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Abstract: In this work, we initially construct an implicit Euler difference scheme for a two-
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technique to rigorously demonstrate that our scheme attains the asymptotic optimal error estimate in the
maximum norm. Furthermore, we derive a series of approximation formulas for the partial derivatives
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1. Introduction

In recent years, nonclassical boundary and initial-boundary value problems have garnered
significant attention across diverse disciplines such as physics, biology, ecology, chemistry, and
beyond. Among these, parabolic partial differential equations (PDEs) with nonlocal initial and/or
boundary conditions have emerged as powerful tools for modeling a wide array of phenomena.
These include, but are not limited to, heat conduction [1], thermoelasticity [2], biotechnology [3],
electrochemistry [4], population dynamics [5], and petroleum exploration [6]. The incorporation of
nonlocal conditions into these PDEs allows for a more nuanced and realistic representation of the
complex interactions and dynamics at play within these systems.

Let QT = Ω × I be the computational domain, where Ω = (0, 1)2 and I = (0,T ) represent the
spatial domain and the time domain, respectively, and T is a positive constant. Here, we consider the
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following 2D parabolic problem to find a high-accuracy numerical scheme and obtain its theoretical
error estimates:

∂u
∂t

= a2∆u + f (x, y, t), (x, y) ∈ Ω, t ∈ (0,T ], (1.1)

which is subject to the initial conditions

u|t=0 = g(x, y), (x, y) ∈ Ω, (1.2)

the Dirichlet boundary conditions

u|x=0 = µ1(y, t), y ∈ (0, 1), t ∈ (0,T ], (1.3)
u|x=1 = µ2(y, t), y ∈ (0, 1), t ∈ (0,T ], (1.4)

and the nonlocal boundary conditions

u|y=0 = u|y=1 + µ3(x, t), x ∈ (0, 1), t ∈ (0,T ], (1.5)
uy|y=0 = µ4(x, t), x ∈ (0, 1), t ∈ (0,T ], (1.6)

where u(x, y, t) is the unknown function, g(x, y), µi(y, t) (i = 1, 2) and µ j(x, t) ( j = 3, 4) are known
functions, and a is a positive constant.

These two nonlocal boundary conditions (1.5) and (1.6) are often be used to describe the correlation
of a physical quantity across two parallel boundaries in a physical system, as well as the situation where
the normal derivative at the boundaries is controlled by external factors, which is commonly used to
simulate the interactions between boundaries and boundary effects in processes such as heat conduction
and fluid flow.

If the exact solution u of problems (1.1)–(1.6) satisfies certain smootheness conditions, then the
compatible condition is deduced as follows: ∀(x, y) ∈ Ω, the following relations hold:

g(0, y) = µ1(y, 0), g(1, y) = µ2(y, 0),
g(x, 0) = g(x, 1) + µ3(x, 0), gy(x, 0) = µ4(x, 0).

The analytical frameworks and numerical techniques employed in tackling parabolic problems
with nonlocal conditions have aroused the concern of many scholars. Pertaining to the crucial
aspects of convergence and stability for such problems, we acknowledge the foundational work
presented in [7–9], as well as the extensive references cited therein. Among the prevalent numerical
methodologies, finite difference methods (FDM) stand out prominently, with notable contributions
from studies such as [7,10–13]. Additionally, finite element methods (FEM) have garnered substantial
attention, exemplified by works cited in [14, 15]. Furthermore, the realm of numerical solutions
encompasses innovative approaches like Adomian expansions [16], the local coordinates method [17],
and the utilization of reproducing kernel spaces [18], each offering unique insights and advancements
in this field.

It is widely acknowledged that two-dimensional parabolic partial differential equations (PDEs),
characterized by their two spatial variables, pose significant challenges for theoretical analysis,
particularly in the realms of convergence analysis and error estimation. The dimensionality of
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these variables often complicates the mathematical treatment, necessitating innovative strategies.
One promising approach to mitigate these difficulties is the utilization of the discrete fourier
transform (DFT) method, which offers advantages in reducing the complexity of self-variables during
convergence analysis. In this study, we build upon our previous work [19, 20] by extending the
numerical schemes and integrating the DFT method on the spatial variable x for error estimation within
the context of a two-dimensional parabolic PDE subject to a nonlocal boundary condition.

However, a major obstacle arises from the complex boundary condition imposed on the spatial
variable y. This condition presents a challenge to traditional DFT methods, which are inherently
designed to preserve some boundary conditions. To overcome this limitation, we propose a
novel transformation tailored specifically to handle this periodic boundary scenario. Furthermore,
we contribute by deriving formulas for the solution derivatives and rigorously proving that these
formulas enable us to achieve optimal asymptotic error estimates in the maximum norm. This
achievement underscores the effectiveness and applicability of our proposed methodology in accurately
approximating and analyzing solutions to two-dimensional parabolic PDEs with intricate boundary
conditions.

This paper is organized as follows. In Section 2, the backward Euler difference scheme for the
solution of problems (1.1)–(1.6) is presented. Then, in Section 3, we utilize the DFT and develop
a new transformation to analyze the error estimate for the corresponding difference equation. The
superconvergence for the derivative and its theoretical results are also considered. Finally, some
numerical experiments are presented in Section 5.

2. Finite difference discretization

Now, we use the FDM to discretize problems (1.1)–(1.6). The domain QT is discretized by the
uniformly distributed grid points (xi, y j, tn), where

xi = ih, i = 0, 1, · · · , 2N, 2Nh = 1,
y j = jh, j = 0, 1, · · · , 2N, 2Nh = 1,

tn = nτ, n = 0, 1, · · · ,M, Mτ = T,

where τ is time stepsize, and h is space stepsize along both x and y directions.
Define a function space by

Cm(QT ) =

{
∂s1+s2+s3u
∂xs1∂ys2∂ts3

∈ C(QT )|s1 + s2 + s3 ≤ m
}
,

and its norm by

‖u‖m,∞ = max
s1+s2+s3≤m

{∣∣∣∣∣ ∂s1+s2+s3u
∂xs1∂ys2∂ts3

∣∣∣∣∣} , ∀(x, y, t) ∈ QT ,

where m and si (i = 1, 2, 3) are given nonnegative integers.
The key to seeking a numerical solution for problems (1.1)–(1.6) lies in how to discretize the

nonlocal boundary conditions (1.6). Suppose u ∈ C4(QT ), using the Taylor formula, we have

u(x, h, t) = u(x, 0, t) + huy(x, 0, t) +
h2

2
uyy(x, 0, t) +

h3

3!
uyyy(x, 0, t) + O(h4). (2.1)
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Using (1.1), we have

uyy(x, 0, t) =
1
a2 ut(x, 0, t) − uxx(x, 0) −

1
a2 f (x, 0, t). (2.2)

Moreover, we obtain

uyyy(x, 0, t) =
1
a2 uty(x, 0, t) − uxxy(x, 0, t) −

1
a2 fy(x, 0, t).

