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Abstract: In this paper, three new automorphisms were identified over the ring Z4 + uZ4 + u*Zy
where u? = u?. With the help of these automorphisms, the characteristic structures of the generator
polynomials for the 6;-cyclic codes and (6;,4)-constacyclic codes of odd length on this ring were
investigated. Also, for all the units over the ring, Z4-images of 6;-cyclic and (6;,A)-constacyclic
codes were reviewed with the associated codes based on determined transformations. Using these
observations, new and optimal codes were obtained and presented in the table. In addition, a new
transformation was identified that involved DNA base pairs with the elements of Z4. Moreover, a unit
reverse polynomial was created, and in this way a new generation method has been built to construct
reversible DNA codes over this ring. Finally, this article was further enhanced with supporting
examples of the DNA as a part of the study.
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1. Introduction

Within the coding theory, linear codes and cyclic codes, which have been studied for years on
different rings, have a strong algebraic structure. Therefore, a wide range of methods and approaches
have been studied in [1-5]. Constacyclic codes, which are an extension of these important codes, were
introduced by Eugene Prange for the first time [6], and recently new Z4-codes were found by using
these code families. Dinh et al. and Gao et al. have worked over the ring Z4 + vZ4 when v2 = v. Dinh
et al. [7] has illustrated an original Gray map over this ring and has studied cyclic, constacyclic for the
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units 1+ 2v and 3 4 2v, negacyclic, and the self dual of 8-constacyclic codes. They have described
a generator polynomial for cyclic and constacyclic codes of odd length. They have given multiple
samples and obtained new Z4 codes. Gao et al. [8] evaluated the linear codes that were placed on this
ring and researched the Euclidean self dual codes. They have drawn attention to Hermitian dual codes
and discussed the connection to unimodular complex lattice points. By analyzing the cyclic codes over
the ring, they have created generator polynomials. Ultimately, based on the quadratic codes, they have
achieved good and new Zj-linear codes.

In addition to the studies in commutative structures, the studies on noncommutative structures
gained a rapid acceleration in a short period of time and took its place in the world of literature. The
definition of a special multiplication is the most important feature that separates the noncommutative
structure from the commutative structure. This structure called skew has been studied mainly over
F, [9,10]. Skew cyclic codes, one of the generalizations of cyclic codes and first introduced by
Boucher, have attracted the attention of many researchers as they are more advantageous for finding
optimal codes. Then, in addition to skew cyclic codes, other families of codes were also researched by
many researchers. The articles [10-14] are some examples of skew articles. Gursoy et al. [10], using
the decomposition, researched the structural features of the skew cyclic codes over F, where V=v
and created generator polynomials for these codes. They also mentioned idempotent generators and
BCH (Bose-Chaudhuri-Hocquenghem) type bounds. Sharma et al. [14] defined a new automorphism
over the ring Z4 + uZ4 when u? = 0 and investigated the characteristic structure of skew constacyclic

codes. They also mentioned double constacyclic codes and found good codes over Zy.

Adleman, who successfully solved the NP-hard problem (non-deterministic polynomial-time
problem. For example, travelling salesman problem.) using DNA molecules, proposed the first
computation on the structure of DNA [15]. For many years now, the structure of the DNA cyclic
codes has been studied by many researchers and a large number of articles have been written about
it. Notable contributions in this field include the works of [16-20]. In addition to these, you can also
find several important articles in more detail here: In [21], an analysis of skew-constacyclic codes
over the ring F“M/ (2—y) Was performed by Bayram et al. They also searched for reversible codes
and obtained DNA codes using Griesmer bound. Dinh et al. [22] studied the reversible codes and the
reversible-complement codes over the ring Fy + ulF, + vIFp + uvF, + V2F, 4+ uv?F,, where u? = 0 and
v3 = v, and explored the binary image of the cyclic DNA codes over this ring. In [23], the authors
searched for cyclic DNA codes with the help of ™24/ @>—1y and studied the CG-content (The CG-
content (or GC-content) of DNA codes refers to the percentage of nucleotides in a DNA molecule
that are either cytosine (C) or guanine (G).) of these codes. In [24], Yildiz and Siap investigated the
algebraic structure of cyclic DNA codes of odd length. They did so by associating the elements of
the ring with the DNA pairs. In [25], the authors studied DNA codes of odd length over the ring
Z4 +VvZ4 with v? = v. They also characterized cyclic codes of odd length and presented a new method
of constructing DNA codes. Hence, they found some DNA codes with 256 code words.

Our specific focus in this article is on cyclic, 6;-cyclic, (6;, A)-constacyclic, and DNA codes over
Z4 + uZ4 + u>Z4 with u? = u?. Throughout this paper, we will represent the 64-element commutative
ring Zgq + uZg + u?Z4 with u® = u? via T3 and also search the structure of 73 for odd length @. This
paper is divided into the following sections: In Section 2, we deal with the basic concepts of the ring
T;5. In Section 3, we give the most important descriptions of the skew codes and determine all the
automorphisms of 73. In the following, we define the generator polynomials for skew cyclic codes
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and skew A-constacyclic codes over this ring. Finally, we concentrate on the Z4-images of skew A-
constacyclic codes for each defined automorphisms. For all units over this ring, there are cyclic codes
or quasi-cyclic codes of index 2 over Z4. We present a number of new and optimal codes as a result of
this observation and we present them in tables. In Section 4, we relate the components of the 73 ring
to the DNA 2-mers through the new transformation identified, with the ¢; Gray map. Furthermore,
we have created a new generation method for generating a reversible code over the ring 73 by defining
a unit reverse polynomial. In addition, we have also provided examples of how to strengthen the
operation of this method.

2. Preliminary informations for the ring 73

T is isomorphic to the quotient ring %4 ] / (=) and is a non-chain ring. Moreover, this ring is
a nonlocal ring because it does not have a single maximal ideal. As well, the set of units of 73 are
{1,3,14+2u,342u, 1 +u+u?, 3 +u+u?, 14+ 3u+u?,34+3u+u? 1 +2u? 3 +2u?, 1 +2u+2u? 3+
2u+2u?, 14+ u+3u?, 3 +u+3u? 14 3u+3u?,3+3u+3u’}. The ring is a Frobenius ring because,
through the instrument of the Chinese remainder theorem (CRT), it can be stated as a direct sum of the
local rings with a single minimal ideal. Nonlocal Frobenius rings are expressed as the direct sum of
local rings with the help of the CRT.

Let y be any element of 73 demonstrated as vy = ag + ua; + u?a, for ap,ai,ap € Z4. A code of
length @ over T3 is a subset of T3w. €, is a linear if, and only if, €, is a sub-module of 73. The elements
of the linear code are called code words.

