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Abstract: Let f be a set-ordered edge-magic labeling of a graph G from V(G) and E(G) to [0, p−1] and
[1, p − 1], respectively; it also satisfies the following conditions: | f (V(G))| = p, max f (X) < min f (Y),
and f (x) + f (y) + f (xy) = C for each edge xy ∈ E(G). In this paper, we removed the restriction that the
labeling of vertices could not be repeated, and presented the concept of magical colorings including
edge-magic coloring, edge-difference coloring, felicitous-difference coloring, and graceful-difference
coloring. We studied the magical colorings on the tree and proved the existence of four kinds of magical
colorings on the tree from a set-ordered edge-magic labeling. Further, we revealed the transformation
relationship between these kinds of colorings.

Keywords: set-ordered edge-magic labeling; magical coloring; tree
Mathematics Subject Classification: 05C15

1. Introduction

With the rapid development of quantum computing theory and quantum computer technology, the
traditional public key cryptosystem is facing great challenges [1–3]. Because of the difficulty in solving
the two NP-complete problems of graph coloring and subgraph isomorphism, topological graphs are
integrated into the cryptography field to resist quantum computer attacks [4–7], this means that NP-
complete problems can be solved in non-deterministic polynomial time, but no efficient deterministic
polynomial time algorithm has been found to solve such problems. Sedláček first defined the magic
labeling of a graph [8], and his research stems from magic squares in number theory. Based on
Bloom and Golomb results [9], Wallis proposed the concept of edge magic total labeling in his
research on communication networks and radar pulse coding for assigned address [10]. Wang et
al. [11, 12] designed a topological coding consisting of topological structure and graph colorings. Yao
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et al. [13] arranged the colors of each edge and two end-vertices of a (p, q)-graph G in topological
matrix Tcode = (X, E,Y)T

3×q, where X = ( f (x1), f (x2), · · · , f (xq)), E = ( f (e1), f (e2), · · · , f (eq)),
Y = ( f (y1), f (y2), · · · , f (yq)) are three vectors of real numbers, and matrix Tcode distributes us at least
(3q)! different number-based strings in total based on a coloring f . Therefore, if a topology has many
types of colorings and these colorings can be transformed into each other, the key space of topology
encryption will be increased.

In order to increase the diversity and space of topological keys, we extend the graph labeling and
the graph coloring in the mathematical function to obtain a coloring function with more restrictive
conditions, which is used to generate the encryption key and decryption key of the topological model.
According to the topological coding diagram, we give some methods of obtaining the topological key
by combining the graph base and graph operation. In addition, we generate large-scale graphs on the
basis of small-scale graphs for key generation, and study the relationship between graph labeling and
graph coloring in these models.

The graphs mentioned here are undirected, simple finite graphs. A graph with p vertices and q
edges is called a (p, q)-graph. A symbol [a, b] represents a set {x ∈ Z : a ≤ x ≤ b} with a, b ∈ N and
a < b. The number of elements of a set X is denoted as |X|, N(u) is the set of vertices adjacent with a
vertex u, and the number d(u) = |N(u)| is called the degree of the vertex u. If d(u) = 1 then the vertex
u is called a leaf. The notations and terminologies not mentioned here can be found in [14, 15].

Definition 1. Let G be a (p, q)-graph with a vertex bipartition (X,Y) holding V(G) = X ∪ Y and
X ∩ Y = ∅. Suppose that G admits a labeling f : V(G) ∪ E(G) → [0,M], and f (P) = { f (w) : w ∈ P}
represents a set composed of the coloring of all elements in set P. These are the following restrictions:

1) | f (V(G))| = p;
2) f (V(G)) ⊆ [0, p − 1],min f (V(G)) = 0;
3) f (E(G)) = { f (xy) : xy ∈ E(G)} = [1, p − 1];
4) max f (X) < min f (Y);
5) f (V(G))

⋃
f (E(G)) ⊂ [0, p + q];

