
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 27908–27929.
DOI: 10.3934/math.20241355
Received: 07 August 2024
Revised: 14 September 2024
Accepted: 20 September 2024
Published: 26 September 2024

Research article

(θi,λ )-constacyclic codes and DNA codes over Z4+uZ4+u2Z4

Fatma Zehra Uzekmek1, Elif Segah Oztas2 and Mehmet Ozen3,*

1 Department of Computer Engineering, Faculty of Engineering, Istanbul Gedik University,
Cumhuriyet St. 34876 Kartal/Istanbul, Turkey

2 Department of Mathematics, Kamil Ozdag Faculty of Science, Karamanoglu Mehmetbey
University, Ibrahim Oktem St. 70100 Karaman, Turkey

3 Department of Mathematics, Faculty of Science, Sakarya University, Universite St. 54050
Serdivan/Sakarya, Turkey

* Correspondence: Email: ozen@sakarya.edu.tr.

Abstract: In this paper, three new automorphisms were identified over the ring Z4 + uZ4 + u2Z4
where u3 = u2. With the help of these automorphisms, the characteristic structures of the generator
polynomials for the θi-cyclic codes and (θi,λ )-constacyclic codes of odd length on this ring were
investigated. Also, for all the units over the ring, Z4-images of θi-cyclic and (θi,λ )-constacyclic
codes were reviewed with the associated codes based on determined transformations. Using these
observations, new and optimal codes were obtained and presented in the table. In addition, a new
transformation was identified that involved DNA base pairs with the elements of Z4. Moreover, a unit
reverse polynomial was created, and in this way a new generation method has been built to construct
reversible DNA codes over this ring. Finally, this article was further enhanced with supporting
examples of the DNA as a part of the study.
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1. Introduction

Within the coding theory, linear codes and cyclic codes, which have been studied for years on
different rings, have a strong algebraic structure. Therefore, a wide range of methods and approaches
have been studied in [1–5]. Constacyclic codes, which are an extension of these important codes, were
introduced by Eugene Prange for the first time [6], and recently new Z4-codes were found by using
these code families. Dinh et al. and Gao et al. have worked over the ring Z4 + vZ4 when v2 = v. Dinh
et al. [7] has illustrated an original Gray map over this ring and has studied cyclic, constacyclic for the
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units 1+ 2v and 3+ 2v, negacyclic, and the self dual of θ -constacyclic codes. They have described
a generator polynomial for cyclic and constacyclic codes of odd length. They have given multiple
samples and obtained new Z4 codes. Gao et al. [8] evaluated the linear codes that were placed on this
ring and researched the Euclidean self dual codes. They have drawn attention to Hermitian dual codes
and discussed the connection to unimodular complex lattice points. By analyzing the cyclic codes over
the ring, they have created generator polynomials. Ultimately, based on the quadratic codes, they have
achieved good and new Z4-linear codes.

In addition to the studies in commutative structures, the studies on noncommutative structures
gained a rapid acceleration in a short period of time and took its place in the world of literature. The
definition of a special multiplication is the most important feature that separates the noncommutative
structure from the commutative structure. This structure called skew has been studied mainly over
Fq [9, 10]. Skew cyclic codes, one of the generalizations of cyclic codes and first introduced by
Boucher, have attracted the attention of many researchers as they are more advantageous for finding
optimal codes. Then, in addition to skew cyclic codes, other families of codes were also researched by
many researchers. The articles [10–14] are some examples of skew articles. Gursoy et al. [10], using
the decomposition, researched the structural features of the skew cyclic codes over Fq where v2 = v
and created generator polynomials for these codes. They also mentioned idempotent generators and
BCH (Bose-Chaudhuri-Hocquenghem) type bounds. Sharma et al. [14] defined a new automorphism
over the ring Z4 + uZ4 when u2 = 0 and investigated the characteristic structure of skew constacyclic
codes. They also mentioned double constacyclic codes and found good codes over Z4.

Adleman, who successfully solved the NP-hard problem (non-deterministic polynomial-time
problem. For example, travelling salesman problem.) using DNA molecules, proposed the first
computation on the structure of DNA [15]. For many years now, the structure of the DNA cyclic
codes has been studied by many researchers and a large number of articles have been written about
it. Notable contributions in this field include the works of [16–20]. In addition to these, you can also
find several important articles in more detail here: In [21], an analysis of skew-constacyclic codes
over the ring F4[v]/〈v2−v〉 was performed by Bayram et al. They also searched for reversible codes
and obtained DNA codes using Griesmer bound. Dinh et al. [22] studied the reversible codes and the
reversible-complement codes over the ring F2 + uF2 + vF2 + uvF2 + v2F2 + uv2F2, where u2 = 0 and
v3 = v, and explored the binary image of the cyclic DNA codes over this ring. In [23], the authors
searched for cyclic DNA codes with the help of F2[u]/〈u2−1〉 and studied the CG-content (The CG-
content (or GC-content) of DNA codes refers to the percentage of nucleotides in a DNA molecule
that are either cytosine (C) or guanine (G).) of these codes. In [24], Yildiz and Siap investigated the
algebraic structure of cyclic DNA codes of odd length. They did so by associating the elements of
the ring with the DNA pairs. In [25], the authors studied DNA codes of odd length over the ring
Z4 + vZ4 with v2 = v. They also characterized cyclic codes of odd length and presented a new method
of constructing DNA codes. Hence, they found some DNA codes with 256 code words.

Our specific focus in this article is on cyclic, θi-cyclic, (θi,λ )-constacyclic, and DNA codes over
Z4 +uZ4 +u2Z4 with u3 = u2. Throughout this paper, we will represent the 64-element commutative
ring Z4 + uZ4 + u2Z4 with u3 = u2 via T3 and also search the structure of T3 for odd length ϖ . This
paper is divided into the following sections: In Section 2, we deal with the basic concepts of the ring
T3. In Section 3, we give the most important descriptions of the skew codes and determine all the
automorphisms of T3. In the following, we define the generator polynomials for skew cyclic codes
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and skew λ -constacyclic codes over this ring. Finally, we concentrate on the Z4-images of skew λ -
constacyclic codes for each defined automorphisms. For all units over this ring, there are cyclic codes
or quasi-cyclic codes of index 2 over Z4. We present a number of new and optimal codes as a result of
this observation and we present them in tables. In Section 4, we relate the components of the T3 ring
to the DNA 2-mers through the new transformation identified, with the φ1 Gray map. Furthermore,
we have created a new generation method for generating a reversible code over the ring T3 by defining
a unit reverse polynomial. In addition, we have also provided examples of how to strengthen the
operation of this method.

2. Preliminary informations for the ring T3

T3 is isomorphic to the quotient ring Z4[u]/〈u3−u2〉 and is a non-chain ring. Moreover, this ring is
a nonlocal ring because it does not have a single maximal ideal. As well, the set of units of T3 are
{1,3,1+ 2u,3+ 2u,1+ u+ u2,3+ u+ u2,1+ 3u+ u2,3+ 3u+ u2,1+ 2u2,3+ 2u2,1+ 2u+ 2u2,3+
2u+ 2u2,1+ u+ 3u2,3+ u+ 3u2,1+ 3u+ 3u2,3+ 3u+ 3u2}. The ring is a Frobenius ring because,
through the instrument of the Chinese remainder theorem (CRT), it can be stated as a direct sum of the
local rings with a single minimal ideal. Nonlocal Frobenius rings are expressed as the direct sum of
local rings with the help of the CRT.

Let y be any element of T3 demonstrated as y = a0 + ua1 + u2a2 for a0,a1,a2 ∈ Z4. A code of
length ϖ over T3 is a subset of T ϖ

3 . C3 is a linear if, and only if, C3 is a sub-module of T3. The elements
of the linear code are called code words.

Each code word y= (y0,y1, . . . ,yϖ−1) is qualified via its polynomial form y(x) = y0+y1x+ · · ·+
yϖ−1xϖ−1 for each yi = ai

0 +uai
1 +u2ai

2 with i = 0,1, . . . ,ϖ −1.
Using these explanations, we can define the cyclic code and λ -constacyclic code definitions

needed in this study as follows:

(i) Let ρλ be a λ -constacyclic shift operator. A linear code C3 is said to be λ -constacyclic
code of length ϖ over T3 if ρλ (y0,y1, . . . ,yϖ−1) = (λyϖ−1,y0,y1, . . . ,yϖ−2) ∈ C3 while
(y0,y1, . . . ,yϖ−1) ∈ C3. In other words, C3 is a λ -constacyclic code over T3 if, and only if, C3
is an ideal of T3[x]/〈xϖ−λ 〉.