Each code word vy = (19, 91,...,)g—1) is qualified via its polynomial form y(x) =g+ pjx+---+
o_1x2 ! for each v; = af)-l-uali —I—uzaé withi=0,1,...,0 — 1.

Using these explanations, we can define the cyclic code and A-constacyclic code definitions
needed in this study as follows:

(i) Let p, be a A-constacyclic shift operator. A linear code €, is said to be A-constacyclic
code of length @ over T3 if py(vo,v1,.--,95-1) = (Avg—1,90,01,---,95-2) € €, while
(10,91,---,9@-1) € €. In other words, €, is a A-constacyclic code over T3 if, and only if, €,
is an ideal of 3 /(5.

(ii) Inthe above definition, if 1 is written instead of A, this code is called a cyclic code. In other words,

o(90,91;---,9@-1) = (V@-1,90,V1;---,Vm-2) is an element in €, where (19, 91,...,95-1) € &
such that o is a cyclic shift operator.

Nonlocal rings can be represented by local rings, which have an important position in coding
theory with the help of CRT. For detailed information, see [26,27]. From this point of view, motivated
by our work in [1], we obtain the decomposition of 73. Recall that the ring Z4 + uZ4 works with u?=0.

T3 =u*T3® (1+3u>)T3 = 1?74 & (1 +3u?) (Zy + uZy).

Moreover, the linear code R over Z4 with length @ is defined as R = {z+c+1 € Zy', z+uc+ u’t e
€,} and the linear code 3 over Z4 + uZ4 with length @ is defined as S = {z+uc € (Z4 +uZ4)®, z+
uc + u*t € €, for some t € fo’}. Based on this, the linear code €, of odd length @ over 73 can be
uniquely shown as €, = >R @ (14 3u?)S3.
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Consider the same three Gray maps in [1] for 6;-cyclic codes over 73. Recall these maps, which
are linear and preserve the Euclidean, Lee, and Hamming distances from 73 to Zﬁ“’ :

¢1 : T3 —>Z£,

(ap + uay +u2a2) — (ap+ a1 +3az, 3ap+3a; +az),

(])2 . T3 —>Z£,

(ap + ua —|—u2a2) — (ap+ay +3az, ap+3a; +az),

¢3 : T3 —>Z?1,
(ap + uay +u2a2) — (ap+ay +3az, 3ag+ay +3ay).

Identifying the elements ¢;(n(x)) = v = (19, 91,...,Dp—1) in Tf’ with polynomials 1y(x) = yg +
91X+ +0g_1x? ! for each v; = al) + ua +u?ab withi=0,1,...,@ — 1, we get

@;: TP — Z°,
D;: (90,91,---,9m-1) = (0:(v0), 9i(v1),-.-,0:(V@-1))-

Based on the information presented, we will now examine the skew cyclic, skew constacyclic and
DNA codes over 73. By constructing generator polynomials, our aim is to acquire new and optimal
codes via the Gray maps that have been defined earlier. Furthermore, we are attempting a unique
perspective by constructing a new polynomial that is exclusive to DNA codes over the ring. This
polynomial will be enriched with examples to serve our purpose.

3. 6;-cyclic and (6;, A )-constacylic codes over T3

In this section, skew cyclic and skew constacyclic codes over 73 are analyzed. To begin, all
nontrivial automorphisms of 73 are identified. These maps 6; on T3 for i = 1,2, 3 are defined such that

01 (ap +ua; + uzaz) =aop+ (2+3u)a; + was,
0> (ap + ua + uzaz) =ap+ (2u2 +u+2)a; + u?ay and
03(ag + ua; + uzaz) =ap+ (2u2 +3u)a; + way,

from T3 to T3. This ring T3[x, ;] = {ao+a1x+---—|—aa;_1xw_1 ca;€Ts, i=0,1,...,.0—-1, @0 €
N} is called a skew polynomial ring. Note that this ring is a noncommutative ring. Herewith the
multiplication is described using the precise normal size which is well-known to be (fx")(yx) =
f0/(y)x" *+k while the addition in this ring is the usual polynomial addition. The order of all defined
automorphisms 6; is 2.

An element d(x) € T3[x, 6;] is said to be a right divisor of /(x) if there exists g(x) € Tz[x, 6;] such
that /(x) = g(x)d(x). Thus, [/(x) is called a left multiple of d(x), and a left divisor of /(x) can be defined
similarly. In this paper, division stands for right division, and if /(x) € T3[x, 6;], then we put to use the
notation (/(x)) for the left ideal generated by /(x).

AIMS Mathematics Volume 9, Issue 10, 27908-27929.



27912

Throughout this section, the quotient ring 73 [x.6] / (o—1) Will be represented by T37&’9i and
T[x.6] / (@—») Will be represented by T37(,;9i,1. These quotient rings are left-73[x, 6;] module with the
multiplication identified by d(x)(I(x) + (x® —1)) = d(x)I(x) + (x® — 1) and d(x)(I(x) + (x® — 1)) =
d(x)l(x) 4+ (x® — A) for any d(x),l(x) € T3|x,6;]. We characterize a T3-module isomorphism from 7,
to T3,¢Ue< such that (1)0,1)1,. .. 71)6571) — o+ x+--- —}—I)wflxw*l.

The fundamental definition and theorems that underlie the structure of the skew codes are
outlined below.

Definition 1. A skew linear code €, of odd length @ over the ring Tx is a left T3|x, 0;]-sub-module of
the left module T3 [xﬁi]/(l(x», where [(x) is a polynomial of degree @ over T |x, 6;].

Theorem 1. T37a;9i is a Tz [x, 6;]-left module where multiplication is defined as above.

Theorem 2. A code €, of length @ in T3,a'59[. is a 6;-cyclic code if, and only if, €, is a left T3|x, 6;]-sub-
module of the left T3 [x, 6;]-module T g, .

Theorem 3. A code G, of length @ in T3 5, is a (6;,A)-constacyclic code if, and only if, €, is a left
T3, , -sub-module of the left T3 [x, 6;]-module over T3, ;-

Note that throughout this paper we represent skew cyclic codes by 6;-cyclic codes and skew A-
constacyclic codes by (6;, 4 )-constacyclic codes. So, if T3¢, 3 (€,) = €, then a T3-sub-module of T}’ is
a (0;,A)-constacyclic code. In particular, if A = 1, then €, is said to be a 6;-cyclic code.

Definition 2. A subset €, of Tx is called a (6;, A )-constacyclic code of length @ over T if €, is a Tz-sub-
module of T?, and for any (99,91, ..,9a-1) € €, we have (A6;(vg_1),0;(v9),...,0;(vg_2)) € C,. It
should not be forgotten that if A is chosen as 1, then the (6;,A)-constacyclic code of length @ over T3
is a 6;-cyclic code of length @ over T;.

With the help of all these descriptions, let’s construct the generator polynomial for 6;-cyclic and
(6;, A)-constacyclic codes over Ts.

