Bn) and χn) ∈ S(An)) (n ∈ Z) be two arbitrary sequences of states. Then, because
of the Markov property, for any n ∈ Z:

ϕ(n) :=
(
χn)

∣∣∣∣
An)

)
⊗

(
ψn ◦ j−1

n ◦ En]

∣∣∣∣
A[n

)
∈ S(A) ≡ S(An) ∨A[n) (7)

Since A is a C∗–algebra with unit, its state space is compact. Therefore the set of limit points of the
sequence (7) is nonempty.
Let (ϕ(nk)) be a sub–sequence of (7) and ϕ ∈ S(A) be such that

ϕ = lim
k→∞

ϕ(nk) = lim
nk→−∞

ϕ(nk)

point-wise on A. Let a ∈ Aloc, then there exists n0 < N0 ∈ N such that a ∈ A[n0,N0]. Therefore, for
nk < n0,

ϕ(a) := lim
nk→−∞

χnk)(1nk))(ψnk ◦ j−1
nk

)
(
Enk](a)

)
= lim

nk→−∞
(ψnk ◦ j−1

nk
)
(
Enk](a)

)
= lim

nk→−∞
ψnk

(
E

(nk)
2 · · · E

(n0−2)
2 E

(n0−1)
2 j−1

n0
En0](a)

)
and since N0 is arbitrary, this identity holds for all a ∈ A[n0 . This means that the sequence of states on
S backw

[n0
⊆ Bn0 given by

ψnk ◦ E
(nk)
2 · · · E

(n0−2)
2 E

(n0−1)
2

converges to a linear functional φn0 . Moreover, the identity

ϕ(a) = φn0

(
j−1
n0

En0](a)
)

; ∀a ∈ A[n0 (8)

shows that φn0 is a state on S backw
[n0

. By definition of En0], (14) implies that the identity (3) holds with
the replacements

ϕbackw → ϕ ; n→ n0 ; n ≥ n0

Since n0 is arbitrary, it follows that ϕ is a BQMC with transitions expectations (E(n)) and sequence of
boundary conditions (φn). �
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4. Inverse BQMCs

In this section, we are going to define and investigate inverse BQMCs and prove an existence result.

Definition 6.
A state ϕ onA is called an inverse BQMC if there exist:
(j1) an algebra B−∞;
(j2) a sequence of backward transition expectations E(n) : B−∞ ⊗ Bn → B−∞, n ∈ Z;
(j3) a state ψ−∞ ∈ S(B−∞), such that for all m ≤ n ∈ N and bh ∈ Mdh(C), h ∈ {m, . . . , n}.

ϕ( jm(bm) · · · jn(bn)) := ψ−∞(E(n)((· · · E(m)(1B−∞ ⊗ bm) · · · ) ⊗ bn))

:= ψ−∞(E2;bn ◦ · · · ◦ E2;bm+1 ◦ E2;1B−∞ (bm)). (9)

Given a sequence of backward transition expectations E(n) : B−∞⊗Bn → B−∞, define iteratively the
operator spaces:

S backw
(n,n) := S backw

(n) := E(n) (1B−∞ ⊗ Bn
)

= E
(n)
2 (Bn) = Range(E(n)

2 ) ⊆ B−∞

and, for k ∈ {1, . . . , n − m},

S backw
(m,m+k) := E(m+k)

(
S backw

(m,m+k−1) ⊗ Bm+k

)
⊆ B−∞

S backw
(m :=

∨
n≥m

S backw
(m,n) ⊆ B−∞

where the right hand side denotes the linear sub–space of B−∞ generated by S backw
(m,n) for n ≥ m. S backw

(m is
the domain of the boundary condition ψ−∞ and since

S backw
(m,n) = lin.{E(n)

2;bn
◦ · · · ◦ E

(m+1)
2;bm+1

◦ E
(m)
2;1B−∞

(bm) : b j ∈ B j , j ∈ {m, . . . , n}} (10)

is a measure of the non–surjectivity of the sequence of transition expectations {E(n)}n≥m. In
particular, if all the E(n)

1 and all the {E(n)}n≥m are surjective, then S backw
(m = B−∞.

