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Abstract: The irreducible decomposition of a monomial ideal has played an important role in
combinatorial commutative algebra, with applications beyond pure mathematics, such as biology.
Given a monomial ideal I of a polynomial ring S = k[x] over a field k and variables x = {x1, . . . , xn},
its incidence matrix, is the matrix whose rows are indexed by the variables x and whose columns are
indexed by its minimal generators. The main contribution of this paper is the introduction of a novel
invariant of a monomial ideal I, termed its signature, which could be thought of as a type of canonical
form of its incidence matrix, and the proof that two monomial ideals with the same signature have
essentially the same irreducible decomposition.
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1. Introduction

The main contribution of this paper is the introduction of a novel invariant of a monomial ideal,
termed its signature, which can be thought of as a type of canonical form of its incidence matrix,
and the proof that two monomial ideals with the same signature have essentially the same irreducible
decomposition.

In general, monomial ideals are central objects in commutative algebra through which a fruitful
bridge has been established between commutative algebra and combinatorics; see, for instance, [1–3]
and the references contained there. In particular, the irreducible decomposition of a monomial ideal
has played an important role in combinatorial commutative algebra. It has an increasing number of
applications, from pure mathematics to biology. Its applications in pure mathematics go from the
integer programming gap, the Frobenius problem, secants of monomial ideals, tropical convex hulls
and cyclic polytopes, differential powers of monomial ideals, and in biology as the reverse engineering
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of biochemical networks; see, for instance, the references contained in [4]. There are also available
efficient specialized algorithms to compute the irredundant irreducible decomposition of a monomial
ideal; see, for instance, [4, 5].

The irreducible decomposition of an ideal is very close to its primary decomposition, in which
primary ideals are replaced by irreducible ideals. One difference with a primary decomposition is that
the irreducible decomposition is unique and generally simpler to compute. Moreover, when the ideal
is monomial, several aspects of the irreducible decomposition can be simplified, leading us naturally
toward a more combinatorial context. The primary decomposition of an ideal, introduced by Lasker
and Noether, is one of the seminal ideas of commutative algebra. It was inspired by the fact that any
ring element can be factorized as the product of some irreducible factors, such as in the Fundamental
Theorem of Arithmetic for the ring of integers at the beginning of the 1900s. A key fact to factorizing
an ideal is that it is more convenient to consider the intersection of irreducible ideals instead of its
product, as in the factorization of integers.

Let’s fix some of the notation that we will use throughout the paper. Let S = k[x] be a polynomial
ring over a field k and variables x = {x1, . . . , xn}. Here, we will stress the bijection between the
variables in S and the elements of [n] = {1, . . . , n} via the correspondence between xi and i. Moreover,
this bijection can be extended to a bijection between multisets in [n], monomials in k[x], and vectors in
Nn. The first one can be obtained with the map that sends the multiset A of [n] to the monomial xA =∏

a∈A xa in S , and the second one can be obtained by the map that sends the monomial xa =
∏n

i=1 xai
i

to the vector a = (a1, . . . , an) in Nn. When no confusion arises, we will identify monomials in k[x],
vectors in Nn, and multisets in [n]. This provides a bridge between commutative algebra, polyhedral
geometry, and combinatorics, enriching the interaction between these areas.

In this sense, the set of monomials Mon(S ) of S corresponds to the elements in Nn. Moreover,
antichains G in Nn (that is, a set G = {g1, . . . , gq} ⊂ N

n which are incomparable gi ⊥ gj by pairs with
respect to the order ≤ of Nn) corresponds to minimal generating sets of monomial ideals in S . Thus,
given an antichain G in Nn, let IG = ⟨xg1 , . . . , xgq⟩ ⊂ S be its antichain ideal, which is simply another
way of saying monomial ideals. We use the term antichain ideal to refer to a monomial ideal since the
former emphasizes that the order in Nn plays a crucial role in studying these ideals.

It is well-known that each monomial ideal I in S is minimally generated by a finite set of generators
xG = {xg1 , . . . , xgq}. Moreover, xG is a minimal generating set of a monomial ideal if and only if G is
an antichain in Nn. Although the algebraic properties of a monomial ideal do not depend on the order
of its generators, throughout the paper, we are always assuming that the elements of G are ordered.
This is similar to the difference between a linear transformation and its matrix representation; unlike
the linear transformation, the latter depends on the chosen base.

In Section 2, we recall what the irreducible decomposition of a monomial ideal means. More
precisely, we will use the ideals generated by the power of a single variable as basic blocks and the
union and intersection as operations between them; we get that any monomial ideal has an irreducible
decomposition; see Eq (2.1).

After that, we introduce the novel concept of ∞-cover of the antichain, which generalizes the
concept of minimal vertex cover for graphs.
Definition 2.8. An∞-cover of the antichain G is a vector c ∈ Nn

∞, N∞ = N ∪ {∞}, such that for any

g ∈ G there exists 1 ≤ j ≤ n such that c j ≤ g j.
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Moreover, it is called maximal whenever it is maximal with respect to the order ≤ in Nn
∞.

This leads to the following combinatorial description of the irredundant irreducible decomposition
of an antichain ideal IG in terms of the set T (G) of its maximal∞-covers.
Theorem 2.12. If G is an antichain in Nn, then⋂

a∈T (G)

m
a

is the irredundant irreducible decomposition of the antichain ideal IG.
In Section 3, we introduce the central concept of this paper, the signature of a monomial ideal.

Roughly speaking, the signature of a monomial ideal is a matrix that encodes the way the minimal
generators of the ideal are ordered for each variable separately. More precisely, given a vector c ∈ Nn,
its content is the vector cont(c) = (m0, . . . ,mr) that contains its different entries in ascending order and
its signature is given by

σ(c)i = k, where ci = mk, for some k ∈ {0, . . . , r}.

Definition 3.5. The signature of a monomial ideal IG, denoted by σ(IG), is the matrix obtained from
its incidence matrix BG by replacing its rows with their corresponding signatures.

The main result of this paper gives us a description of the irredundant irreducible decomposition of
any monomial with signature σ in terms of the irredundant irreducible decomposition of the antichain
ideal Iσ of σ. Given a vector c ∈ Nn, the support of c is given by supp(c) = {i ∈ [n] : ci , 0}.
Theorem 3.11. If σ is a signature, IG is a monomial ideal with signature σ and m = gcd(gi ∈ G), then ⋂

{i : mi>0}

⟨xmi
i ⟩

⋂
⋂

J∈Jσ

m
GJ


is the irredundant irreducible decomposition of IG for some Jσ ⊆

∏q
i=1 supp(gi) and mGJ =

⟨x
(g1)J1
J1
, . . . , x(gq)Jq

Jq
⟩ for J ∈ Jσ.

In Section 4, we explore Alexander duality in the context of the signature. If τ0 is the matrix that
encodes the irredundant irreducible decomposition of the antichain ideal associated with a signature σ
and interchanging the zero entries by∞, σ∨ and τ∨0 are the matrices obtained from σ and τ by reversing
the order on its entries (see Definition 4.3), respectively, then the content of its rows is preserved.
Theorem 4.5. Let σ be the signature of a monomial ideal without the power of a variable as a
generator. If si, ti, ui and vi are the i-rows of σ, τ0, σ∨, and τ∨0 , respectively, then

cont(si) = cont(ti) = cont(ui) = cont(vi) for all 1 ≤ i ≤ n.

This leads to show that Alexander duality behaves well with respect to signature.
Theorem 4.12. Let σ be a signature with no column with only one nonzero entry and DG be the
decomposition matrix of the antichain ideal of G. Then, σ(DG) = τ0 if and only if σ(IG) = σ.

Therefore, it is natural to extend Alexander duality between monomial ideals with the same
signature.

We finish this paper by posing a pair of conjectures that claim that monomial ideals with the same
signature have essentially the same minimal free resolution and that their quotient modules share
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at least a common regular sequence. These pair of conjectures give us an insight into the possible
usefulness of the signature of a monomial ideal.
Conjecture 5.2. Let I and J be monomial ideals with the same signature. If d is the depth of I, then
there exists a sequence h1, . . . , hd of polynomials such that it is a regular sequence of both S/I and
S/J.