Therefore, with (1.6), we obtain

uyyy(x, 0, t) =
1
a2 (µ4)t(x, t) − (µ4)xx(x, t) −

1
a2 fy(x, 0, t). (2.3)

Substituting (1.6), (2.2), and (2.3) into (2.1), we have

u(x, h, t) = u(x, 0, t) + hµ4(x, t) +
h2

2

(
1
a2 ut(x, 0, t) − uxx(x, 0, t) −

1
a2 f (x, 0)

)
+

h3

3!

(
1
a2 (µ4)t(x, t) − (µ4)xx(x, t) −

1
a2 fy(x, 0, t)

)
+ O(h4),

i.e.

ut(x, 0, t) =
2a2

h2 (u(x, h, t) − u(x, 0, t)) + a2uxx(x, 0, t) + µ̃4(x, t) + O(h2), (2.4)

where

µ̃4(x, t) = f (x, 0, t) −
2a2

h
µ4(x, t) −

h
3

((µ4)t(x, t) − a2(µ4)xx(x, t) − fy(x, 0, t)). (2.5)

From the derivation process described above, the discretization of (1.6) is converted to
discretizing (2.4).

Let un
i, j and Un

i, j be the exact value and the approximation of u(x, y, t) at grid point (xi, y j, tn),
respectively. Let f n

i, j = f (xi, y j, tn), gi, j = g(xi, y j), (µm)n
j = µm(y j, tn) (m = 1, 2), (µ3)n

i = µ3(xi, tn)
and (̃µ4)n

i = µ̃4(xi, tn).
Then, (2.4) is approximated by the following difference equations:

Un
i,0 − Un−1

i,0

τ
=

2a2

h2 (Un
i,1 − Un

i,0) + a2
Un

i+1,0 − 2Un
i,0 + Un

i−1,0

h2 +
2(µ4)n

i

h
+ (̃µ4)n

i ,

i = 1, 2, · · · , 2N − 1. (2.6)

Also, we obtain the difference equations of (1.1)

Un
i, j − Un−1

i, j

τ
= a2

(Un
i−1, j − 2Un

i, j + Un
i+1, j

h2 +
Un

i, j−1 − 2Un
i, j + Un

i, j+1

h2

)
+ f n

i, j,

i, j = 1, 2, · · · , 2N − 1, n = 1, 2, · · · ,M. (2.7)
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Let αn
i,0 be the local truncature error of (2.6). When u ∈ C4(QT ), using the Taylor formula, we can

easily deduce that ∣∣∣αn
i,0

∣∣∣ . ‖u‖4,∞ (τ + h2) . τ + h2, i = 1, 2, · · · , 2N − 1.

Similarly, when u ∈ C4(QT ), it holds that∣∣∣αn
i, j

∣∣∣ . ‖u‖4,∞ (τ + h2) . τ + h2, i = 1, 2, · · · , 2N − 1, j = 1, 2, · · · , 2N − 1,

where αn
i, j is the local truncation error of (2.7).

Moreover, we obtain∣∣∣αn
i, j

∣∣∣ . τ + h2, i = 1, 2, · · · , 2N − 1, j = 0, 1, · · · , 2N − 1. (2.8)

From the above, we obtain the backward Euler difference scheme of problems (1.1)–(1.6).

Un
i, j − Un−1

i, j

τ
= a2

(Un
i−1, j − 2Un

i, j + Un
i+1, j

h2 +
Un

i, j−1 − 2Un
i, j + Un

i, j+1

h2

)
+ f n

i, j,

i, j = 1, 2, · · · , 2N − 1, n = 1, 2, · · · ,M, (2.9a)
U0

i, j = gi, j, i, j = 0, 1, · · · , 2N, (2.9b)

Un
0, j = (µ1)n

j , j = 0, 1, · · · , 2N, n = 1, 2, · · · ,M, (2.9c)

Un
2N, j = (µ2)n

j , j = 0, 1, · · · , 2N, n = 1, 2, · · · ,M, (2.9d)

Un
i,0 = Un

i,2N + (µ3)n
i , i = 1, 2, · · · , 2N − 1, n = 1, 2, · · · ,M, (2.9e)

Un
i,0 − Un−1

i,0

τ
=

2a2

h2 (Un
i,1 − Un

i,0) +
a2

h2 (Un
i−1,0 − 2Un

i,0 + Un
i+1,0) + (̃µ4)n

i ,

i = 1, 2, · · · , 2N − 1, n = 1, 2, · · · ,M. (2.9f)

3. Error estimate

Let en
i, j = un

i, j − Un
i, j be the error of the approximation solution U at the grid point (xi, y j, tn), and

µ = τ
h2 be the grid ratio. Then, the error equations of (2.9a)–(2.9f) are

en
i, j − en−1

i, j = a2µ
(
en

i−1, j + en
i+1, j + en

i, j−1 + en
i, j+1 − 4en

i, j

)
+ ταn

i, j,

i, j = 1, · · · , 2N − 1, n = 1, 2, · · · ,M, (3.1a)
e0

i, j = 0, i, j = 0, 1, · · · , 2N, (3.1b)

en
0, j = 0, j = 0, 1, · · · , 2N, n = 1, 2, · · · ,M, (3.1c)

en
2N, j = 0, j = 0, 1, · · · , 2N, n = 1, 2, · · · ,M, (3.1d)

en
i,0 = en

i,2N , i = 1, 2, · · · , 2N − 1, n = 1, 2, · · · ,M, (3.1e)
en

i,0 − en−1
i,0 = 2a2µ(en

i,1 − en
i,0) + a2µ(en

i−1,0 − 2en
i,0 + en

i+1,0) + ταn
i,0,

i = 1, 2, · · · , 2N − 1, n = 1, 2, · · · ,M. (3.1f)
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Given the complexity of the above error equations, the key to obtaining an error estimate lies in
finding transformations that separate the index variables i, j, and n.

