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Abstract: In this research, we propose a new numerical method that combines with the Caputo-

Fabrizio Elzaki transform and the q-homotopy analysis transform method. This work aims to analyze 

the Caputo-Fabrizio fractional Newell-Whitehead-Segel (NWS) equation utilizing the Caputo-

Fabrizio q-Elzaki homotopy analysis transform method. The Newell-Whitehead-Segel equation is a 

partial differential equation employed for modeling the dynamics of reaction-diffusion systems, 

specifically in the realm of pattern generation in biological and chemical systems. A convergence 

analysis of the proposed method was performed. Two-dimensional and three-dimensional graphs of 

the solutions have been drawn with the Maple software. It is seen that the resulting proposed method 

is more powerful and effective than the Aboodh transform homotopy perturbation method and 

conformable Laplace decomposition method in the results. 
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1. Introduction 

Differential equations with any real order greater than zero, denoted as n>0, are employed to 

represent a wide range of physical phenomena in diverse fields of science and engineering [1–5]. It is 

demonstrated how a first-order differential equation with a variable coefficient may be comparable to 
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the initial value problem for a relaxation process controlled by a differential equation of non-integer 

order with a constant coefficient [6]. In [7], the intra-specific relationship between two predators and 

a food chain system that depends on prey is examined. There is a broad use for the generalized 

fractional reaction–diffusion equations, which are available in the form of noninteger order partial 

differential equations, to illustrate significant and practical physical phenomena, like subdiffusive and 

superdiffusive scenarios [8]. These mathematical models are used in several fields such as statistical 

mechanics, Brownian motion, visco-elasticity problems, continuum and quantum physics, biosciences, 

chemical engineering, and control theory [9–13]. 

The exponential growth in the popularity of the discipline referred to as fractional calculus (FC) 

has led to the emergence of multiple distinct approaches for defining fractional derivatives and 

fractional integrals [14]. Contrary to the Riemann-Liouville fractional integral, the fractional derivative 

has multiple definitions, some of which are only comparable to each other when certain conditions are 

placed on the function being differentiated [15,16]. Furthermore, there have been recent discussions 

regarding the categorization of the fractional operators, resulting in the proposal of three new classes [17,18]. 

Given the growing use of fractional derivatives in modeling physical problems, it is necessary to 

establish a clear and widely accepted definition for this type of derivative [19]. Additionally, it is 

crucial to develop a reliable and precise numerical approximation method to address problems that 

involve singularities and non-linearities in the systems [20]. Nevertheless, the non-local nature of these 

fractional operators has imposed constraints on the development of efficient codes, as it necessitates 

the inclusion of all previous information during simulation [21,22]. The presence of permanent 

memory, also known as non-volatile memory, leads to increased computational costs and slower 

performance [23]. There are several short memory principles discussed in recent literature that are 

commonly employed to minimize computational expenses and the accumulation of rounding-off errors 

when using numerical techniques [24]. As a result, these short memory principles are highly beneficial 

in solving fractional initial value problems [25–28]. 

The definition of the Caputo-Fabrizio operator, which is a fractional derivative operator without 

a singular kernel, is a direct consequence of the traditional Caputo derivative operator. The reason for 

this is that the later incorporates a unique mathematical expression known as the kernel in its 

formulation, which presents challenges in solving the related differential equations. In contrast, the 

kernel of the former does not have any singularity at 𝑡 = 𝜏 [29]. 

Additional valuable characteristics and intriguing applications of this novel derivative operator, 

including the renowned Laplace transform approach, are detailed in [30]. The operator is also applied 

in recent publications that analyze the Korteweg-de Vries-Burgers equation in liquids and wave 

dynamics, the magnetohydrodynamic free convection flow of generalized Walters’-B fluid over a 

static vertical plate, and the nonlinear Fisher’s reaction diffusion equation [31–33]. 

The advantages of the Caputo-Fabrizio fractional derivative include: It offers a method of 

regularizing the derivative, allowing for the smoothing of functions or signals and improving their 

behavior, even if they lack differentiability in the traditional sense. The Caputo-Fabrizio fractional 

derivative has demonstrated its physical significance in several applications, particularly in 

viscoelasticity, where it accurately represents the behavior of materials that possess both elastic and 

viscous characteristics. Its mathematical features, such as the semi-group property, make it ideal for 

both analytical and numerical analysis, enabling efficient numerical simulations. It is capable of 

simulating fractional diffusion processes, which are present in several natural and physical systems 

when traditional diffusion models are insufficient. The Caputo-Fabrizio fractional derivative is an 
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extension of the Caputo fractional derivative and the Riemann-Liouville fractional derivative, offering 

a more adaptable framework for representing intricate systems [34]. 

The Elzaki transform and other transforms, including Laplace and Fourier transforms, are unified 

to a generalized integral transform [35]. 

The Elzaki transform, developed by Elzaki, is a variation of the existing Sumudu transform and 

is derived from the classical Fourier integral. The Elzaki transform's mathematical simplicity enables 

the efficient solution of ordinary and partial differential equations in the time domain [36–39]. 

Several powerful numerical methodologies were formed in the scientific literature, and various 

distinguished scientists made significant contributions to this subject. These approaches comprise the 

Adomian decomposition method (ADM) [40], the homotopy perturbation method (HPM) [41–43], the 

homotopy analysis method (HAM) [44], the fractional natural transform decomposition method 

(FNTDM) [45], the Elzaki transform differential transform method (ETDTM) [46], the homotopy 

perturbation Elzaki transform method [47–49], the Elzaki variational iteration method [50], the 

differential transform method [51,52], the He-Elzaki method [53], the Li-He’s modified homotopy 

perturbation method [54], the Aboodh transform homotopy perturbation method (ATHPM) [55], and 

the conformable Laplace decomposition method (CLDM) [56]. 