(ii) In the above definition, if 1 is written instead of λ , this code is called a cyclic code. In other words,
σ(y0,y1, . . . ,yϖ−1) = (yϖ−1,y0,y1, . . . ,yϖ−2) is an element in C3 where (y0,y1, . . . ,yϖ−1) ∈ C3
such that σ is a cyclic shift operator.

Nonlocal rings can be represented by local rings, which have an important position in coding
theory with the help of CRT. For detailed information, see [26,27]. From this point of view, motivated
by our work in [1], we obtain the decomposition of T3. Recall that the ring Z4+uZ4 works with u2 = 0.

T3 = u2T3⊕ (1+3u2)T3 = u2Z4⊕ (1+3u2)(Z4 +uZ4).

Moreover, the linear code ℜ over Z4 with length ϖ is defined as ℜ= {z+c+t ∈Zm
4 , z+uc+u2t ∈

C3} and the linear code ℑ over Z4 +uZ4 with length ϖ is defined as ℑ = {z+uc ∈ (Z4 +uZ4)
ϖ , z+

uc+ u2t ∈ C3 for some t ∈ Zϖ
4 }. Based on this, the linear code C3 of odd length ϖ over T3 can be

uniquely shown as C3 = u2ℜ⊕ (1+3u2)ℑ.
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Consider the same three Gray maps in [1] for θi-cyclic codes over T3. Recall these maps, which
are linear and preserve the Euclidean, Lee, and Hamming distances from T3 to Z2ϖ

4 :

φ1 : T3 −→ Z2
4,

(a0 +ua1 +u2a2)→ (a0 +a1 +3a2, 3a0 +3a1 +a2),

φ2 : T3 −→ Z2
4,

(a0 +ua1 +u2a2)→ (a0 +a1 +3a2, a0 +3a1 +a2),

φ3 : T3 −→ Z2
4,

(a0 +ua1 +u2a2)→ (a0 +a1 +3a2, 3a0 +a1 +3a2).

Identifying the elements φi(y(x)) = y = (y0,y1, . . . ,yϖ−1) in T ϖ
3 with polynomials y(x) = y0 +

y1x+ · · ·+yϖ−1xϖ−1 for each yi = ai
0 +uai

1 +u2ai
2 with i = 0,1, . . . ,ϖ −1, we get

Φi : T ϖ
3 → Z2ϖ

4 ,

Φi : (y0,y1, . . . ,ym−1)→ (φi(y0),φi(y1), . . . ,φi(yϖ−1)).

Based on the information presented, we will now examine the skew cyclic, skew constacyclic and
DNA codes over T3. By constructing generator polynomials, our aim is to acquire new and optimal
codes via the Gray maps that have been defined earlier. Furthermore, we are attempting a unique
perspective by constructing a new polynomial that is exclusive to DNA codes over the ring. This
polynomial will be enriched with examples to serve our purpose.

3. θi-cyclic and (θi,λ )-constacylic codes over T3

In this section, skew cyclic and skew constacyclic codes over T3 are analyzed. To begin, all
nontrivial automorphisms of T3 are identified. These maps θi on T3 for i = 1,2,3 are defined such that

θ1(a0 +ua1 +u2a2) = a0 +(2+3u)a1 +u2a2,

θ2(a0 +ua1 +u2a2) = a0 +(2u2 +u+2)a1 +u2a2 and

θ3(a0 +ua1 +u2a2) = a0 +(2u2 +3u)a1 +u2a2,

from T3 to T3. This ring T3[x,θi] = {ao + a1x+ · · ·+ aϖ−1xϖ−1 : ai ∈ T3, i = 0,1, . . . ,ϖ − 1, ϖ ∈
N} is called a skew polynomial ring. Note that this ring is a noncommutative ring. Herewith the
multiplication is described using the precise normal size which is well-known to be ( f xr)(yxk) =
f θ r

i (y)x
r+k while the addition in this ring is the usual polynomial addition. The order of all defined

automorphisms θi is 2.
An element d(x) ∈ T3[x,θi] is said to be a right divisor of l(x) if there exists q(x) ∈ T3[x,θi] such

that l(x) = q(x)d(x). Thus, l(x) is called a left multiple of d(x), and a left divisor of l(x) can be defined
similarly. In this paper, division stands for right division, and if l(x) ∈ T3[x,θi], then we put to use the
notation 〈l(x)〉 for the left ideal generated by l(x).
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Throughout this section, the quotient ring T3[x,θi]/〈xϖ−1〉 will be represented by T3,ϖθi
and

T3[x,θi]/〈xϖ−λ 〉 will be represented by T3,ϖθi,λ
. These quotient rings are left-T3[x,θi] module with the

multiplication identified by d(x)(l(x)+ 〈xϖ −1〉) = d(x)l(x)+ 〈xϖ −1〉 and d(x)(l(x)+ 〈xϖ −λ 〉) =
d(x)l(x)+ 〈xϖ −λ 〉 for any d(x), l(x) ∈ T3[x,θi]. We characterize a T3-module isomorphism from T ϖ

3
to T3,ϖθi

such that (y0,y1, . . . ,yϖ−1)→ y0 +y1x+ · · ·+yϖ−1xϖ−1.
The fundamental definition and theorems that underlie the structure of the skew codes are

outlined below.

Definition 1. A skew linear code C3 of odd length ϖ over the ring T3 is a left T3[x,θi]-sub-module of
the left module T3[x,θi]/〈l(x)〉, where l(x) is a polynomial of degree ϖ over T3[x,θi].

Theorem 1. T3,ϖθi
is a T3[x,θi]-left module where multiplication is defined as above.

Theorem 2. A code C3 of length ϖ in T3,ϖθi
is a θi-cyclic code if, and only if, C3 is a left T3[x,θi]-sub-

module of the left T3[x,θi]-module T3,ϖθi
.

Theorem 3. A code C3 of length ϖ in T3,ϖθi
is a (θi,λ )-constacyclic code if, and only if, C3 is a left

T3,ϖθi,λ
-sub-module of the left T3[x,θi]-module over T3,ϖθi,λ

.

Note that throughout this paper we represent skew cyclic codes by θi-cyclic codes and skew λ -
constacyclic codes by (θi,λ )-constacyclic codes. So, if T3θi,λ (C3) = C3 then a T3-sub-module of T ϖ

3 is
a (θi,λ )-constacyclic code. In particular, if λ = 1, then C3 is said to be a θi-cyclic code.

Definition 2. A subset C3 of T3 is called a (θi,λ )-constacyclic code of length ϖ over T3 if C3 is a T3-sub-
module of T ϖ

3 , and for any (y0,y1, . . . ,yϖ−1) ∈ C3, we have (λθi(yϖ−1),θi(y0), . . . ,θi(yϖ−2)) ∈ C3. It
should not be forgotten that if λ is chosen as 1, then the (θi,λ )-constacyclic code of length ϖ over T3
is a θi-cyclic code of length ϖ over T3.

With the help of all these descriptions, let’s construct the generator polynomial for θi-cyclic and
(θi,λ )-constacyclic codes over T3.

Theorem 4. Let C3 be a linear code over T3 of length ϖ and C3 = u2ℜ⊕ (1 + 3u2)ℑ be its
decomposition, where ℜ is a code of length ϖ over Z4 and ℑ is a code of length ϖ over Z4 + uZ4
where u2 = 0. Then, C3 is a θi-cyclic code as regards to the automorphism θi if, and only if, ℜ and ℑ

are both θi-cyclic codes over Z4 and Z4 +uZ4, respectively, as regards to the automorphism θi.