Since the error sequence {en
i, j} satisfies (3.1c) and (3.1d), applying the DFT to {en

i, j} with respect to
i, we obtain

en
i, j =

√
2h

2N−1∑
k=1

ên
k, j sin (kπxi), i, j = 0, 1, · · · , 2N. (3.2)

Similarly, applying the DFT to {αn
i, j} with respect to i, we obtain

αn
i, j =

√
2h

2N−1∑
k=1

α̂n
k, j sin (kπxi), i = 1, 2, · · · , 2N − 1, j = 0, 1, · · · , 2N − 1. (3.3)

It follows from (2.8) and (3.3) that∣∣∣̂αn
k, j

∣∣∣ . τ + h2

h
1
2

, k = 1, 2, · · · , 2N − 1, j = 0, 1, · · · , 2N − 1. (3.4)

Substituting (3.2) and (3.3) into (3.1a), we obtain

√
2h

2N−1∑
k=1

(̂en
k, j − ên−1

k, j ) sin (kπxi)

=
√

2ha2µ

2N−1∑
k=1

(̂
en

k, j(sin (kπxi−1) − 2 sin (kπxi) + sin (kπxi+1))

+(̂en
k, j−1 − 2̂en

k, j + ên
k, j+1) sin (kπxi)

)
+
√

2hτ
2N−1∑
k=1

α̂n
k, j sin (kπxi),

i, j = 1, 2, · · · , 2N − 1. (3.5)

Utilizing the properties of the DFT and (3.5), we obtain

ên
k, j − ên−1

k, j = a2µ

(̂
en

k, j−1 −

(
2 + 4 sin2 kπh

2

)
ên

k, j + ên
k, j+1

)
+ τα̂n

k, j,

j = 1, 2, · · · , 2N − 1. (3.6)

Similarly, substituting (3.2) and (3.3) into (3.1f), we have

ên
k,0 − ên−1

k,0 = 2a2µ(̂en
k,1 − ên

k,0) − 4a2µ sin2 kπh
2

ên
k,0 + τα̂n

k,0. (3.7)

Substituting (3.2) into (3.1b) and (3.1e), we deduce that

ê0
k, j = 0, j = 0, 1, · · · , 2N, (3.8)

and

ên
k,0 = ên

k,2N . (3.9)
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Given that the sequence {̂en
k, j} adheres to the condition specified in (3.9), the conventional DFT is

found to be inadequate for our analytical needs. In pursuit of a suitable tool for analysis, we aspire for a
novel transformation that not only fulfills the criteria outlined in (3.9) but also possesses the property of
invertibility. Drawing inspiration from the formulation of the DFT, we introduce a fresh transformation
tailored specifically for the sequence {̂en

k, j} with respect to j in the following way, aiming to address the
aforementioned limitations and meet our analytical needs.

ên
k, j =

2N−1∑
l=0

ẽn
k,lTl(y j), j = 0, 1, · · · , 2N − 1, (3.10)

where

Tl(y) =

 cos (2lπy), l = 0, 1, · · · ,N,
y sin (2lπy), l = N + 1,N + 2, · · · , 2N − 1.

(3.11)

It is straightforward to verify Lemma 3.1.

Lemma 3.1. The sequence {Tl(y j)} has the following properties.

(1) Tl(y0) =

 1, l = 0, 1, · · · ,N,
0, l = N + 1,N + 2, · · · , 2N − 1.

(2) Tl(y1) − Tl(y0) =

 (cos (2lπh) − 1)Tl(y0), l = 0, 1, · · · ,N,
h sin (2lπh), l = N + 1,N + 2, · · · , 2N − 1.

(3) For any 0 ≤ l, j ≤ 2N − 1,

Tl(y j−1) − 2Tl(y j) + Tl(y j+1)

=

 2(cos (2lπh) − 1)Tl(y j), l = 0, 1, · · · ,N,
2(cos (2lπh) − 1)Tl(y j) + 2hT2N−l(y j) sin (2lπh), l = N + 1,N + 2, · · · , 2N − 1.

(4) Tl(y2N− j) =

 cos (2lπy j), l = 0, 1, · · · ,N,
(y j − 1) sin (2lπy j), l = N + 1,N + 2, · · · , 2N − 1.

For the sake of simplicity in the subsequent analysis, we introduce

Pl(y) :=

 cos (2lπy), l = 0, 1, · · · ,N,
sin (2lπy), l = N + 1,N + 2, · · · , 2N − 1,

(3.12)

and consider the orthogonality relation of the polynomials Pl(yi) and Pl(y j).

Lemma 3.2. Given that i, j = 0, · · · ,N, we have the following identity:

N∑
l=0

σlPl(yi)Pl(y j) =

 N
2σi
, i = j,

0, i , j,
(3.13)

where

σl =

 1
2 , l = 0,N,
1, otherwise.

(3.14)
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Proof. Using (3.14) and (3.12), and noticing 2Nh = 1 and yi = ih, we have

N∑
l=0

σlPl(yi)Pl(y j) =

N−1∑
l=1

Pl(yi)Pl(y j) +
1
2

∑
l=0,N

Pl(yi)Pl(y j)

=

N−1∑
l=1

cos (2lπyi) cos (2lπy j) +
1
2

(1 + cos (2Nπyi) cos (2Nπy j))

=
1
2

N−1∑
l=1

cos (2lπyi+ j) +
1
2

N−1∑
l=1

cos (2lπyi− j) +
1 + (−1)i+ j

2
. (3.15)

For 0 ≤ m ≤ 2N, we have

2
N−1∑
l=1

cos (2lπym) =

N−1∑
l=1

(cos (2(l − 1)πym) + cos (2(l + 1)πym)) − 1 + cos (2(N − 1)πym)

+ cos (2πym) − cos (2Nπym)

= 2 cos (2πym)
N−1∑
l=1

cos (2lπym) + (1 + (−1)m)(cos (2πym) − 1),

i.e.,

2(1 − cos (2lπym))
N−1∑
l=1

cos (2lπym) = (1 + (−1)m)(cos (2πym) − 1).

If cos (2lπym) , 1, then

N−1∑
l=1

cos (2lπym) = −
1 + (−1)m

2
. (3.16)

Now we focus on the case i , j. Since 0 ≤ i, j ≤ N, it follows that 0 < yi+ j < 1 and 0 <
∣∣∣yi− j

∣∣∣ < 1.
Furthermore, when l ranges from 1 to N1, we observe that cos (2lπyi− j) , 1 and cos (2lπyi+ j) , 1.