Amplitude equations can be used to simulate various striped patterns, such as the fluctuations in 

sand and the lines on seashells. The Newell-Whitehead-Segel equation (NWSE) holds significant 

importance in the field of applied sciences as one of the most crucial amplitude equations. This 

demonstrates the manifestation of stripes in two-dimensional systems [56–60]. 

The classical NWSE is formed as [56–60] 

𝑢𝑡(𝑥, t) = ϱ
∂2u(𝑥, t)

∂𝑡2
+ οu(𝑥, t) − ρ𝑢ℑ(𝑥, t), t ≥ 0, 𝑥 ∈ ℝ, (1.1) 

where ℑ ∈ ℤ+, ϱ, ο, ρ ∈ ℝ. The initial condition of Eq (1.1) is 𝑢(𝑥, 0) = δ. 

The NWSE holds great importance in the examination of pattern creation in diverse physical and 

biological systems. The NWSE is significant in various application domains due to its importance. The 

NWSE is a mathematical model that can be used to describe how chemical concentrations change over 

time and space in reaction-diffusion systems. Understanding the creation of spatial patterns, such as 

chemical waves and Turing patterns, is crucial. The NWSE is employed to simulate biological pattern 

production, including the formation of animal coats, the distribution of animal spots and stripes, and 

the branching of nerve cells. These patterns frequently emerge as the result of reaction-diffusion 

processes that include chemical signaling. The NWSE is used in the fields of physics and material 

science to analyze pattern generation in systems such as solidification fronts, where the boundary 

between solid and liquid phases displays intricate patterns. The NWSE has been utilized to investigate 

pattern development in fluid dynamics, specifically the emergence of hexagonal convection cells in 

Rayleigh-Bénard convection. The NWSE is utilized in neuroscience to simulate the transmission of 

electrical signals in neural networks, a crucial aspect for comprehending brain function and 

information processing. The NWSE is crucial as it offers a mathematical framework to comprehend 

the emergence of intricate patterns from basic physical and chemical processes. It aids researchers in 

comprehending the mechanics underlying pattern development and can provide valuable insights into 

the self-organization of natural systems [60]. 

By adding the Caputo-Fabrizio fractional derivative to the NWSE, we incorporate a memory 

effect that reflects the system's history and non-local interactions. This is particularly useful in 
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modeling systems where memory and non-local effects play a significant role in dynamics, such as in 

materials science, biology (for example, in describing anomalous transport in cells), and various 

physical processes involving complex interactions over time [61,62]. 

In this paper, we examine Caputo-Fabrizio NWSE: 

𝐷𝑡0
𝐶𝐹

𝑡
𝜇
𝑢(𝑥, 𝑡) =

∂2u(x, t)

∂x2
+ 2u(x, t) − 3𝑢2(𝑥, 𝑡), 𝜇 ∈ (0,1] (1.2) 

with the initial condition 

𝑢(𝑥, 0) = δ. 
 

The primary objective of this study is to present a novel approach, known as the Caputo-Fabrizio 

q-Elzaki homotopy analysis transform method (CFq-EHATM), which is combined with the Caputo-

Fabrizio Elzaki transform and q-homotopy analysis transform method. The secondary objective of this 

study is to acquire the novel numerical solutions for the Caputo-Fabrizio NWSE by the utilization of 

the CFq-EHATM. 

The following portion of the research is provided in further detail. Section 2 of the document 

provides the basic concepts of fractional derivatives and introduces the Caputo-Fabrizio Elzaki 

transform (CFET) as a method for calculating these derivatives. Section 3 introduces the CFq-EHATM, 

which stands for the Caputo-Fabrizio q-Elzaki homotopy analysis transform method. In Section 4, we 

present the numerical solutions of the Caputo-Fabrizio Newell-Whitehead-Segel equation. Section 5 

provides the concluding remarks or results. 

2. Main definitions and theorems 

In this section, the basic definitions and theorems will be given. 

Definition 2.1. [62] Suppose that 𝑔 is a differentiable function. The Caputo derivative of order 𝜇 ∈

(0,1) is defined by 

𝐷𝑡0
𝐶

𝑡
𝜇[𝑔(𝑡)] =

1

Γ(𝑛 − 𝜇)
∫

𝑔(𝑛)(𝑠)

(𝑡 − 𝑠)1+𝜇−𝑛

𝑡

0

𝑑𝑠, 𝑛 − 1 < 𝜇 ≤ 𝑛. (2.1) 

Definition 2.2. [63] The He’s fractional derivative of order 𝜇 of the function 𝑔(𝑡) is defined as 

𝐷𝑡
𝜇[𝑔(𝑡)] =

1

Γ(𝑛 − 𝜇)

𝑑𝑛

𝑑𝑡𝑛
∫(𝑠 − 𝑡)𝑛−𝜇−1[𝑔0(𝑠) − 𝑔(𝑠)]

𝑡

𝑡0

𝑑𝑠. (2.2) 

Definition 2.3. [64] The Atangana-Baleanu (AB) fractional derivative of order 𝜇 > 0 of the function 

𝑔(𝑡) is defined by 

𝐷𝑡0
𝐴𝐵

𝑡
𝜇[𝑔(𝑡)] =

𝑁(𝜇)

1 − 𝜇
∫𝑔′(𝜏)

𝑡

0

𝐸𝜇 [−
𝜇(𝑡 − 𝜏)𝜇

1 − 𝜇
] 𝑑𝜏, 0 < 𝜇 ≤ 1, (2.3) 

where normalization function 𝑁(𝜇) is equal to 1 when 𝜇 = 0, 𝜇 = 1 is represented by 𝑁(𝜇), and 𝐸𝜇 

represents the Mittag-Leffler function. 

