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Abstract: Artificial neural networks (ANNs) are the collection of computational techniques or models 

encouraged by the shape and purpose of natural or organic neural networks. Furthermore, a cubic 

intuitionistic fuzzy (CIF) set is the modified or extended form of a Fuzzy set (FS). Our goal was to 

address or compute the model of Aczel-Alsina operational laws under the consideration of the CIF set 

as well as Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-conorm (AATCN), where the model of 

Algebraic norms and Drastic norms were the special parts of the Aczel-Alsina norms. Further, using 

the above invented operational laws, we aimed to develop the model of Aczel-Alsina 

average/geometric aggregation operators, called CIF Aczel-Alsina weighted averaging (CIFAAWA), 

CIF Aczel-Alsina ordered weighted averaging (CIFAAOWA), CIF Aczel-Alsina hybrid averaging 

(CIFAAHA), CIF Aczel-Alsina weighted geometric (CIFAAWG), CIF Aczel-Alsina ordered weighted 

geometric (CIFAAOWG), and CIF Aczel-Alsina hybrid geometric (CIFAAHG) operators with some 

well-known and desirable properties. Moreover, a procedure decision-making technique was presented 

for finding the best type of artificial neural networks with the help of multi-attribute decision-making 

(MADM) problems based on CIF aggregation information. Finally, we determined a numerical 

example for showing the rationality and advantages of the developed method by comparing their 

ranking values with the ranking values of many prevailing tools. 
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1. Introduction  

To find the finest or best optimal form from the collection of finite alternatives, different 

techniques have been proposed by different scholars, such as MADM techniques [1,2], pattern 

recognition, artificial neural networks, and artificial intelligence. Various individuals have developed 

the MADM tools in different fields [3,4] based on classical set theory. However, because of 

complications and complexity in the case of classical set theory, experts have lost a lot of data during 

the decision-making process. To solve this problem, the fuzzy set (FS) was developed by Zadeh [5] in 

1965 by modifying the function �̈��̈�:℃ → {0,1} into �̈��̈�:℃ → [0,1], called truth grade. Furthermore, 

the FS has a lot of benefits, but it also has some limitations, such as in the presence of truth grade and 

falsity grade, FS has failed because it deals only with truth information and not with falsity information. 

For this, the IFS was proposed by Atanassov [6], which covered the truth and falsity grades, such as 

�̈��̈�:℃ → [0,1] and 𝜂�⃛�:℃ → [0,1] with a condition 0 ≤ �̈��̈�(𝛼) + 𝜂�⃛�(𝛼) ≤ 1. The FS is a special part 

of the IFS if we exclude the falsity of information 𝜂�⃛�:℃ → [0,1]. Additionally, to increase the ratio of 

correctness, we have also the best option to take the shape of an interval instead of a real number. For 

example, during any cricket match between Team A and Team B, we provided our opinion in the shape 

of the interval, and we decided that Team A would score between 150 to 180 in the T20 match. For 

such type of problem, the IFS and FS are not good; therefore, the idea of interval-valued IFS (IVIFS) 

was given by Atanassov [7], with a characteristic 0 ≤ �̈��̈�
+(𝛼) + 𝜂�⃛�

+(𝛼) ≤ 1, where [�̈��̈�
−(𝛼), �̈��̈�

+(𝛼)] and 

[𝜂�⃛�
−(𝛼), 𝜂�⃛�

+(𝛼)] represents the interval-valued truth and interval-valued falsity information. Moreover, 

Jun et al. [8] developed the cubic set, which is the combination of FS and interval-valued FS (IVFS) 

[9,10]. Moreover, Kaur and Garg [11] developed the cubic IFS (CIFS), which is the combination of 

IFS and IVIFS. The geometric representation of the FSs and their extensions are described in 

Figure 1. The model of cubic intuitionistic fuzzy sets is more extensive compared to other existing 

models. Further, a detailed review of the above existing models is described in the next sub-sections. 