Before establishing the second conjecture, we must introduce the concept of poset resolution. Given
a minimal free resolution F• = {Fi, di}

p
i=0 of a monomial ideal, its poset resolution is a decorated graded

poset P• given by a triplet (P, s,m), where P = (F,≤) is the graded poset on the generators of each of
the free modules Fi, where u ∈ Fi−1 is covered by v ∈ Fi whenever di(v) =

∑
w∈Fi−1

sww with 0 , su ∈ k
for some 1 ≤ i ≤ p. The function s comes from the edges of the Hasse diagram of P to the field k given
by the coefficient of the term su in

di(v) =
∑

w∈Fi−1

sww

and m : F → Mon(S ) is the function that takes the monomial with the multidegree of v.
Conjecture 5.3. If I and J are monomial ideals with the same signature, then there exists a poset
resolution P• = (P, s,m) of I such that P′• = (P, s,m′) is a poset resolution of J for some m′.

2. Irredundant irreducible decomposition of a monomial ideal

We begin by recalling what the irreducible decomposition of a monomial ideal means. The reader
can consult, for instance, Section 3 of [6] for a very accessible exposition of the subject.

Although many of the ideas included in this section are found (explicitly or implicitly) in the
literature, the way they are presented here differs from how they are commonly presented. More
importantly, it provides a point of view that will be useful for our purposes, and we believe it contains
some new ideas. For instance, one of the novel elements introduced here is the maximal∞-cover of an
antichain, which generalizes the concept of the minimal vertex cover of a graph.

A monomial ideal has at least two minimal ways to be represented. The most common form of
these, which gives rise to its name, is as the ideal generated by a set of monomials. A second way is
the so-called irreducible decomposition, which expresses it as the intersection of ideals generated by
the powers of some subsets of variables, called irreducible.

In what follows, we will show that all the monomials in a monomial ideal I can be obtained from
ideals generated by the power of a single variable as basic blocks and the union and intersection as
operations between them. Given an ideal I in the polynomial ring S , let Mon(I) denote its set of
monomials. We recall that any monomial ideal is determined by its set of monomials. That is, if I and
J are monomial ideals of S , then I = J if and only if Mon(I) = Mon(J).

The irreducible decomposition of a monomial ideal can begin with the following very simple
observation: the ideal generated by the monomial xg is equal to

⟨xg⟩ =
⋂

j∈supp(g)

⟨xg j

j ⟩,

where supp(g) = {i ∈ [n] : gi , 0} is the support of g. Moreover, since the set of monomials of the
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antichain ideal IG is equal to Mon(IG) = Mon(⟨xg1 , . . . , xgq⟩) =
⋃q

k=1 Mon(⟨xgk⟩), then

Mon(IG) =
q⋃

k=1

⋂
j∈supp(gk)

Mon(⟨x(gk) j

j ⟩).

Distributing the union over the intersection, we get that

Mon(IG) =
⋂

J∈
∏q

k=1 supp(gk)

q⋃
k=1

Mon(⟨x
(gk)Jk
Jk
⟩) =

⋂
J∈
∏q

k=1 supp(gk)

Mon(⟨x(g1)J1
J1
, . . . , x(gq)Jq

Jq
⟩)

and therefore
IG =

⋂
J∈
∏q

k=1 supp(gk)

⟨x
(g1)J1
J1
, . . . , x(gq)Jq

Jq
⟩. (2.1)

We remark that each J is a vector in [n]q. Thus, using this very simple observation, we have proved
that any monomial ideal has at least one irreducible decomposition. However, the decomposition given
in (2.1) has several redundancies. The simplest of which is that the factors

⟨x
(g1) j1
j1
, . . . , x(gq) jq

jq
⟩

can have powers on the same variable. This can be easily solved by recalling that ⟨xa, xb⟩ = ⟨xmin{a,b}⟩.
More precisely:

Definition 2.1. Given J ∈
∏q

i=1 supp(gi) ⊆ [n]q, let GJ ∈ N
n be such that

m
GJ = ⟨x

(g1)J1
J1
, . . . , x(gq)Jq

Jq
⟩,

where m = ⟨x1, . . . , xn⟩ and ma = ⟨{xai
i : ai > 0}⟩ for any a ∈ Nn.

To simplify the notation, let ΠG =
∏q

i=1 supp(gi). Thus, by Definition 2.1, establish a mapping from
ΠG to Nn that sends J to GJ.

Remark 2.2. In the definition of ma there are only considered positive powers of the variables.

Thus, the decomposition (2.1) can be simplified as

IG =
⋂
J∈ΠG

m
GJ . (2.2)

A second type of redundancy that appears in this decomposition is that, in general, many of the
factors in (2.2) are not necessary; that is, we can omit them from the intersection preserving IG. This
leads us to introduce the concept of irredundancy of an irreducible decomposition.

Definition 2.3. An irreducible decomposition with factors Q = {Q1, . . . ,Qm} of an ideal I is called
irredundant whenever

I ,
⋂

k∈[m]\ j

Qk for all 1 ≤ j ≤ m,

and redundant otherwise.
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Although irreducible decompositions of a monomial ideal are not necessarily unique, it is not
difficult to check that an irredundant irreducible decomposition must be unique.

The irreducible decomposition given in (2.2) has |ΠG| =
∏q

i=1 |supp(gi)| factors, which can
be huge. Even so, there exist cases where it is actually irredundant. For instance, let IqK2 =

⟨x1x2, x3x4, . . . , x2q−1x2q⟩ be the edge ideal of the disjoint union of q edges. It can be checked that
|ΠqK2 | =

∏q
i=1 |supp(gi)| = 2q and its irredundant irreducible decomposition is equal to⋂

J∈[2]q

⟨{x2(i−1)+Ji : 1 ≤ i ≤ q}⟩,

where E(qK2) = {v1v2, v3v4, . . . , v2q−1v2q}.
In order to get an irredundant irreducible decomposition from (2.2), we need to omit the factors that

are not minimal with respect to the inclusion of sets. In the literature, several strategies to achieve this
can be found. In our case, we choose to use the partially ordered extended natural numbers Nn

∞.

2.1. The partially ordered extended natural numbers N
n
.

Let N = N∪ {∞} be the extended natural numbers and ≤ be the extension on it of the usual order in
N with a ≤ ∞ for any a ∈ N. The reader can think of N as a type of compactification of N. In a similar
way, let N

n
be the set of vectors of size n with entries in N, and ≤ be the partial order on N

n
induced

by ≤ componentwise. Additionally, let N∞ = N \ 0.
Consider (N

n
,≤) instead of only (Nn,≤), at least in our case, to do this has some advantages. For

instance, it is not difficult to check that for a and b in Nn (see, for instance, [7, Proposition 1.4] for a
very similar result),

m
a ⊆ mb if and only if a∞ ≥ b∞,

where c∞ ∈ N
n

is obtained from c ∈ Nn by exchanging its zero entries by ∞. In a similar way, in this
context it is very simple to describe the complement of Mon(ma) in Mon(S ) as

Mon(S ) \Mon(ma) = {xb : b + 1 ≤ a∞}.

Remark 2.4. In the same way that it is natural to consider that x0
i = 1, it is also natural to consider

that ⟨x∞i ⟩ = 0 because 0 ⊊ · · · ⊊ ⟨xn
i ⟩ ⊊ · · · ⊊ ⟨x

2
i ⟩ ⊊ ⟨xi⟩.

Since xa = 0 for any a ∈ Nn
∞ with some entry equal to∞ andma = S for any a ∈ Nn with some entry

equal to 0, then from here on when we write xa we are assuming that a ∈ Nn and when we write ma

we are assuming that a ∈ Nn
∞. This convention is also adopted in [4], which helps distinguish between

irreducible ideals and ideals generated by a monomial. This is a glimpse of a duality between 0 and∞
into the two ways of expressing a monomial ideal, as generated by monomials and as the intersection
of irreducible ideals.