Definition 2.4. [61] The Caputo-Fabrizio (CF) fractional derivative of order 𝜇 > 0 for the function 
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𝑔(𝑡) is defined by 

𝐷𝑡0
𝐶𝐹

0,𝑡
𝜇 [𝑔(𝑡)] =

𝑀(𝜇)

1 − 𝜇
∫𝑔′(𝜏)

𝑡

0

𝑒𝑥𝑝 [−
𝜇(𝑡 − 𝜏)

1 − 𝜇
] 𝑑𝜏, 𝜏 > 0, (2.4) 

where 𝑀(𝜇) is the normalization function such that 𝑀(0) = 𝑀(1) = 1, and 𝑔 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎. 

Definition 2.5. [61] The Caputo-Fabrizio Elzaki transform (ET) of the Caputo-Fabrizio derivative 

(CFD) for the function 𝑔(𝑡) is defined by 

𝐸𝜇𝑡0
𝐶𝐹 { 𝐷𝑡0

𝐶𝐹
𝑡
𝜇[𝑔(𝑡)]} =

1

1 − 𝜇 + 𝜇𝑤
( 𝐸𝜇𝑡0

𝐶𝐹 [𝑔(𝑡)] − 𝑤2𝑔(0)) , 0 < 𝜇 ≤ 1. (2.5) 

2.1. q-Homotopy analysis transform method 

Now, analyze the time-fractional partial differential equations [65]: 

𝐷𝑡
𝜇
𝑤(𝑥, 𝑡) + 𝐾𝑤(𝑥, 𝑡) + 𝑆𝑤(𝑥, 𝑡) = 𝜁(𝑥, 𝑡), 𝑡 ∈ (0,∞), 𝑛 − 1 < 𝜇 ≤ 𝑛, (2.6) 

where 𝐾 and 𝑆 are linear and nonlinear operators, 𝜁(𝑥, 𝑡) is a nonhomogeneous function, and 𝐷𝑡
𝜇

 is 

Caputo fractional derivative of order 𝜇. 

Applying the Laplace transform to Eq (2.6) and using the initial condition, then Eq (2.7) is found by 

ℒ[𝑤(𝑥, 𝑡)] −
1

𝑠𝜇
∑ 𝑠𝜇−𝑘−1𝑤(𝑘)

𝑛−1

𝑘=0

𝑤(𝑥, 𝑦, 0) +
1

𝑠𝜇
ℒ[𝐾𝑤(𝑥, 𝑡)] +

1

𝑠𝜇
ℒ[𝑆𝑤(𝑥, 𝑡)] 

=
1

𝑠𝜇
ℒ[𝜁(𝑥, 𝑡)]. 

(2.7) 

Via the homotopy analysis method, the nonlinear operator of 𝜓(𝑥, 𝑡; 𝑞) is described by 

𝑁[𝜓(𝑥, 𝑡; 𝑞)] = ℒ[𝜓(𝑥, 𝑡; 𝑞)] −
1

𝑠𝜇
∑ 𝑠𝜇−𝑘−1𝜓(𝑘)

𝑛−1

𝑘=0

(𝑥, 𝑡; 𝑞)(0+) 

+
1

𝑠𝜇
ℒ[𝐾𝜓(𝑥, 𝑡; 𝑞)] +

1

𝑠𝜇
ℒ[𝑆𝜓(𝑥, 𝑡; 𝑞)] −

1

𝑠𝜇
ℒ[𝜁(𝑥, 𝑡)], 

(2.8) 

where 𝑞𝜖 [0,
1

𝑛
]. 

A homotopy is generated by 

(1 − 𝑛𝑞)ℒ[𝜓(𝑥, 𝑡; 𝑞) − 𝑤0(𝑥, 𝑡)] = ℎ𝑞𝐻∗(𝑥, 𝑡)𝑆[𝜓(𝑥, 𝑡; 𝑞)], (2.9) 

where ℎ ≠ 0 is an auxiliary parameter and ℒ represents Laplace transform. For 𝑞 = 0 and 𝑞 =
1

𝑛
, 

the outcomes of Eq (2.9) are found by 

𝜓(𝑥, 𝑡; 0) = 𝑤0(𝑥, 𝑡), 𝜓 (𝑥, 𝑡;
1

𝑛
) = 𝑤(𝑥, 𝑡). (2.10) 

Therefore, when 𝑞 increases from 0 to 1/𝑛, the solution 𝜑(𝑥, 𝑡; 𝑞) converges from 𝑤0(𝑥, 𝑡) 
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to the solution 𝑤(𝑥, 𝑡). Using the Taylor theorem around 𝑞, then it is found by 

𝜓(𝑥, 𝑡; 𝑞) = 𝑤0(𝑥, 𝑡) + ∑𝑤𝑚(𝑥, 𝑡)𝑞𝑚

∞

𝑖=1

, (2.11) 

where 

𝑤𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜓(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|𝑞=0. (2.12) 

Equation (2.11) converges at 𝑞 =
1

𝑛
 for the convenient 𝑤0(𝑥, 𝑡) , 𝑛  and ℎ.  Therefore, the 

numerical solution of the nonlinear equation is obtained as 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (2.13) 

Differentiating the 0-th order deformation Eq (2.11) 𝑚-times with respect to 𝑞 and dividing by 

𝑚!, thus for 𝑞 = 0, one obtains 

ℒ[𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎ𝐻∗(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1), (2.14) 

where the vectors are given as 

�⃗⃗� 𝑚 = {𝑤0(𝑥, 𝑡), 𝑤1(𝑥, 𝑡), … , 𝑤𝑚(𝑥, 𝑡)}. (2.15) 

When inverse Laplace transform is used on Eq (2.14), the result is acquired as 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℒ−1[ℎ𝐻∗(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1)], (2.16) 

where 

ℛ𝑚(�⃗⃗� 𝑚−1) = ℒ[𝑤𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚

𝑛
)

1

𝑠𝜇
∑ 𝑠𝜇−𝑘−1𝑤(𝑘)

𝑛−1

𝑘=0

(𝑥, 0) 

+
1

𝑠𝜇
ℒ[𝐾𝑤𝑚−1(𝑥, 𝑡) + 𝐻∗

𝑚−1(𝑥, 𝑡) − 𝜁(𝑥, 𝑡)] 

(2.17) 

and 

𝑘𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1,

 (2.18) 

where 𝐻∗
𝑚 is homotopy polynomials and it is presented as 

𝐻∗
𝑚−1 =

1

(𝑚 − 1)!