Lemma 3. For a sequence of backward transition expectations E(n) : B−∞ ⊗ Bn → B−∞, the following
statements are true.
(IB1) For each m ∈ Z, the map

E[m,[(m+1) :=
(

j−∞ ◦ E(m) ◦ ( j−∞ ⊗ jm)−1
)
⊗ idA[(m+1) : A−∞ ∨A[m → A−∞ ∨A[(m+1)

is a Markov quasi–conditional expectation with respect to the Markov localization{
A[(m+1) ⊆ A−∞ ∨A[(m+1) ⊆ A−∞ ∨A[m , A−∞ ∨Am , A−∞

}
(IB2) For each n ∈ Z, the limit

E[n := lim
m→−∞

E[n−1,[n ◦ E[n−2,[n−1 · · · ◦ E[m,[m+1 : A−∞ ∨A[m → A−∞ ∨A[n

exists point-wise in the strongly finite sense on Aloc and defines a Markov quasi–conditional
expectation with respect to the Markov localization{

A[(n+1) ⊆ A−∞ ∨A[n ⊆ A−∞ ∨A , A−∞ ∨An , A−∞
}

Moreover,
E(n(A[n) = S backw

[n
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Proof. (IB1) holds because by definition the map E[m,[(m+1) satisfies

E[m,[(m+1)
(
a{−∞}∪[m,+∞)a[(m+1)

)
= E[m,[(m+1)

(
a{−∞}∪[m,+∞)

)
a[(m+1)

E[m,[(m+1) ( j−∞(b−∞) j−∞(bm)) = j−∞
(
E(m)(b−∞ ⊗ bm)

)
∈ A−∞

⇐⇒ E[m,[(m+1) (A−∞ ∨An) ⊆ A−∞

(IB2) follows from standard arguments on QMC together with the fact that, as m→ −∞,A[m ↑ A(−∞ =

A. �

Lemma 4. Let ϕinv be an inverse BQMC on A with sequence of transition expectations {E(n)}n∈Z and
boundary condition ψ−∞. Then:
(IB3) ψ−∞ satisfies the compatibility condition

ψ−∞ ◦ E
(m)
2 (b) = ψ−∞(b) , ∀b ∈ S backw

[m ⊆ B−∞ , ∀m ∈ Z (11)

In particular, if all the {E(n)
1 }n≥m and all the transition expectations {E(n)}n≥m are surjective, then ψ−∞ ◦

E
(m)
2 = ψ−∞.

(IB4) The marginal distributions of ϕinv are

ϕn := ϕinv ◦ jn = ψ−∞ ◦ E
(n)
1 = ψ−∞ ◦ E

(n)(1B−∞ ⊗ ( · )) ∈ S(Bn) ; n ∈ Z (12)

(IB5) For any m0 ∈ Z, choosing arbitrarily ψ−∞, the state onA[m0 defined by

ϕ f orw;[m0 := ψ−∞ ◦ Em0]

where Em0] is defined by Lemma 3. is a one–sided BQMC with boundary condition ψ−∞ defined by (11).

Proof. (IB3) follows from (10) and the fact that for every n and b j ∈ B j, j ∈ {m, . . . , n}:

ϕinv( jm(bm) jm+1(bm+1) · · · jn−1(bn−1))
= ψ−∞(E(n−1)

2;bn−1
◦ · · · ◦ E

(m+1)
2;bm+1

◦ E
(m)
2;1B−∞

(bm))
= ϕinv( jm(bm) jm+1(bm+1) · · · jn−1(bn−1) jn(1Bn))
= ψ−∞(E(n)

2;1Bn
◦ E

(n−1)
2;bn−1

◦ · · · ◦ E
(m+1)
2;bm+1

◦ E
(m)
2;1B−∞

(bm))