Proof. For i = 0,1, . . . ,ϖ−1, let y= (y0,y1, . . . ,yϖ−1) ∈ C3 and yi = u2 pi+(1+3u2)vi. Assume that
p = (p0, . . . , pϖ−1) ∈ ℜ and v = (v0, . . . ,vϖ−1) ∈ ℑ such that vi = ai + ubi where i = 0,1, . . . ,ϖ − 1.
Due to C3 being θi-cyclic if (u2 p0⊕(1+3u2)v0, . . . ,u2 pϖ−1⊕(1+3u2)vϖ−1)∈C3, then (θi(u2 pϖ−1⊕
(1+ 3u2)vϖ−1),θi(u2 p0⊕ (1+ 3u2)v0), . . . ,θi(u2 pϖ−2⊕ (1+ 3u2)vϖ−2)) ∈ C3. Herefrom, u2σθi p⊕
(1+ 3u2)σθiv ∈ C3. Because of σθi(u

2 p⊕ (1+ 3u2)v) = u2σθi p⊕ (1+ 3u2)σθiv, then ℜ and ℑ are
θi-cyclic. Conversely, if ℜ and ℑ is θi-cyclic, σθi p ∈ ℜ while p ∈ ℜ and σθiv ∈ ℜ while v ∈ ℑ. So
u2σθi p⊕ (1+3u2)σθiv ∈ C3. Hence, C3 is θi-cyclic. �

Let us compose the generator polynomial of the θi-cyclic code with the assistance of this theorem.

Theorem 5. Let C3 = u2ℜ⊕ (1+ 3u2)ℑ be a θi-cyclic code of length ϖ over T3. In this case, ℜ is
a cyclic code over Z4 and ℑ is a cyclic code over Z4 + uZ4 such that C3 = (u2〈f1(x)(t1(x)+ 2)〉)⊕
((1+3u2)〈f2(x)(t2(x)+2)+uf1,2(x)(t1,2(x)+2), uf3(x)(t3(x)+2)〉) where xϖ −1 = fi(x)ti(x)di(x) for
i = 1,2,3.
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Proof. The proof can easily be done following the methodology outlined in our previous
publication [1]. �

Theorem 6. Let C3 = u2ℜ⊕ (1 + 3u2)ℑ be a θi-cyclic code of length ϖ over T3. Given that the
generator polynomial of ℜ is 〈τ1(x)〉 and the generator polynomial of ℑ is 〈τ2(x),τ3(x)〉, then
C3 = 〈u2τ1(x), (1 + 3u2)〈τ2(x),τ3(x)〉〉. Editing the generator polynomial of C3, we obtain C3 =
〈u2τ1(x), (1+3u2)τ2(x), (1+3u2)τ3(x)〉.

Proof. Due to ℜ = 〈τ1(x)〉 and ℑ = 〈τ2(x),τ3(x)〉, we can conclude that C3 = u2ℜ⊕ (1+3u2)ℑ. From
this, we claim that C3 = {y(x) = u2b1(x)τ1(x)+ (1+ 3u2)b2(x)〈τ2(x), τ3(x)〉 such that b1(x),b2(x) ∈
T3[x,θi]}. We can further infer that C3 ⊆ 〈u2τ1(x) + (1+ 3u2)〈τ2(x),τ3(x)〉〉 ⊆ T3,ϖθi

. Conversely,
let us consider u2y1(x)τ1(x)+(1+3u2)y2(x)〈τ2(x),τ3(x)〉 ∈ 〈u2τ1(x),(1+3u2)〈τ2(x),τ3(x)〉〉 with
y1(x),y2(x) ∈ T3,ϖθi

. We have u2y1(x) = u2b1(x) and (1+3u2)y2(x) = (1+3u2)b2(x) for some
b1(x),b2(x) ∈ T3[x,θi]. Hence, it can be deduced that 〈u2τ1(x),(1+3u2)〈τ2(x),τ3(x)〉〉 ⊆ C3.
Therefore, the proof is C3 = 〈u2τ1(x),(1+3u2)〈τ2(x),τ3(x)〉〉. �

Theorem 7. Let ℜ and ℑ be θi-cyclic codes over Z4 and Z4 +uZ4, respectively. Assume that 〈τ1(x)〉
and 〈τ2(x),τ3(x)〉 are the monic generator polynomials of these codes and also C3= u2ℜ⊕(1+3u2)ℑ.
In this case, there is a unique polynomial τ(x) over T3[x,θi] such that C3 = 〈τ(x)〉 and τ(x) is a right
divisor of xϖ −1, where τ(x) = u2τ1(x)+(1+3u2)(τ2(x)+ τ3(x)).

Proof. Using the previous theorem, we can express C3 = 〈u2τ1(x),(1+ 3u2)〈τ2(x),τ3(x)〉〉. Assume
that τ(x) = u2τ1(x) + (1 + 3u2)(τ2(x) + τ3(x)). Then, it’s trivial that 〈τ(x)〉 ⊆ C3. On the other
hand, we have that u2τ1(x) = u2τ(x) and (1+ 3u2)(τ2(x) + τ3(x)) = (1+ 3u2)τ(x), which implies
that C3 ⊆ 〈τ(x)〉. Hence, C3 = 〈τ(x)〉. Because τ1(x) and (τ2(x) + τ3(x)) are monic divisors
xϖ − 1 in Z4[x,θi] and Z4 + uZ4[x,θi], respectively, then there exists b1(x),b2(x) ∈ T3,ϖθi

such that
xϖ −1 = b1(x)τ1(x) = b2(x)(τ2(x)+ τ3(x)). Therefore, (u2b1(x)+ (1+3u2)b2(x))τ(x) = (u2b1(x)+
(1+3u2)b2(x))(u2τ1(x)+(1+3u2)(τ2(x)+ τ3(x)) = u2(xϖ −1)+(1+3u2)(xϖ −1) = xϖ −1. From
this point of view, τ(x) is a right divisor of xϖ −1. �

First of all, we define two sets for units. In this case,
B2 = {1,3,1+2u,3+2u,1+2u2,3+2u2,1+2u+2u2,3+2u+2u2},
B4= {1+u+u2,1+u+3u2,1+3u+3u2,3+3u+u2,3+u+3u2,3+3u+3u2,1+3u+u2,3+u+u2}.

Now we use these sets to describe a ring homomorphism. Therefore, we can state the following
propositions and corollaries, whose proofs are trivial.

Proposition 8. Let ν : T3,ϖ θi
→ T3,ϖ θi,λ

. In this case,

(i) For each unit λ ∈B2, this map is defined as ν(y(x)) = y(λx). Then, ν is a ring isomorphism for
all units with an odd length and all automorphisms over the ring T3.

(ii) For each unit λ ∈ B4, define this map with ν(y(x)) = y(λ 2x). Then, ν is a ring isomorphism,
with the length ϖ as{

odd, for the automorphism θ3,
4k+1 for k ∈ Z, for the automorphisms θ1 and θ2.
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Proof. The proof can be easily observed through the defined automorphisms θi and the
skew multiplication. �

Corollary 1. There is a one-to-one relation between the ideals of T3,ϖθi
and T3,ϖθi,λ

.

Proposition 9. Let C3 denote a linear code of length ϖ over T3 and let

ν̂(y0,y1, . . . ,yϖ−1) = (y0,λy1,λ
2
y2, . . . ,λ

ϖ−1
yϖ−1).

Then, C3 is a cyclic code if, and only if, ν̂(C3) is a λ -constacyclic code of length ϖ over T3.

Theorem 10. Let C3 = u2ℜ⊕ (1+ 3u2)ℑ be a (θi,λ )-constacyclic code of length ϖ over T3. We
identify the methods to construct the generator polynomial of (θi,λ )-constacyclic codes of length ϖ

over T3 as follows:

(i) We determine this generator polynomial by using C3 = (u2〈f1(x)(t1(x) + 2)〉) ⊕ ((1 +
3u2)〈f2(x)(t2(x)+ 2)+ uf1,2(x)(t1,2(x)+ 2), uf3(x)(t3(x)+ 2)〉) where xϖ − λ = fi(x)diti(x) for
i = 1,2,3. This is the most classical method.

(ii) In another way, with the help of the Proposition 8 and Corollary 1, we construct this generator
polynomial via C3 = (u2〈f1(x̃)(t1(x̃) + 2)〉) ⊕ ((1 + 3u2)〈f2(x̃)(t2(x̃) + 2) + uf1,2(x̃)(t1,2(x̃) +
2), uf3(x̃)(t3(x̃)+2)〉) such that

{
x̃ = λx, for λ ∈B2
x̃ = λ 2x, for λ ∈B4

and xϖ −1 = fi(x)hi(x)si(x) for i = 1,2,3.