Theorem 4. Let €, be a linear code over Ty of length @ and €, = >R @ (1 + 3u®)3 be its
decomposition, where R is a code of length @ over Z4 and 3 is a code of length @ over Z4 + uZy
where u?> = 0. Then, €, is a 6;-cyclic code as regards to the automorphism 6; if, and only if. R and 3
are both 0;-cyclic codes over Zy and Z4 + uZy, respectively, as regards to the automorphism 0;.

Proof. Fori=0,1,...,@ —1,lety = (v9,91,...,95_1) € €, and v; = u?p; + (14 3u?)v;. Assume that
p=(po,---,pe—1) € Rand v=(vy,...,vg—1) €3 such that v; = a; + ub; where i =0,1,...,@ — 1.
Due to €, being 6;-cyclic if (u?po® (1+3u?)vo, ..., u*pg_1® (1+3u?)vg_1) € €, then (6;(u’ pg_1 @
(14 3u?)vg—1),0:(u*po & (1 +3u*)vg), ..., 6;(u* po—2 ® (14 3u*)vm_2)) € €,. Herefrom, u>cg,p ®
(1+ 3u?)ogv € €,. Because of 6. (u?p @ (1+3u?)v) = u>0g,p ® (1 +3u?)0gv, then R and T are
B;-cyclic. Conversely, if R and 3 is 6;-cyclic, og,p € R while p € R and op,v € R while v € 3. So
uzaeip@ (14 3u2)691.v € ¢,. Hence, €, is 6;-cyclic. O

Let us compose the generator polynomial of the 8;-cyclic code with the assistance of this theorem.

Theorem 5. Let €, = >R P (1+ 3u2)3 be a 6;-cyclic code of length @ over Ts. In this case, R is
a cyclic code over Zy and 3 is a cyclic code over Zs +uZy such that €, = (u?(i,(x)(t,(x) +2))) @
(14 3u?) (F (x) (1 () +2) 4y (%) (g, (x) +2), ufy(x) (1, (x) +2))) where x® — 1 = f;(x)ti(x)i(x) for
i=1,2,3.
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Proof. The proof can easily be done following the methodology outlined in our previous
publication [1]. O

Theorem 6. Let €, = u’R @ (1 +3u®)3 be a 6;-cyclic code of length @ over Ts. Given that the
generator polynomial of R is (11(x)) and the generator polynomial of 3 is (T2(x),73(x)), then
€, = (P11 (x), (1 +3u?)(12(x),73(x))). Editing the generator polynomial of €, we obtain €, =
(Wrni(x), (1+3u?)n(x), (1+3u?)73(x)).

Proof. Due to R = (7;(x)) and 3 = (1»(x), 73(x)), we can conclude that €, = u>’R @ (1 +3u?)3. From
this, we claim that €, = {y(x) = u?b; (x)7; (x) + (1 + 3u?)b>(x )( Tp(x), 13(x)) suchthat by(x),b2(x) €
T3[x,6;]}. We can further infer that €, C (u?7i(x) + (14 3u?)(%2(x), 73(x))) C T3,q, - Conversely,
let us consider u?y;(x)7(x)+ (14 3u?)y2(x)(12(x), T3(x)) € (71 (x), (1 +3u®){12(x), 73(x))) with
y1(x),y2(x) € 3.0 We have uy1(x) = u?by(x) and (14 3u?)y2(x) = (1+3u?)by(x) for some
by(x),by(x) € T3[x,6;]. Hence, it can be deduced that (u’7i(x),(1+3u?)(12(x),73(x))) C C,.
Therefore, the proof is €, = (71 (x), (1 +3u?) (12 (x), 73(x))). i

Theorem 7. Let R and 3 be 6;-cyclic codes over Zy and Z4 + uZs, respectively. Assume that (T (x))
and (1 (x), 13(x)) are the monic generator polynomials of these codes and also €, = >R ® (1+3u?)3.
In this case, there is a unique polynomial t(x) over Tz[x, 6;] such that €, = (t(x)) and t(x) is a right
divisor of x® — 1, where t(x) = u?7y (x) + (1 +3u?) (12 (x) + 13(x)).

Proof. Using the previous theorem, we can express €, = (1?7 (x), (1 4 3u?) (12 (x), 73(x))). Assume
that T(x) = u?t;(x) + (1 4 3u? )( 2(x) + 13(x)). Then, it’s trivial that (t(x)) C €,. On the other
hand, we have that u>7;(x) = «?7(x) and (1 4 3u?)(72(x) + 73(x)) = (1 + 3u?)7t(x), which implies
that €, C (t(x)). Hence, €, = (1(x)). Because 7i(x) and (7»(x) + 73(x)) are monic divisors

B —1in Z4fx,6;] and Z4 + uZy[x, 6;], respectively, then there exists by (x),by(x) € 13,0, such that

@ 1 =by(x)71(x) = ba(x)(72(x) 4 73(x)). Therefore, (u?by(x) + (14 3u®)by(x))T(x) = (u?by(x) +
(14 3u®)by(x)) (t? 71 (x) + (14 3u?) (12 (x) + 13(x)) = 0> (x@ — 1) + (1 +3u?)(x® — 1) = x® — 1. From
this point of view, 7(x) is a right divisor of x® — 1. o

First of all, we define two sets for units. In this case,
B, = {1,3,142u,3 +2u, 1 +2u?,3+2u?, 1 + 2u+2u? 3+ 2u+2u},
By, = {1 +u+u?, 1 +u+3u?, 14 3u+3u?, 3+ 3u+u>,3+u+3u?,3+3u+3u?, 14+ 3u+u? 3+ u+u}.
Now we use these sets to describe a ring homomorphism. Therefore, we can state the following
propositions and corollaries, whose proofs are trivial.

Proposition 8. Let v : T3 5 — T3,m¢ ;- In this case,

(i) For each unit A € B,, this map is defined as v(v(x)) = v(Ax). Then, v is a ring isomorphism for
all units with an odd length and all automorphisms over the ring T5.

(ii) For each unit A € By, define this map with v((x)) = v(A%x). Then, V is a ring isomorphism,
with the length © as

odd, for the automorphism 63,
4k+1 fork € Z, forthe automorphisms 6\ and 6,.
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Proof. The proof can be easily observed through the defined automorphisms 6; and the
skew multiplication. O

Corollary 1. There is a one-to-one relation between the ideals of T3 g, and T3 g, , -

Proposition 9. Let €, denote a linear code of length @ over T3 and let

/Q(I)Oa 1)17' .. 71)0371) - (1)0711)172‘21)27 .. 71‘6_11/)&771)'
Then, €, is a cyclic code if, and only if, V(C,) is a A-constacyclic code of length @ over Ts.