𝜕𝑚−1𝜓(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚−1
|𝑞=0, 𝜓(𝑥, 𝑡; 𝑞) = 𝜓0 + 𝑞𝜓1 + 𝑞2𝜓2 + ⋯. (2.19) 

Utilizing Eqs (2.16) and (2.17), one obtains 
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𝑤𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℎ)𝑤𝑚−1(𝑥, 𝑡) − (1 −
𝑘𝑚

𝑛
)

1

𝑠𝜇
∑ 𝑠𝜇−𝑘−1𝑤(𝑘)

𝑛−1

𝑘=0

(𝑥, 0) 

+ℎ(ℒ)−1 [(
1

𝑠𝜇
ℒ[𝐾𝑤𝑚−1(𝑥, 𝑡) + 𝐻∗

𝑚−1(𝑥, 𝑡) − 𝜁(𝑥, 𝑡)])]. 

(2.20) 

Via q-homotopy analysis transform method, then it is obtained as 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

. (2.21) 

3.  The novel numerical method 

In this part, we present the CFq-EHATM, which combines with Caputo-Fabrizio Elzaki transform 

and q-homotopy analysis transform method. 

Consider the Caputo-Fabrizio time-fractional order nonlinear partial differential equation 

(CFTFNPDE) to give the main idea of CFq-EHATM: 

𝐷𝑡0
𝐶𝐹

𝑡
𝜇𝑢(𝜉, 𝜏) + 𝐴𝑢(𝜉, 𝜏) + 𝐻𝑢(𝜉, 𝜏) = 𝜁(𝜉, 𝜏), 𝑛 − 1 < 𝜇 ≤ 𝑛, (3.1) 

where 𝐴 and 𝐻 are linear and nonlinear operators, 𝜁(𝜉, 𝜏) is a nonhomogeneous function, and 𝐷𝑡0
𝐶𝐹

𝑡
𝜇 

is CFD of order 𝜇. 
Step 1. By applying the CFET to Eq (3.1) and utilizing the initial condition, Eq (3.2) can be determined by 

( 𝐸𝜇𝑡0

𝐶𝐹 [𝑢(𝜉, 𝜏)] − 𝑤2𝑢(𝜉, 0))

1 − 𝜇 + 𝜇𝑤
+ 𝐸𝜇𝑡0

𝐶𝐹 [𝐴𝑢(𝜉, 𝜏) + 𝐻𝑢(𝜉, 𝜏)] = 𝐸𝜇𝑡0

𝐶𝐹 [𝜁(𝜉, 𝜏)]. 
(3.2) 

Rewriting the Eq (3.2), Eq (3.3) is obtained by 

𝐸𝜇𝑡0
𝐶𝐹 [𝑢(𝜉, 𝜏)] − 𝑤2𝑢(𝜉, 0) + (1 − 𝜇 + 𝜇𝑤) 𝐸𝜇𝑡0

𝐶𝐹 [𝐴𝑢(𝜉, 𝜏) + 𝐻𝑢(𝜉, 𝜏)] 

−(1 − 𝜇 + 𝜇𝑤) 𝐸𝜇𝑡0

𝐶𝐹 [𝜁(𝜉, 𝜏)] = 0. 
(3.3) 

Step 2. Via the HAM, the nonlinear operator of �⃗� (𝜉, 𝜏; 𝑞) is described by 

𝑁1[�⃗� (𝜉, 𝜏; 𝑞)] = 𝐸𝜇𝑡0
𝐶𝐹 [�⃗� (𝜉, 𝜏; 𝑞)] − 𝑤2�⃗� (𝜉, 𝜏; 𝑞)(0+) 

+(1 − 𝜇 + 𝜇𝑤) [ 𝐸𝜇𝑡0

𝐶𝐹 (𝐴𝑢(𝜉, 𝜏) + 𝐻𝑢(𝜉, 𝜏) − 𝜁(𝜉, 𝜏))], 
(3.4) 

where 𝑞𝜖 [0,
1

𝑛
]. 

A homotopy is generated by 
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(1 − 𝑛𝑞) 𝐸𝜇𝑡0

𝐶𝐹 [�⃗� (𝜉, 𝜏; 𝑞) − 𝑢0(𝜉, 𝜏)] = ℏ𝑞𝐻∗(𝜉, 𝜏) 𝐸𝜇𝑡0

𝐶𝐹 [�⃗� (𝜉, 𝜏; 𝑞)], (3.5) 

where 𝐸𝜇𝑡0
𝐶𝐹  signifies CFET and ℏ ≠ 0 is an auxiliary parameter. The outcomes of Eq (3.5) are 

determined for 𝑞 = 0 and 𝑞 =
1

𝑛
 by 

�⃗� (𝜉, 𝜏; 0) = 𝑢0(𝜉, 𝜏), �⃗� (𝜉, 𝜏;
1

𝑛
) = 𝑢(𝜉, 𝜏). (3.6) 

With q increasing from 0 to 1/𝑛, �⃗� (𝜉, 𝜏; 𝑞) converges to the solution 𝑢(𝜉, 𝜏) from 𝑢0(𝜉, 𝜏). 