3.1. Z4-images of (θi,λ )-constacyclic codes over T3

In this section, we look for Z4-images of θi-cyclic and (θi,λ )-constacyclic codes over T3.

Definition 3. Let y ∈ Z2ϖ
4 with y = (y0,y1, . . . ,yδ ) where yi ∈ Z4 for i = 0,1. Let υδ be a map from

Z2ϖ
4 to Z2ϖ

4 defined by υδ (y) = (σ(y0),σ(y1), . . . ,σ(yδ )), where σ is the cyclic shift from Z2ϖ
4 to

Z2ϖ
4 provided by σ(yi) = (yi

ϖ−1,yi
0, . . . ,yi

ϖ−2) for each yi = (yi
0, . . . ,yi

ϖ−1) where yi
j ∈ Z4 and

j = 0,1, . . . ,ϖ −1. The 2ϖ-length code over Z4 is called a quasi-cyclic code with an index of δ if
υδ (C) = C.

Let Φ j be defined Gray maps from T3
ϖ to Z4

2ϖ , σθi be the θi-cyclic shift, ρθi,λ be the (θi,λ )-
constacyclic shift, and υ2 be the quasi-cyclic shift operator with index 2. Thus, the following
proposition and theorem can be stated as the result of crucial observations.

Proposition 11. (i) We have Φ jσθi(y) = υ2Φ j(y) for any y ∈ T3
ϖ and i, j = 1,2,3.

(ii) We have Φ1ρθi,λ (y) = σΦ1(y) for any y ∈ T3
ϖ and i = 1,2,3 where λ = 3,1+ 2u,1+ 2u2,3+

2u+2u2.
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(iii) We have Φ2ρθi,λ (y) = σΦ2(y) for any y ∈ T3
ϖ and i = 1,2,3 when λ = 1+ u+ u2,3+ 3u+

u2,3+u+3u2,1+3u+3u2.

(iv) We have Φ3ρθi,λ (y) = σΦ3(y) for any y ∈ T3
ϖ and i = 1,2,3 where λ = 3+ u+ u2,1+ 3u+

u2,1+u+3u2,3+3u+3u2.

(v) We have Φ jρθi,λ (y) = υ2Φ j(y) for any y ∈ T3
ϖ and i, j = 1,2,3 where λ = 1+ 2u+ 2u2,3+

2u,3+2u2.

Proof. Determine y which consists of (y0,y1, . . . ,yϖ−1) in T3[x,θi]
ϖ , where y j is calculated by the

formula ai
0 +uai

1 +u2ai
2 for values of j that are from 0 to ϖ −1. We know that the images of y under

the specified Gray maps are as follows.
Φ1(y) = (a0

0 + a1
0 + 3a2

0, . . . ,a0
ϖ−1 + a1

ϖ−1 + 3a2
ϖ−1,3a0

0 + 3a1
0 + a2

0, . . . ,3a0
ϖ−1 +

3a1
ϖ−1 +a2

ϖ−1),
Φ2(y) = (a0

0 +a0
1 +3a0

2, . . . ,a0
ϖ−1 +a1

ϖ−1 +3aϖ−1
2 ,a0

0 +3a0
1 +a0

2, . . . ,a
ϖ−1
0 +3aϖ−1

1 +a2
ϖ−1),

Φ3(y) = (a0
0+a1

0+3a2
0, . . . ,a0

ϖ−1+a1
ϖ−1+3a2

ϖ−1,3a0
0+a0

1+3a2
0, . . . ,3a0

ϖ−1+a1
ϖ−1+

3a2
ϖ−1).

To demonstrate that Φ jσθi(y) = υ2Φ j(y) for all y ∈ T ϖ
3 and i, j = 1,2,3, let’s obtain

υ2Φ1(y),υ2Φ2(y) and υ2Φ3(y) first. We have
υ2Φ1(y) = (a0

ϖ−1 + a1
ϖ−1 + 3a2

ϖ−1,a0
0 + a1

0 + 3a2
0, . . . ,a0

ϖ−2 + a1
ϖ−2 + 3a2

ϖ−2,3a0
ϖ−1 +

3a1
ϖ−1 +a2

ϖ−1,3a0
0 +3a1

0 +a2
0, . . . ,3a0

ϖ−2 +3a1
ϖ−2 +a2

ϖ−2),
υ2Φ2(y) = (a0

ϖ−1 + a1
ϖ−1 + 3a2

ϖ−1,a0
0 + a1

0 + 3a2
0, . . . ,a0

ϖ−2 + a1
ϖ−2 + 3a2

ϖ−2,a0
ϖ−1 +

3a1
ϖ−1 +a2

ϖ−1,a0
0 +3a1

0 +a2
0, . . . ,a0

ϖ−2 +3a1
ϖ−2 +a2

ϖ−2),
υ2Φ3(y) = (aϖ−1

0 +aϖ−1
1 +3aϖ−1

2 ,a0
0 +a0

1 +3a0
2, . . . ,a0

ϖ−2 +aϖ−2
1 +3aϖ−2

2 ,3aϖ−1
0 +

a1
ϖ−1 +3a2

ϖ−1,3a0
0 +a1

0 +3a2
0, . . . ,3a0

ϖ−2 +a1
ϖ−2 +3a2

ϖ−2).
On the other hand, we obtain
σθ1(y)= (θ1(yϖ−1),θ1(y0),θ1(y1), . . . ,θ1(yϖ−2))= (a0

ϖ−1+2a1
ϖ−1+3ua1+u2a2

ϖ−1,a0
0+ua1

0+
u2a2

0, . . . ,a0
ϖ−2 +ua1

ϖ−2 +u2a2
ϖ−2),

σθ2(y) = (θ2(yϖ−1),θ2(y0),θ2(y1), . . . ,θ2(yϖ−2)) = (a0
ϖ−1 + 2a1 + ua1

ϖ−1 + u2(2a1
ϖ−1 +

a2
ϖ−1),a0

0 +ua1
0 +u2a2

0, . . . ,a0
ϖ−2 +ua1

ϖ−2 +u2a2
ϖ−2),

σθ3(y)= (θ3(yϖ−1),θ3(y0),θ3(y1), . . . ,θ3(yϖ−2))= (a0
ϖ−1+3ua1+u2(2a1

ϖ−1+a2
ϖ−1),a0

0+

ua1
0 +u2a2

0, . . . ,a0
ϖ−2 +ua1

ϖ−2 +u2a2
ϖ−2).

The image of them under Φ1:
Φ1σθ1(y) = Φ1σθ2(y) = Φ1σθ3(y) = (aϖ−1

0 + aϖ−1
1 + 3aϖ−1

2 ,a0
0 + a0

1 + 3a0
2, . . . ,a

ϖ−2
0 + aϖ−2

1 +
3aϖ−2

2 ,3aϖ−1
0 +3aϖ−1

1 +aϖ−1
2 ,3a0

0 +3a0
1 +a0

2, . . . ,3aϖ−2
0 +3aϖ−2

1 +aϖ−2
2 ),

The image of them under Φ2:
Φ2σθ1(y)=Φ2σθ2(y)=Φ2σθ3(y)= (a0

ϖ−1+a1
ϖ−1+3a2

ϖ−1,a0
0+a1

0+3a2
0, . . . ,a0

ϖ−2+a1
ϖ−2+

3a2
ϖ−2,a0

ϖ−1 +3a1
ϖ−1 +a2

ϖ−1,a0
0 +3a1

0 +a2
0, . . . ,a0

ϖ−2 +3a1
ϖ−2 +a2

ϖ−2).
The image of them under Φ3:
Φ3σθ1(zy) = Φ3σθ2(y) = Φ3σθ3(y) = (aϖ−1

0 + aϖ−1
1 + 3aϖ−1

2 ,a0
0 + a0

1 + 3a0
2, . . . ,a

ϖ−2
0 + aϖ−2

1 +

3aϖ−2
2 ,3aϖ−1

0 +aϖ−1
1 +3aϖ−1

2 ,3a0
0 +a0

1 +3a0
2, . . . ,3aϖ−2

0 +aϖ−2
1 +3aϖ−2

2 ).
Therefore, we have Φ jσθi(y) = υ2Φ j(y) for i, j = 1,2,3.
The proof of others can be achieved using the same methodology. �
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Theorem 12. (i) Let C3 denote a θi-cyclic code of length ϖ over T3, where i and j range from 1 to 3.
In this regard, the Gray image of a θi-cyclic code over T3 with a length ϖ is equal to a QC code
of index 2 over Z4 with a length 2ϖ .