Thus, with (3.16), and observing the same parity of i + j and i − j, we obtain

N−1∑
l=1

cos (2lπyi+ j) =

N−1∑
l=1

cos (2lπyi− j) = −
1 + (−1)i+ j

2
.

Substituting the above equality into (3.15), we deduce that

N∑
l=0

σlPl(yi)Pl(y j) = 0, i , j. (3.17)

In the next, we consider the case i = j. Noting that when 1 ≤ l ≤ N − 1, cos (2lπy2i) is equal to 1
only in i = 0 and i = N. Therefore, by utilizing (3.16), we obtain

N−1∑
l=1

cos (2lπy2i) =

−1, i = 1, 2, · · · ,N − 1,
N − 1, i = 0,N.

(3.18)
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Substituting (3.18) into (3.15), we deduce that

N∑
l=0

σlPl(yi)Pl(y j) =

 N
2 , i = 1, 2, · · · ,N − 1,
N, i = 0,N.

(3.19)

Furthermore, with (3.14), (3.17), and (3.19), we arrive at the conclusion stated in (3.13). �

Similar to Lemma 3.2, we can derive the subsequent lemma as well.

Lemma 3.3. Given that i, j = N + 1, · · · , 2N − 1, we have the following identity

2N−1∑
l=N+1

Pl(yi)Pl(y j) =

 N
2 , i = j,

0, i , j.
(3.20)

Therefore, we can conclude the following lemma.

Lemma 3.4. Suppose

ai =

2N−1∑
l=N+1

âlPl(yi), i = N + 1,N + 2, · · · , 2N − 1. (3.21)

Then

âl =
2
N

2N−1∑
i=N+1

aiPl(yi), l = N + 1,N + 2, · · · , 2N − 1. (3.22)

Proof. Using (3.21), (3.12), and Lemma 3.3, we obtain

2N−1∑
i=N+1

aiPl(yi) =

2N−1∑
i=N+1

2N−1∑
m=N+1

âmPl(yi)Pm(yi)

=

2N−1∑
m=N+1

âm

2N−1∑
i=N+1

Pi(yl)Pi(ym)

=
N
2

âl.

The proof is finished. �

Similar to Lemma 3.4, we obtain

Lemma 3.5. Suppose

ai =

N∑
l=0

âlPl(yi), i = 0, 1, · · · ,N. (3.23)

Then

âl =
2σl

N

N∑
i=0

σiaiPl(yi), l = 0, 1, · · · ,N. (3.24)
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Based on Lemmas 3.4 and 3.5, we obtain the invertible transformation of (3.25).

Lemma 3.6. Suppose

â j =

2N−1∑
l=0

ãlTl(y j), j = 0, 1, · · · , 2N − 1. (3.25)

Then,

ãl =


2σl
N

N∑
j=0
σ j((1 − y j)̂a j + y ĵan

2N− j) cos (2lπy j), l = 0, 1, · · · ,N,

2
N

N∑
j=0

(̂a j − â2N− j) sin (2lπy j), l = N + 1,N + 2, · · · , 2N − 1,
(3.26)

where

σ j =

 1
2 , j = 0,N,
1, otherwise.

(3.27)

Proof. Using (3.25), (3.12), and Lemma 3.1, we have

â2N− j =

N∑
l=0

ãlPl(y j) + (y j − 1)
2N−1∑
l=N+1

ãlPl(y j),

and

â j =

N∑
l=0

ãlPl(y j) + y j

2N−1∑
l=N+1

ãlPl(y j).

From the two equalities above, it follows that

(1 − y j)̂a j + y ĵa2N− j =

N∑
l=0

ãlPl(y j)

and

â j − â2N− j =

2N−1∑
l=N+1

ãlPl(y j).

Moreover, using Lemmas 3.5 and 3.4, we arrive at the conclusion stated in (3.26). �

Similar to (3.10), we use the same transformation to {α̂n
k, j} with respect to j in the following way:

α̂n
k, j =

2N−1∑
l=0

α̃n
k,lTl(y j), j = 0, 1, · · · , 2N − 1. (3.28)
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Using (3.4), (3.27), and Lemma 3.6, and noting that 0 ≤ y j ≤ 1 ( j = 0, 1, · · · , 2N), we can deduce∣∣∣α̃n
k,l

∣∣∣ . τ + h2

h
1
2

, l = 0, 1, · · · , 2N − 1. (3.29)

Substituting (3.10) and (3.28) into (3.6), we obtain

2N−1∑
l=0

(̃en
k,l − ẽn−1

k,l )Tl(y j) = a2µ

2N−1∑
l=0

ẽn
k,l(Tl(y j−1) − (2 + 4 sin2 kπh

2
)Tl(y j) + Tl(y j+1))

+ τ

2N−1∑
l=0

α̃n
k,lTl(y j), j = 1, 2, · · · , 2N − 1. (3.30)

Using Lemma 3.1, (3.30) can be rewritten as

2N−1∑
l=0

(̃en
k,l − ẽn−1

k,l )Tl(y j) = a2µ

2N−1∑
l=0

(
2(cos (2lπh) − 1) − 4 sin2 kπh

2

)
ẽn

k,lTl(y j)

+2h
2N−1∑
l=N+1

ẽn
k,lT2N−l(y j) sin (2lπh)

 + τ

2N−1∑
l=0

α̃n
k,lTl(y j),

j = 1, 2, · · · , 2N − 1.

Let l := 2N − l in
2N−1∑
l=N+1

ẽn
k,lT2N−l(y j) sin (2lπh), the above equalities have the following form:

2N−1∑
l=0

(̃en
k,l − ẽn−1

k,l )Tl(y j) = −2a2µ

2 2N−1∑
l=0

(
sin2 (lπh) + sin2 kπh

2

)
ẽn

k,lTl(y j)

+h
N−1∑
l=1

ẽn
k,2N−lTl(y j) sin (2lπh)

 + τ

2N−1∑
l=0

α̃n
k,lTl(y j),

j = 1, 2, · · · , 2N − 1. (3.31)

Substitute (3.10) into (3.7), then

2N−1∑
l=0

(̃en
k,0 − ẽn−1

k,0 )Tl(y0) = 2a2µ

2N−1∑
l=0

ẽn
k,l(Tl(y1) − Tl(y0)) − 4a2µ sin2 kπh

2

2N−1∑
l=0

ẽn
k,lTl(y0)

+ τ

2N−1∑
l=0

α̃n
k,lTl(y0).