When the Taylor theorem is applied to 𝑞, the result is found by 

�⃗� (𝜉, 𝜏; 𝑞) = 𝑢0(𝜉, 𝜏) + ∑𝑢𝑚(𝜉, 𝜏)𝑞𝑚

∞

𝑖=1

, (3.7) 

where 

𝑢𝑚(𝜉, 𝜏) =
1

𝑚!

𝜕𝑚�⃗� (𝜉, 𝜏; 𝑞)

𝜕𝑞𝑚
|𝑞=0. (3.8) 

For 𝑢0(𝜉, 𝜏), n and ℏ, which are convenient, Eq (3.7) converges at q =
1

𝑛
. 

By dividing by 𝑚! and differentiating the 0-th order deformation Eq (3.5) 𝑚 times with regard 

to 𝑞, one obtains for 𝑞 = 0, 

𝐸𝜇𝑡0
𝐶𝐹 [𝑢𝑚(𝜉, 𝜏) − 𝓀𝑚𝑢𝑚−1(𝜉, 𝜏)] = ℏ𝐻1∗(𝜉, 𝜏)ℛ1,𝑚(�⃗⃗� 𝑚−1). (3.9) 

Step 3. When inverse CFET (ICFET) is used on Eq (3.9), the result is acquired as 

𝑢𝑚(𝜉, 𝜏) = 𝓀𝑚𝑢𝑚−1(𝜉, 𝜏) + ℏ ( 𝐸𝜇𝑡0

𝐶𝐹 )
−1

[𝐻1∗(𝜉, 𝜏)ℛ1,𝑚(�⃗� 𝑚−1)], (3.10) 

where 

ℛ1,𝑚(�⃗� 𝑚−1) = 𝐸𝜇𝑡0

𝐶𝐹 [𝑢𝑚−1(𝜉, 𝜏)] − 𝑤2 (1 −
𝓀𝑚

𝑛
)𝑢0(𝜉, 𝜏) 

(3.11) 

+(1 − 𝜇 + 𝜇𝑤) [ 𝐸𝜇𝑡0

𝐶𝐹 [𝐴𝑢(𝜉, 𝜏) + 𝐻𝑢(𝜉, 𝜏) − 𝜁(𝜉, 𝜏)]] 

and 

𝓀𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1,

 (3.12) 

where 𝐻1∗ is homotopy polynomials and it is presented as 

𝐸𝜇𝑡0
𝐶𝐹 [𝑢𝑚(𝜉, 𝜏) − 𝓀𝑚𝑢𝑚−1(𝜉, 𝜏)] = ℏ𝐻1∗(𝜉, 𝜏)ℛ1,𝑚(�⃗⃗� 𝑚−1) (3.13) 
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and 

𝐻1∗ =
1

𝑚!

𝜕𝑚�⃗� (𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|𝑞=0, �⃗� (𝜉, 𝜏; 𝑞) = �⃗� 0 + 𝑞�⃗� 1 + 𝑞2�⃗� 2 + ⋯ (3.14) 

Utilizing Eqs (3.10) and (3.11), one obtains 

𝑢𝑚(𝜉, 𝜏) = (𝓀𝑚 + ℏ)𝑢𝑚−1(𝜉, 𝜏) − 𝑤2 (1 −
𝓀𝑚

𝑛
)𝑢0(𝜉, 𝜏) 

+ℏ( 𝐸𝜇𝑡0

𝐶𝐹 )
−1

[(1 − 𝜇 + 𝜇𝑤) 𝐸𝜇𝑡0

𝐶𝐹 [𝐴𝑢𝑚−1(𝜉, 𝜏) + 𝐻𝑚−1
1∗ (𝜉, 𝜏) − ζ(𝜉, 𝜏)]]. 

(3.15) 

Step 4. It is then acquired via CFq-EHATM as 

𝑢(𝜉, 𝜏) = 𝑢0(𝜉, 𝜏) + ∑𝑢𝑐(𝜉, 𝜏) (
1

𝑛
)
𝑐

.

∞

𝑐=1

 (3.16) 

4. Convergence analysis 

Theorem 4.1. (Uniqueness theorem) [66,67] The solution for the nonlinear Caputo-Fabrizio fractional 

partial differential Eq (3.1) acquired by CFq-EHATM is unique for ∀μϵ(0,1), where μ = (n + ℏ) +

ℏ(ϖ + υ)Υ. 

Proof. The solution of nonlinear Caputo-Fabrizio FPDEs Eq (3.1) is presented as 

𝜑(𝜉, 𝜏) = ∑𝜑𝑐(𝜉, 𝜏) (
1

𝑛
)
𝑐∞

𝑐=1

, (4.1) 

where 

𝜑𝑚(𝜉, 𝜏) = (𝓀𝑚 + ℏ)𝜑𝑚−1(𝜉, 𝜏) − 𝑤2 (1 −
𝓀𝑚

𝑛
)𝜑0(𝜉, 𝜏) 

+ℏ( 𝐸𝜇𝑡0

𝐶𝐹 )
−1

[(1 − 𝜇 + 𝜇𝑤) 𝐸𝜇𝑡0

𝐶𝐹 [𝐴𝑢𝑚−1(𝜉, 𝜏) + 𝐻1∗
𝑚−1(𝜉, 𝜏) − ζ(𝜉, 𝜏)]]. 