(ii) Let C3 denote (θi,λ )-constacyclic codes of length m over T3 for λ = 3,1+ 2u,1+ 2u2,3+ 2u+
2u2, where i takes on the values 1,2, and 3. By taking the Z4-images of Φ1(C3), the cyclic codes
over Z4 are obtained.

(iii) Let C3 denote (θi,λ )-constacyclic codes of length ϖ over T3 for λ = 1+u+u2,1+3u+3u2,3+
u+ 3u2,3+ 3u+ u2, and i = 1,2,3. So their Gray images Φ2(C3) are observed as cyclic codes
over Z4.

(iv) If C3 is a (θi,λ )-constacyclic code of length ϖ over T3 for λ = 1+u+3u2,1+3u+u2,3+u+u2,
and 3+3u+3u2, then their Gray images Φ3(C3) are cyclic codes over Z4.

(v) Let C3 denote (θi,λ )-constacyclic codes of length ϖ over T3 for i, j = 1,2,3 and λ = 3+2u,3+
2u2,1+ 2u+ 2u2. So their Gray images Φ j(C3) are QC codes of index 2 with a length of 2ϖ

over Z4.

Proof. Assume that C3 is a θi-cyclic code of length ϖ over T3 for i, j = 1,2,3. This is σθi(C3) =
C3. According to the previous proposition, Φ jσθi(C3) = υ2Φ j(C3) = Φ j(C3). Therefore, Φ j(C3) is
equivalent to a QC code of index 2 over Z4 with a length of 2ϖ .

The evidence from others is similarly conducted. �

3.2. Computational results for θi-cyclic codes

In this section, we search for θi-cyclic and (θi,λ )-constacyclic codes over T3 and their Z4-images.
In particular, the automorphism θ1 and the Gray image φ1 for length 7 is studied. Based on Theorem 6,
Theorem 10, and using MAGMA software [28], we present the results of a computational study on
θ1-cyclic codes over T3. Here, we express each term of the generator polynomial given in this theorem
with τi, where i = 1,2,3. In the present case, 〈τ1,τ2,τ3〉 will be the representative of the generator
polynomial of T3. Thus, we have many θ1-cyclic codes over T3, whose Z4-images are new, optimal,
and the best-known linear codes. We present all of these codes in the tables that follow. Note that the
representation of the elements of T3 is the same as in Table 1 in [1]. In these tables, the Lee, Euclidean,
and Hamming weights are determined for each generator polynomial. While giving information about
new and optimal parameters in Z4, the online database [29] has been checked. In addition, the “∗” sign
is used to indicate new parameters and the “∗∗” sign is used to indicate optimal parameters. To express
the spelling more clearly, the polynomial’s coefficients will be listed in decreasing order starting with
the highest order x. It is important to note that this length increases to 14 in according to the defined
Gray maps since 7 lengths of a code are scanned. For example, the polynomial (3u2 +3u)x7 +(2u+
1)x6 +ux2 +3 will be written as 9′E03403. It should be noted that the 03 notation indicates that the 0
expression is repeated 3 times. The Z4 images of some θ1-cyclic codes over T3 are given in Tables 1–3,
and the Z4 images of some (θ1,3+3u+u2)-constacyclic codes over T3 are given in Tables 4 and 5.
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Table 1. Some θ1-cyclic codes over T3 with Z4-images.

τ1(x) τ2(x) τ3(x) Type WL WE WH

8083 v′5′v′b (7′)6 4027 4∗∗ 8 2∗∗

78979 b3v′b(v′)2 7′3′5′7′ 4321 8∗∗ 8 6∗∗

7987 3′rDv′H (7′)33′7′(3′)2 4420 6∗ 6∗ 6∗∗

739792 R3v′000 7′7′ 4126 4∗∗ 8 2∗∗

72989 7′Dv′NH (5′)7 4321 8∗∗ 8 6∗∗

77 (5′)3F5′F2 (5′)305′ 4620 4∗ 4∗ 4∗∗

70779 U3e′000 (7′)3(3′)27′3′ 4321 8∗∗ 8 6∗∗

9897 U2rUr2e′ 7′5′(3′)3 4423 4∗∗ 6∗∗ 2∗∗

77909 s′v′de′s′ (7′)63′ 4324 4∗∗ 8 2∗∗

79909 N3(e′)4 3′5′3′7′ 4321 8∗∗ 8 6∗∗

77909 s′v′de′s′ (7′)63′ 4324 4∗∗ 8 2∗∗

79909 b(v′)20v′ 7′5′(3′)3 4323 8∗∗ 8 4∗∗

79909 U2drHds′ (7′)23′5′3′ 4322 4∗∗ 8∗∗ 2∗∗

8808 dUD7′s′ (7′)63′ 4027 4∗∗ 8 2∗∗

8088 H3(s′)2Hs′ 7′0(7′)23′ 4027 4∗∗ 8 2∗∗

77989 (3′)2Hv′(s′)3 3′5′7′(3′)2 4324 4∗∗ 8 2∗∗

78979 (5′)2e′Fr(e′)2 7′5′(7′)2 4324 4 8 2
9787 U3DrD2 7′3′5′7′ 4421 4∗ 6∗ 2∗

8088 dbs′e′s′ (7′)33′7′(3′)2 4027 4∗∗ 8 2∗∗

8808 d3H2ds′ (5′)32 4024 12 24∗∗ 6∗∗

99789 3′s′be′H (5′)7 4321 8∗∗ 8 6∗∗

99789 3′s′be′H (5′)7 4321 8∗∗ 8 6∗∗

8808 (7′)2dHs′7′s′ 7′5′(3′)3 4025∗ 4∗ 8∗ 2∗

70779 (7′)3(3′)2DA 5′0(5′)3 4322 4∗∗ 8∗∗ 2∗∗

87 7′v′3′Rv′ (7′)3(3′)27′3′ 4024 12 24∗∗ 6∗∗

79909 HrDv′s′ (5′)305′ 4323 8∗∗ 8 4∗∗

8808 U3′rHD (7′)33′7′(3′)2 4027 4∗∗ 8 2∗∗

7987 (7′)2Ds′dv′s′ (7′)23′5′3′ 4423 4∗∗ 6∗∗ 2∗∗

9787 (3′)27′rH (7′)3(3′)27′3′ 4423 4∗∗ 6∗∗ 2∗∗
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Table 2. Some θ1-cyclic codes over T3 with Z4-images.