Moreover, using Lemma 3.1, we obtain

2N−1∑
l=0

(̃en
k,0 − ẽn−1

k,0 )Tl(y0)

= −2a2µ

2 2N−1∑
l=0

(
sin2 (lπh) + sin2 kπh

2

)
ẽn

k,lTl(y0) + h
N−1∑
l=1

ẽn
k,2N−lTl(y0) sin (2lπh)


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+ τ

2N−1∑
l=0

α̃n
k,lTl(y0).

Through comparing with the above equality and (3.31), we find that (3.31) also holds for j = 0.
Therefore,

2N−1∑
l=0

(̃en
k,l − ẽn−1

k,l )Tl(y j) = −2a2µ

2 2N−1∑
l=0

(
sin2 (lπh) + sin2 kπh

2

)
ẽn

k,lTl(y j)

+h
N−1∑
l=1

ẽn
k,2N−lTl(y j) sin (2lπh)

 + τ

2N−1∑
l=0

α̃n
k,lTl(y j),

j = 0, 1, · · · , 2N − 1. (3.32)

Using Lemma 3.6 to perform an invertible transformation on (3.32), we obtain

ẽn
k,l − ẽn−1

k,l =−4a2µ
(
sin2 (lπh) + sin2 kπh

2

)
ẽn

k,l − 2a2µh̃en
k,2N−l sin (2lπh) + τα̃n

k,l, l = 1, 2, · · · ,N − 1,

−4a2µ
(
sin2 (lπh) + sin2 kπh

2

)
ẽn

k,l + τα̃n
k,l, l = 0,N,N + 1, · · · , 2N − 1.

(3.33)

Let

ωk,l =
1

1 + 4a2µ
(
sin2 (lπh) + sin2 kπh

2

) . (3.34)

Obviously,

0 < ωk,l < 1. (3.35)

Using (3.34), (3.33) can be rewritten as

ẽn
k,l =

ωk,l̃en−1
k,l − 2a2µhωk,l̃en

k,2N−l sin (2lπh) + τωk,lα̃
n
k,l, l = 1, 2, · · · ,N − 1,

ωk,l̃en−1
k,l + τωk,lα̃

n
k,l, l = 0,N,N + 1, · · · , 2N − 1.

(3.36)

Substituting (3.10) into (3.8), and using Lemma 3.6, we can easily deduce that

ẽn
k,l = 0, l = 0, 1, · · · , 2N − 1. (3.37)

Using (3.36) and (3.37), we obtain the following recursive formula for
{̃
en

k,l

}
:

ẽn
k,l =
−2a2µh sin (2lπh)

n∑
m=1

(ωk,l)n−m+1̃em
k,2N−l + τ

n∑
m=1

(ωk,l)n−m+1α̃m
k,l, l = 1, 2, · · · ,N − 1,

τ
n∑

m=1
(ωk,l)n−m+1α̃m

k,l, l = 0,N,N + 1, · · · , 2N − 1.
(3.38)
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In order to estimate
{̃
en

k,l

}
, we first prove the following estimation

n∑
m=1

(ωk,l)n−m+1 .

 1
τ(l2+k2) , l = 0, 1, · · · ,N,

1
τ((2N−l)2+k2) , l = N + 1,N + 2, · · · , 2N − 1.

(3.39)

In fact, from (3.34) and (3.35), we can derive that

n∑
m=1

(ωk,l)n−m+1 =
ωk,l − (ωk,l)n+1

1 − ωk,l

=
1 − (ωk,l)n

µ(sin2 (lπh) + sin2 kπh
2 )

≤
1

µ(sin2 (lπh) + sin2 kπh
2 )
. (3.40)

For 0 ≤ l ≤ N,we have lπh ∈ [0, π2 ]. Observe that kπh
2 ∈ (0, π2 ) (1 ≤ k ≤ 2N − 1). Therefore, (3.40)

can be rewritten as

n∑
m=1

(ωk,l)n−m+1 .
1

µh2(4l2 + k2)
.

1
τ(l2 + k2)

. (3.41)

For N ≤ l ≤ 2N − 1, from 2Nh = 1 and 0 < (2N − l)πh ≤ π
2 , we have

sin (lπh) = sin (2(2N − l)πh) ≥ 2(2N − l)h.

Moreover, (3.40) can be written as

n∑
m=1

(ωk,l)n−m+1 .
1

µh2(4(2N − l)2 + k2)
.

1
τ((2N − l)2 + k2)

. (3.42)

Therefore, combining (3.41) with (3.42), (3.39) holds.
Now, we give the estimation of

{̃
en

k,l

}
in three cases.

Case 1. N ≤ l ≤ 2N − 1
With (3.38), (3.35), (3.29), and (3.39), we have

∣∣∣̃en
k,l

∣∣∣ ≤ τ n∑
m=1

(ωk,l)n−m+1
∣∣∣α̃n

k,l

∣∣∣
.
τ(τ + h2)

h
1
2

n∑
m=1

(ωk,l)n−m+1

.
τ + h2

h
1
2 ((2N − l)2 + k2)

. (3.43)

Case 2. 1 ≤ l ≤ N − 1
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Using (3.43), we obtain ∣∣∣̃en
k,2N−l

∣∣∣ . τ + h2

h
1
2 (l2 + k2)

. (3.44)

From the above inequality, and using (3.38), (3.35), (3.39), (3.29), and µ = τ
h2 , we obtain

∣∣∣̃en
k,l

∣∣∣ ≤ 2a2µh sin (2lπh)
n∑

m=1

(ωk,l)n−m+1
∣∣∣̃em

k,2N−l

∣∣∣ + τ

n∑
m=1

(ωk,l)n−m+1
∣∣∣α̃m

k,l

∣∣∣
.