Remark 2.5. If a ∈ Nn
∞, then ma = ⟨xa1

1 , . . . , x
an
n ⟩ = ⟨{x

ai
i : ai < ∞}⟩ , S , which is equivalent to the

previous definition of an irreducible ideal given in 2.1 for a0, where a0 is obtained from a by exchanging
its∞ entries by zero.

Besides, in this new context, the containment relation between two irreducible ideals is expressed
simply as

m
a ⊆ mb if and only if a ≥ b
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and Mon(ma)c = {xb : b + 1 ≤ a}. In what follows, we characterize when an intersection of irreducible
ideals is irredundant.

Lemma 2.6. If T ⊂ Nn
∞, then T is an antichain in (Nn

∞,≤) if and only if

I =
⋂
a∈T

m
a (2.3)

is irredundant.

Proof. We will proceed by contradiction, that is, we will assume that
⋂

a∈T m
a is redundant. The

decomposition
⋂

a∈T m
a is redundant if and only if there exists b ∈ T such that

⋂
a∈T m

a =
⋂

a∈T\bm
a

if and only if
⋂

a∈T Mon(ma) =
⋂

a∈T\b Mon(ma) if and only if⋂
a∈T

Mon(ma)

c =⋃
a∈T

Mon(ma)c =
⋃

a∈T\b

Mon(ma)c =

 ⋂
a∈T\b

Mon(ma)


c

,

if and only if

Mon(mb)c = {xd : d + 1 ≤ b} ⊆
⋃

a∈T\b

{xd : d + 1 ≤ a} =
⋃

a∈T\b

Mon(ma)c,

if and only if there exists a ∈ T \ b such that b ≤ a if and only if T is not an antichain of (Nn
∞,≤),

which is a contradiction. □

Remark 2.7. If A is a subset of Nn
∞ whose elements are maximal with respect to the order in Nn

∞, then
A is an antichain in (Nn

∞,≤). Thus, taking only maximal elements of T from the decomposition (2.2),
we can get an irredundant irreducible decomposition of an antichain ideal.

2.2. maximal∞-covers

In this subsection, we will express the irredundant irreducible decomposition of a monomial ideal
in combinatorial terms. More precisely, we generalize the concept of a minimal vertex cover given in
graph theory, which we call a maximal∞-cover, to the context of monomial ideals.

Definition 2.8. An∞-cover of the antichain G is a vector c ∈ Nn
∞ such that for any

g ∈ G there exists 1 ≤ j ≤ n such that c j ≤ g j.

Moreover, it is called maximal whenever it is maximal with respect to the order ≤ in Nn
∞.

It is well-known that the concept of minimal vertex cover has played a significant role in graph
theory and combinatorial commutative algebra; see, for instance, [3] and [8], respectively. To make
reading easier, we recall that a minimal vertex cover of a graph G is a set of vertices C such that it is
incident (or covers) to all the edges of G, which is also minimal with respect to the inclusion of sets.

Since the edge ideal of a graph is the antichain ideal of the characteristic vectors of its edges and
a ≤ b for a,b ∈ {0, 1}n if and only if b∞ ≤ a∞. Then, it is not difficult to check that a ∈ Nn is the
characteristic vector of a minimal vertex cover of the graph G if and only if a∞ ∈ Nn

∞ is a maximal
∞-cover of G.
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In what follows, we characterize the maximal ∞-cover of a given antichain. Recalling
Definition 2.1, for any J ∈ ΠG, let GJ ∈ N

n be such that

m
GJ = ⟨x

(g1)J1
J1
, . . . , x(gq)Jq

Jq
⟩.

In other words,
0 , (GJ)Jk = min{(gi)Ji : Ji = Jk} ≤ (gk)Jk for all 1 ≤ k ≤ q,

and therefore we have that GJ is always an∞-cover of G. We recall that when i , Jk for all 1 ≤ k ≤ q,
then (GJ)i = ∞. Moreover, as shown in the following lemma, every maximal ∞-cover of an antichain
G is of this form.

Lemma 2.9. Let G be an antichain in Nn. If c ∈ Nn
∞ is a maximal ∞-cover of G, then there exists

J ∈ ΠG such that
c = GJ.

Proof. To start, we will prove that for any 1 ≤ i ≤ n such that ci , ∞, there exists 1 ≤ ki ≤ q such
that ci = (gki)i. Otherwise, assume that ci , (gk)i for some 1 ≤ i ≤ n and for any 1 ≤ k ≤ q. Thus, let
1 ≤ j ≤ q such that ci < (g j)i and (gk)i < [ci, (g j)i − 1] for any 1 ≤ k ≤ q.

Now, let ei be the vector of size n whose entries are zero, except its i-th entry, which equals one.
It is not difficult to check that if c is an ∞-cover of G, then also c + ei is an ∞-cover of G, which is a
contradiction to the maximality of c.

Let J be a vector in [n]q such that Jki = i and its other entries are defined using any of the values i
already added to J. Moreover, for all i ∈ [n], we have 0 , ci ≤ (gk)i. Since c is an∞-cover, then J it is
well defined and c = GJ. We remark that J is not necessarily unique. □

Remark 2.10. In the proof of [7, Proposition 1.2], one can find similar arguments to those used in the
proof of Lemma 2.9.

Note that the converse of Lemma 2.9 is not necessarily true; that is, although always GJ is an
∞-cover, it is not necessarily maximal. For instance, if

IG = ⟨xy3, x2y2⟩ ⊆ k[x, y],

then G(1,2) = (1, 2) is not maximal because G(2,1) = (2, 3) ≥ (1, 2) = G(1,2).

Remark 2.11. Moreover, if J , K ∈ ΠG, then not necessarily GJ , GK . That is, different J’s can
define the same ∞-cover of G. For instance, if IG is the edge ideal of the complete graph with three
vertices K3 with g1 = (1, 1, 0), g2 = (0, 1, 1), and g3 = (1, 0, 1), then G(1,2,1) = G(2,2,1) = (1, 1,∞), which
correspond to the minimal vertex cover {v1, v2} of K3.

Lemma 2.9 gives an insight into how maximal ∞-covers of G are related to the irreducible factors
of the irreducible decomposition of IG given in (2.2).

We are now ready to generalize the classical result, which gives an irredundant irreducible
decomposition of the edge ideal of a graph in terms of its minimal vertex covers [9, p. 279]. Let
T (G) be the set of maximal∞-covers of an antichain G.
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Theorem 2.12. If G is an antichain in Nn, then⋂
a∈T (G)

m
a (2.4)

is the irredundant irreducible decomposition of the antichain ideal IG.

Proof. Since ma ⊆ mb if and only if a ≥ b, we get the result by applying Lemmas 2.6 and 2.9 to the
irreducible decomposition given in (2.2). □

This result is similar to [5, Proposition 3], which establishes a bijection between the maximal
standard monomial of S/I and the irredundant irreducible components of I. However, Theorem 2.12 is
more direct and less mysterious in the way that it works. Even more important, it generalizes the result
that describes the irredundant irreducible decomposition of an edge ideal IG in terms of the minimal
vertex covers of G.

The next example illustrates before constructions.

Example 2.13. Let G = {(2, 0, 2), (0, 2, 0), (1, 1, 3)} be an antichain in N3 and

IG = ⟨x2
1x2

3, x
2
2, x1x2x3

3⟩

be its antichain ideal. Thus, the decomposition (2.1) has the next six factors

⟨x2
1, x

2
2, x1⟩, ⟨x2

1, x
2
2, x2⟩, ⟨x2

1, x
2
2, x

3
3⟩, ⟨x

2
3, x

2
2, x1⟩, ⟨x2

3, x
2
2, x2⟩, ⟨x2

3, x
2
2, x

3
3⟩,

which can be simplified to

⟨x1, x2
2⟩, ⟨x

2
1, x2⟩, ⟨x2

1, x
2
2, x

3
3⟩, ⟨x1, x2

2, x
2
3⟩, ⟨x2, x2

3⟩, ⟨x
2
2, x

2
3⟩.