6) f (x) + f (xy) + f (y) = C1 for each edge xy ∈ E(G);
7) | f (x) − f (y)| + f (xy) = C2 for each edge xy ∈ E(G);
8) | f (x) + f (y) − f (xy)| = C3 for each edge xy ∈ E(G);
9) || f (x) − f (y)| − f (xy)| = C4 for each edge xy ∈ E(G).
We call f a set-ordered edge-magic labeling if conditions 1), 2), 3), 4), 6) are met. If we allow that

there is at least a pair of vertices colored with the same color in the above, it means that f (u) = f (v)
for any two vertices u, and v ∈ V(G) is allowed to be true. We will obtain four types of new colorings:

(1) f is an edge-magic coloring when conditions 5), 6) are met;
(2) f is an edge-difference coloring when conditions 5), 7) are met;
(3) f is a felicitous-difference coloring when conditions 5), 8) are met;
(4) f is a graceful-difference coloring when conditions 5), 9) are met.
The above Ci(i = 1, 2, 3, 4) are constants, called magic constants, and these four colorings are

known as magic-type colorings.

Definition 2. The graph G obtained by adding a new edge uv < E(G) is denoted as GA = G + uv,
u ∈ V(G), v < V(G). We call the process of obtaining the graph GA randomly adding leaf operation,
and say that GA is a leaf-added graph and v is a leaf of G. Let G be a (p, q)-graph, and leaf-added
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graph GA is the result of adding randomly m leaves to graph G, then GA is a (pA, qA)-graph, where
pA = p + m and qA = q + m.

2. Connections between the four colorings of trees

Lemma 1. Each tree admits a set-ordered edge-magic labeling defined in Definition 1.

Proof. Let the number of vertices and edges of tree T be p and q, respectively. Since the vertex of each
tree T can be divided into two parts X and Y , (X,Y) represents the bipartition of vertices of the tree T ,
then X = {xi|i ∈ [1, s]} and Y = {y j| j ∈ [1, t]} holding s + t = |V(T )| = p. Clearly, xi ∈ X and y j ∈ Y for
each edge xiy j of a tree T . Without loss of generality, we let f (xi) = i − 1 with i ∈ [1, s], f (y j) = p − j
with j ∈ [1, t], and f (xiy j) = s + j − i for every edge xiy j ∈ E(T ), so the labels of each vertex satisfy
the following relation,

f (x1) < f (x2) < · · · < f (xs) < f (yt) < f (yt−1) < · · · < f (y1), (2.1)

so condition s− 1 = max f (X) < min f (Y) = s is true. In addition, we can find f (xi) + f (xiy j) + f (yi) =

i − 1 + s + j − i + p − j = s + p − 1 for xiy j ∈ E(T ). According to Definition 1, f is a set-ordered
edge-magic labeling of tree T . An example for illustrating the proof of Lemma 1 (see Figure 1). �
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Figure 1. An example for illustrating the proof of Lemma 1.

Theorem 1. If a tree admits a set-ordered edge-magic labeling, then the tree admits edge-magic
coloring, edge-difference coloring, felicitous-difference coloring, and graceful-difference coloring, one
of which can be converted from the other magical colorings.

Proof. Below we show the proof process of the conversion between the edge-magic coloring, edge-
difference coloring, felicitous-difference coloring, and graceful-difference coloring. Let the above four
types of colorings be f1, f2, f3, and f4, and the relationship between the four colorings of tree T is given
below.

(1) ⇔ (2). Let f2(xi) = f1(xs+1−i), f2(y j) = f1(y j), f2(xiy j) = f1(xiy j). Since f1 is an edge-magic
coloring, f1 satisfies f1(V(t)) ∪ f1(E(T )) ⊂ [0, p + q] and f1(xi) + f1(xiy j) + f1(y j) = s + p − 1. We can
deduce that | f2(xi)− f2(y j)|+ f2(xiy j) = | f1(xs+1−i)− f1(y j)|+ f1(xiy j) = f1(y j)− s+1+ f1(xi)+ f1(xiy j) = p.
It is clear that the coloring of V(T ) and E(T ) satisfies f2(V(T )) ∪ f2(E(T )) ⊂ [0, p + q] when f1 is
transformed to f2.