τ1(x) τ2(x) τ3(x) Type WL WE WH

77989 (3′)2Hv′(s′)3 (5′)7 4322 4∗∗ 8∗∗ 2∗∗

70779 (7′)3(3′)2DH 7′3′5′7′ 4322 4∗∗ 8∗∗ 2∗∗

70779 (7′)2D2dbs′ (7′)2(3′)27′3′ 4322 4∗∗ 8∗∗ 2∗∗

9787 (5′)3Ur (7′)63′ 4423 4∗∗ 6∗∗ 2∗∗

88 (7′)2b3′v′bv′ (3′)27′5′3′ 4027 4∗∗ 8 2∗∗

739792 v′UFr (3′)7 4123 12∗∗ 14∗∗ 6∗∗

8088 H3(s′)2Hs′ (5′)305′ 4024 12 24∗∗ 6∗∗

79909 U2drHds′ (7′)23′5′3′ 4322 4∗∗ 8∗∗ 2∗∗

77989 (7′)23′Fv′ (7′)23′03′ 4320 8 8∗∗ 8∗∗

99789 (e′)7 (7′)3(3′)27′3′ 4321 8∗∗ 8 6∗∗

77989 UHe′v′D 7′5′(3′)3 4324 4∗∗ 8 2∗∗

739279 Ube′D2 (7′)23′03′ 4126 4∗∗ 8 2∗∗

7877 (7′)2dv′s′ds′ (5′)205′ 4421 4∗ 6∗ 2∗

739279 De′Hv′s′ (5′)305′ 4126 4∗∗ 8 2∗∗

79909 Ude′7′D (7′)63′ 4321 8∗∗ 8 6∗∗

99789 (e′)7 7′(3′)203′ 4321 8∗∗ 8 6∗∗

8308 5′rFUr 3′5′7′(3′)2 4027 4∗∗ 8 2∗∗

7893 U3Ds′rD (7′)23′5′3′ 4324 4∗∗ 8 2∗∗

70779 (7′)2D2dbs′ (5′)20(5′)2 4322 4∗∗ 8∗∗ 2∗∗

79909 U2drHds′ 7′5′7′7′ 4322 4∗∗ 8∗∗ 2∗∗

99789 3′s′be′H (3′)7 4321 8∗∗ 8 6∗∗

763 7′DHFH 7′5′3′7′3′ 4126 4∗∗ 8 2∗∗

78979 3′5′7′H2 7′5′3′7′3′ 4323 8∗∗ 8 4∗∗

9897 7′F3′bv′ (7′)33′7′(3′)2 4423 4∗∗ 6 2∗∗

77909 R27′b (7′)33′7′(3′)2 4324 4∗∗ 8 2∗∗

78999 R3v′Fv′b 3′7′5′7′ 4322 4∗∗ 8∗∗ 2∗∗

78999 U2dH2Us′ 3′5′7′(3′)2 4322 4∗∗ 8∗∗ 2∗∗

77989 UrNFe′ (5′)7 4320 8 8∗∗ 8∗∗

8808 d3H2ds′ 7′5′(7′)2 4027 4∗∗ 8 2∗∗

Table 3. Some θ1-cyclic codes over T3 with Z4-images.

τ1(x) τ2(x) τ3(x) Type WL WE WH

739279 D2HRs′ 3′5′3′7′ 4123 12∗∗ 14∗∗ 6∗∗

8808 R5F2 (3′)27′5′3′ 4027 4∗∗ 8 2∗∗

77 d3D2ds′ 7′(3′)203′ 4621 4∗ 4∗ 2∗

739792 (3′)5H2 (7′)23′03′ 4124 4∗ 8∗ 2∗

7987 (7′)2Ds′dv′s′ (7′)3(3′)27′3′ 4421 4∗ 6∗ 2∗

AIMS Mathematics Volume 9, Issue 10, 27908–27929.



27919

Table 4. Some (θ1,3+3u+u2)-constacyclic codes over T3 with Z4-images.

τ1(x) τ2(x) τ3(x) Type WL WE WH

87 FR7′7′7′Rb 7′7′23′7′3′7′7′ 4022∗ 12∗ 24∗ 6∗

98779 FR3′b3′5′v′ 7′03′(7′)2 4321 8∗∗ 8∗∗ 4∗
79 FR03R2 7′5′7′3′7′ 4620 4∗∗ 4∗∗ 4∗∗

70799 3′7′7′Hbs′U 5′5′05′005′ 43622 4∗∗ 8∗∗ 2∗∗

98779 7′3′3′7′7′v′v′ 7′03′3′7′ 4321 8∗∗ 8∗∗ 6∗∗

7979799 7′DUFe′ 7′5′3′7′ 4126 4∗∗ 8 2∗∗

9797979 UDs′rdDd 7′03′3′7′ 4124 4∗∗ 8∗∗ 2∗∗

97789 rde′de′Hr 5′ 4322 4∗∗ 8∗∗ 2∗∗

9899 7′7′HUdr′D 3′7′ 4423 4∗∗ 6∗∗ 2∗∗

9989 FR5′b7′0v′ 7′5′7′3′7′ 4420 8 8 6∗∗

78999 FR3′3′b5′b 7′03′7′7′ 4321 8∗∗ 8∗∗ 4∗

9899 rs′e′HUDU 7′3′5′3′ 4423 4∗∗ 6∗∗ 2∗∗

79989 3′7′Fb 3′7′7′3′3′7′7′ 4324 4∗∗ 8 2∗∗

98779 5′5′UdU5′N 5′5′035′5′ 4322 4∗∗ 8∗∗ 2∗∗

7789 3′Ue′v′e′ 7′7′3′7′3′7′7′ 4423 4∗∗ 6∗∗ 2∗∗

8088 HUs′rDUd 7′5′7′3′7′ 4027 4∗∗ 8 2∗∗

77909 FR03bv′ 7′3′5′3′ 4324 4∗∗ 8 2∗∗

78979 d7′s′Dd 5′5′005′05′ 4323 4∗ 8 2∗

Table 5. Some (θ1,3+3u+u2)-constacyclic codes over T3 with Z4-images.

τ1(x) τ2(x) τ3(x) Type WL WE WH

797793 7′de′FN 7′3′3′7′7′3′7′ 4126 4∗∗ 8 2∗∗

7879 7′3′HrH7′s′ 3′7′7′3′3′7′7′ 4421 4∗∗ 6∗∗ 2∗∗

98779 7′3′3′7′7′v′v′ 5′5′5′05′ 4321 8∗∗ 8∗∗ 6∗∗

79749 FR(7′)3Rb 3′7′5′3′ 4124 4∗∗ 8∗∗ 2∗∗

88808 7′03′bv′ 7′03′3′7′ 4026 8∗∗ 16∗∗ 4∗∗

4. DNA codes over T3

DNA forms the genes that carry the code for biological processes in living organisms. The
information needed to make the substances that cells need is stored in DNA. The double helix structure
that forms the physical shape of the DNA structure consists of bases. There are 4 fundamental bases in
living genetics. These are Adenine (A), Guanine (G), Cytosine (C), and Thymine (T ). These bases are
arranged on the double helix of DNA by a normal size. This is called the Watson-Crick complement
(WCC). In relation to this normality, A and T , G and C are connected. There are also two hydrogen
bonds between the bases A and T , and three hydrogen bonds between the bases G and C.

Now, we will first talk about some notations and give some basic definitions. Then we will explain
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the DNA reversibility problem, define a unit reverse polynomial, and relate the elements of the ring T3
to the DNA codons.

Definition 4. Let D be a code of arbitrary length ϖ over a finite set Λ.

(i) If for all yR = (yϖ−1,yϖ−2, . . . ,y0) ∈ D for y = (y0, . . . ,yϖ−1) ∈ D, then D is called
reversible code.

(ii) If for all yRC = (yϖ−1,yϖ−2, . . . ,y0)
C ∈ D for z = (y0, . . . ,yϖ−1) ∈ D, then D is called reversible

complement code.

Definition 5. Let r(x) ∈ T3 be a polynomial of degree b and let r(x) be expressed as r0 + r1x+ · · ·+
rb−1xb−1. For the coefficients of the polynomial r(x) where j = 0,1, . . . ,b− 1, if r j = rb− j, then the
polynomial r(x) is referred to as a palindromic polynomial.

The DNA code of length ϖ is described as a set of code words ( f0, f1, . . . , fϖ−1) such that fi ∈
{A,G,C,T}. The following restrictions for these code words exist in DNA.

Let D be a DNA code word and d be a positive integer,

(i) Hamming Distance Constraint: ∀y,g ∈ D and y , g : dH(y,g)≥ d,

(ii) Reverse Constraint: ∀y,g ∈ D and y , g : dH(y
R,g)≥ d,

(iii) Reverse Complement Constraint: ∀y,g ∈ D and y , g : dH(y
RC,g) ≥ d such that yRC is the WC-

complement of yR,

(iv) GC-content Constraint: ∀y ∈ D : The total number of G and C bases contained in each y code
word is equal.

We will use Hamming distance, reverse, and reverse complement constraints here. The GC-
content constraint will be left as an open problem.

To explain the reversibility problem; let (z1,z2,z3,z4,z5) be a code word corresponding to
GGTCCT GGAA as a DNA strain where z1 = 3u + u2,z2 = u2 + 3u + 3,z3 = 3u2 + 2,z4 = 2u2 +
u + 3,z5 = 2u2 + u + 1 ∈ T3. The reverse of (z1,z2,z3,z4,z5) is (z5,z4,z3,z2,z1), and this DNA
strain corresponds to AAGGCT TCGG. However, the reverse of the DNA strain GGTCCT GGAA is
AAGGTCCT GG. It is trivial that the DNA strain of the reverse of (z1,z2,z3,z4, z5) is not equal to the
DNA strain AAGGCT TCGG. We have a reversibility problem when we convert the element of a ring to
binary or more DNA via the Gray map. Although there are several methods to solve this problem, we
have identified unit reverse polynomials and a suitable new generation method for these polynomials
to solve the DNA reversibility problem.