= ψ−∞(E(n)
2 ◦ E

(n−1)
2;bn−1

◦ · · · ◦ E
(m+1)
2;bm+1

◦ E
(m)
2;1B−∞

(bm))

(IB4) follows from

ϕn(bn) := ϕ( jn(bn)) = ψ−∞(E(n)
2;bn

(1B−∞)) = ψ−∞(E(n)
1 (bn)) ; ∀bn ∈ Bn

(IB5) follows from standard arguments on QMC. �

Theorem 2. Given a sequence of backward transition expectations
E(n) : Bn ⊗ B−∞ → B−∞, the set of BQMC onA admitting (E(n)) as sequence transition expectations is
not empty.
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Proof. Let ψ−∞ ∈ S(B−∞) and χ(n ∈ S(A(n) (n ∈ Z) be two arbitrary sequences of states. Then,
because of the Markov property, for any n ∈ Z:

ϕ(n) :=
(
ψ−∞ ◦ j−1

−∞ ◦ E[n

∣∣∣∣
An]

)
⊗

(
χ(n

∣∣∣∣
A(n

)
∈ S(A) ≡ S(An] ∨A(n) (13)

Since A is a C∗–algebra with unit, its state space is compact. Therefore, the set of limit points of the
sequence (13) is nonempty.
Let (ϕ(nk)) be a sub–sequence of (7) and ϕ ∈ S(A) be such that

ϕ = lim
k→∞

ϕ(nk) = lim
nk→∞

ϕ(nk)

point-wise on A. Let a ∈ Aloc, then there exists n0 < N0 ∈ N such that a ∈ A[n0,N0]. Therefore, for
nk > n0,

ϕ(a) := lim
nk→+∞

(ψ−∞ ◦ j−1
−∞)

(
E[nk(a)

)
χnk)(1nk))

= lim
nk→+∞

(ψ−∞ ◦ j−1
−∞)

(
E[nk(a)

)
= lim

nk→+∞
ψ−∞ ◦ E

(nk)
2 ◦ · · · ◦ E

(n0+2)
2 ◦ E

(n0+1)
2 j−1

−∞E[n0(a)

and since N0 is arbitrary, this identity holds for all a ∈ A[n0 . This means that the sequence of states on
S backw

[n0
⊆ B−∞ given by

ψ−∞ ◦ E
(nk)
2 · · · E

(n0+2)
2 ◦ E

(n0+1)
2

converges to a linear functional φ−∞. Moreover, the identity

ϕ(a) = φ−∞
(

j−1
n0

E[n0(a)
)

; ∀a ∈ A[n0 (14)

shows that φ−∞ is a state on S backw
[n0

. By definition of E[n0 , (14) implies that the identity (3) holds with
the replacements

ϕinv → ϕ ; n→ n0 ; n ≥ n0

Since n0 is arbitrary, it follows that ϕ is an inverse BQMC with transitions expectations (E(n)) and
boundary conditions φ−∞. �

5. Example of inverse and BQMCs

Within this section, we aim to elucidate the distinct structural properties inherent in inverse and
backward Markov chains, employing a concrete example as an illustrative tool.
LetM2 := M2(C) be our starting C∗-algebra. By σx, σy, σz we denote the Pauli spin operators, i.e.,

1I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Let E = 1
√

2
(1, 1) and define E :M2 ⊗M2 →M2, for all a = (ai j), b = (bi j) by

AIMS Mathematics Volume 9, Issue 10, 28044–28057.
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E(a ⊗ b) =

3∑
i=0

Mia ⊗ bM∗
i (15)

=
(1 − p)

2

∑
i, j

ai jb +
p
6

∑
i, j

ai jσxbσx +
p
6

∑
i, j

ai jσybσy +
p
6

∑
i, j

ai jσzbσz

where

M0 =
√

1 − pE ⊗ I; M1 =

√
p
3

E ⊗ σx; M2 =

√
p
3

E ⊗ σy; M3 =

√
p
3

E ⊗ σz

Lemma 5. E defined by (15) is a backward Markov transition expectation, i.e., a completely positive
identity preserving linear map.