(2)⇔ (3). Let f3(xi) = f2(xs+1−i), f3(y j) = f2(y j), f3(xiy j) = q + 1 − f2(xiy j). Similar to the above
proof, we can derive | f3(xi)+ f3(y j)− f3(xiy j)| = | f2(xs+1−i)+ f2(y j)−q−1+ f2(xiy j)| = p+ s−q−2 = s−1
is a constant; also, f3(V(t)) ∪ f3(E(T )) ⊂ [0, p + q], so we get to coloring f3 by coloring f2.
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(3) ⇔ (4). We give the following transformation: f4(xi) = f3(xs+1−i), f4(y j) = f3(y j), f4(xiy j) =

f3(xiy j). We can further derive that || f4(xi) − f4(y j)| − f4(xiy j)| = ||s − 1 − f3(xi) − f3(y j)| − f3(xiy j)| =
| f3(xi) + f3(y j) − f3(xiy j)| − s + 1 is equal to 0, and f4(V(t)) ∪ f4(E(T )) ⊂ [0, p + q] is satisfied, which
shows that coloring f3 and coloring f4 can be transformed into each other.

(4)⇔ (1). By the following transformation: f1(xi) = f4(xs+1−i), f1(y j) = f4(y j), f1(xiy j) = q + 1 −
f4(xiy j), we can get f1(xi) + f1(xiy j) + f1(y j) = s + 1− f4(xi) + q + 1− f4(xiy j) + f4(y j) = s + q− f4(y j)−
f4(xi) − f4(xiy j) = s + q. Also, we get f1(V(t)) ∪ f1(E(T )) ⊂ [0, p + q], then f1 can be further obtained
by coloring f4.

Therefore, Theorem 1 is proved. An example for illustrating the proof of Theorem 1 (see Figure 2).
�
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Figure 2. An example for illustrating the proof of Theorem 1.

Theorem 2. Let a tree T admit a set-ordered edge-magic labeling and (X,Y) represents the bipartition
of vertices of T , then |X| = s, |Y | = t, and its leaf-added graph TA is obtained by adding K leaves to
tree T . Let |V(TA)| = p′, |E(TA)| = q′, then TA admits an edge-magic coloring and its magic constant
is CA = s + q′ + K.

Proof. Lemma 1 proves that every tree T admits a set-ordered edge-magic labeling f , then we prove
the existence of magical colorings of the leaf-added graph TA based on the labeling f of T . Since T
has a vertex set V(T ) = X ∪ Y with X ∩ Y = ∅, where X = {x1, x2, · · · , xs} and Y = {y1, y2, · · · , yt}

with s + t = p = |V(T )|, according to the definition of a set-ordered edge-magic labeling, we get the
set-ordered restriction

0 = f (x1) < f (x2) < · · · < f (xs) < f (yt) < f (yt−1) < · · · < f (y1) = p − 1. (2.2)

Let C = s + q, then the sum of the labels of each edge xiy j ∈ E(T ) and its two end vertices xi, y j ∈ V(T )
satisfies

f (xi) + f (xiy j) + f (y j) = s + q = C > 0, (2.3)

as well as f (E(G)) = { f (xiy j)|xiy j ∈ E(T )} = [1, p − 1].
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Next, we consider the topology of leaf-added graph TA of T . Adding randomly mi new leaves ai,k

to each vertex xi ∈ X ⊂ V(T ) by joining ai,k with xi together by new edges xiai,k for k ∈ [1,mi] and
i ∈ [1, s], the set of new leaves ai,k is denoted by the symbol L(xi) = {ai,k|k ∈ [1,mi], i ∈ [1, s]}.
Meanwhile, adding randomly n j new leaves b j,r ∈ L(y j) = {b j,r|r ∈ [1, n j], j ∈ [1, t]} to each vertex
y j ∈ Y ⊂ V(T ) by joining b j,r with y j together by new edges y jb j,r, when mi = 0 or n j = 0 exist, it
means that no new leaves are added to a vertex xi or y j. Let M =

∑s
c=1 mc and N =

∑t
c=1 nc. Obviously,

we have K = M + N, so the number of vertices and edges of TA is p′ = p + M + N and q′ = q + M + N,
respectively.