Figure 1. Geometrical representation of the fuzzy sets and their extensions. 
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1.1. Literature review 

FS and its extensions have many applications in different fields, and because of their valuable and 

dominant structure, FS is better than the classical set, and IFS is more beneficial than FS, but the CIFS 

is more advanced and reliable than FS because it is a combination of two different structures, such as 

IFS and IVIFS. Some valuable applications are given; for instance, Mardani et al. [12] explored the 

aggregation operators for FS. Moreover, Merigo and Casanovas [13] developed the generalized hybrid 

aggregation operators for FS and their applications. Additionally, Xu [14] derived the simple 

aggregation operators for IFSs, whereas the prioritized aggregation operators for IFS were used by Yu 

and Xu [15]. Moreover, Xu and Yager [16] examined the geometric aggregation operators for IFS and 

their application in decision-making problems. Garg et al. [17] explored the Schweizer-Sklar 

prioritized aggregation operators for IFSs. Wang et al. [18] developed the aggregation operators for 

IVIFSs and their applications. Senapati et al. [19] proposed the Aczel-Alsina aggregation operators for 

IVIFSs. Shi et al. [20] evaluated the power aggregation operators based on Aczel-Alsina operational 

laws for IVIFSs. Wei and Wang [21] studied the geometric aggregation operators for IVIFSs and their 

application in decision-making problems. Xu and Chen [22] proposed the geometric aggregation 

operators for IVIFSs. Fahmi et al. [23] developed the Einstein aggregation operators for cubic fuzzy 

sets. Khan et al. [24] studied the cubical fuzzy aggregation operators and their application in decision-

making problems. Kaur and Garg [25] examined the simple aggregation operators based on cubic IFSs 

and their applications. Additionally, Kaur and Garg [26] derived the generalized aggregation operators 

(AOs) for cubic IFS and their application in decision-making problems. 

1.2. Aczel-Alsina t-norm and t-conorm 

Aggregating the collection of finite information is a very challenging task for scholars. The 

triangular norms were proposed by Klement and Mesiar [27], which are very valuable and dominant 

for evaluating any kind of aggregation operator. Furthermore, Aczel and Alsina [28] developed the 

Aczel-Alsina t-norm and t-conorm, which are the modified versions of the algebraic norms. Many 

scholars developed different types of aggregation operators based on Aczel-Alsina operational laws, 

for instance, Senapati et al. [29] presented the Aczel-Alsina AOs for IFSs. Further, Senapati et al. [30] 

developed the Aczel-Alsina AOs for IVIFSs. Moreover, Aczel-Alsina AOs based on hesitant FS were 

given by Senapati et al. [31]. Mahmood et al. [32] presented the Aczel-Alsina AOs for complex IFSs 

and their application. Senapati et al. [33] examined the geometric AOs for IFSs and their applications. 

Ahmad et al. [34] derived the Aczel-Alsina AOs for the intuitionistic fuzzy rough set. Sarfraz et al. [35] 

proposed the prioritized Aczel-Alsina AOs for IFSs. Mahmood et al. [36] explored the Aczel-Alsina 

power AOs for complex IFSs. Recently, Hussain et al. [37] introduced the intuitionistic fuzzy rough 

Aczel-Alsina AOs and their application in decision-making problems. Further, many types of operators 

were constructed by well-known scholars, for instance, the model of Dombi operators [38], 

Archimedean operators [39], and Frank operators [40]. Moreover, some scholars have modified the 

model of IFSs and invented the model of quasirung orthopair fuzzy sets [41], the model of (3, 4)-

quasirung orthopair fuzzy sets [42], q-rung orthopair fuzzy prioritized operators [43], linear 

Diophantine fuzzy sets [44], cubic picture fuzzy topology [45], and picture fuzzy soft-max Einstein 

operators [46]. 
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1.3. Main problems/research gaps/motivations of the proposed techniques 

The model for FSs theory and their modifications are very flexible because of their features, where 

these techniques are very reliable; however, due to ambiguity and problems, experts have lost a lot of 

information during the decision-making procedure. During decision-making assessments, all decision-

makers have faced the following dilemmas, such as  

1) How we define a new aggregation operator. 

2) How we aggregate the collection of information into a singleton set. 

3) How we rank all alternatives to select the best one. 