Proof. E is identity preserving, in fact, from (15),

E(I ⊗ I) = (1 − p)I +
p
3

I +
p
3

I +
p
3

I = I

Additionally, E is expressed in the Kraus representation, indicating its property of being completely
positive. �

Lemma 6. For all n ∈ Z, let En := E be defined by (15) and ψn be a state on Bn ≡ M2. Then for all

m ≤ n ∈ Z and bh =

(
bh,11 bh,12

bh,21 bh,22

)
∈ Bh, let h ∈ {m, . . . , n}

ψm(E(bm ⊗ · · · E(bn−1 ⊗ E(bn ⊗ 1Bn+1))) =
∑

im, jm···in, jn

bn,in jnbn−1,in−1 jn−1 · · · bm,im jm (16)

Proof By observing (15), it becomes apparent that

E(bn ⊗ 1Bn+1) =
∑

i, j

bn,i j (17)

Hence, (18) can be derived through iterative processes. �

Lemma 7. Let (E(n) = E)n∈Z denote a sequence of backward transition expectations, defined by (15).

Consider ψ−∞ as a state on B−∞ ≡ M2. Then, for all m ≤ n ∈ Z and bh =

(
bh,11 bh,12

bh,21 bh,22

)
∈ Bh, where

h ∈ {m, . . . , n}, we have the following expression:

ψ−∞(E(n)((· · · E(m+1)(E(m)(1B−∞ ⊗ bm) ⊗ bm+1) · · · ) ⊗ bn)) (18)

=
1

2n−m

∑
i, j

bm,i j −
4p
3

∑
i, j

bm,i j

 · · ·
∑

i, j

bn−1,i j −
4p
3

∑
i, j

bn−1,i j


×ψ−∞

[
(1 − p)

2
bn +

p
6

(
σxbnσx + σybnσy + σzbnσz

)]
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Proof By observing (15), it becomes apparent that

E(1B−∞ ⊗ bm) =

3∑
i=0

Mi1B−∞ ⊗ bmM∗
i (19)

then
E(1B−∞ ⊗ bm) = (1 − p)bm +

p
3
σxbmσx +

p
3
σybmσy +

p
3
σzbmσz

One can see that E(σzbmσz ⊗ bm+1) = E(σybmσy ⊗ bm+1). Consequently, we obtain:

E(E(1B−∞ ⊗ bm) ⊗ bm+1) = (1 − p)E(bm ⊗ bm+1) +
p
3
E(σxbmσx ⊗ bm+1)

+
2p
3
E(σybmσy ⊗ bm+1)

= (1 − p)
∑

i, j

bm,i j

[
(1 − p)

2
bm+1 +

p
6

(
σxbm+1σx + σybm+1σy + σzbm+1σz

)]

+
p
3

∑
i, j

bm,i j

[
(1 − p)

2
bm+1 +

p
6

(
σxbm+1σx + σybm+1σy + σzbm+1σz

)]

+
2p
3

∑
i

bm,ii

[
(1 − p)

2
bm+1 +

p
6

(
σxbm+1σx + σybm+1σy + σzbm+1σz

)]

−
2p
3

∑
i, j

bm,i j

[
(1 − p)

2
bm+1 +

p
6

(
σxbm+1σx + σybm+1σy + σzbm+1σz

)]

=

∑
i, j

bm,i j −
4p
3

∑
i, j

bm,i j

 [ (1 − p)
2

bm+1 +
p
6

(
σxbm+1σx + σybm+1σy + σzbm+1σz

)]
One more step,

E(E(E(1B−∞ ⊗ bm) ⊗ bm+1) ⊗ bm+2) =
1
2

∑
i, j

bm,i j −
4p
3

∑
i, j

bm,i j

 (1 − p)E(bm+1 ⊗ bm+2)