(
µh sin (2lπh) ·

τ + h2

h
1
2 (l2 + k2)

+
τ(τ + h2)

h
1
2

) n∑
m=1

(ωk,l)n−m+1

.
τ + h2

h
1
2 (l2 + k2)

(
sin (lπh)
h(l2 + k2)

+ 1
)

.
τ + h2

h
1
2 (l2 + k2)

. (3.45)

Case 3. l = 0
Observing that ωk,0 = 1

1+4a2µ sin2 kπh
2

, similar to deduce (3.43), we obtain

∣∣∣̃en
k,0

∣∣∣ . τ + h2

k2h
1
2

. (3.46)

From (3.10), (3.43), (3.45), and (3.46), and noticing that Tl(y j) is bounded for any 0 ≤ l, j ≤ 2N−1,
we have ∣∣∣̂en

k, j

∣∣∣ ≤ 2N−1∑
l=0

∣∣∣̃en
k,l

∣∣∣ ∣∣∣Tl(y j)
∣∣∣

.
τ + h2

k2h
1
2

 1
k2 +

N−1∑
l=1

1
l2 + k2 +

2N−1∑
l=N

1
(2N − l)2 + k2


.
τ + h2

h
1
2

N−1∑
l=0

1
l2 + k2 . (3.47)

Furthermore, from (3.2), we obtain

∣∣∣en
i, j

∣∣∣ ≤ √2h
2N−1∑
k=1

∣∣∣̂en
k, j

∣∣∣
. (τ + h2)

2N−1∑
k=1

N−1∑
l=0

1
l2 + k2

. (τ + h2)

3 2N∑
k=1

1
k2 +

2N∑
k=2

2N∑
l=2

1
l2 + k2


. (τ + h2)

2N∑
k=2

2N∑
l=2

1
l2 + k2 . (3.48)
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Since 1
x2+y2 is increasing monotonically with respect to variables x and y for x, y > 0, respectively, it

follows that
2N∑
k=2

2N∑
l=2

1
l2 + k2 = h2

2N∑
k=2

2N∑
l=2

1
(lh)2 + (kh)2

≤

"
Ωh

1
x2 + y2 dxdy

<

∫ π
2

0
dθ

∫ √
2

h

dr
r

≤
π

2
|ln h| , (3.49)

where Ωh = [h, 1] × [h, 1].
Using (3.49) and (3.48), and noticing (3.1c)–(3.1e), we can obtain the following error estimation

theorem.

Theorem 3.1. Suppose u ∈ C4(QT ). For any postive integer 1 ≤ n ≤ M, the following estimates
for (2.9a)–(2.9f) ∣∣∣en

i, j

∣∣∣ . (τ + h2) |ln h| , i, j = 0, 1, · · · , 2N.

hold.

4. Superconvergence anaylysis

In this section, we present the approximation formulas for the partial derivatives of u with respect
to two spatial variables, which exhibit superconvergence under certain smooth conditions.

Let Ux and Uy be the approximation functions for the partial derivatives ux and uy, respectively. For
any tn (1 ≤ n ≤ M), we introduce the following approximation formulas for ux and uy at the grid point
(xi, y j, tn), respectively:

Ux(xi, y j, tn) =
Un

i+1, j − Un
i−1, j

2h
, 1 ≤ i ≤ 2N − 1, 0 ≤ j ≤ 2N, (4.1)

and

Uy(xi, y j, tn) =
Un

i, j+1 − Un
i, j−1

2h
, 0 ≤ i ≤ 2N, 1 ≤ j ≤ 2N − 1. (4.2)

Before exploring the superconvergence of (4.1) and (4.2), we first present the following lemma.

Lemma 4.1. Suppose that the function p(x) ∈ C1[0, 1] satisfies

max
x∈[0,1]

{|p(x)| , |p′(x)|} ≤ M, (4.3)

where M is a positive constant. If

p̂k =
√

2h
2N−1∑
i=1

pi sin (iπxk), i = 1, 2, · · · , 2N − 1, (4.4)
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then ∣∣∣ p̂k

∣∣∣ ≤ Mπ

kh
1
2

.
1

kh
1
2

. (4.5)

Proof. Let θk = kπh
2 . Obviously, θk ∈ (0, π2 ). We can easily verify the following equality:

2N−1∑
i=1

(pi−1 − 2pi + pi+1) sin (iπxk)

=

2N−1∑
i=1

pi(sin ((i + 1)πxk) − 2 sin (iπxk) + sin ((i − 1)πxk))

+ p0 sin (πxk) + p2N sin ((2N − 1)πxk)

= −4 sin2 θk

2N−1∑
i=1

pi sin (iπxk) + (p0 + (−1)k p2N) sin (2θk). (4.6)

Noting that
2N−1∑
i=1

(pi − pi−1) sin (iπxk)

=

2N−1∑
i=1

(∫ xi

xi−1

p′(x) sin (kπx)dx +

∫ xi

xi−1

p′(x)(sin (kπxi) − sin (kπx))dx
)

=

∫ x2N−1

0
p′(x) sin kπxdx + 2

2N−1∑
i=1

∫ xi

xi−1

p′(x) cos
kπ(xi + x)

2
sin

kπ(xi − x)
2

dx, (4.7)

the following equality is also verified:
2N−1∑
i=1

(pi+1 − pi) sin (iπxk)

=

∫ 1

x1

p′(x) sin (kπx)dx + 2
2N−1∑
i=1

∫ xi+1

xi

p′(x) cos
kπ(xi+1 + x)

2
sin

kπ(xi+1 − x)
2

dx. (4.8)

Subtracting (4.7) from (4.8), we have
2N−1∑
i=1

(pi−1 − 2pi + pi+1) sin (iπxk) =

∫ 1

x2N−1

p′(x) sin (kπx)dx −
∫ x1

0
p′(x) sin (kπx)dx

+ 2
∫ 1

x2N−1

p′(x) cos
kπ(1 + x)

2
sin

kπ(1 − x)
2

dx

− 2
∫ x1

0
p′(x) cos

kπ(x1 + x)
2

sin
kπ(x1 − x)

2
dx.

Thus, using (4.3), we obtain ∣∣∣∣∣∣∣
2N−1∑
i=1

(pi−1 − 2pi + pi+1) sin (iπxk)

∣∣∣∣∣∣∣ ≤ 6Mh. (4.9)
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Using (4.6), (4.3), and (4.9), and noting θk ∈ (0, π2 ), we obtain∣∣∣∣∣∣∣
2N−1∑
i=1

pi sin (iπxk)

∣∣∣∣∣∣∣
=

1
4 sin2 θk

∣∣∣∣∣∣∣
2N−1∑
i=1

(pi−1 − 2pi + pi+1) sin (iπxk) − (p0 + (−1)k p2N) sin (2θk)

∣∣∣∣∣∣∣
≤

3Mh + 2M sin θk

2 sin2 θk

≤
Mπ

kh
.