For handling such kinds of problems, the Aczel-Alsina operators based on the CIF set are very 

beneficial and consistent for assessing uncooperative and vague information in real-life problems. The 

model of Aczel-Alsina norms is described below, such as 

𝜋𝑡𝑛̿̿ ̿̿
ℏℏ(𝛼1̌, 𝛼2̌) = {

𝜋𝑡𝑛̿̿ ̿̿ (𝛼1̌, 𝛼2̌) 𝑤ℎ𝑒𝑛 ℏℏ = 0,

𝑚𝑖𝑛(𝛼1̌, 𝛼2̌) 𝑤ℎ𝑒𝑛 ℏℏ = ∞

𝔈−((−𝕀𝔫(𝛼1̌))
ℏℏ+(−𝕀𝔫(𝛼2̌))

ℏℏ)
1
ℏℏ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

,   

𝜋𝑡𝑐𝑛̿̿ ̿̿ ̿̿
ℏℏ(𝛼1̌, 𝛼2̌) = {

𝜋𝑡𝑐𝑛̿̿ ̿̿ ̿̿ (𝛼1̌, 𝛼2̌) 𝑤ℎ𝑒𝑛 ℏℏ = 0,

𝑚𝑎𝑥(𝛼1̌, 𝛼2̌) 𝑤ℎ𝑒𝑛 ℏℏ = ∞

1 − 𝔈−((− 𝕀𝔫(1−𝛼1̌))
ℏℏ+(−𝕀𝔫(1−𝛼2̌))

ℏℏ)
1
ℏℏ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

,   

Note that 𝜋𝑡𝑛̿̿ ̿̿ (𝛼1̌, 𝛼2̌) = 𝛼1̌. 𝛼2̌  and 𝜋𝑡𝑐𝑛̿̿ ̿̿ ̿̿ (𝛼1̌, 𝛼2̌) = 𝛼1̌ + 𝛼2̌ − 𝛼1̌. 𝛼2̌  describe the algebraic 

norms with drastic norms 𝑚𝑖𝑛(𝛼1̌, 𝛼2̌) and 𝑚𝑎𝑥(𝛼1̌, 𝛼2̌), which are the special cases of the Aczel-

Alsina norms. After a long assessment, we noticed that the technique of Aczel-Alsina operational laws 

is based on CIF sets. Further, the technique of averaging and geometric operators based on Aczel-

Alsina norms for CIF values are also very reliable but have not been invented yet. These techniques 

are very capable and strong due to their characteristics and have not been proposed by anyone. The 

main motivation of the proposed work is that no one can propose it, and the Aczel-Alsina aggregation 

operators for the CIF set and the Aczel-Alsina AOs were proposed for FSs, IFSs, IVIFSs, but not for 

cubic IFSs. To propose these operators, many operators are the only parts of the proposed operators 

because they are the modified version of the existing operators. The limitations of the existing 

techniques are briefly evaluated and discussed in Table 1. 

Table 1. Theoretical comparison between proposed and existing models. 
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Zadeh [5] Fuzzy sets √ × × × × √ √ 

Atanassov [6] Intuitionistic fuzzy sets √ √ × × × √ √ 

Atanassov [7] Interval-valued Intuitionistic fuzzy sets √ √ √ × × √ √ 

Jun et al. [8] Cubic sets √ × √ √ × √ √ 

Zadeh [9] Interval-valued fuzzy sets √ × √ × × √ √ 

Turksen [10] Interval-valued fuzzy sets √ × √ × × √ √ 

Kaur and Garg [11] Cubic intuitionistic fuzzy sets √ √ √ √ × √ √ 

Proposed  Aczel-Alsina operators for CIF values √ √ √ √ √ √ √ 
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Information in Table 1 briefly describes that the proposed models are very effective because of 

their features, where the symbol “×   represents the “no  and the term “yes  is denoted by “√  . 
Therefore, according to theoretical assessments, we observed the model of Aczel-Alsina operators for 

CIF values is very reliable and dominant compared to others.  

1.4. Advantages and major contributions of the proposed techniques 

To compile the solution to the above queries, we aim to simplify the model of Aczel-Alsina 

operational laws for evaluating the models of average/geometric operators based on it for CIF values. 

The model of Aczel-Alsina aggregation operators based on CIF values is the modified version of the 

existing technique of FSs and their related extensions. Some advantages of the proposed operators are 

as follows: The model of Aczel-Alsina, Algebraic, and Drastic aggregation operators, which are the 

special cases of the proposed theory.  

The above information contains the special cases of the invented theory. The proposed model is 

superior and more dominant because of the parameters that are involved in the structure of the proposed 

theory. Inspired by the above observation, we decided to determine the following major contributions 

of the proposed manuscript, such as 

1) To obtain the Aczel-Alsina operational laws based on the CIF set. 

2) To develop the CIFAAWA, CIFAAOWA, CIFAAHA, CIFAAWG, CIFAAOWG, and 

CIFAAHG operators with some well-known and desirable properties.  