On the other hand, since (2, 2, 3) ⪈ (1, 2, 2) and (0, 2, 2) ⪈ (0, 1, 2), then ⟨x2
1, x

2
2, x

3
3⟩ ⊊ ⟨x1, x2

2, x
2
3⟩ and

⟨x2
2, x

2
3⟩ ⊊ ⟨x2, x2

3⟩. That is, ⟨x1, x2
2, x

2
3⟩ and ⟨x2, x2

3⟩ are redundant and, therefore,

⟨x1, x2
2⟩ ∩ ⟨x

2
1, x2⟩ ∩ ⟨x2

2, x
2
3⟩ ∩ ⟨x

2
1, x

2
2, x

3
3⟩

is the irredundant irreducible decomposition of IG because (1, 2,∞), (2, 1,∞), (∞, 2, 2), and (2, 2, 3)
are an antichain in N3

∞. Moreover, it is not difficult to check that these last vectors are the maximal
∞-covers of G.

Since the concept of primary decomposition has played a significant role in commutative algebra,
we finish this section by recalling how to recover the primary decomposition of a monomial ideal from
its irreducible decomposition. We recall that a monomial ideal is primary if and only if it is generated
by the powers and some monomials in a set of variables.

2.3. The primary decomposition of a monomial ideal

It is not difficult to recover the primary decomposition of a monomial ideal from its irreducible
decomposition. To get the primary factors, we only need to intersect the irreducible factors with the
same radical, which is very simple to check. The next example illustrates this procedure.
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Example 2.14. Let IG be the monomial ideal given in Example 2.13. Thus,

⟨x1, x2
2⟩ ∩ ⟨x

2
1, x2⟩ ∩ ⟨x2

2, x
2
3⟩ ∩ ⟨x

2
1, x

2
2, x

3
3⟩

is its irredundant irreducible decomposition. Since ⟨x1, x2
2⟩ and ⟨x2

1, x2⟩ have the same radical ideal
⟨x1, x2⟩ and ⟨x1, x2

2⟩ ∩ ⟨x
2
1, x2⟩ = ⟨x2

1, x1x2, x2
2⟩,

IG = ⟨x2
1, x1x2, x2

2⟩ ∩ ⟨x
2
2, x

2
3⟩ ∩ ⟨x

2
1, x

2
2, x

3
3⟩

is its primary decomposition.

3. The signature of a monomial ideal

In this section, we will introduce the central concept of this paper, the signature of a monomial
ideal. Roughly speaking, the signature of a monomial ideal is a matrix that encodes the way the
minimal generators of the ideal are ordered for each variable separately. Although the signature is a
simple concept, many of the algebraic and combinatorial properties of the monomial ideals with the
same signature are surprisingly preserved.

After introducing the signature formally, we will show that given a signature σ, there exists a
polyhedral cone Pσ such that its integral points correspond to the monomial ideals with signature σ.
Even more important, we will give a description of the irredundant irreducible decomposition of any
monomial with signature σ in terms of the irredundant irreducible decomposition of the antichain ideal
Iσ of σ.

Before defining the signature, we need to introduce the incidence matrix of a monomial ideal, which
is another way to represent a monomial ideal as a matrix. Here, we will use the matrix representations
of a monomial ideal and its irredundant irreducible decomposition instead of its usual representations
because it is more convenient to work with.

Definition 3.1. The incidence matrix of an antichain G (or of the antichain ideal IG) is the matrix
whose columns are its vectors.

That is, the columns of BG are indexed by the minimal generators of IG, and their rows are indexed
by the variables of the polynomial ring S .

Remark 3.2. A matrix is the incidence matrix of a monomial ideal whenever its entries are nonnegative
integers and its columns form an antichain. Moreover, it is not difficult to check that there exists a
bijection between the set of monomial ideals in S and the set of nonnegative integer matrices whose
columns form an antichain.

Now, the content of a nonnegative integer vector c ∈ Nn, denoted by cont(c), is the vector that
contains its different entries in ascending order. Note that a vector and its content do not necessarily
have the same dimension. When the content of a vector is equal to (0, 1, 2, . . . , r) for some r ∈ N, we
say that it is tight. That is, a tight vector can be thought of as a vector without gaps.

Definition 3.3. A nonnegative integer matrix B is row-tight or simply tight whenever its rows are tight.

The following example illustrates previous concepts.
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Example 3.4. Let G = {(0, 5, 9), (2, 2, 1), (1, 2, 9)} be an antichain in N3. Then the incidence matrix of
G is given by

BG =

g1 g2 g3
x1 0 2 1

x2 5 2 2
x3 9 1 9

.

Besides, it is not difficult to check that cont(r2) = (2, 5) and, therefore, BG is not row-tight.

We are now almost ready to define the signature of a matrix. However, given a vector c in Nn with
cont(c) = (m0, . . . ,mr) its signature is the vector in Nn given by

σ(c)i = k, where ci = mk, for some k ∈ {0, . . . , r}.

Thus, by definition, the signature of a vector is a tight vector.

Definition 3.5. The signature of a monomial ideal IG, denoted by σ(IG), is the matrix obtained from
its incidence matrix BG by replacing its rows with their corresponding signatures.

Similarly, it can be defined the signatures of any nonnegative integer matrix. For instance, if B is
the matrix given in Example 3.4, then its signature it is equal to

σ(B) =


0 2 1
1 0 0
1 0 1

 .
As we mentioned before, the signature is a very simple concept; even calculating it is

straightforward. Actually, the computational complexity of calculating it is linear. However, as we
will show in the following, many of the algebraic and combinatorial properties of the monomial ideals
with the same signature are surprisingly preserved.

Remark 3.6. Getting a monomial ideal with the same signature as a given one is very simple. For
instance, it is not difficult to check that the ideal obtained from IG by replacing each variable with a
power of it has the same signature as IG.

Again, in general, a matrix is not necessarily tight, but its signature always is. Clearly, if B is tight,
then σ(B) = B. The idea behind the signature is that looking at each variable of the minimal generators
only matters by the relative position of its powers.

The next result shows that the signature of a monomial ideal is well-defined. That is, it preserves
the fact that the columns of a matrix form an antichain.

Lemma 3.7. The columns of a nonnegative integer matrix B form an antichain if and only if the
columns of its signature σ are also an antichain.

Proof. It follows from the fact that a ≤ b if and only if ai ≤ bi for all 1 ≤ i ≤ n and Bi, j ≤ Bi,k if and
only if σi, j ≤ σi,k for all 1 ≤ i ≤ n and 1 ≤ j , k ≤ q. □
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From here on, when we say matrix, we mean a nonnegative integer matrix whose columns form an
antichain unless otherwise stated. In a similar way, when we say a signature, we mean a tight matrix.
Thus, Lemma 3.7 implies that if σ is a signature, then the columns of any matrix with signature σ form
an antichain.

In what follows, we will define a polyhedral cone Pσ whose integral points correspond to the
monomial ideals with signature σ.

3.1. The polyhedral cone of a signature

Monomial ideals with the same signature can easily be characterized as those whose incidence
matrix are the integral points of a polyhedral cone. More precisely, given a signature σ, let

Pσ = {B ∈ Matn,q(R≥0) : Bi, j + σi, j ≤ Bi,k + σi,k for all 1 ≤ i ≤ n and 1 ≤ j, k ≤ q such that σi, j ≤ σi,k}.

Many of the inequalities used here are clearly redundant. The polyhedral cone Pσ can be defined
alternatively as (without redundant inequalities): Bi, j ≥ 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ q, Bi, j = Bi,k if
and only if σi, j = σi,k and Bi, j ≤ Bi,k + 1 for all 1 ≤ i ≤ n and 1 ≤ j , k ≤ q such that σi,k = σi, j + 1.

The next result establishes that there is a bijection between integral points of the polyhedral cone
Pσ and monomial ideals with signature σ.