First of all, let’s define the sets as follows.
UA = {1,3+2u,1+u+u2,3+3u+u2,3+2u2,1+2u+2u2,3+u+3u2,1+3u+3u2},
UB = {3,1+2u,3+u+u2,1+3u+u2,1+2u2,3+2u+2u2,1+u+3u2,3+3u+3u2},
κ = {0,2}.
Now we define the unit reverse polynomial with the help of these sets. This polynomial will help

us to find a reversible DNA code.

Definition 6. [Unit reverse polynomial]
Let g(x) be a polynomial of degree t over T3 and y be an element of T3. In this case,
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(i) If the degree of the polynomial g(x) is even, then the unit reverse polynomial is

UR(x) = yS +yY xt +(∑
(t/2)−1
i=1 βSxi +βY xt−i)+κ0,2xt/2.

(ii) If the degree of the polynomial g(x) is odd, then the unit reverse polynomial is

UR(x) = ∑
(t−1)/2
i=0 βSxi +βY xt−i,

where yS ∈ UA, yY ∈ UB, βS ∈ UA, βY ∈ UB. Here, if yS = UB, then yY = UA, and if βS = UB,
then βY =UA.

Example 1. 1+(1+u+u2)x+(2u+3)x2+2x3+(3u2+3u+3)x4+(u2+3u+1)x5+(2u+1)x6 is a
unit reverse polynomial with even degree in T3[x]. (3+2u2)+(2u+3)x+(2u+1)x2+(3u2+u+1)x3

is a unit reverse polynomial with odd degree in T3[x].

Now, first of all, we define a T−module code with the help of the paper by Oztas et.al. that
motivates us. We also remaind that T−module code is called an x-module code if T is generated by
an x ∈ R.

Definition 7. [19] Let C be a code generated by p(x) in R[x]/〈xn−1〉 where T is a subring of R and E
is a generator set for T. Here C= {(y0 + y1x+ · · ·+ yn−1xn−1)p(x) | yi ∈ T} or C= {(y0c1 + y1c2 +
. . . ,yaca)p(x) | yi ∈ T} is a subset of Rn.

By finding a ring in which any k−base of DNA lives, they identified the k−base of the DNA strain
with an element of the ring they were studying. It was observed that the problem of reversibility arises
with the definition of k−bases. To solve this reversibility problem, they presented new notations and
new definitions, as mentioned above. Using the T−module code, they give some notations for n-tuples
of DNA k-bases. These notations help to find the reverse of the DNA k-bases, which is provided in the
ring structure.

Although the T3 ring we are working with has 64 elements, it cannot be decomposed into three
separate parts. Therefore, the ring elements cannot correspond to DNA 3-mers. Hence, due to the
defined Gray structure, the ring elements correspond to the DNA 2-mers, and this happens with
restricted elements.

Consider in this strategy we define the function ζ to describe the components of T3 and 2-mers. To
create the map ζ , we match the elements of Z4 and DNA bases according to the following methodology.

ζ : Z4 −→ {A,G,T,C}.

Here, we define ζ (0) = A, ζ (1) = T, ζ (2) = G, ζ (3) =C. The ζ map can be mapped in 24 different
ways between Z4 and DNA sequences. For example, ζ (0) = C,ζ (1) = A,ζ (2) = T,ζ (3) = G or
ζ (0) = A,ζ (1) = G,ζ (2) =C,ζ (3) = T , etc. The use of this type of multi-map also provides a variety
of examples obtained with the Theorem 13. Using the Gray map φ1 and the transformation ζ , which
pairs DNA bases with elements of Z4, this paper presents a description of the map ϑ = ζ oφ1 to match
the elements of T3 with DNA.

ϑ : T3 −→ {A,G,T,C}2,
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a0 +ua1 +u2a2 −→ (ζ (a0 +a1 +3a2), ζ (3a0 +3a1 +a2)).

This map extended component-wise to

ϑ : T ϖ
3 7→ {A,G,T,C}2ϖ ,

(y0, y1, . . . , yϖ−1) 7→ (ζ (φ1(y0)), ζ (φ1(y1)), . . . , ζ (φ1(yϖ−1)),

where yi = ai
0 +uai

1 +u2ai
2 for i = 0, . . . ,ϖ −1.

Now, we create a generation method for the unit reverse polynomial to construct reversible codes
over T3.

Definition 8. [Generation of H4-Module with Unit Reverse Polynomial] H4(UR(x)) and H4+1(UR(x))
are generator matrices defined by UR(x) over T3 for codes of length ϖ .

H4(UR(x)) =


UR(x)
xUR(x)

...

xϖ−t−1UR(x)

,

and

H4
+1(UR(x)) =



UR(x)
xUR(x)

...

xϖ−t−1UR(x)
p3(x)


,

such that K= {b,b′} and the polynomial

p3(x) =


∑
(ϖ−2)/2
i=0 bxi + b′xϖ−i−1, if ϖ is even,

∑
(ϖ−1)/2
i=0 bxi + b′xϖ−i−1 + ax(ϖ−1)/2 where a ∈ κ, if ϖ is odd,

where K= {1,3}.

Let us consider the polynomial UR(x) = s+ s1x+ · · ·+ stxt such that si ∈ T3. In this case, the
generator matrix H4(UR(x)) of the polynomial UR(x) is

s s1 s2 . . . st 0 0 . . . 0
0 s s1 s2 . . . st 0 . . . 0
...

. . .
...

0 . . . 0 s s1 . . . st

 ,
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and the generator matrix H4+1(UR(x)) of the polynomial UR(x) is
s s1 s2 . . . st 0 0 . . . 0
0 s s1 s2 . . . st 0 . . . 0
...

. . .
...

0 . . . 0 s s1 . . . st

p3(x) . . . p3(x) . . . p3(x) . . . p3(x)

.

Theorem 13. If the code C3 (or C3+1) is generated by a UR(x) with the generator matrix H4(UR(x))
(or H4+1(UR(x)), φ1(C3) (or φ1(C3

+1)) and is a reversible Z4−code, then ϑ(C3) and ϑ(C3
+1) are

reversible DNA codes.

Proof. For the polynomial UR(x) = sx+s1x2+ · · ·+stxt , as you can see from the definition, let xaUR(x)
be any row of the generator matrix H4(UR(x)) where a ∈ {0, . . . ,ϖ − t−1}. We get

xaUR(x) = sxa + s1xa+1 + · · ·+ stxa+t ,

and

xϖ−t−aUR(x) = sxϖ−t−a + s1xϖ−t−a + · · ·+ stxϖ−a.

If these polynomials are multiplied by any scalar q ∈ Z∗4, we obtain

qxaUR(x) = qsxa + qs1xa+1 + · · ·+ qstxa+t ,

and

qxϖ−t−aUR(x) = qsxϖ−t−a + qs1xϖ−t−a + · · ·+ qstxϖ−a.

In this case, we attain

φ1(qxaUR(x))R = φ1(qxϖ−t−1−aUR(x)),

due to the choice of the si’s. Since ϑ = ζ oφ1 and Z4−reverse is found, DNA reverses can also be
found as desired. Therefore,

ϑ(qxaUR(x))R = ϑ(qxϖ−t−aUR(x))

equality is obtained.
�

For the complement of the DNA code, we can say the following:
DNA bases are normalized to correspond to elements of Z4. For example, if we choose 1 and 3,

they are complements of each other. Also, 0 and 2 are complements of each other. Based on this
information, if we add a row that has all 2 components for the generator matrix H4(UR(x)), then we
can obtain a reversible and complement DNA code using the defined DNA correspondence normalized.
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Example 2. Let UR(x) = (2u+3)+(u2 +u+1)x+(3u2 +u+3)x2 +2x3 +(2u2 +1)x4 +(3u2 +u+
1)x5 +(2u2 +2u+3)x6 be a polynomial over T3 with length 8. Then, the generator matrix H4(UR(x))
of the polynomial UR(x) is[

2u+3 u2 +u+1 3u2 +u+3 2 2u2 +1 3u2 +u+1 2u2 +2u+3 0
0 2u+3 u2 +u+1 3u2 +u+3 2 2u2 +1 3u2 +u+1 2u2 +2u+3

]
,

and the generator matrix H4+1(UR(x)) of the polynomial UR(x) is2u+3 u2 +u+1 3u2 +u+3 2 2u2 +1 3u2 +u+1 2u2 +2u+3 0
0 2u+3 u2 +u+1 3u2 +u+3 2 2u2 +1 3u2 +u+1 2u2 +2u+3
1 1 1 1 3 3 3 3

.