Theorem 10. Let €, = w?R @ (1 +3u?)3 be a (6;,A)-constacyclic code of length @ over Tz. We
identify the methods to construct the generator polynomial of (6;,A)-constacyclic codes of length ©
over Tz as follows:

(i) We determine this generator polynomial by using €, = (u*{f,(x)(t,(x) +2))) & ((1 +
3u?) (fy () (ty (x) +2) + gy (x) (tg (x) +2), ufo(x) (to(x) +2))) where x® — A = fi(x)viti(x) for

i=1,2,3. This is the most classzcal method.

(ii) In another way, with the help of the Proposition 8 and Corollary 1, we construct this generator
polynomial via €3 = (1 (fy(%) (ty(%) 4 2))) ® ((1 + 3u?) (7, (%) (t (£) + 2) + ufyy (F) (g4 () +
2), ufy(X)(tp(X) +2))) such that

¥=Ax, fordAe3,
F=A%x, ford e B,

and x® — 1 = fi(x)h;i(x)s;(x) fori=1,2,3.

3.1. Zs-images of (6;,A)-constacyclic codes over T3

In this section, we look for Z4-images of 6;-cyclic and (6;,4)-constacyclic codes over T3.

Definition 3. Let 1y € Ziw with vy = (19,91,...,)5) where 1; € Zy for i =0, 1. Let Vg be a map from
23% to 3% defined by vs() = (6(99),0(n1),...,0(vg)), where o is the cyclic shift from Z3® to
23% provided by o(v;) = (v, 1,0°,...,9,272) for each v; = (v°,...,9,°1) where v,/ € Z4 and
j=0,1,...,0 — 1. The 2m-length code over Zy is called a quasi-cyclic code with an index of & if
1)5(@) =C.

Let ®; be defined Gray maps from 73% to Z4>?, op, be the 6;-cyclic shift, pg, ; be the (6;,1)-
constacyclic shift, and v, be the quasi-cyclic shift operator with index 2. Thus, the following
proposition and theorem can be stated as the result of crucial observations.

Proposition 11. (i) We have ®;0q,(v) = 12®;(v) for any v € T3® and i, j = 1,2,3.

(ii) We have ®1pqg, 5 (v) = 6®@(v) for any y € T3® and i = 1,2,3 where A = 3,1+ 2u,1 +2u?,3+
2u+2u?.
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(iii) We have ®,pg, 3 (1) = 6D2() for any vy € 3% and i = 1,2,3 when A = 1 +u+u®3+3u+
w3+ u+3u*, 1+ 3u+3u

(iv) We have @3pq, 5 (1) = 6P3(v) for any vy € 3% and i = 1,2,3 where A =3 +u+u®, 1+ 3u+
W2, 1+ u+3u?, 3+ 3u+3u

(v) We have ®;pg, 5 (v) = 12®@;(v) for any v € T3° and i,j =1,2,3 where A = 1 +2u+2u?,3 +
2u,3+2u>.

Proof. Determine 1 which consists of (1g,11,...,0g—1) in T3[x, Gi]w, where 1 is calculated by the
formula a6 + uai1 + uzaé for values of j that are from O to @ — 1. We know that the images of 1 under
the specified Gray maps are as follows.
D, (I)) = (aoo + a10 + 36120,...,610@_1 + alw_l + 36125_1,36100 + 36110 + azo,. . .,3a0w_1 +
30171+ 0,0 1),
Dy(y) = (a8+a?+3ag,...,aow*1 +a,%! +3ag’_l,a8—|—3a?+ag, . ,ag’_l +3a?_1 +a® 1),
(O2 (I)) = (a00+a10+3a20, ce. ,aow_l +a1‘7’_1 +3a2a’_1,3a00+a? —|—3a20, e ,36106_1 +a1w_1 +
36126_1).
To demonstrate that ®;0g,(n) = V2 ®;(n) for all v € TP and i,j = 1,2,3, let’s obtain
VP (), VD2 (v) and V2, P3(p) first. We have
szpl(t)) = (a()w_l + alw_l + 3a2a7_1,a00 + alo + 36120, el ,aom_z + alw_z + 3a2w_2,3a0w_1 +
3a1 % +ay® 1 3ap + 3010 + a0, . .., 3a0® % + 30,02 + a0 ?),
1)2(1)2(1)) = (aowfl + alwfl + 36120371,6100 + 6110 + 36120, e ,610672 + 01072 + 36120572,6100371 +
36116;_1 +a2w_1,a00 + 36110 —|—a20, e ,aow_z + 3611(’7_2 + azw_z),
1 P3(p) = (ag’_1 —|—a?_1 + ?aczg’_1 ,ag —|—a(1) + 3a(2), cap® 2 +a?_2 + 3agj_2,3agj_] +
ar® ' 4+3a,%71 3000 + a0 +3a,°,...,3a0% 2+ a2 + 32,7 2).
On the other hand, we obtain
o6, (1) = (61 (v@-1),01(10),01(11), ..., 01 (0z-2)) = (a0® ' +2a1® ' +3ua; +u?a® ', ap® +ua,° +
way?,. .. ,a0® % +ua,®? + utay,®?),
o6, () = ((z-1),0100),02(01),...,6(vz-2)) = (@® ' + 2a1 + ua;® ! + w?(2a, 1 +
a® ), a0® +ua\® +v?ay®, . .. ,ag® % +ua P +uPa,®?),
o, (9) = (83(vm-1), 03(10),03(v1),. .., 03(vm—2)) = (a® ' +3uar +u*(2a;® ' +a,® 1), a0" +
ua® +u?ar’, ... ag®? +ua 2 +uta,®?).
The image of them under ®:
P10, (1) = @106,(n) = P10p,(0) = (@' +aP ' +3a77 1 ad +ad +3d,...,a0 2 +aP 2 +
3a, =2 3ag7_1 + 361?_1 +agj_1 , 3a8 + 3a(1) + ag, . ,36187_2 + 3a?_2 + ag;_z),
The image of them under ®,:
szGgl (I)) = <I32692 (I)) = CI)2693 (I)) = (aow_] +a @1 —|—3a2a7_1 ,a00+a10+3a20, - ,a()w_z—f—alw_z—f—
3a2%72,a0® '+ 301+ a® 1 ag® + 30,0+ a2°, ... ,ag® 2 + 30102 + a7 2).
The image of them under ®5:
300, (z21) = P306,() = P300,(n) = (af ' +aP ' +3a7 1)+ a) +3d3,...,a0 F +aP % +
3ay -2 3ag 1y a?_l + 3ag’_1 , 3a8 + a(l) + 3a8, ... ,3a8’_2 —|—a?_2 + 3a§7_2).
Therefore, we have ®;0¢,(n) = V,®;(v) fori, j =1,2,3.
The proof of others can be achieved using the same methodology. O
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Theorem 12. (i) Let €, denote a 6;-cyclic code of length @ over Tz, where i and j range from 1 to 3.
In this regard, the Gray image of a 0;-cyclic code over Tz with a length @ is equal to a QC code
of index 2 over Z4 with a length 2.