Proposition 3.8. If σ is a signature and B is a nonnegative integral matrix, then σ(B) = σ if and only
if B is an integral point of the polyhedral cone Pσ.

Proof. It is followed directly from the definition of the signature and Lemma 3.7. □

Directly for the definition of Pσ, it is not difficult to get a formula for its dimension in terms of the
content of the rows of σ.

Proposition 3.9. If σ is a signature and (r1, . . . , rq) are its rows, then

dim(Pσ) =
n∑

i=1

|cont(ri)|.

The next example illustrates previous concepts.

Example 3.10. If σ =


1 2 1 0 0
2 0 0 1 2
2 0 0 0 1
0 1 2 4 3

 is a signature, then

Pσ = {[bi, j] ∈ Matn,q(R≥0) : 0 ≤ b1,4 = b1,5 ≤ b1,1 + 1 = b1,3 + 1 ≤ b1,2 + 2,
0 ≤ b2,2 = b2,3 ≤ b2,4 + 1 ≤ b2,1 + 2 = b2,5 + 2,
0 ≤ b3,2 = b3,3 = b3,4 ≤ b3,5 + 1 ≤ b3,1 + 2,
0 ≤ b4,1 ≤ b4,2 + 1 ≤ b4,3 + 2 ≤ b4,5 + 3 ≤ b4,4 + 4}

is the polyhedral cone associated to σ and its dimension is equal to 14 = 3 + 3 + 3 + 5.

In what follows, we will show that all the monomials ideal with the same signatures have essentially
the same irredundant irreducible decomposition.
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3.2. The irreducible decomposition of a monomial ideal with a given signature

In this subsection, we give a description of the irredundant irreducible decomposition of the
monomial ideals with signatureσ in terms of the irredundant irreducible decomposition of the antichain
ideal Iσ of σ.

We need some definitions before establishing our main result. By Lemma 2.9 we have that any
maximal ∞-cover of Iσ is equal to σJ for some J ∈ ΠGσ , where Gσ = (g1, . . . , gq) are the columns of
σ. Thus, there exists Jσ ⊆ ΠGσ such that ⋂

J∈Jσ

m
σJ

is the irredundant irreducible decomposition of Iσ. In other words, T (Gσ) = {(Gσ)J : J ∈ Jσ}. We
recall again that Jσ is not necessarily unique. Finally, given an integer nonnegative matrix B, let
gcd(B) ∈ Nn given by

xgcd(B) = gcd({xbi : 1 ≤ i ≤ q}),

where b1, . . . ,bq are the columns of B. That is, gcd(B)i = min{Bi, j : 1 ≤ j ≤ q}.

Theorem 3.11. If σ is a signature, IG is a monomial ideal with signature σ and m = gcd(BG), then ⋂
{i : mi>0}

⟨xmi
i ⟩

⋂
⋂

J∈Jσ

m
GJ


is the irredundant irreducible decomposition of IG.

Proof. By Theorem 2.12, we only need to prove that

T (G) = {miei : mi > 0} ∪ {GJ : J ∈ Jσ}.

To begin, it is clear that miei is a maximal ∞-cover of G if and only if mi > 0. On the other hand, GJ

is always an∞-cover for any J ∈ ΠG.
The rest follows by using similar arguments to those used in the proof of Lemma 3.7. □

Now, it is not difficult to check that

m
GJ = ⟨x

(BG)Ji ,i

Ji
: 1 ≤ i ≤ q⟩ = ⟨x

(BG)k,ik
k : i ∈ cont(J)⟩,

where ik is such that (BG)k,ik = min{(BG)Ji,i : Ji = k}. Thus, mGJ can be expressed as the irreducible
ideal whose exponent on each variable is some entry of the matrix BG.

The next example illustrates the previous process for obtaining the irredundant irreducible
decomposition of a monomial ideal with a given signature.

Example 3.12. Let σ =


1 2 1 0 0
2 0 0 1 2
2 0 0 0 1
0 1 2 4 3

 be the signature given in Example 3.10 and

Iσ = ⟨x1x2
2x2

3, x
2
1x4, x1x2

4, x2x4
4, x

2
2x3x3

4⟩
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be its antichain ideal. Using Macaulay2 [10], we obtain that

⟨x1, x2⟩ ∩ ⟨x1, x3
4⟩ ∩ ⟨x

2
2, x4⟩ ∩ ⟨x2

3, x4⟩ ∩ ⟨x1, x2
2, x

4
4⟩ ∩ ⟨x1, x3, x4

4⟩ ∩ ⟨x
2
1, x

2
2, x

2
4⟩ ∩ ⟨x

2
1, x

2
3, x

2
4⟩

is its irredundant irreducible decomposition. Moreover, it is not difficult to check that

mσ(1,1,1,2,2) = ⟨x1, x2⟩, mσ(1,1,1,4,4) = ⟨x1, x3
4⟩, m

σ(1,1,1,4,2) = ⟨x1, x2
2, x

4
4⟩,

mσ(2,4,4,4,4) = ⟨x2
2, x4⟩, mσ(3,4,4,4,4) = ⟨x2

3, x4⟩, mσ(1,1,1,4,3) = ⟨x1, x3, x4
4⟩,

mσ(2,1,4,4,4) = ⟨x2
1, x

2
2, x

2
4⟩, m

σ(3,1,4,4,4) = ⟨x2
1, x

2
3, x

2
4⟩.

That is, Jσ = {(1, 1, 1, 2, 2), (1, 1, 1, 4, 4), (1, 1, 1, 4, 2), (1, 1, 1, 4, 3), (2, 4, 4, 4, 4), (3, 4, 4, 4, 4), (2, 1, 4,
4, 4), (3, 1, 4, 4, 4)} is a subset of ΠGσ such that

⋂
J∈Jσ m

σJ is the irredundant irreducible decomposition
of Iσ.

Now, if B =


b1,1 b1,2 b1,3 0 0
b2,1 0 0 b2,4 b2,5

b3,1 0 0 0 b3,5

0 b4,2 b4,3 b4,4 b4,5

 ∈ Pσ and B is the set of columns of B, then

mB(1,1,1,2,2) = ⟨xb1,1
1 , x

b2,4
2 ⟩, m

B(1,1,1,4,4) = ⟨xb1,1
1 , x

b4,5
4 ⟩, m

B(1,1,1,4,2) = ⟨xb1,1
1 , x

b2,5
2 , x

b4,4
4 ⟩,

mB(3,4,4,4,4) = ⟨xb3,1
3 , x

b4,2
4 ⟩, m

B(2,4,4,4,4) = ⟨xb2,1
2 , x

b4,2
4 ⟩, m

B(1,1,1,4,3) = ⟨xb1,1
1 , x

b3,5
3 , x

b4,4
4 ⟩,

mB(2,1,4,4,4) = ⟨xb1,2
1 , x

b2,1
2 , x

b4,3
4 ⟩, m

B(3,1,4,4,4) = ⟨xb1,2
1 , x

b3,1
3 , x

b4,3
4 ⟩.

Thus, by Theorem 3.11,

⟨xb1,1
1 , x

b2,4
2 ⟩ ∩ ⟨x

b1,1
1 , x

b4,5
4 ⟩ ∩ ⟨x

b1,1
1 , x

b2,5
2 , x

b4,4
4 ⟩ ∩ ⟨x

b1,1
1 , x

b3,5
3 , x

b4,4
4 ⟩ ∩

⟨xb2,1
2 , x

b4,2
4 ⟩ ∩ ⟨x

b3,1
3 , x

b4,2
4 ⟩⟨x

b1,2
1 , x

b2,1
2 , x

b4,3
4 ⟩ ∩ ⟨x

b1,2
1 , x

b3,1
3 , x

b4,3
4 ⟩

is the irredundant irreducible decomposition of the antichain ideal

IB = ⟨x
b1,1
1 xb2,1

2 xb3,1
3 , x

b1,2
1 xb4,2

4 , x
b1,3
1 xb4,3

4 , x
b2,4
2 xb4,4

4 , x
b2,5
2 xb3,5

3 xb4,5
4 ⟩,

where b1,1 = b1,3 and b2,1 = b2,5, b1,1, b2,1, b3,1, b1,2, b4,2, b4,3, b2,4, b4,4, b3,5, b4,5 ∈ N+.