We define a coloring f1 of the leaf-added graph TA in the following steps:
Step 1. Color edges y jb j,r for leaves b j,r ∈ L(y j) with r ∈ [1, n j] and j ∈ [1, t] as follows:
f1(y1b1,r) = r for r ∈ [1, n1], then the maximum colors of the newly added edge connected to y1 is

f1(y1b1,n1) = n1;
f1(y2b2,r) = n1 + r for r ∈ [1, n2], so the largest number of colors in the leaves of vertex y2 is equal

to f1(y2b2,n2) = n1 + n2;
For j ∈ [3, t− 1], f1(y jb j,r) =

∑ j−1
c=1 nc + r for r ∈ [1, n j], we have f1(y jb j,n j) =

∑ j−1
c=1 nc + n j =

∑ j
c=1 nc;

f1(ytbt,r) =
∑t−1

c=1 nc + r for r ∈ [1, nt], so the edge ytbt,nt is colored by

f1(ytbt,nt) =

t−1∑
c=1

nc + nt =

t∑
c=1

nc = N. (2.4)

The above indicates that all new edges associated with y j(1 ≤ j ≤ t) are given the
corresponding color.

Step 2. Next, we focus on the coloring of the newly added edge connected to xi ∈ X. Color edges
xiai,k for leaves ai,k ∈ L(xi) with k ∈ [1,mi] and i ∈ [1, s] as follows:

f1(xsas,k) = N + k for k ∈ [1,ms], therefore, the coloring of edge xsas,ms is f1(xsas,ms) = N + ms;
f1(xs−1as−1,k) = N + ms + k for k ∈ [1,ms−1]; according to coloring rule, we get the largest color

f1(xs−1as−1,ms−1) = N + ms + ms−1 for the newly added adjacent edge of vertex xs−1;
For i ∈ [2, s − 2], f1(xs−ias−i,k) = N +

∑s
c=s−i+1 mc + k for k ∈ [1,ms−i], we get f1(xs−ias−i,ms−i) =

N +
∑s

c=s−i mc;
f1(x1a1,k) = N +

∑s
c=2 mc + k for k ∈ [1,m1] and the last edge x1a1,m1 is colored with

f1(x1a1,m1) = N +

s∑
c=2

mc + m1 = M + N = K. (2.5)

Based on the above two steps, all the new leaves have gained their colors.
Step 3. In this step, we recolor the edges and vertices that already exist in T as the following way:

f1(xiy j) = f (xiy j) + 2K for xiy j ∈ E(T ), and f1(xi) = f (xi) for xi ∈ V(T ), f1(y j) = f (y j) for y j ∈ V(T ).
Therefore, each edge xiy j ∈ E(T ) holds

f1(xi) + f1(xiy j) + f1(y j) = f (xi) + f (xiy j) + 2K + f (y j) = C + 2K. (2.6)

We have the edge color set f1(E(TA)) of the leaf-added graph TA as follows:

f1(E(TA)) = [1,K] ∪ [2K + 1, 2K + q] ⊂ [0, p′ + q′]. (2.7)
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Step 4. Finally, we color the newly added vertices including the added leaves b j,r ∈ L(y j) and
ai,k ∈ L(xi) with i ∈ [1, s] and j ∈ [1, t]. Let CA = C + 2K = s + q′ + K, and each leaf b j,r ∈ L(y j) is
colored by

f1(b j,r) = CA − f1(y j) − f1(y jb j,r), r ∈ [1, n j], j ∈ [1, t]. (2.8)

Obviously, the equation f1(y j) + f1(y jb j,r) + f1(b j,r) = CA is satisfied on every leaf connected to y j, and
CA is a constant. In the same way, each leaf ai,k ∈ L(xi) is colored by

f1(ai,k) = CA − f1(xi) − f1(xiai,k). (2.9)

Immediately, f1(xi) + f1(xiai,k) + f1(ai,k) = CA holds for k ∈ [1,mi] and i ∈ [1, s]. Also, we can get
f1(V(TA)) ∪ f1(E(TA)) ⊂ [0, p′ + q′], then f1 is an edge-magic coloring of leaf-added graph TA. �

Theorem 3. Let a tree T admits a set-ordered edge-magic labeling, and its leaf-added graph TA is a
(p′, q′)-graph, then TA admits an edge-difference coloring and its magic constant is CB = p′.