(4.2) 

Let 𝜑 and 𝜙 are two distinct solutions of Eq (3.1), then it is obtained as 

|𝜑 − 𝜙| = |(𝑛 + ℎ)(𝜑 − 𝜙) + ℎ ( 𝐸𝜇𝑡0

𝐶𝐹 )
−1

[(1 − 𝜇 + 𝜇𝑤) 𝐸𝜇𝑡0

𝐶𝐹 [𝐴(𝜑 − 𝜙) 

+𝐻(𝜑 − 𝜙)]]|. 

(4.3) 

Via the convolution theorem for the CFET, we have 

|𝜑 − 𝜙| ≤ (𝑛 + ℎ)|𝜑 − 𝜙| + ℎ∫(|𝐴(𝜑 − 𝜙)|+|𝐻(𝜑 − 𝜙)|)

𝑡

0

(𝑡 − 𝜏)𝜇

Γ(1 + 𝜇)
𝑑𝜏 (4.4) 
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≤ (𝑛 + ℎ)|𝜑 − 𝜙| + ℎ ∫(ϖ|𝜑 − 𝜙|+υ|𝜑 − 𝜙|)

𝑡

0

(𝑡 − 𝜏)𝜇

Γ(1 + 𝜇)
𝑑𝜏. 

Utilizing the integral mean-value theorem (IMVT), then we obtain 

|𝜑 − 𝜙| ≤ (𝑛 + ℎ)|𝜑 − 𝜙| + ℎ(ϖ|𝜑 − 𝜙|+υ|𝜑 − 𝜙|)Υ ≤ 𝛼|𝜑 − 𝜙|. (4.5) 

Thus, we have (1 − 𝜏)|𝜑 − 𝜙| ≤ 0. For 𝜏 ∈ (0,1), thus, |𝜑 − 𝜙| = 0. For 𝜇 ∈ (0,1), that is 

𝜑 = 𝜙. Therefore, the solution is unique. 

Theorem 4.2. (Convergence theorem) [66,67] Let 𝑋 is a Banach space (BS) and 𝐺: 𝑋 → 𝑋 is a 

nonlinear mapping. Assume that the inequality 

‖𝐺(𝑎) − 𝐺(ℎ)‖ ≤ 𝛾‖𝑎 − ℎ‖, ∀𝑎, 𝑏 ∈ 𝑋 (4.6) 

holds, then 𝐺 has a fixed point in view of Banach fixed point theory. Also, for the arbitrary selection 

of 𝑎0, 𝑏0 ∈ 𝑋, the sequence created by the CFq-EHATM converges to a fixed point of 𝐺 and 

‖𝜙𝑚 − 𝜙𝑛‖ ≤
𝛾𝑛

1 − 𝛾
‖𝜙1 − 𝜙0‖, ∀𝑎, 𝑏 ∈ 𝑋. (4.7) 

Proof. Let a BS (𝐶[𝐽], ‖. ‖) of all continuous functions on 𝐽 via the norm expressed as ‖𝑔(𝑡‖ =

max
𝑡∈𝐽

|𝑔(𝑡)|. 

We show that the sequence {𝜙𝑛} is a Cauchy sequence in the BS: 

‖𝜙𝑚 − 𝜙𝑛‖ = max
𝑡∈𝐽

|𝜙𝑚 − 𝜙𝑛| 

(4.8) 

= max
𝑡∈𝐽

|(𝑛 + ℎ)(𝜙𝑚−1 − 𝜙𝑛−1) + ℎ( 𝐸𝜇𝑡0
𝐶𝐹 )

−1
[(1 − 𝜇 + 𝜇𝑤) 

× 𝐸𝜇𝑡0
𝐶𝐹 [𝐴(𝜙𝑚−1 − 𝜙𝑛−1) + 𝐻(𝜙𝑚−1 − 𝜙𝑛−1)]| 

≤ max
𝑡∈𝐽

[(𝑛 + ℎ)|𝜙𝑚−1 − 𝜙𝑛−1| + ℎ( 𝐸𝜇𝑡0
𝐶𝐹 )

−1
[(1 − 𝜇 + 𝜇𝑤) 

× ( 𝐸𝜇𝑡0
𝐶𝐹 )

−1
(𝐴|𝜙𝑚−1 − 𝜙𝑛−1| + 𝐻|𝜙𝑚−1 − 𝜙𝑛−1|)]]. 

Via the convolution theorem for the CFET, then we obtain 

‖𝜙𝑚 − 𝜙𝑛‖ ≤ max
𝑡∈𝐽

[(𝑛 + ℎ)|𝜙𝑚−1 − 𝜙𝑛−1| + (𝑛 + ℎ)|𝜙𝑚−1 − 𝜙𝑛−1| 

(4.9) 

+ℎ∫(𝐴|𝜙𝑚−1 − 𝜙𝑛−1| + 𝐻|𝜙𝑚−1 − 𝜙𝑛−1|)

𝑡

0

(𝑡 − 𝜏)𝝁

Γ(1 + 𝜇)
 

≤ max
𝑡∈𝐽

[(𝑛 + ℎ)|𝜙𝑚−1 − 𝜙𝑛−1| + (𝑛 + ℎ)|𝜙𝑚−1 − 𝜙𝑛−1| 

+ℎ ∫(ϖ|𝜙𝑚−1 − 𝜙𝑛−1| + υ|𝜙𝑚−1 − 𝜙𝑛−1|)

𝑡

0

(𝑡 − 𝜏)𝝁

Γ(1 + 𝜇)
𝑑𝜏]. 
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Using the IMVT, then we have 

‖𝜙𝑚 − 𝜙𝑛‖ ≤ max
𝑡∈𝐽

[(𝑛 + ℎ)|𝜙𝑚−1 − 𝜙𝑛−1| 

(4.10) 

+ℎ(𝜌|𝜙𝑚−1 − 𝜙𝑛−1| + 𝛿|𝜙𝑚−1 − 𝜙𝑛−1|)Υ] ≤ 𝜏‖𝜙𝑚−1 − 𝜙𝑛−1‖. 