In the most general case, if B =


b1,1 b1,2 b1,3 b1,4 b1,5

b2,1 b2,2 b2,3 b2,4 b2,5

b3,1 b3,2 b3,3 b3,4 b3,5

b4,1 b4,2 b4,3 b4,4 b4,5

 ∈ Pσ, we need to add the factors ⟨x
bi, ji
i ⟩

for which bi, ji > 0 to get the irredundant irreducible decomposition of the antichain ideal

IB = ⟨mxb1,1−b1,4
1 xb2,1−b2,2

2 xb3,1−b3,2
3 ,mxb1,2−b1,4

1 xb4,2−b4,1
4 ,mxb1,3−b1,4

1 xb4,3−b4,1
4 ,

mxb2,4−b2,2
2 xb4,4−b4,1

4 ,mxb2,5−b2,2
2 xb3,5−b3,2

3 xb4,5−b4,1
4 ⟩,

where m = gcd(G) = xb1,4
1 xb2,2

2 xb3,2
3 xb4,1

4 . Let us recall that b1,4 = b1,5, b2,2 = b2,3 and b3,2 = b3,3 = b3,4.

Thus, it is very simple to calculate the irredundant irreducible decomposition of an antichain ideal
from the irredundant irreducible decomposition of its signature.

To simplify the notation, we will encode the irredundant irreducible decomposition on its incidence
matrix.
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Definition 3.13. Given an antichain G, its irredundant irreducible decomposition matrix (or simply
decomposition matrix) is the matrix whose columns are the exponents of the irreducible factors of the
irredundant irreducible decomposition

⋂p
i=1m

di of IG.

We recall that the entries of DG are in Nn
∞. In a similar way to the definition of the signature of a

monomial ideal, the signature of a matrix D with entries in Nn
∞ is defined as σ(D) = σ(D0)∞.

Again, similar to the Lemma 3.7, we get the following result:

Lemma 3.14. If D is a matrix with entries in Nn
∞, then its columns are an antichain in Nn

∞ if and only
if the columns of its signature σ(D) are also an antichain in Nn

∞.

Proof. It follows by using similar arguments to those used in the proof of Lemma 2.6. □

We end this section with an example that illustrates previous concepts.

Example 3.15. Following with Example 3.12, we have that

Dσ =

d1 d2 d3 d4 d5 d6 d7 d8


x1 1 1 1 1 2 2 ∞ ∞

x2 1 2 ∞ ∞ 2 ∞ 2 ∞

x3 ∞ ∞ 1 ∞ ∞ 2 ∞ 2
x4 ∞ 4 4 3 2 2 1 1

.

Moreover, if B = [bi, j] ∈ Pσ, then

DB =

d1 d2 d3 d4 d5 d6 d7 d8


x1 b1,1 b1,1 b1,1 b1,1 b1,2 b1,2 ∞ ∞

x2 b2,4 b2,5 ∞ ∞ b2,1 ∞ b2,1 ∞

x3 ∞ ∞ b3,5 ∞ ∞ b3,1 ∞ b3,1

x4 ∞ b4,4 b4,4 b4,5 b4,3 b4,3 b4,2 b4,2

whenever gcd(B) = 0, and it is not difficult to check that σ(DB) = Dσ. Note that the columns of Dσ are
antichains in Nn

∞; however, the columns of (Dσ)0 are not necessarily antichains in Nn. For instance,
(d1)0 = (1, 1, 0, 0) ≤ (2, 2, 0, 2) = (d5)0 and d1 = (1, 1,∞,∞) ≰ (2, 2,∞, 2) = d5.

On the other hand, if gcd(B) ≥ 1, then gcd(B) = (b1,4, b2,2, b3,2, b4,1) and

DB =




b1,4 ∞ ∞ ∞ b1,1 b1,1 b1,1 b1,1 b1,2 b1,2 ∞ ∞

∞ b2,2 ∞ ∞ b2,4 b2,5 ∞ ∞ b2,1 ∞ b2,1 ∞

∞ ∞ b3,2 ∞ ∞ ∞ b3,5 ∞ ∞ b3,1 ∞ b3,1

∞ ∞ ∞ b4,1 ∞ b4,4 b4,4 b4,5 b4,3 b4,3 b4,2 b4,2

.

4. Alexander duality

Alexander duality has become an important tool in the study of monomial ideals. In this section,
after recalling Alexander duality in monomial ideals as in [7], we extend it to the space of polyhedral
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cones associated with signatures and use it to prove some properties of signatures. The way it is
presented here is slightly different from how it is presented in [7], more consistent with our purposes.
Roughly speaking, from our point of view, Alexander dual of the antichain IG is the monomial ideal
whose incidence matrix is obtained from DG by reversing the order of the entries in each of its rows.

We will try to convince the reader that an essential part of Alexander duality relies on the order
in Nn as well as the reversing and the minimal-maximal duality. There exist several ways to reverse
the order of the entries in each row of a matrix; one of the most simple is the one used in [7], which
subtracts all nonzero entries from a given constant. In what follows, we will present a slightly more
general adaptation of this construction, where additionally we interchange the zero entries with infinity.
In [7], a big enough number is used instead of using infinity as an entry in the factors of the irredundant
irreducible decomposition.

Given a matrix D of size n × p with entries in N∞ and a ∈ Nn, its a-reversing matrix is given by

reva(D)i, j =


∞ if Di, j = 0,
0 if Di, j = ∞,

ai − Di, j + 1 otherwise.

In [7], the a-reversing operation is used as a column operation on DG; however, in our context, it is
more clear to see as an operation over its rows. It is not difficult to check that the entries of reva(D) are
nonnegative if and only if a ≥ lcm(D), where lcm(D)i = max{Di, j : for all 1 ≤ j ≤ q such that Di, j ,

∞}.

Definition 4.1. The Alexander dual I∨a
G with respect to a ≥ lcm(BG) of the antichain ideal IG is the

monomial ideal whose incidence matrix is equal to the a-reversing, denoted by B∨a
G , of the irredundant

irreducible decomposition matrix DG of IG.

By Theorem 3.11, it is not difficult to check that lcm(BG) ≥ lcm(DG) and, therefore, the Alexander
dual I∨a

G is indeed a monomial ideal. Each monomial ideal has many of Alexander duals. Indeed, for
any a ∈ Nn such that a ≥ lcm(BG) we have one of them. On the other hand, it is not difficult to
check that all of Alexander duals of a given monomial ideal have the same signature. Moreover, all
the Alexander duals of the Alexander duals (I∨a

G )∨b has the same signature as IG. That is, Alexander
duality sent integral points in Pσ to integral points in Pσ∨a for a = lcm(BG). It is for this reason that it
is natural to consider Alexander duality on the polyhedral cones Pσ instead of a single monomial ideal.

The a-reversing operation preserves the fact that the columns of the matrix are an antichain in Nn
∞.

Thus, since the columns of DG are an antichain in Nn
∞, then it is not difficult to check that the columns

of B∨a
G also are an antichain in Nn. That is, the columns of B∨a

G correspond to the minimal generators of
I∨a
G . For instance, following Example 3.15, we get that

Dσ =


1 1 1 1 2 2 ∞ ∞

1 2 ∞ ∞ 2 ∞ 2 ∞

∞ ∞ 1 ∞ ∞ 2 ∞ 2
∞ 4 4 3 2 2 1 1

 =⇒ B∨a
σ =


2 2 2 2 1 1 0 0
2 1 0 0 1 0 1 0
0 0 2 0 0 1 0 1
0 1 1 2 3 3 4 4


for a = lcm(BG) = (2, 2, 2, 4). To make the notation simpler, when there is no confusion, we write B∨G
instead B∨a

G for a = lcm(BG).
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Moreover, the a-reversing operation interchanges the fact that the columns of DG are maximal to
the fact that the columns of B∨a

G are minimal with respect to the order ≤ in Nn. In a similar way, it also
interchanges the fact that the columns of BG are minimal to the fact that the columns of reva(BG) are
maximal with respect to the order ≤ in Nn

∞.
Thus, it is very simple to get that the functor defined by a-reversing operation is contravariant with

respect to taking the irredundant irreducible decomposition.