Proof. Let (X,Y) represents the bipartition of vertices of T and |X| = s, |Y | = t, and its leaf-added graph
TA is obtained by adding K leaves to tree T . We still define a coloring f2 for TA and prove that f2 is an
edge-difference coloring.

To start, color edges y jb j,r for leaves b j,r ∈ L(y j) with r ∈ [1, n j] and j ∈ [1, t] as follows: f2(y1b1,r) =

K + 1 − r for r ∈ [1, n1], and the color of the new leaf connected to vertex y1 decreases in turn
until f2(y1b1,n1) = K + 1 − n1 is obtained; f2(y2b2,r) = K + 1 − n1 − r for r ∈ [1, n2], so we get
f2(y2b2,n2) = K + 1 − (n1 + n2). For j ∈ [3, t − 1], f2(y jb j,r) = K + 1 −

∑ j−1
c=1 nc − r for r ∈ [1, n j], then

we have f2(y jb j,n j) = K + 1 −
∑ j

c=1 nc; and f2(ytbt,r) = K + 1 −
∑t−1

c=1 nc − r for r ∈ [1, nt]. The last edge
ytbt,nt is colored by

f2(ytbt,nt) = K + 1 −
t∑

c=1

nc = K + 1 − N = M + 1. (2.10)

Next, color edges xiai,k for leaves ai,k ∈ L(xi) with k ∈ [1,mi] and i ∈ [1, s] as follows: f2(xsas,k) = k
for k ∈ [1,ms], so we have f2(xsas,ms) = ms; f2(xs−1as−1,k) = ms + k for k ∈ [1,ms−1]. We follow this
coloring rule until we get the last coloring f2(xs−1as−1,ms−1) = ms +ms−1. For i ∈ [3, s−1], f2(xs−ias−i,k) =∑s

c=s−i+2 mc + k for k ∈ [1,ms−i], then we get the coloring of edge xs−ias−i,ms−i is f2(xs−ias−i,ms−i) =∑s
c=s−i+1 mc + k, f2(x1a1,k) =

∑s
c=2 mc + k for k ∈ [1,m1], and the last edge x1a1,m1 is colored with

f2(x1a1,m1) =

s∑
c=2

mc + m1 = M. (2.11)

The first two steps have given the colors of all the newly added edges.
Then, we recolor the vertices and edges that already exist in tree T as the following way: f2(xiy j) =

f (xiy j) + K for xiy j ∈ E(T ), and f2(xi) = f (xs+1−i) = s − 1 − f (xi) for xi ∈ V(T ), f2(y j) = f (y j) for
y j ∈ V(T ), so, the xiy j ∈ E(TA) holds

| f2(xi) − f2(y j)| + f2(xiy j) = |s − 1 − f (xi) − f (y j)| + f (xiy j) + K

= f (y j) − s + 1 + f (xi) + f (xiy j) + K

= C − s + 1 + K

= q′ + 1 = p′.

(2.12)
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We have the edge color set f2(E(TA)) of the leaf-added graph TA as follows:

f2(E(TA)) = [1,K] ∪ [K + 1, q′] = [1, q′]. (2.13)

Finally, we color the added leaves of b j,r ∈ L(y j) and ai,k ∈ L(xi) with i ∈ [1, s] and j ∈ [1, t]. For
the sake of simplicity, let CB = p′. Each leaf b j,r ∈ L(y j) with r ∈ [1, n j] and j ∈ [1, t] is colored by

f2(b j,r) = CB − f2(y jb j,r) + f2(y j), (2.14)

so we have | f2(y j) − f2(b j,r)| + f2(y jb j,r) = CB for r ∈ [1, n j] and j ∈ [1, t].
On the other hand, for each leaf ai,k ∈ L(xi), k ∈ [1,mi], and i ∈ [1, s], its coloring is

f2(ai,k) = CB − f2(xiai,k) + f2(xi). (2.15)

Immediately, | f2(xi) − f2(ai,k)| + f2(xiai,k) = CB is true for k ∈ [1,mi] and i ∈ [1, s]. In summary, we
know f2(V(TA)) ∪ f2(E(TA)) ⊂ [0, p′ + q′], so leaf-added graph TA has an edge-difference coloring f2,
and its magic constant is p′. �

Theorem 4. Let a tree T admits a set-ordered edge-magic labeling and (X,Y) represents the bipartition
of vertices of T , then |X| = s, |Y | = t. Its leaf-added graph TA is obtained by adding K leaves to tree T ,
then TA admits a felicitous-difference coloring and its magic constant is CC = s − 1 + 2K.