Therefore, the lemma is proved with (4.4). �

Next, we study the superconvergence of (4.1).

Theorem 4.1. Suppose u ∈ C5(QT ). Then, for any integer 1 ≤ n ≤ M,∣∣∣Ux(xi, y j, tn) − ux(xi, y j, tn)
∣∣∣ . (τ + h2) |ln h| , i = 1, 2, · · · , 2N − 1, j = 0, 1, · · · , 2N. (4.10)

Proof. From (4.1) and u ∈ C5(QT ), we obtain

Ux(xi, y j, tn) = ux(xi, y j, tn) +
en

i+1, j − en
i−1, j

2h
+ O(h2).

Thus, in order to prove this theorem, it suffices to prove the following inequality, i.e., for any given
integer 1 ≤ n ≤ M,∣∣∣∣∣∣en

i+1, j − en
i−1, j

2h

∣∣∣∣∣∣ . (τ + h2) |ln h| , i = 1, 2, · · · , 2N − 1, j = 0, 1, · · · , 2N. (4.11)

From (3.2) and (3.10), we have

en
i+1, j − en

i−1, j

2h
=

2
√

2h

2N−1∑
k=1

ên
k, j sin (kπh) cos (kπxi)

=
2
√

2h

2N−1∑
k=1

2N−1∑
l=0

ẽn
k,lTl(y j) sin (kπh) cos (kπxi). (4.12)

Since u ∈ C5(QT ), using Lemma 4.1, (2.8), and (3.3), we obtain∣∣∣̂αn
k, j

∣∣∣ . τ + h2

kh
1
2

. (4.13)

Correspondingly, (3.29) is written as ∣∣∣α̃n
k,l

∣∣∣ . τ + h2

kh
1
2

. (4.14)
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For this, by modifying (3.43), (3.45), and (3.46), we obtain

∣∣∣̃en
k,l

∣∣∣ .


τ+h2

kh
1
2 (l2+k2)

, 0 ≤ l ≤ N,
τ+h2

kh
1
2 ((2N−l)2+k2)

, N + 1 ≤ l ≤ 2N − 1.
(4.15)

Using (4.12) and (4.15), and given |Tl(y)| ≤ 1 for y ∈ [0, 1], we obtain∣∣∣∣∣∣en
i+1, j − en

i−1, j

2h

∣∣∣∣∣∣ . h
1
2

2N−1∑
k=1

k
2N−1∑
l=0

∣∣∣̃en
k,l

∣∣∣
≤ (τ + h2)

2N−1∑
k=1

N−1∑
l=0

1
l2 + k2 +

2N−1∑
l=N

1
(2N − l)2 + k2


. (τ + h2)

2N∑
k=2

2N∑
l=2

1
l2 + k2 . (4.16)

From this, using (3.49), we prove (4.11). Therefore, (4.10) holds. �

In the following, we discuss the superconvergence properties of (4.2).

Theorem 4.2. Suppose u ∈ C5(QT ). Then, for any integer 1 ≤ n ≤ M,∣∣∣Uy(xi, y j, tn) − uy(xi, y j, tn)
∣∣∣ . (τ + h2) ln2 h, i = 0, 1, · · · , 2N, j = 1, 2, · · · , 2N − 1, (4.17)

hold.

Proof. From (4.2) and u ∈ C5(QT ), we obtain

Ux(xi, y j, tn) = ux(xi, y j, tn) +
en

i, j+1 − en
i−1, j−1

2h
+ O(h2). (4.18)

From (4.18), in order to prove this theorem, we only need to prove that for any integer 1 ≤ n ≤ M,∣∣∣∣∣∣en
i, j+1 − en

i, j−1

2h

∣∣∣∣∣∣ . (τ + h2) ln2 h, i = 0, 1, · · · , 2N, j = 1, 2, · · · , 2N − 1. (4.19)

Using (3.2) and (3.10), and noting that T0(y j+1) − T0(y j−1) = 0, we find that

en
i, j+1 − en

i, j−1

2h
=

2
√

2h

2N−1∑
k=1

(̂en
k, j+1 − ên

k, j−1) sin (kπxi)

=
2
√

2h

2N−1∑
k=1

2N−1∑
l=0

ẽn
k,l(Tl(y j+1) − Tl(y j−1)) sin (kπxi)

=
2
√

2h

2N−1∑
k=1

2N−1∑
l=1

ẽn
k,l(Tl(y j+1) − Tl(y j−1)) sin (kπxi). (4.20)

Using (3.11), when N ≤ l ≤ 2N − 1, we have∣∣∣Tl(y j+1) − Tl(y j)
∣∣∣ ≤ 2

∣∣∣y j cos ((y j+1 + y j)lπ) sin (2lπh)
∣∣∣ + h

∣∣∣sin (2lπy j+1)
∣∣∣
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. |sin ((2N − l)πh)| + h

. (2N − l)h. (4.21)

Furthermore, we also deduce that∣∣∣Tl(y j+1) − Tl(y j)
∣∣∣ = 2

∣∣∣sin ((y j+1 + y j)lπ) sin (2lπh)
∣∣∣ . lh. (4.22)

Using (4.20), (4.15), (4.21), and (4.22), we obtain∣∣∣∣∣∣en
i, j+1 − en

i, j−1

2h

∣∣∣∣∣∣ . 1

h
1
2

2N−1∑
k=1

2N−1∑
l=1

∣∣∣̃en
k,l

∣∣∣ ∣∣∣Tl(y j+1) − Tl(y j−1)
∣∣∣

.
τ + h2

h

2N−1∑
k=1

 N∑
l=1

lh
k(k2 + l2)

+

2N−1∑
l=N+1

(2N − l)h
k(k2 + (2N − l)2)


. (τ + h2)

2N−1∑
k=1

N∑
l=1

l
k(k2 + l2)

. (τ + h2)

 2N∑
l=1

l
1 + l2 +

2N∑
k=1

1
k(k2 + 1)

+

2N∑
k=2

2N∑
l=2

l
k(k2 + l2)


. (τ + h2)

|ln h| +
2N∑
k=2

2N∑
l=2

l
k(k2 + l2)

 . (4.23)

Upon observing

2
2N∑
k=2

2N∑
l=2

l
k(k2 + l2)

=

2N∑
k=2

2N∑
l=2

(
l

k(k2 + l2)
+

k
l(k2 + l2)

)

=

2N∑
k=2

2N∑
l=2

1
kl

≤ ln2 h,

by substituting this result into (4.23), we obtain∣∣∣∣∣∣en
i, j+1 − en

i, j−1

2h

∣∣∣∣∣∣ . (τ + h2) ln2 h.