Theorem 4.2 (Corollary 2.14 [7]). Let G be an antichain in Nn and a ≥ lcm(BG), then reva(BG) is the
irredundant irreducible decomposition matrix of B∨a

G (see the commutative diagram given in Figure 1).

BG DG

B∨a
Greva(BG)

reva

∞-cover
∨a

∞-cover

reva

Figure 1. The a-reversing reva(BG) of BG is the irredundant irreducible decomposition matrix
of its Alexander dual B∨a

G .

Proof. Let c be a column of DG, that is, c is a maximal ∞-cover of G. A vector c is ∞-cover of G
whenever for any g ∈ G there exists 1 ≤ j ≤ n such that c j ≤ g j. Moreover, the fact that c being
maximal implies that for any 1 ≤ j ≤ n, such that c j , ∞ there exists g ∈ G such that c j ≤ g j

(moreover, it can be stated that the g satisfies that ci ≰ gi for any i , j).
Since reva(g) j ≤ reva(c) j, it follows that reva(g) is an ∞-cover of the columns of B∨a

G = reva(DG).
Additionally, it is maximal because reva interchanges minimality and maximality (see Figure 2(a)).
Finally, the result follows by Theorem 2.12. □

It is not difficult to check that Theorem 4.2 can be easily generalized for any reversing function.

Definition 4.3. A function f : A → N for some A ⊆ N with the zero and infinity, is called reversing
whenever rev(0) = ∞, rev(∞) = 0, and

rev(a) ≤ rev(b) for all a, b ∈ A such that a ≥ b.

Given a matrix D with entries in N and rows ri for 1 ≤ i ≤ n, let cont(D) =
⋃n

i=1 cont(ri).

Corollary 4.4. Let G be an antichain in Nn and rev be a reversing function for cont(BG) ∪ cont(DG),
then rev(BG) is the irredundant irreducible decomposition matrix of rev(DG).

In order to simplify the notation, let

τ := Dσ, σ∨ := revlcm(σ)(τ) and τ∨ := (σ∨)∗ := revlcm(σ)(σ),

see Figure 2(b).
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Min≤(Nn) Max≤(Nn
∞)

Min≤(Nn)Max≤(Nn
∞)

rev

∞-cover

∞-cover

rev

σ τ

σ∨τ∨

∨

rev

∞-cover

∞-cover

rev

(a) (b)

Figure 2. (a) Taking maximal ∞-covers (irreducible irredundant decomposition) and
reversing the order in N interchanges minimality and maximality. Here, rev is any
reversing function. (b) A signature σ, its decomposition matrix, its Alexander dual, and
the decomposition matrix of the last one. Here, the reversing function is given by revlcm(σ).

In what follows, we will show that the content of the rows of the matrices σ and τ and their duals
σ∨ and τ∨ are equal when σ is the signature of a monomial ideal without the power of a variable as a
generator.

Theorem 4.5. Let σ be the signature of a monomial ideal without the power of a variable as a
generator. If si, ti, ui, and vi are the i-rows of σ, τ0, σ∨, and τ∨0 , respectively, then

cont(si) = cont(ti) = cont(ui) = cont(vi) for all 1 ≤ i ≤ n.

Proof. For any r ∈ N, let cont+(r) = cont(r) ∩ N+ be its positive content and a = lcm(σ). To
start, by Theorem 4.2 we have that τ∨ is the decomposition matrix of σ∨; see Figure 2(b). Thus,
by Theorem 3.11 we have that cont+(ti) ⊆ cont+(si) and cont+(vi) ⊆ cont+(ui).

Since cont(si) = {0, 1, . . . , ai} and vi = revai(si)0, then cont(vi) = cont(si) = {0, 1, . . . , ai}. Moreover,
since ui = revai(ti)0, then

cont(ti)+ ⊆ cont(si)+ = cont+(vi) ⊆ cont+(ui) = cont+(revai(ti)0) ⊆ cont(si)+

and, therefore, cont+(si) = cont+(ti) = cont+(ui) = cont+(vi) = {1, . . . , ai} for all 1 ≤ i ≤ n. Lastly, if 0 <
cont(ti), then 0 < cont(ui). Applying Theorem 3.11 to Iσ∨ , we get that τ∨0 has a column with only one
nonzero entry, and therefore Iσ has a generator which is the power of a variable; a contradiction. □

Remark 4.6. Using similar arguments to those used in the proof of Theorem 4.5, it can be proved it is
true whenever one of the matrices σ, τ0, σ∨, and τ∨0 is a signature.

Example 4.7. Let σ be a nonnegative matrix, τ be its decomposition matrix, σ∨ the Alexander dual of
σ and τ∨ be its decomposition matrix as shown in Figure 3. Besides, let si, ti, ui, and vi be the i-rows
of σ, τ0, σ∨, and τ∨0 , respectively.
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σ

=
3 0 2 1
0 2 1 0
0 0 1 2


τ

=
1 2 3 3
2 2 1 2
∞ 2 2 1



σ∨
=


3 2 1 1
1 1 2 1
0 1 1 2


τ∨

=


1 ∞ 2 3
∞ 1 2 ∞

∞ ∞ 2 1


(σ∨)′

=


2 1 0 0
0 0 1 0
0 1 1 2


(τ∨)′

=


1 2
1 ∞

2 1



σ′

=
2 1
1 0
1 2


τ′

=
1 2 ∞ ∞

∞ ∞ 1 ∞

∞ 2 2 1


reva

∞-cover

∞-cover

reva

signature
∞-cover

reva reva

∞-cover

Figure 3. A signature σ, its decomposition matrix τ, the Alexander dual σ∨ of σ, and the
decomposition matrix τ∨ of τ.

Since σ is a signature and σ∨ is not a signature, then it cannot be removed the hypothesis that the
monomial ideal does not have minimal generators that are the power of a variable in the Theorem 4.5.
Moreover, 0 ∈ cont(v1) ⊈ cont(u1), proving that not necessarily the content of a row of a nonnegative
integer matrix is contained in the corresponding row of its decomposition matrix.

Since xa
i is a minimal generator of an antichain ideal IG if and only if a = max(G)i, then xi divides

the generators of its Alexander dual I∨G but not x2
i and, therefore, the positive content of its i-th row

has no gaps. The generators in a monomial ideal that are the power of a variable play a dual role to
the factors which are the power of a variable in its irreducible decomposition. For instance, if (σ∨)′ is
the signature of σ∨, then its Alexander dual σ′ corresponds to the original monomial ideal without the
generators that are the power of a variable, as shown in Figure 3.

By the symmetry between σ and σ∨ and between τ0 and τ∨0 , it is not difficult to prove that any one of
them are signatures without a column with only one nonzero entry, then the others are also a signature.

Corollary 4.8. If any of the σ, τ0, σ∨, and τ∨0 are a signature with no column with only one nonzero
entry, then the others are also a signature.

In consequence, if any of the σ, τ0, σ∨, and τ∨0 is a signature, then

lcm(σ) = lcm(τ0) = lcm(σ∨) = lcm(τ∨0 ).

If the matrices BG and DG are considered as vectors in Rnq and Rnp, then Theorem 3.11 can be
interpreted as that there exists a linear transformation T : Rnq → Rnp such that T (BG) = DG. Moreover,
the entries of the matrix representation of the linear transformation T are either zero or one.

Corollary 4.9. Let G be an antichain with no generator equal to the power of a variable, and BG and
DG be its incidence and decomposition matrices, respectively. If ri and si are the rows of BG and (DG)0,
respectively, then

cont(ri) = cont(si) for all 1 ≤ i ≤ n.