Proof. Like the previous proof, we start by coloring the edges of the newly added leaves b j,r and ai,k,
where r ∈ [1, n j], j ∈ [1, t], k ∈ [1,mi], and i ∈ [1, s].

First, color edges y jb j,r for leaves b j,r ∈ L(y j) as follows: f3(y1b1,r) = K + 1 − r for r ∈ [1, n1],
then the minimum color of the newly added edge associated with y1 is f3(y1b1,n1) = K + 1 − n1;
f3(y2b2,r) = K + 1 − n1 − r for r ∈ [1, n2], so we have f3(y2b2,n2) = K + 1 − (n1 + n2). For j ∈ [3, t − 1],
f3(y jb j,r) = K + 1 −

∑ j−1
c=1 nc − r for r ∈ [1, n j], therefore, the minimum color of each adjacent edge of

y j is equal to f3(y jb j,n j) = K + 1 −
∑ j

c=1 nc; f3(ytbt,r) = K + 1 −
∑t−1

c=1 nc − r for r ∈ [1, nt], and the last
edge ytbt,nt is colored by

f3(ytbt,nt) = K + 1 −
t∑

c=1

nc = M + 1. (2.16)

Second, color edges xiai,k for leaves ai,k ∈ L(xi) with k ∈ [1,mi] and i ∈ [1, s] as follows: f3(x1a1,k) =

k for k ∈ [1,m1], which means that f3(x1a1,m1) = m1. What we need to note is that if no new leaves
are added to vertex x1, then m1 = 0; f3(x2a2,k) = m1 + k for k ∈ [1,m2]. According to this rule, we
get the maximum color of the added edge connected to x2, f3(x2a2,m2) = m1 + m2. When i ∈ [3, s − 1],
f3(xiai,k) =

∑i−1
c=1 mc +k for k ∈ [1,mi], so we have f3(xiai,mi) =

∑i
c=1 mc. Further, f3(xsas,k) =

∑s−1
c=1 mc +k

for k ∈ [1,ms] and the last edge xsas,ms is colored with

f3(xsas,ms) = ms +

s−1∑
c=1

mc = M. (2.17)

Third, consider the color of the edges and vertices that already exist in T , which corresponds to the
coloring f3(xiy j), f3(xi), f3(y j) in TA. We recolor each element of V(T ) ∪ E(T ) in the following way:
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f3(xiy j) = p − f (xiy j) + 2K for xiy j ∈ E(T ), f3(xi) = f (xi) + 2K for xi ∈ V(T ), and f3(y j) = f (y j) + 2K
for y j ∈ V(T ). The colors of these edges xiy j ∈ E(T ) satisfy

| f3(xi) + f3(y j) − f3(xiy j)| = f (xi) + f (y j) + 4K − p + f (xiy j) − 2K

= C + 2K − p

= s − 1 + 2K.

(2.18)

We have the edge color set f3(E(TA)) of the leaf-added graph TA as follows:

f3(E(TA)) = [1,K] ∪ [2K + 1, 2K + p − 1] ⊂ [0, p′ + q′]. (2.19)

In the last step, we color the added leaves of b j,r ∈ L(y j) and ai,k ∈ L(xi) with i ∈ [1, s] and j ∈ [1, t].
Let CC = s − 1 + 2K, then each leaf b j,r ∈ L(y j) with r ∈ [1, n j] and j ∈ [1, t] is colored by

f3(b j,r) = CC + f3(y jb j,r) − f3(y j), (2.20)

so | f3(y j) + f3(b j,r) − f3(y jb j,r)| = CC for r ∈ [1, n j], j ∈ [1, t], where CC is a constant. Each leaf
ai,k ∈ L(xi) with k ∈ [1,mi] and i ∈ [1, s] is colored by

f3(ai,k) = CC + f3(xiai,k) − f3(xi). (2.21)