3) A procedure of decision-making technique is presented for finding the best type of artificial 

neural networks with the help of MADM problems based on CIF information.  

4) A numerical example is provided to show the rationality and advantages of the developed 

method by comparison with many prevailing tools. The geometrical interpretation of the 

proposed models is briefly evaluated in Figure 2. 

Figure 2. Geometrical interpretation of the proposed models. 
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1.5. The Summary of the proposed theory 

This manuscript is arranged as:  

In Section 2, we introduce the valuable IFSs, IVIFSs, CIFSs, and their operational laws.  

In Section 3, we develop the Aczel-Alsina operational laws and their related results.  

In Section 4, we propose the CIFAAWA, CIFAAOWA, CIFAAHA, CIFAAWG, CIFAAOWG, 

and CIFAAHG operators. Moreover, some well-known and desirable properties and special cases of 

them are discussed.  

In Section 5, a procedure of decision-making technique is presented for finding the best type of 

artificial neural networks with the help of MADM problems based on CIF information, and a numerical 

or practical example is provided to show the rationality and advantages of the developed method by 

comparison with many prevailing tools.  

In Section 6, we conclude final remarks about the proposed theory. 

2. Preliminaries 

In this section, we introduce the valuable IFSs, IVIFSs, CIFSs, and their operational laws. The 

main goal is to obtain the Aczel-Alsina operational laws and Aczel-Alsina operators based on CIFSs. 

For this, we used a universal set ℃ to state the existing ideas.  

Definition 1: [6] Consider a fixed set ℃, then the IFS ℉𝐼𝐹
/
 is given below: 

℉𝐼𝐹
/
= {(�̈��̈�(𝛼), 𝜂�⃛�(𝛼)) : 𝛼 ∈ ℃}. (1) 

With a characteristic 0 ≤ �̈��̈�(𝛼) + 𝜂�⃛�(𝛼) ≤ 1, where �̈��̈�(𝛼) and 𝜂�⃛�(𝛼) represents the truth and 

falsity degrees with a neutral grade �̈��̈�(𝛼) = 1 − (�̈��̈�(𝛼) + 𝜂�⃛�(𝛼)). Moreover, the simple form of the 

IF number (IFN) is shown by: ℉𝐼𝐹𝜔

/
= (�̈�𝜇�̈� , 𝜂�⃛�𝜔), 𝜔 = 1,2, … , 𝑧. 

Definition 2: [7] Consider a fixed set ℃, then the IVIFS ℉𝐼𝑉𝐼𝐹
/

 is given below: 

℉𝐼𝑉𝐼𝐹
/

= {([�̈��̈�
−(𝛼), �̈��̈�

+(𝛼)], [𝜂�⃛�
−(𝛼), 𝜂�⃛�

+(𝛼)]): 𝛼 ∈ ℃}. (2) 

With a characteristic 0 ≤ �̈��̈�
+(𝛼) + 𝜂�⃛�

+(𝛼) ≤ 1 , where [�̈��̈�
−(𝛼), �̈��̈�

+(𝛼)]  and [𝜂�⃛�
−(𝛼), 𝜂�⃛�

+(𝛼)] 

represents the interval-valued truth and interval-valued falsity degrees with a neutral grade �̈��̈�(𝛼) =

[�̈�
�̈�
−(𝛼), �̈�

�̈�
+(𝛼)] = [1 − �̈��̈�

+(𝛼) + 𝜂�⃛�
+(𝛼), 1 − �̈��̈�

−(𝛼) + 𝜂�⃛�
−(𝛼)]. Moreover, the simple form of the IVIF 

number (IVIFN) is shown by: ℉𝐼𝑉𝐼𝐹𝜔

/
= ([�̈�𝜇�̈�

− , �̈�𝜇�̈�
+ ], [𝜂�⃛�𝜔

− , 𝜂�⃛�𝜔
+ ]), 𝜔 = 1,2, … , 𝑧. 