This result confirms (4.19), thereby establishing the validity of (4.17). �

5. Numerical experiments

In this section, we present two numerical examples to validate the theoretical results and investigate
the efficiency and the superconvergence properties of the numerical schemes. Our aim is to demonstrate
the practical implications of the theoretical findings and assess the performance of the proposed
methods. Let

‖U − u‖∞ := max
1≤n≤M

0≤i, j≤2N

∣∣∣Un
i, j − un

i, j

∣∣∣ ,
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‖Ux − ux‖∞ := max
1≤n≤M

1≤i≤2N−1
0≤ j≤2N

∣∣∣(Ux)n
i, j − (ux)n

i, j

∣∣∣ ,
‖Uy − uy‖∞ := max

1≤n≤M
0≤i≤2N

1≤ j≤2N−1

∣∣∣(Uy)n
i, j − (uy)n

i, j

∣∣∣ .
Example 5.1. In (1.1)–(1.6), take

a = 1, T = 1, f (x, y, t) = 0, g(x, y) = ex+y, µ1(y, t) = ey+2t,

µ2(y, t) = e1+y+2t, µ3(x, t) = ex+2t(1 − e), µ4(x, t) = ex+2t.

The exact solution is u = ex+y+2t which can be easily verified.
The results are reported in Tables 1–3. From Table 1, we can observe that in the cases of τ = h2 and

τ = h, the error ‖U − u‖∞ is approximately of the order O(h2) and O(h), respectively. This observation
verifies the correctness of Theorem 3.1.

Furthermore, from Tables 2 and 3, it is evident that when τ = h2, both ‖Ux − ux‖∞ and ‖Uy − uy‖∞

are close to the order O(h2). On the other hand, when τ = h, ‖Ux − ux‖∞ and ‖Uy − uy‖∞ approach the
order O(h). These findings support the theoretical expectations regarding the convergence rates of the
spatial derivatives. Therefore, the correctness of Theorems 4.1 and 4.2 is verified.

Table 1. Error with respect to u in τ = h and τ = h2 for Example 5.1.

h
τ = h2 τ = h

‖U − u‖∞ ratio ‖U − u‖∞ ratio
1/32 4.4377e-003 - 1.2941e-001 -
1/64 1.1104e-003 4.00 6.5173e-002 1.99
1/128 2.7768e-004 4.00 3.2701e-002 1.99
1/256 6.9427e-005 4.00 1.6379e-002 2.00

Table 2. Error of ux and uy in τ = h2 for Example 5.1.

h τ ‖Ux − ux‖∞ ratio ‖Uy − uy‖∞ ratio
1/32 1/322 1.7481e-002 - 7.0681e-003 -
1/64 1/642 4.4901e-003 3.89 1.8960e-003 3.73

1/128 1/1282 1.1379e-003 3.95 5.0110e-004 3.78
1/256 1/2562 2.8640e-004 3.97 1.3025e-004 3.85

Table 3. Error of ux and uy in τ = h for Example 5.1.

h τ ‖Ux − ux‖∞ ratio ‖Uy − uy‖∞ ratio
1/32 1/32 6.1798e-001 - 1.7722e-001 -
1/64 1/64 3.3247e-001 1.86 1.0037e-001 1.77

1/128 1/128 1.7242e-001 1.93 5.3329e-002 1.88
1/256 1/256 8.7795e-002 1.96 2.7478e-002 1.94
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Example 5.2. In problems (1.1)–(1.6), take

a = 1, T = 1, f (x, y, t) = 0, g(x, y) = (1 + y)ex, µ1(y, t) = (1 + y)et,

µ2(y, t) = (1 + y)e1+t, µ3(x, t) = −ex+t, µ4(x, t) = ex+t.

It is easily verified that its exact solution is u = (1 + y)ex+t.

Numerical results for Example 5.2 are reported in Tables 4–6. These results verify the correctness
of Theorems 3.1, 4.1 and 4.2 again.

Table 4. Error with respect to u in τ = h and τ = h2 for Example 5.2.

h
τ = h2 τ = h

‖U − u‖∞ ratio ‖U − u‖∞ ratio
1/32 4.2726e-004 - 1.1677e-002 -
1/64 1.1104e-003 4.00 5.8545e-003 1.99
1/128 1.0692e-004 4.00 2.9303e-003 2.00
1/256 6.6840e-006 4.00 1.4660e-003 2.00

Table 5. Error of ux and uy in τ = h2 for Example 5.2.

h τ ‖Ux − ux‖∞ ratio ‖Uy − uy‖∞ ratio
1/32 1/322 2.2208e-003 - 3.8223e-004 -
1/64 1/642 5.6284e-004 3.95 1.0418e-004 3.67

1/128 1/1282 1.4169e-004 3.97 2.7176e-005 3.83
1/256 1/2562 3.5544e-005 3.99 6.9401e-006 3.92

Table 6. Error of ux and uy in τ = h for Example 5.2.

h τ ‖Ux − ux‖∞ ratio ‖Uy − uy‖∞ ratio
1/32 1/32 5.1907e-002 - 1.0436e-002 -
1/64 1/64 2.7983e-002 1.85 5.7010e-003 1.83

1/128 1/128 1.4518e-002 1.93 2.9780e-003 1.91
1/256 1/256 7.3924e-003 1.96 1.5219e-003 1.96

6. Conclusions

This work focuses on a heat conduction problem with nonlocal boundary conditions. We develop
an implicit Euler scheme and demonstrate that it achieves asymptotic optimal order with the DFT.
Furthermore, we introduce two approximation formulas that exhibit superapproximation for first-
order partial derivatives along the x and y directions of the exact solution, respectively. In the
future, we plan to extend this work to other difference schemes for parabolic problems with nonlocal
boundary conditions, such as the explicit Euler scheme, the Crank-Nicolson scheme, and other
schemes. Additionally, we aim to consider heat conduction problems with different nonlocal boundary
conditions.
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