(ii) Let €, denote (6;,A)-constacyclic codes of length m over Ty for A = 3,14 2u, 1 +2u®,3 + 2u +
2u?, where i takes on the values 1,2, and 3. By taking the Z4-images of ®1(G,), the cyclic codes
over Z4 are obtained.

(iii) Let €, denote (6;,A.)-constacyclic codes of length @ over T for A = 1 +u+u®, 14 3u+3u,3 +
u+3u?,3+3u+u? and i =1,2,3. So their Gray images ®-(C,) are observed as cyclic codes
over Zy.

(iv) If €, is a (6;, A)-constacyclic code of length @ over Ts for A = 1 +u+3u®, 1+ 3u+u?,3 +u+u?,
and 3+ 3u -+ 3u?, then their Gray images ®3(C,) are cyclic codes over Zy.

(v) Let €, denote (6;,A)-constacyclic codes of length @ over Tz fori, j = 1,23 and A =3+ 2u,3 +
2u?, 1 +2u+2u®. So their Gray images ®;(C,) are QC codes of index 2 with a length of 2®
over Zy.

Proof. Assume that €, is a 6;-cyclic code of length @ over T3 for i,j = 1,2,3. This is 04,(C,) =
€,. According to the previous proposition, ®;0y,(€,) = 0,®;(C,) = ®;(C,). Therefore, P;(C,) is
equivalent to a QC code of index 2 over Z4 with a length of 2.

The evidence from others is similarly conducted. O

3.2. Computational results for 6;-cyclic codes

In this section, we search for 6;-cyclic and (6;, 4 )-constacyclic codes over T3 and their Z4-images.
In particular, the automorphism 6, and the Gray image ¢; for length 7 is studied. Based on Theorem 6,
Theorem 10, and using MAGMA software [28], we present the results of a computational study on
0;-cyclic codes over T3. Here, we express each term of the generator polynomial given in this theorem
with 7;, where i = 1,2,3. In the present case, (71,7, 73) will be the representative of the generator
polynomial of 73. Thus, we have many 0;-cyclic codes over T3, whose Z4-images are new, optimal,
and the best-known linear codes. We present all of these codes in the tables that follow. Note that the
representation of the elements of 73 is the same as in Table 1 in [1]. In these tables, the Lee, Euclidean,
and Hamming weights are determined for each generator polynomial. While giving information about
new and optimal parameters in Zy4, the online database [29] has been checked. In addition, the “*” sign
is used to indicate new parameters and the “**”” sign is used to indicate optimal parameters. To express
the spelling more clearly, the polynomial’s coefficients will be listed in decreasing order starting with
the highest order x. It is important to note that this length increases to 14 in according to the defined
Gray maps since 7 lengths of a code are scanned. For example, the polynomial (3u2 +3u)x” + Qu+
1)x% 4 ux? + 3 will be written as 9’E0°403. It should be noted that the 0 notation indicates that the 0
expression is repeated 3 times. The Z4 images of some 0-cyclic codes over 73 are given in Tables 1-3,
and the Z, images of some (8,3 -+ 3u -+ u?)-constacyclic codes over T3 are given in Tables 4 and 5.

AIMS Mathematics Volume 9, Issue 10, 27908-27929.



27917

Table 1. Some 0;-cyclic codes over T3 with Z4-images.

u(x)  n(x) 73(X) Type WL Wg Wpy
8083  V5Vb (76 4927 48 2
78979  bVb(V)? 7'3'5"7 4321 8= 8 6**
7987  3'rDVH (7)33'7'(3)? 4%2° 6 6* 6%
739792 R*/000 77 4126 4 8 2%
72989  7'DVNH (5")7 4321 g 8 6**
77 (5"3F5S'F?2  (5)%05 46200 g4x g4x g
70779 U3€'000 (7)3(3")%7'3" 4321 g 8 6**
9897  U?rUre 7'5'(3")3 4423 g e 2w
77909  s'Vde's' (763 4324 4 8 2%
79909  N3(e)* 3/5'3'7’ 4321 g~ 8 6**
77909  sVde's (763 4324 4> 8 2%
79909  b(v')*0V 7'5'(3")3 4323 g 8 4+
79909 U’drHds' (7)23/5'3" 4322 g4 grr ¥
8808  dUDT7's (763 4027 48 2%
8088  H3(s')’Hs' 0(7)23’ 4027 48 2%
77989  (3')2HV/(s")?  3/5/7'(3)? 4324 4 8 2%
78979 (5)%'Fr(e)* 75(7)? 4324 4 8 2

9787  U’DrD? 7'3'5"7 4421 4 er 2¢

8088  dbs'e's' (7)33'7'(3")2 4927 4+ 8 2%
8808  d3H?ds (5')32 4924 12 24 6
99789  3's’be’'H (5")7 4321 8~ 8 6**
99789  3's’be’'H (5")7 4321 g~ 8 6**
8808  (7')2dHs'7's 7'5/(3')3 4005 4+ g 2*

70779 (7)3}(3')’DA  5'0(5')3 4322 4 ge
87 7V'3'RY (7)3(3)27'3"  4902% 12 24* 6%
79909  HrDV's' (5’)305’ 4323 8~ 8 4+
8808  U3'rHD (7)33/7'(3")2 4927 4 8 2%
7987  (7)?Ds'dv's'  (7')%3'5'3 4423 4 e 2
9787  (3)*7'rH (7)3(3)27'3" 4423 4= e 2%
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Table 2. Some 0;-cyclic codes over T3 with Z4-images.