Let 𝑚 = 𝑛 + 1, then we obtain 

‖𝜙𝑛+1 − 𝜙𝑛‖ ≤  𝜏‖𝜙𝑛 − 𝜙𝑛−1‖ ≤ 𝜏2‖𝜙𝑛−1 − 𝜙𝑛−2‖ ≤ ⋯ ≤ 𝜏𝑛‖𝜙1 − 𝜙0‖. (4.11) 

Via the triangular inequality, we obtain 

‖𝜙𝑚 − 𝜙𝑛‖ ≤ ‖𝜙𝑛+1 − 𝜙𝑛‖ + ‖𝜙𝑛+2 − 𝜙𝑛+1‖ + ⋯+ ‖𝜙𝑚 − 𝜙𝑚−1‖ 

(4.12) 

≤ [𝜏𝑛 + 𝜏𝑛+1 + ⋯+ 𝜏𝑚−1]‖𝜙1 − 𝜙0‖ 

≤ 𝜏𝑛[1 + 𝜏 + 𝜏2 + ⋯+ 𝜏𝑚−𝑛−1]‖𝜙1 − 𝜙0‖ 

≤ 𝜏𝑛 [
1 − 𝜏𝑚−𝑛−1

1 − 𝜏
] ‖𝜙1 − 𝜙0‖. 

Since 𝜏 ∈ (0,1), 1 − 𝜏𝑚−𝑛−1 < 1, then we obtain 

‖𝜙𝑚 − 𝜙𝑛‖ ≤
𝜏𝑛

1 − 𝜏
‖𝜙1 − 𝜙0‖. (4.13) 

For ‖𝜙1 − 𝜙0‖ < ∞,  so as 𝑚 → ∞ , then ‖𝜙𝑚 − 𝜙𝑛‖ → 0.  Thus, the sequence {𝜙𝑛}  is 

Cauchy sequence in 𝐶[𝐽], and so the sequence is convergent. 

5. Application 

The part aims to present visual representations of the time-fractional coupled Newell-Whitehead-

Segel equation in a Caputo-Fabrizio sense. 

Example 5.1. Consider the Caputo-Fabrizio time-fractional NWSE (CFTFNWSE) 

𝐷𝑡0
𝐶𝐹

𝑡
𝜇
𝑢(𝑥, 𝑡) =

∂2u(x, t)

∂x2
+ 2u(x, t) − 3𝑢2(𝑥, 𝑡), 𝜇 ∈ (0,1] (5.1) 

with the initial condition 

𝑢(𝑥, 0) = δ. (5.2) 

CFET is applied to Eq (5.1), and by employing Eq (5.2), then we obtain 

𝐸𝜇𝑡0

𝐶𝐹 [𝑢(𝑥, 𝑡)] − 𝑤2𝑢(𝑥, 0) − (1 − 𝜇 + 𝜇𝑤) 𝐸𝜇𝑡0

𝐶𝐹 [
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
+ 2𝑢(𝑥, 𝑡) − 3𝑢2(𝑥, 𝑡)] = 0. (5.3) 

The nonlinear operator is defined by employing Eq (5.3): 
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𝑁1[𝜑(𝑥, 𝑡; 𝑞) ] = 𝐸𝜇𝑡0
𝐶𝐹 [𝜑(𝑥, 𝑡; 𝑞)] − δ𝑤2 − (1 − 𝜇 + 𝜇𝑤) 

× 𝐸𝜇𝑡0
𝐶𝐹 [

𝜕2𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+ 2𝜑(𝑥, 𝑡; 𝑞) − 3𝜑2(𝑥, 𝑡; 𝑞)]. 

(5.4) 

The 𝑚-th order deformation equation is defined by the application of the proposed algorithm: 

𝐸𝜇𝑡0

𝐶𝐹 [𝑢𝑚(𝑥, 𝑡) − 𝓀𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℎℛ1,𝑚[�⃗� 𝑚−1], (5.5) 

where 

ℛ1,𝑚[�⃗� 𝑚−1(𝑥, 𝑡)] = 𝐸𝜇𝑡0
𝐶𝐹 [�⃗� 𝑚−1 (𝑥, 𝑡)] − δ𝑤2 (1 −

𝑘𝑚

𝑛
) 

−(1 − 𝜇 + 𝜇𝑤) 𝐸𝜇𝑡0
𝐶𝐹 [

𝜕2𝑢𝑚−1 (𝑥, 𝑡)

𝜕𝑥2
+ 2𝑢𝑚−1(𝑥, 𝑡) − 3 ∑ 𝑢𝑟

𝜕𝑢𝑚−1−𝑟

𝜕𝑥

𝑚−1

𝑟=0

]. 

(5.6) 

By utilizing the ICFET to Eq (5.5), we obtain 

𝑢𝑚(𝑥, 𝑡) = 𝓀𝑚𝑢𝑚−1(𝑥, 𝑡) + ℎ ( 𝐸𝜇𝑡0

𝐶𝐹 )
−1

{ℛ1,𝑚[�⃗� 𝑚−1 (𝑥, 𝑡)]}. (5.7) 

By employing initial conditions, we obtain 

𝑢0(𝑥, 𝑡) = δ. (5.8) 

To get the value of 𝑢1(𝑥, 𝑡), we substitute 𝑚 = 1 into Eq (5.7), resulting in the following 

expression: 

𝑢1(𝑥, 𝑡) = −ℎ(2δ − 3δ2)(1 − 𝜇 + 𝜇𝑡). (5.9) 

In a similar vein, by substituting 𝑚 = 2 into Eq (5.7), then we obtain the value for 𝑢2(𝑥, 𝑡): 

𝑢2(𝑥, 𝑡) = (𝑛 + ℎ)(−ℎ(2δ − 3δ2)(1 − 𝜇 + 𝜇𝑡)) 

+ℎ2(2δ − 3δ2)(2 − 6δ)[(1 − 𝜇)2 + 2𝜇𝑡 − 2𝜇2𝑡+𝜇2𝑡2)]. 