Obviously, | f3(xi) + f3(ai,k) − f3(xiai,k)| = CC for k ∈ [1,mi] and i ∈ [1, s], and we have
f3(V(TA)) ∪ f3(E(TA)) ⊂ [0, p′ + q′]. The above shows that f3 is a felicitous-difference coloring.
Thus, the Theorem 4 is proved. �

Theorem 5. Let a tree T admits a set-ordered edge-magic labeling, and its leaf-added graph TA is
obtained by adding K leaves to tree T , then TA admits a graceful-difference coloring and its magic
constant is CD = 2K.

Proof. We define a graceful-difference coloring f4 of the leaf-added graph TA.
We color edges y jb j,r for leaves b j,r ∈ L(y j) with r ∈ [1, n j] and j ∈ [1, t] as follows: f4(y1b1,r) = r

for r ∈ [1, n1], then we get f4(y1b1,n1) = n1; f4(y2b2,r) = n1 + r for r ∈ [1, n2], f4(y2b2,n2) = n1 + n2;
When j ∈ [3, t − 1], f4(y jb j,r) =

∑ j−1
c=1 nc + r for r ∈ [1, n j], f4(y jb j,n j) =

∑ j
c=1 nc. So, we have

f4(ytbt,r) =
∑t−1

c=1 nc + r for r ∈ [1, nt], and the last edge ytbt,nt is colored by

f4(ytbt,nt) = nt +

t−1∑
c=1

nc = N. (2.22)

Color edges xiai,k for leaves ai,k ∈ L(xi) with k ∈ [1,mi] and i ∈ [1, s] as follows: f4(xsas,k) =

N + k for k ∈ [1,ms], f4(xsas,ms) = N + ms, and f4(xs−1as−1,k) = N + ms + k for k ∈ [1,ms−1],
f4(xs−1as−1,ms−1) = N + ms + ms−1. For i ∈ [2, s − 2], f4(xs−ias−i,k) = N +

∑s
c=s−i+1 mc + k for k ∈ [1,mi],

f4(xs−ias−i,ms−i) = N +
∑s

c=s−i mc; Then, f4(x1a1,k) = N + k +
∑s

c=2 mc for k ∈ [1,m1], and the last edge
x1a1,m1 is colored with

f4(x1a1,m1) = m1 +

s∑
c=2

mc + N = K. (2.23)
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Recolor each element of V(T ) ∪ E(T ) in the following way: f4(xi) = f (xs+1−i) = s − 1 − f (xi) for
xi ∈ X, and f4(y j) = f (y j) for y ∈ Y , and these edges xiy j ∈ E(TA) hold f4(xiy j) = p − f (xiy j) + 2K,
then we have

|| f4(xi) − f4(y j)| − f4(xiy j)| = f (y j) − s + 1 + f (xi) − p + f (xiy j) + 2K

= C − s + 1 − p + 2K

= 2K.

(2.24)

We have the edge color set f4(E(TA)) of tree TA as follows:

f4(E(TA)) = [1,K] ∪ [2K + 1, 2K + p − 1] ⊂ [0, p′ + q′]. (2.25)

For last step, color the added leaves of L(y j) and L(xi) with i ∈ [1, s] and j ∈ [1, t]. Let CD = 2K,
and each leaf b j,r ∈ L(y j) with r ∈ [1, n j] and j ∈ [1, t] is colored by

f4(b j,r) = CD + f4(y jb j,r) + f4(y j), (2.26)

so we get || f4(b j,r) − f4(y j)| − f4(y jb j,r)| = CD for y jb j,r ∈ E(TA), where r ∈ [1, n j], j ∈ [1, t].
On the other hand, each leaf ai,k ∈ L(xi) with k ∈ [1,mi] and i ∈ [1, s] is colored by

f4(ai,k) = CD + f4(xiai,k) + f4(xi). (2.27)

Immediately, || f4(ai,k)− f4(xi)|− f4(xiai,k)| = CD for xiai,k ∈ E(TA), k ∈ [1,mi], and i ∈ [1, s]. In addition,
we can get f4(V(TA)) ∪ f4(E(TA)) ⊂ [0, p′ + q′], so f4 is a graceful-difference coloring of leaf-added
graph TA, and the magic constant is 2K. �

Figure 3 shows an example for illustrating the proof of Theorems 2–5.