u(x)  n(x) 73(X) Type Wi Wg Wy
77989 (3/)2HV/(S/)3 (5/)7 4322 4 {** ks
70779  (7)3}(3")’DH 7'3'5'7T 4322 4 g ¥
70779 (7')?D%dbs'  (7')*(3')%7'3' 4322 4+ g 2%
9787  (5)3Ur (763 4423 4 et 2™
88 (7)2b3'VHV  (3")27'5'3 4027 4= 8 2%
739792 VUFr (37 4123 127 140 6%
8088  H3(s')’Hs'  (5)%05 4024 12 24 6%
79909  U’drHds' (7)23/5'3 4322 4 g v
77989  (7')*3'FV (72303’ 4320 8 gr g
99789 (')’ (7)3(3)27'3" 432! 8= 8 6**
77989 UHEVD 7'5'(3')3 4324 48 2%
739279  Ube'D? (72303’ 4126 4= 8 2%
7877 (7)%av's'ds’  (5')%05 42! 40 60 2¢
739279 De'HY's' (5")305' 4126 4+ 8 2%
79909  Ude'7'D (763 4321 8= 8 6**
99789  (€)’ 7'(3")203’ 4321 8= 8 6**
8308  5'rFUr 3/5'7'(3')? 4027 4+ 8 2%
789°  U’Ds'rD (7)23'5'3 4324 48 2%
70779 (7')?D*dbs'  (5)%0(5')> 4322 4 g 2w
79909  U’drHds' 7577 4322 4 g v
99789  3's’be’'H (3")7 4321 g 8 6**
763 7DHFH 7'5'3'7'3 4126 g4+ 8 2%
78979  3/5'7"H? 7'5'3/7'3/ 4323 g~ 8 4+
9897  7F3'bV (7)33'7'(3")2 4423 4 6 2%
77909 R*7'b (7)33'7'(3")? 4%2% 4= 8 2%
78999  R*VFVb 3'7'5'7 4322 4 g v
78999  U2dH?*Us'  3'5'7'(3')? 4322 4 g 2
77989  UrNFe' (5")7 4320 8 gr g
8808  d’H’ds 7'5'(7")? 4027 48 2%

Table 3. Some 0;-cyclic codes over T3 with Z4-images.

u(x) n(x) 73(x) Type W Wg Wy
7°9%79 D?HRs 3'5'3'7 4123 127 147 6
8808  RF? (3)27'5'3" 4027 4 g 2%
77 d>D?ds’' 7'(3)%03 4% 4 4 2
739792 (3')°H? (72303’ 4124 4+ gr 0¥

7987  (7)?Ds'dv's' (7)3(3)27'3" 402! 4+ 6+ 2*
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Table 4. Some (6,3 + 3u + u?)-constacyclic codes over T3 with Z4-images.

T1(x) T (X) 73(X) Type Wi, Wg Wy
8’ FRT7T7TRb 77237377 497 12 24* 6*
98779  FR3'b3'5V 703/ (7')? 4321 g g 4«
79 FRO’R? 7'5'7'3'7 4600 g g g
70799 37"7HbsS'U 5505005 43622 4rr g
98779 7'3'3/ 77 7'03'3/7 4321 g gee g
7979799 7 DUFe¢ 7'5'3'7 4126 g4+ g 2%
9797979 UDs'rdDd  7'03'3'7 glo4 g g g
97789 rde'de’Hr 5 4302 g g g
9899 77THUdYD 37 4423 g g
9989 FR5'b70V  7'5'7'3'7 4420 8 8 6**
78999  FR3'3'b5'b 70377 431 g g gx
9899 rs'e HUDU  7'3'5'3/ 4423 4 g
79989 37 Fb 37733 434 4§ 2
98779  5'5’'UdUS'N 5'5'035'% 4322 gre g
7789 UV e TTTITT 433 4 g e
8088 HUs'rDUd  7'5'7'3'7 4927 4+ g 2
77909  FRO’HY 7'3'5'3! 4324 4> 8 2%
78979  d7's'Dd 5'5'005'05' 4323 4 8 2%

Table 5. Some (6,3 +3u+ uz)—constacyclic codes over 73 with Z4-images.

u(x)  7m(x) 73(x) Type Wi Wg Wy
797793 7de'FN 7337737 4126 48 2%
7879  7T3'HrH7'S 3773377 4*21 4 e 2
98779  7'3/3'7"7V  5'5/5'05 4321 g g g
797*9  FR(7')*Rb  3'7'5'3 4l g g
88808  703'mV 7'03'3/7' 4026 grr 6% 4*

4. DNA codes over T3

DNA forms the genes that carry the code for biological processes in living organisms. The
information needed to make the substances that cells need is stored in DNA. The double helix structure
that forms the physical shape of the DNA structure consists of bases. There are 4 fundamental bases in
living genetics. These are Adenine (A), Guanine (G), Cytosine (C), and Thymine (7). These bases are
arranged on the double helix of DNA by a normal size. This is called the Watson-Crick complement
(WCC). In relation to this normality, A and 7', G and C are connected. There are also two hydrogen

bonds between the bases A and T, and three hydrogen bonds between the bases G and C.

Now, we will first talk about some notations and give some basic definitions. Then we will explain
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the DNA reversibility problem, define a unit reverse polynomial, and relate the elements of the ring 73
to the DNA codons.

Definition 4. Let D be a code of arbitrary length @ over a finite set A.

(i) If for all YR = (vg_1,95-2,...,90) € D for v = (g,...,9g_1) € D, then D is called
reversible code.

(ii) If for all YR = (ng_1,9@-2,...,90)¢ €D forz=(vg,...,9g_1) € D, then D is called reversible
complement code.

Definition 5. Let r(x) € Tz be a polynomial of degree b and let r(x) be expressed as ro+rix+---+
rp_1x271. For the coefficients of the polynomial r(x) where j=0,1,....,b—1, if rj = ry_j, then the
polynomial r(x) is referred to as a palindromic polynomial.

The DNA code of length @ is described as a set of code words (fo, f1,...,fm—1) such that f; €
{A,G,C,T}. The following restrictions for these code words exist in DNA.
Let D be a DNA code word and d be a positive integer,

(i) Hamming Distance Constraint: Vy,g € Dand v # g : dg(v,08) > d,
(i) Reverse Constraint: V1,g € D and v # g : dy(v%,q) > d,

(iii) Reverse Complement Constraint: Vy,g € Dand y # g : dH(r)RC, g) > d such that yRC is the WC-
complement of n¥,

(iv) GC-content Constraint: Vi € D : The total number of G and C bases contained in each 1 code
word is equal.

We will use Hamming distance, reverse, and reverse complement constraints here. The GC-
content constraint will be left as an open problem.

To explain the reversibility problem; let (z1,z2,23,24,25) be a code word corresponding to
GGTCCTGGAA as a DNA strain where z; = 3u+u?,20 = u? +3u+ 3,23 = 3u®> + 2,24 = 2u® +
u+3,25 =2u’> +u+1¢€ T3. The reverse of (z1,22,23,24,25) is (25,24,23,22,21), and this DNA
strain corresponds to AAGGCTTCGG. However, the reverse of the DNA strain GGTCCT GGAA 1is
AAGGTCCTGQG. 1t is trivial that the DNA strain of the reverse of (z1,22,23,24, z5) is not equal to the
DNA strain AAGGCTTCGG. We have a reversibility problem when we convert the element of a ring to
binary or more DNA via the Gray map. Although there are several methods to solve this problem, we
have identified unit reverse polynomials and a suitable new generation method for these polynomials
to solve the DNA reversibility problem.

First of all, let’s define the sets as follows.