Therefore, we get

φ1(H4(UR(x))) =
[

1 3 1 3 1 3 2 2 3 1 3 1 3 1 0 0
0 0 1 3 1 3 1 3 2 2 3 1 3 1 3 1

]
,

and

φ1(H4
+1(UR(x))) =

1 3 1 3 1 3 2 2 3 1 3 1 3 1 0 0
0 0 1 3 1 3 1 3 2 2 3 1 3 1 3 1
1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1

.

When the rows in the Z4−images of H4(UR(x)) and H4+1(UR(x)) generator matrices are multiplied by
q ∈ Z∗4, the first row and the second rows are reverses of each other. For example, when φ1(H4(UR(x)))
is multiplied by 3, we obtain[

3 1 3 1 3 1 2 2 1 3 1 3 1 3 0 0
0 0 3 1 3 1 3 1 2 2 1 3 1 3 1 3

]
.

From this, it is clear that the first row and the second row are reversed of each other.
When the first row and the second row in the φ1(H4(UR(x))) matrix are added together, the

resulting sequence [
1 3 2 2 2 2 3 1 1 3 2 2 2 2 3 1

]
is palindromic, so the reverse is equal to itself.

Adding 2 rows to the generator matrix H4(UR(x)) gives the following matrix.
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279252u+3 u2 +u+1 3u2 +u+3 2 2u2 +1 3u2 +u+1 2u2 +2u+3 0
0 2u+3 u2 +u+1 3u2 +u+3 2 2u2 +1 3u2 +u+1 2u2 +2u+3
2 2 2 2 2 2 2 2

.

The Z4−image of this matrix is

1 3 1 3 1 3 2 2 3 1 3 1 3 1 0 0
0 0 1 3 1 3 1 3 2 2 3 1 3 1 3 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 .
In the Z4−image of this matrix, the sequence[

3 1 3 1 3 1 0 0 1 3 1 3 1 3 2 2
]

obtained when the first and third rows are added together is the complement of the first row. When the
second and third rows are added together in this matrix, the resulting sequence[

2 2 3 1 3 1 3 1 0 0 1 3 1 3 1 3
]

is the complement of the second row.

In the φ1(H4
+1(UR(x))) matrix, the[

2 2 2 2 2 2 3 1 2 2 2 2 2 2 3 1
]

sequence obtained when the first row and the third row are added together and the[
1 3 2 2 2 2 2 2 1 3 2 2 2 2 2 2

]
sequence obtained when the second row and the third row are summed are the reverse of each other.
When it is multiplied by any q ∈ Z∗4 and the same combined operations are performed, it is seen that
the rows are reversed to each other.

Example 3. Let UR(x) = (2u2 +1)+3x+(2u+1)x2 +(u2 +3u+3)x3 +(2u2 +3)x4 +(2u+3)x5 be
a polynomial over T3 with length 9. Then, the generator matrix H4(UR(x)) of the polynomial UR(x) is


2u2 +1 3 2u+1 u2 +3u+3 2u2 +3 2u+3 0 0 0

0 2u2 +1 3 2u+1 u2 +3u+3 2u2 +3 2u+3 0 0
0 0 2u2 +1 3 2u+1 u2 +3u+3 2u2 +3 2u+3 0
0 0 0 2u2 +1 3 2u+1 u2 +3u+3 2u2 +3 2u+3

,

and the generator matrix H4+1(UR(x)) of the polynomial UR(x) is
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
2u2 +1 3 2u+1 u2 +3u+3 2u2 +3 2u+3 0 0 0

0 2u2 +1 3 2u+1 u2 +3u+3 2u2 +3 2u+3 0 0
0 0 2u2 +1 3 2u+1 u2 +3u+3 2u2 +3 2u+3 0
0 0 0 2u2 +1 3 2u+1 u2 +3u+3 2u2 +3 2u+3
3 3 3 3 2 1 1 1 1

.

Therefore, we get

φ1(H4(UR(x))) =


3 1 3 1 3 1 1 3 1 3 1 3 0 0 0 0 0 0
0 0 3 1 3 1 3 1 1 3 1 3 1 3 0 0 0 0
0 0 0 0 3 1 3 1 3 1 1 3 1 3 1 3 0 0
0 0 0 0 0 0 3 1 3 1 3 1 1 3 1 3 1 3

,

and

φ1(H4
+1(UR(x))) =


3 1 3 1 3 1 1 3 1 3 1 3 0 0 0 0 0 0
0 0 3 1 3 1 3 1 1 3 1 3 1 3 0 0 0 0
0 0 0 0 3 1 3 1 3 1 1 3 1 3 1 3 0 0
0 0 0 0 0 0 3 1 3 1 3 1 1 3 1 3 1 3
3 1 3 1 3 1 3 1 2 2 1 3 1 3 1 3 1 3

.

When the rows in the Z4−images of H4(UR(x)) and H4+1(UR(x)) generator matrices are multiplied
by q ∈ Z∗4, the first row and the fourth row, and the second row and the third row are reverses of each
other. For instance, when φ1(H4(UR(x))) is multiplied by 3, we obtain

1 3 1 3 1 3 3 1 3 1 3 1 0 0 0 0 0 0
0 0 1 3 1 3 1 3 3 1 3 1 3 1 0 0 0 0
0 0 0 0 1 3 1 3 1 3 3 1 3 1 3 1 0 0
0 0 0 0 0 0 1 3 1 3 1 3 3 1 3 1 3 1

.

From this, it is clear that the first row and the fourth row, and the second row and third row are reverses
of each other.

If the first row and the fourth row in the matrix φ1(H4(UR(x))) are added together, the resulting
sequence is [

3 1 3 1 3 1 2 2 0 0 0 0 1 3 1 3 1 3
]
,

and when the second row and the third rows in the φ1(H4(UR(x))) matrix are added together, the
resulting sequence is[

0 0 3 1 2 2 2 2 0 0 2 2 2 2 1 3 0 0
]

palindromic, so their reverses are equal to themselves.

In the φ1(H4
+1(UR(x))) matrix, the[
2 2 2 2 2 2 0 0 3 1 2 2 1 3 1 3 1 3

]
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sequence obtained when the first row and the fifth row are added together and the[
3 1 3 1 3 1 2 2 1 3 0 0 2 2 2 2 2 2

]
sequence obtained by summing the fourth row and the fifth rows is the reverse of each other. At the
same time, the [

3 1 2 2 2 2 2 2 3 1 2 2 2 2 2 2 1 3
]

sequence is obtained when the second row and the fifth row are added together and the[
3 1 3 1 2 2 2 2 1 3 2 2 2 2 2 2 1 3

]
sequence is obtained when the third row and the fifth row are summed and are the reverse of each other.
When it is multiplied by any q ∈ Z∗4 and the same combinations are performed, it is seen that the rows
are reversed to each other.

5. Conclusions

First, the basic notations are given by reference to the ring structure. Then, all nonobvious
automorphisms over T3 are identified and included in the basic definition and theorems related
to the skew polynomial ring. The algebraic structure of the θi-cyclic codes of odd length was
analyzed using the decomposition method, and the generator polynomial is determined. In addition,
an isomorphism between θi-cyclic codes and (θi,λ )-constacyclic codes is established to obtain
the generator polynomial of the (θi,λ )-constacyclic codes. Using this isomorphism, the generator
polynomial of θi-cyclic codes was obtained. Under the described automorphism θ1, for each unit over
the ring T3, Z4-images of the (θi,λ )-constacyclic codes have been analyzed and significant results
have been obtained. Using MAGMA, new and optimal codes have been found and presented in
tables. In addition, some basic definitions and theorems about the DNA codes have been included.
Through the φ1 Gray map, a relationship between the elements of T3 and the DNA 2-mers has been
established. By defining a unit reverse polynomial, a new generation method has been built. To enhance
comprehensibility, supporting examples are provided.
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