2

5

4

9

7

26 23 21

2
7

2
4

1
9

08 7

9 11

10

1 4

2 3 5 6

24

26

26

27

26 24

24

2524

8

1

6

5

3

17 14 12

1
8

1
5

1
0

68 7

9 11

10

5 2

4 3 1 0

23

21

21

22

21 23

23

2023

8

5

6

1

3

22 25 27

2
1

2
4

2
9

1826 25

27 29

28

19 22

20 21 23 24

4

6

6

7

6 4

4

54

2

5

4

9

7

22 25 27

2
1

2
4

2
9

68 7

9 11

10

5 2

4 3 1 0

30

32

30

29

26 30

30

2330

(a) (b)

(c) (d)

Figure 3. (a) f1(xi) + f1(xiy j) + f1(y j) = 36; (b) | f2(xi) − f2(y j)| + f2(xiy j) = 21; (c) | f3(xi) +

f3(y j) − f3(xiy j)| = 24; (d) || f4(xi) − f4(y j)| − f4(xiy j)| = 18.

The size and strength of the topological key are determined by the following aspects: The length
of bytes of the topological key; the dimension of the mathematical constraint of the topological key;
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the topology structure of the used topological graph must meet the strong constraint and randomness;
the base of graph space for constructing topological key is at least 2200; the number of vertices of
graph is not less than 50; and so on. Theorem 2 theoretically extends the diversity of colorings on a
graph. Theorems 3–6 construct a larger graph by adding leaf operation, enriching the topology of the
graph, increasing the length of the topological key, and increasing the difficulty of deciphering the key.
Deciphering a string S = c1c2 · · · cn produced by our algorithm will do the following: (i) Finding out
the coding graph G of p vertices and q edges; as known, the numbers of graphs of 23 vertices and 24
vertices are as follows: N23 ∼ 2179, N24 ∼ 2197. (ii) Finding a particular coloring f of the coding
graph G. (iii) Finding S = c1c2 · · · cn from (p × p)! number strings (for topological signature), or from
(3q)! number strings (for encrypting files). However, we can find there is no polynomial algorithm
to construct the coding graph G as p and q are quite large; also, there is no polynomial algorithm to
distinguish isomorphism between coding graphs, since it has been proven the subgraph isomorphism
is NP-complete. It is known that there are thousands of colorings in which there are hundreds of
conjectures and open problems; there is no polynomial algorithm to find a particular coloring f for the
coding graph G.

3. Conclusions

In this paper, inspired by the edge-magic labeling, we propose the concepts of edge-magic
coloring, edge-difference coloring, felicitous-difference coloring, and graceful-difference coloring. As
a corollary, we prove the transformation relationship f1 ∼ f2 ∼ f3 ∼ f4 of four types of coloring
on the structure of trees. Based on the operation of adding leaves, we obtain the existence of four
types of magic coloring for constructing larger trees from smaller trees. It is worth noting that the
security of the topological key proposed in this paper is based on the difficulty of the two NP-complete
problems of subgraph isomorphism and graph coloring. The challenge it faces is that the security of
the topological key will be threatened when the two problems of subgraph isomorphism and graph
coloring can be effectively solved within the scope of current computer capability. In fact, we also find
that the conclusions of this paper are valid for bipartite graphs, where the vertices of bipartite graphs
can also be divided into two disjoint vertices, and other magical colorings can be identified by their
set-ordered edge-magic labelings. However, whether the magical colorings of general graphs exist and
find their corresponding rules is the direction of our future research. In addition, the use of magic
coloring to generate topological keys can make the conversion method between keys simple and easy
to implement and generate a wide variety of topological keys, which provides a theoretical guarantee
for the diversity of topological keys and the expansion of key space.
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