+
1
2

∑
i, j

bm,i j −
4p
3

∑
i, j

bm,i j

 p
3

(
E(σxbm+1σx ⊗ bm+2) + 2E(σybm+1σy ⊗ bm+2)

)

=
1
2

∑
i, j

bm,i j −
4p
3

∑
i, j

bm,i j


∑

i, j

bm+1,i j −
4p
3

∑
i, j

bm+1,i j


×

[
(1 − p)

2
bm+2 +

p
6

(
σxbm+2σx + σybm+2σy + σzbm+2σz

)]
Through the process of iteration, we find that

E(n)((· · · E(m+1)(E(m)(1B−∞ ⊗ bm) ⊗ bm+1) · · · ) ⊗ bn)
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=
1

2n−m

∑
i, j

bm,i j −
4p
3

∑
i, j

bm,i j

 · · ·
∑

i, j

bn−1,i j −
4p
3

∑
i, j

bn−1,i j


×

[
(1 − p)

2
bn +

p
6

(
σxbnσx + σybnσy + σzbnσz

)]
�

Remark 1. The above example illustrates the difference between the structure of the backward Markov
chain and the inverse Markov chains.

6. Recovering finitely correlated states

In this section, we will check whether, BQMCs and the inverse QMCs have finitely correlated states
structure. Recall that, a finitely correlated state (FCS) [10, 11] is a translation invariant state ϕ on the
quasi-local algebraA =

⊗
n∈ZBn, where eachBn is a copy of a C∗-algebraBwith unit 1, characterized

by the existence of a finite dimensional linear spaceV, a linear map E : A ∈ B 7→ L(V) ( L(V) being
the set of linear maps fromV into itself), an element e ∈ V, and a linear functional ρ ∈ V∗ such that

E1(e) = e, ρ ◦ E1 = ρ

and for n ∈ Z,m ∈ N, and a j ∈ B j:

ϕ(an ⊗ · · · an+m) =
1
ρ(e)

ρ ◦ Ean ◦ Ean+1 ◦ · · · ◦ Ean+m(e) (20)

Let ϕbackw ≡ ((Bn)n, (E(n))n, (ψn)n) be a BQMC whose correlations are given by (3). In the
homogenous, for which all the Bn are copies of finite dimensional C∗-algebra, all the transition
expectations En are copies of a transition expectation E : B ⊗ B → B, and the functional ψn is a
copy of a state ψ ∈ S(B). By takingV = B,E = E, ρ = ψ and e = 1I, one can see that ϕbackw defines an
FCS onA.

Similarly, let ϕ ≡ ((Bn)n,B∞, (En), ψ∞) be an inverse backward Markov chain. Assume that Bn are
copies of a C∗-algebra B and E(n) are copies of a transition expectation E : B−∞ ⊗B → B−∞. By taking
V = B−∞, ρ = ψ−∞ and e = 1, then the state ϕ generates an FCS. Contrary, to the FCS generated by
BQMCs, the linear spaceV = B−∞ is not assumed to coincide with the algebra B.

7. Conclusions

In conclusion, this paper significantly advances the field of quantum Markovianity by thoroughly
examining BQMCs and inverse BQMCs. The results demonstrate that for any given sequence of
backward transition expectations, both backward QMCs and inverse BQMCs can be constructed, thus
affirming the feasibility and applicability of these models. This work not only clarifies the distinctions
between different Markovian structures but also establishes important connections between QMCs and
finitely correlated states. By providing concrete examples and elucidating the structural differences,
this study enhances our understanding of quantum systems dynamics. The findings contribute to the
broader theoretical framework and offer new perspectives that could impact practical applications in
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quantum information science. The insights gained from this research are expected to influence ongoing
studies, including those related to hidden quantum Markov processes, and pave the way for further
exploration in quantum dynamics and information theory.
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