(5.10) 

By employing this approach, it is possible to identify the remaining terms. The solution of the 

CFTFNWSE is determined via the CFq-EHATM 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (5.11) 

By substituting 𝜇 = 1, 𝑛 = 1, ℎ = −1 into Eq (5.11), we have that the resulting outcomes, 

denoted as ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑀
𝑚=1  converge to the exact solutions 𝑢(𝑥, 𝑡) =

−
2

3
𝛿𝑒𝑥𝑝 (2𝑡)

−
2

3
+𝛿−𝛿𝑒𝑥𝑝 (2𝑡)

 of the 

CFTFNWSE when 𝑀 → ∞. 
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Figure 1 displays the 3D graphical representations of CFq-EHATM, the exact solution, and the 

absolute error for 𝑢(𝑥, 𝑡). 

Figure 2 shows the two-dimensional graphical representations of CFq-EHATM for 𝑢(𝑥, 𝑡) 

solution and the exact solution for different 𝜇 values. 

Table 1 shows the numerical solution of 𝑢(𝑥, 𝑡) obtained from the solution of CFTFNWSE with 

CFq-EHATM for different 𝑥, 𝑡 and 𝜇 values. 

  

 

Figure 1. (a) Nature of CFq-EHATM solution 𝑢(𝑥, 𝑡), (b) Nature of exact solution 𝑢(𝑥, 𝑡), 

(c) Nature of absolute error=|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐶𝐹𝑞−𝐸𝐻𝐴𝑇𝑀| at 𝛿 = 1, ℎ = −1, 𝑛 = 1, 𝜇 = 1. 
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Figure 2. The comparison of the CFq-EHATM solutions for 𝑢(𝑥, 𝑡) when ∀𝑥 ∈ ℝ, 𝛿 =

1, ℎ = −1, 𝑛 = 1 with different 𝜇. 

Table 1. Comparision ATHPM [55], CLDM [56] and CFq-EHATM solutions 𝑢(𝑥, 𝑡) for 

CFTFNWSE at 𝛿 = 1, 𝜇 = 1, ℎ = −1, 𝑛 = 1 with values of 𝑡. 

𝒕 |𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐴𝑇𝐻𝑃𝑀| |𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐶𝐿𝐷𝑀| |𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐶𝐹𝑞−𝐸𝐻𝐴𝑇𝑀| 

0.001 8.0 × 10−7 7.5 × 10−7 2.8 × 10−8 

0.002 1.8 × 10−6 1.5 × 10−6 1.1 × 10−7 

0.003 2.5 × 10−6 2.2 × 10−6 2.6 × 10−7 

0.004 3.5 × 10−6 3.0 × 10−6 4.6 × 10−7 

0.005 3.9 × 10−6 3.7 × 10−6 7.2 × 10−7 

0.006 4.8 × 10−6 4.5 × 10−6 1.0 × 10−7 

0.007 5.5 × 10−6 5.2 × 10−6 1.4 × 10−7 

0.008 6.3 × 10−6 6.0 × 10−6 1.8 × 10−7 

0.009 6.3 × 10−6 6.0 × 10−6 2.3 × 10−7 

0.010 7.8 × 10−6 7.0 × 10−6 2.9 × 10−7 

6. Results and discussion 

Figure 1 shows the 3D graphs of the numerical solution obtained using CFq-EHATM, together 

with the exact solution and the absolute error between the Cq-FHATM solutions and the exact solution 

for the CFTFNWSE. Figure 2 shows the 2D graphs of the solutions 𝑢(𝑥, 𝑡) of the CFTFNWSE which 
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derived using the CFq-EHATM for different 𝜇 values. 

Figure 2 illustrates that as the 𝜇 value approaches one, the temperature 𝑢(𝑥, 𝑡) reaches a 

state of convergence. The absolute errors of the third-order CFq-EHATM solution were found and 

are presented in Table 1. According to Table 1, the absolute error experiences a substantial increase 

when both the values of the space variable 𝑥 and the value of time 𝑡 increases. Table 1 illustrates 

that the CFq-EHATM produces significantly more reliable outcomes compared to ATHPM and 

CLDM. 

7. Conclusions 

In this article, numerical solutions of the Caputo-Fabrizio fractional Newell-Whitehead-Segel 

equation were obtained for the first time with a new method, CF-qEHATM. It is essential to illustrate 

the influence of the fractional operator incorporated in the model being examined. Furthermore, the 

MAPLE software has been utilized to generate 2D and 3D graphs that visually represent the solutions 

to this system for different values of 𝜇. The Maple software exhibits a significant range of variations 

in the fundamental structure of surface graphs produced for Eq (5.10). In addition, the MAPLE 

software was used to provide visual depictions of the numerical solutions of this system for 𝜇 = 1. 

Upon evaluating CFTFNWSE, it becomes apparent that the overall configuration of surface graphs 

produced in Maple software differs. The numerical solutions for CFTFNWSE have been promptly and 

efficiently obtained. It is seen in Table 1 that the numerical results obtained with CFq-EHATM are 

better than the results found with ATHPM and CLDM in the current literature. It is concluded that the 

proposed CFq-EHATM is a more effective method than ATHPM and CLDM. Therefore, the proposed 

method can be used to obtain the new numerical solutions of Caputo-Fabrizio fractional partial 

differential equations. 
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