Proof. Let σ be the signature of IG and τ = σ((DG)0). It is not difficult to check that there exists
f : cont(σ) → cont(BG) such that f (σi, j) = (BG)i, j. Considering the matrices BG and DG as vectors in
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Rnq and Rnp, by Theorem 3.11, there exists a linear transformation T : Rnq → Rnp such that T (BG) =
DG and whose matrix representation has only zero and one entries. Thus, f (τi, j) = (DG)i, j, as shown
Figure 4.

σ τ

DGBG

f

T

T

f

Figure 4. The commutative diagram between σ, τ, BG, and DG.

Let r′i and s′i be the rows of σ and τ, respectively. By Theorem 4.5, cont(r′i) = cont(s′i) for all
1 ≤ i ≤ n, and, therefore,

cont(ri) = f (cont(r′i)) = f (cont(s′i)) = cont(si)

for all 1 ≤ i ≤ n. □

Since, as we have seen in Subsection 2.3, the primary decomposition of a monomial ideal can be
obtained by intersecting the factors of the irreducible decomposition with the same radical, then it
is not complicated to check that a monomial ideal with the same signature has essentially the same
primary decomposition.

Remark 4.10. It is important to note that throughout the article, a fixed order is used over the variables
and generators of the monomial ideal.

On the other hand, given a signature σ, let

P0
σ = {B ∈ Pσ : gcd(B) = 0} = {B ∈ Pσ : Bi, j = 0 for all i, j such that σi, j = 0}

be a face of the polyhedral cone Pσ whose integral points correspond to the monomial ideals with
signature σ with irredundant irreducible decomposition that does not contain a factor of the form
⟨xgcd(B)i

i ⟩. As the next result shows, it is not difficult to calculate the dimension of P0
σ in terms of the

dimension of Pσ.

Proposition 4.11. If σ is a signature, then dim(P0
σ) = dim(Pσ) − n.

Proof. By the definition of P0
σ we have that dim(P0

σ) =
∑n

i=1(|cont(ri)| − 1) = dim(Pσ) − n, where
(r1, . . . , rq) are the rows of σ. □

In a similar way, let

Pτ = {B ∈ Matn,p(R≥0 ∪∞) : Bi, j + τi, j ≤ Bi,k + τi,k for all 1 ≤ i ≤ n and 1 ≤ j, k ≤ q such that τi, j ≤ τi,k}.

In other words, Pτ ∩ Znp = {D ∈ Matn,p(N∞ \ 0) : σ(D) = τ}. It is not difficult to check that Pτ can be
identified with the polyhedral cone Pτ0 = (Pτ)0.

As the following result proves that there exists a depth relation between P0
σ and Pτ.

Theorem 4.12. Let σ be a signature with no column with only one nonzero entry and DG be the
decomposition matrix of the antichain ideal of G. Then σ(DG) = τ0 if and only if σ(IG) = σ.
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Proof. It follows directly from Corollary 4.9. □

In other words, there exists a bijection between P0
σ and Pτ. Thus, we get that P0

σ and (Pτ)0 have the
same dimension.

Corollary 4.13. If σ is a signature, then dim(P0
σ) = dim(Pτ0).

Thus, it is natural to consider that any monomial ideal whose incidence matrix is in P0
σ is an

Alexander dual of a monomial ideal whose incidence matrix is in Pτ0 .

5. Future work

We finish by posing a pair of conjectures, stating that monomial ideals with the same signature have
essentially the same minimal free resolution and that their quotient modules share at least a common
regular sequence. These conjectures put into perspective the depth of the concept of the signature of a
monomial ideal.

5.1. Regular sequences

In what follows, we recall what a regular sequence of an S -module means. Given a module M over
a ring S , we say that nonzero element r of M is regular whenever rm , 0M for all m ∈ M \ 0M. In
other words, r is regular whenever it is not a zero divisor of M. Moreover, a sequence h1, . . . , hd of
polynomials in S is called regular in M whenever

hi is regular in M/⟨h1, . . . , hi−1⟩M for all 1 ≤ i ≤ d

and ⟨h1, . . . , hd⟩M , M. The depth of M, denoted by depth(M), is the maximal length of its regular
sequences.

We begin by raising the weakest version of our conjectures, which claims that the depth of the
quotient module of a monomial ideal is preserved under the signature.

Conjecture 5.1. If I and J are monomial ideals with the same signature, then

depth(S/I) = depth(S/J).

A stronger version claims that the S -modules S/I and S/J have a common regular sequence.

Conjecture 5.2. Let I and J be monomial ideals with the same signature. If d is the depth of I, then
there exists a sequence h1, . . . , hd of polynomials such that it is a regular sequence of both S/I and
S/J.

A stronger version of the previous conjecture asserts that this common regular sequence can be
chosen with linear forms.

5.2. Minimal free resolutions

Roughly speaking, a graded free resolution of a finitely generated graded S -module M is a sequence
F• = {Fi, di}

p
i=0 of graded free modules Fi and homogeneous homomorphism di : Fi+1 → Fi such that

0← M
π=d0
←−−− F0

d1
←− F1

d2
←− . . .

dp
←− Fp ← 0
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is an exact complex, that is, Im(di) = Ker(di−1) for all 1 ⩽ i ⩽ p, Im(π) = M, and Ker(dp) = 0. Besides,
it is called minimal whenever

Im(di) ⊆ m := ⟨x1, . . . , xn⟩ for all 0 ≤ i ≤ p;

see for instance [11, Section I.7]. When M = S/I for some ideal I, F0 = S , and we say that F• is
a minimal free resolution of the ideal I. Although there are many ways to grade an S -module, the
most common are with the standard grading and the standard multigrading. To simplify the notation,
from here on, when we say multigraded minimal free resolution, we mean that it is graded with the
standard multigrading and when we say graded minimal free resolution, we mean that it is graded with
the standard grading.

Alternative ways exist to represent a minimal free resolution. For instance, in [12], the minimal
resolution of a monomial ideal is encoded as the sequence M• = {Mi}

p
i=1 of the matrix representation of

the differentials di. Thus, it is clear that the entries of these matrices are terms in S and M1 is a matrix
with only one row whose entries are the minimal generators of the ideal. To establish what it means
that two monomial ideals have essentially the same minimal free resolution, we will introduce a new
way of representing it, which we will call its poset resolution.

The poset resolution of a multigraded minimal free resolution F• = {Fi, di}
p
i=0 of a monomial ideal

is what we call decorated graded poset P•. More precisely, a decorated poset means a triplet (P, s,m),
where P = (F,≤) is the graded poset on the generators of each of the free modules Fi, where u ∈ Fi−1

is covered by v ∈ Fi whenever di(v) =
∑

w∈Fi−1
sww with 0 , su ∈ k for some 1 ≤ i ≤ p. The second

element of the triplet P• is the function from the edges of the Hasse diagram H of P to the field k given
by the coefficient of the term su in di(v) =

∑
w∈Fi−1

sww. Finally,

m : F → Mon(S ),

is the function that takes the monomial with the multidegree of v. The concept of poset resolution was
developed during the Ph.D. studies of Javier A. Moreno and David C. Molano; see in [13, 14].

Conjecture 5.3. If I and J are monomial ideals with the same signature, then there exists a poset
resolution P• = (P, s,m) of I such that P′• = (P, s,m′) is a poset resolution of J for some m′.

According to the previous conjectures, the signature is an invariant fine enough to preserve some of
the most important algebraic properties of a monomial ideal.

6. Conclusions

The signature of a monomial ideal is introduced. It is proved that two monomial ideals with
the same signature have essentially the same irreducible decomposition. Moreover, using Alexander
duality, it is proved that the irredundant irreducible decomposition matrix of a monomial ideal whose
incidence matrix is tight is also tight. This leads to enlarging the monomial ideals, which are considered
Alexander Duals of a given monomial ideal. Additionally, it is conjectured that monomial ideals with
the same signature have essentially the same minimal free resolution and that their quotient modules
share at least a common regular sequence.
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