Uy = {1,342u, 1 +u+u?,3+3u+u?,3+2u> 14+ 2u+2u?,3 +u+3u, 1+ 3u+3u’},

Up={3,1+2u,3+u+u>,1+3u+u?1+2u* 34+ 2u+2u? 1 +u+3u® 34 3u+3u’},

x ={0,2}.

Now we define the unit reverse polynomial with the help of these sets. This polynomial will help
us to find a reversible DNA code.

Definition 6. [Unit reverse polynomial]
Let g(x) be a polynomial of degree t over T3 and 1) be an element of Ts. In this case,
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(i) If the degree of the polynomial g(x) is even, then the unit reverse polynomial is

Ur(x) = ns+ oy’ + (T2 7" Boxl + Byad 1) + K 05/,

(ii) If the degree of the polynomial g(x) is odd, then the unit reverse polynomial is

Ur(x) = X\ "% Boxl + By,

where ng € Uy, vy € Up, Bs € Us, By € Up. Here, if g = Up, then vy = Uy, and if Bs = Us,
then ﬁy = Uy,.

Example 1. 1+ (1 +u+u?)x+ (2u+3)x> +2x° + (3u® +3u+3)x* 4+ (u? + 3u+ 1) + 2u+1)x0 is a
unit reverse polynomial with even degree in Ts[x]. (3 +2u®) + (2u+3)x+ (2u+1)x> 4+ Bu? +u+1)x°
is a unit reverse polynomial with odd degree in T3|x].

Now, first of all, we define a T—module code with the help of the paper by Oztas et.al. that
motivates us. We also remaind that T—module code is called an x-module code if T is generated by
anx € R.

Definition 7. [19] Let € be a code generated by p(x) in R[x]/{xX" — 1) where T is a subring of R and E
is a generator set for T. Here € = {(yo+y1x+---+y,_1X p(x) | yi € T} or €= {(yoc1 +y1c2+
- YaCa)P(x) | yi € T} is a subset of R".

By finding a ring in which any k—base of DNA lives, they identified the k—base of the DNA strain
with an element of the ring they were studying. It was observed that the problem of reversibility arises
with the definition of k—bases. To solve this reversibility problem, they presented new notations and
new definitions, as mentioned above. Using the T—module code, they give some notations for n-tuples
of DNA k-bases. These notations help to find the reverse of the DNA k-bases, which is provided in the
ring structure.

Although the 73 ring we are working with has 64 elements, it cannot be decomposed into three
separate parts. Therefore, the ring elements cannot correspond to DNA 3-mers. Hence, due to the
defined Gray structure, the ring elements correspond to the DNA 2-mers, and this happens with
restricted elements.

Consider in this strategy we define the function { to describe the components of 75 and 2-mers. To
create the map §, we match the elements of Z4 and DNA bases according to the following methodology.

¢:Z4 — {A,G,T,C).

Here, we define {(0) =A, (1) =T, {(2) =G, {(3) = C. The { map can be mapped in 24 different
ways between Z4 and DNA sequences. For example, {(0) =C,{(1) =A,{(2) =T,5(3) =G or
£(0)=A,(1)=G,{(2) =C,{(3) =T, etc. The use of this type of multi-map also provides a variety
of examples obtained with the Theorem 13. Using the Gray map ¢; and the transformation {, which
pairs DNA bases with elements of Z,4, this paper presents a description of the map ¥ = {o¢; to match
the elements of 753 with DNA.

O: T3 — {A,G,T,C})?,
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ap+uay +utay — (E(ag+ay +3az), §(3ap+3a; +az)).
This map extended component-wise to
0 : TP — {A,G,T,C}*®,
(M0, 91, -+, Da-1) = (E(P1(90)), E(¢1(n1)), -, E($1(va-1)),
where v; = al) + ua| +u?a) fori=0,...,@ — 1.

Now, we create a generation method for the unit reverse polynomial to construct reversible codes
over T3.

Definition 8. [Generation of $,,-Module with Unit Reverse Polynomial] $,,/(Ugr(x)) and S, ! (Ugr(x))
are generator matrices defined by Ug(x) over T for codes of length @.

Ur(x)
xUg(x)
Suw(Ur(x)) = : :
_xm_t_lUR(x)_
and
) ]
xUg(x)
S0 (Ur(%)) = : ,
xw—t—IUR(x)
p3(x)
such that & = {b,v'} and the polynomial
Zgo_z)/szi + /X0 if @ iseven,
Po(x) = . .
’ ):Ef(;l)/sz’%—b’xw_’_l +ax@D/2 ywhere a€ek, if @ isodd,

where & = {1,3}.

Let us consider the polynomial Ug(x) = 6 + s,x + - -- + s’ such that s; € T3. In this case, the
generator matrix $,,(Ug(x)) of the polynomial Ug(x) is

5 55 5 ... s 0 0 ... 0
0 s 355 3 st O 0
0 0 s s St
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and the generator matrix $,,"!(Ug(x)) of the polynomial Ug(x) is

s Sg Sy .- St 0 0o ... 0
0 S S5 9y ss 0 0
0 . 0 s Sg .- St
L P3 (x) ce P3 (x) ... P3 (x) e P3 (x)_

Theorem 13. If the code €, (or €, ") is generated by a Ug(x) with the generator matrix $,(Ug(x))
(or 9,1 UR(X)), 01(€,) (or ¢1(€, 1)) and is a reversible Zy—code, then ¥(C,) and (€, ™) are
reversible DNA codes.

Proof. For the polynomial Ug(x) = sx+s,x> +- - -+ sx', as you can see from the definition, let x*Ug(x)
be any row of the generator matrix $,,(Ug(x)) where a € {0,...,@ —t —1}. We get

XWUR(x) = x4 + 5,00 o 4 gpx T

and
x(‘D—l—aUR(x) — Sx(?)'—t—a + ng(D'—t—a 4t stxw_“.
If these polynomials are multiplied by any scalar q € Z}, we obtain
@?Ug(x) = qsx* + C[nga_H + 4 gt
and
PR (x) = qsx® 1T 4 qegx® T+ e @4

In this case, we attain

1 (ax“Ur(x))R = 1 (ax® "~ 17U (x)),

due to the choice of the s;’s. Since ¥ = {o¢; and Zs—reverse is found, DNA reverses can also be
found as desired. Therefore,

B (ax“Up(x))" = 9 (ax® '~ Up(x))

equality is obtained.

For the complement of the DNA code, we can say the following:

DNA bases are normalized to correspond to elements of Z4. For example, if we choose 1 and 3,
they are complements of each other. Also, O and 2 are complements of each other. Based on this
information, if we add a row that has all 2 components for the generator matrix 9, (Ug(x)), then we
can obtain a reversible and complement DNA code using the defined DNA correspondence normalized.
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Example 2. Let Ug(x) = (2u+3) + (u? +u+ Dx+ (3u? +u+3)x% + 203 + (2u® + 1)x* + (3u® +u+
1)x° 4 (2u? 4+ 2u+ 3)x8 be a polynomial over Ts with length 8. Then, the generator matrix $,(Ug(x))
of the polynomial Ug(x) is

2u+3 wW4u+1 3ud+u+3 2 20 +1 3w +u+1 2u?>+2u+3 0
0 2u-+3 wWtu+1 3u+u+3 2 2u?+1 3ut+u+1 2> +2u+3)

and the generator matrix 9,7 (Ur(x)) of the polynomial Ug(x) is

2u+3 w+u+1 3uP+u+3 2 20 +1 3t +u+1 2u*>+2u+3 0
0 2u+3 wr+u+1 3ut+u+3 2 2ut+1 3ub+u+1 2u*+2u+3|.
1 1 1 1 3 3 3 3

Therefore, we get

1 3 31 32231 3 31 0 0
01(Du(Ur(x)) =g 3131 32 2 3 31 3 10

and
1 3131322313 31 0 0
oS Ur)) =10 0 1 3 1 3 1 3 22313131
1 3131313313 31 3 1

When the rows in the Zs—images of $u,(Ur(x)) and 9, (Ur(x)) generator matrices are multiplied by
q € Z3, the first row and the second rows are reverses of each other. For example, when ¢, (9, (Ur(x)))
is multiplied by 3, we obtain

3

1 1 3
0 0

3131 2 2 13
31 31312 213

W W
— O
(e

From this, it is clear that the first row and the second row are reversed of each other.
When the first row and the second row in the ¢1(9,(Ug(x))) matrix are added together, the
resulting sequence

1 3222231132222 3I1]

is palindromic, so the reverse is equal to itself.

Adding 2 rows to the generator matrix $,,/(Ug(x)) gives the following matrix.
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u+3 wr+u+1 3u*+u+3 2 2 +1 3ul+u+1 2u*>+2u+3 0
0 2u+3 wr+u+1 3uP+u+3 2 2ut+1 3ub+u+1 2u*+2u+3|.
2 2 2 2 2 2 2 2

The Z4—image of this matrix is

1 3131322313 131U02P0
001 3131322313131
2 2222 22 2222227222

In the Z4—image of this matrix, the sequence
313 131001313132 2]

obtained when the first and third rows are added together is the complement of the first row. When the
second and third rows are added together in this matrix, the resulting sequence

223 131310013131 3

is the complement of the second row.

In the ¢ (9, (Ur(x))) matrix, the
[2222223122222231}

sequence obtained when the first row and the third row are added together and the
13222 22213222222

sequence obtained when the second row and the third row are summed are the reverse of each other.
When it is multiplied by any q € Z} and the same combined operations are performed, it is seen that
the rows are reversed to each other.

Example 3. Let Ug(x) = (2u® + 1) +3x+ (2u+ 1)x% + (> +3u+3)x> + (2u? 4 3)x* + (2u +3)x° be
a polynomial over T with length 9. Then, the generator matrix $,/(Ug(x)) of the polynomial Ug(x) is

2u+1 3 2u+1 w?+3u+3  2u>+3 2u+3 0 0 0
0 2u?+1 3 2u+1 uP+3u+3  2ur+3 2u+3 0 0
0 0 2u+1 3 2u+1  u?+3u+3  2u*+3  2u+3 0o |
0 0 0 2u+1 3 2u+1 W +3u+3 2u”+3 2u+3

and the generator matrix 9, (Ur(x)) of the polynomial Ug(x) is

AIMS Mathematics Volume 9, Issue 10, 27908-27929.
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2u+1 3 2u+1 u>+3u+3 2u*+3 2u+3 0 0 0
0 2u?+1 3 2u+1  uP+3u+3  2ut+3 2u+3 0 0
0 0 2ut+1 3 2u+1 w+3u+3 2u?+3 2u+3 0
0 0 0 2u?+1 3 2u+1 WP +3u+3 2u*+3 2u+3
3 3 3 3 2 1 1 1 1

Therefore, we get

313 1311313130000 00
00313 131131371300°00
¢1<5W(UR(")>)_000031313113131300’
000O0OUO O 3T13131131313
and
313131 131313000000
003 13131131313 0000
oS (Ug(¥))=]0 0 0 0 3 1 3 13 1 1313130 0f.
000O0O0GOO23T1313T1T13T1?3T13
3131313 122131312313

When the rows in the Z4—images of 9,(Ug(x)) and $,7 (Ur(x)) generator matrices are multiplied
by q € Z}, the first row and the fourth row, and the second row and the third row are reverses of each
other. For instance, when ¢ (9, (Ugr(x))) is multiplied by 3, we obtain

1 313 133131310000 O0O0
0013131331313 10U0¢00O0
0 0001313133131 231202DO0
0O 000O0O0O0OT1313133131 31

From this, it is clear that the first row and the fourth row, and the second row and third row are reverses
of each other.

If the first row and the fourth row in the matrix ¢1(9y(Ug(x))) are added together, the resulting
sequence is

313 1312200001313 1 3]

and when the second row and the third rows in the (9, (Ur(x))) matrix are added together, the
resulting sequence is

0O 03 1 2222002222130 0
palindromic, so their reverses are equal to themselves.
In the ¢1 (9, (Ur(x))) matrix, the

222222003 12213131 3
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sequence obtained when the first row and the fifth row are added together and the
[313131221300222222]

sequence obtained by summing the fourth row and the fifth rows is the reverse of each other. At the
same time, the

3122 2222312222221 3]
sequence is obtained when the second row and the fifth row are added together and the

3131 2222132222221 3]

sequence is obtained when the third row and the fifth row are summed and are the reverse of each other.
When it is multiplied by any q € Z} and the same combinations are performed, it is seen that the rows
are reversed to each other.

5. Conclusions

First, the basic notations are given by reference to the ring structure. Then, all nonobvious
automorphisms over 73 are identified and included in the basic definition and theorems related
to the skew polynomial ring. The algebraic structure of the 6;-cyclic codes of odd length was
analyzed using the decomposition method, and the generator polynomial is determined. In addition,
an isomorphism between 6;-cyclic codes and (6;,4)-constacyclic codes is established to obtain
the generator polynomial of the (6;,A4)-constacyclic codes. Using this isomorphism, the generator
polynomial of 6;-cyclic codes was obtained. Under the described automorphism 6y, for each unit over
the ring T3, Z4-images of the (6;,A)-constacyclic codes have been analyzed and significant results
have been obtained. Using MAGMA, new and optimal codes have been found and presented in
tables. In addition, some basic definitions and theorems about the DNA codes have been included.
Through the ¢; Gray map, a relationship between the elements of 73 and the DNA 2-mers has been
established. By defining a unit reverse polynomial, a new generation method has been built. To enhance
comprehensibility, supporting examples are provided.
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