Definition 3: [11] Consider a fixed set ℃, then the CIFS ℉𝐶𝑢𝐼𝐹
/

 is given below: 
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℉𝐶𝑢𝐼𝐹
/

= {((�̈��̈�(𝛼), 𝜂�⃛�(𝛼)) , ([�̈��̈�
−(𝛼), �̈��̈�

+(𝛼)], [𝜂�⃛�
−(𝛼), 𝜂�⃛�

+(𝛼)])) : 𝛼 ∈ ℃}. (3) 

With a characteristic 0 ≤ �̈��̈�(𝛼) + 𝜂�⃛�(𝛼) ≤ 1  and 0 ≤ �̈��̈�
+(𝛼) + 𝜂�⃛�

+(𝛼) ≤ 1 , where 

[�̈��̈�
−(𝛼), �̈��̈�

+(𝛼)]  and [𝜂�⃛�
−(𝛼), 𝜂�⃛�

+(𝛼)]  represents the interval-valued truth and interval-valued falsity 

degrees with a neutral grade �̈��̈�(𝛼) = [�̈��̈�
−(𝛼), �̈�

�̈�
+(𝛼)] = [1 − �̈��̈�

+(𝛼) + 𝜂�⃛�
+(𝛼), 1 − �̈��̈�

−(𝛼) + 𝜂�⃛�
−(𝛼)], 

where �̈��̈�(𝛼)  and 𝜂�⃛�(𝛼)  represents the truth and falsity degrees with a neutral grade �̈��̈�(𝛼) = 1 −

(�̈��̈�(𝛼) + 𝜂�⃛�(𝛼)) . Moreover, the simple form of the CIF number (CIFN) is shown by: ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧. Furthermore, the score function and accuracy 

function are given, such as 

𝑆𝑠𝑓(℉𝐶𝑢𝐼𝐹𝜔

/
) =

1

2
((�̈�𝜇�̈� − 𝜂�⃛�𝜔) +

1

2
(�̈�𝜇�̈�
− + �̈�𝜇�̈�

+ − 𝜂�⃛�𝜔
− − 𝜂�⃛�𝜔

+ )) ∈ [−1,1], (4) 

𝐻𝑎𝑓(℉𝐶𝑢𝐼𝐹𝜔

/
) =

1

2
((�̈�𝜇�̈� + 𝜂�⃛�𝜔) +

1

2
(�̈�𝜇�̈�
− + �̈�𝜇�̈�

+ + 𝜂�⃛�𝜔
− + 𝜂�⃛�𝜔

+ )) ∈ [−1,1]. (5) 

For the above information, we can give some characteristics, such as if 𝑆𝑠𝑓(℉𝐶𝑢𝐼𝐹1

/
) >

𝑆𝑠𝑓(℉𝐶𝑢𝐼𝐹2

/
) ⇒ ℉𝐶𝑢𝐼𝐹1

/
> ℉𝐶𝑢𝐼𝐹2

/
 , if 𝑆𝑠𝑓(℉𝐶𝑢𝐼𝐹1

/
) < 𝑆𝑠𝑓(℉𝐶𝑢𝐼𝐹2

/
) ⇒ ℉𝐶𝑢𝐼𝐹1

/
< ℉𝐶𝑢𝐼𝐹2

/
 , if 

𝑆𝑠𝑓(℉𝐶𝑢𝐼𝐹1

/
) = 𝑆𝑠𝑓(℉𝐶𝑢𝐼𝐹2

/
) , thus 𝐻𝑎𝑓(℉𝐶𝑢𝐼𝐹1

/
) > 𝐻𝑎𝑓(℉𝐶𝑢𝐼𝐹2

/
) ⇒ ℉𝐶𝑢𝐼𝐹1

/
> ℉𝐶𝑢𝐼𝐹2

/
 , if 

𝐻𝑎𝑓(℉𝐶𝑢𝐼𝐹1

/
) < 𝐻𝑎𝑓(℉𝐶𝑢𝐼𝐹2

/
) ⇒ ℉𝐶𝑢𝐼𝐹1

/
< ℉𝐶𝑢𝐼𝐹2

/
. 

Definition 4: [28] The Aczel-Alsina t-norm for a scaler Ξ ≥ 0 is given below: 

𝜋𝑡𝑛̿̿ ̿̿
ℏℏ(𝛼1̌, 𝛼2̌) = {

𝜋𝑡𝑛̿̿ ̿̿ (𝛼1̌, 𝛼2̌) 𝑤ℎ𝔈𝑛 ℏℏ = 0,

𝑚𝑖𝑛(𝛼1̌, 𝛼2̌) 𝑤ℎ𝔈𝑛 ℏℏ = ∞,

𝔈−((−𝕀𝔫(𝛼1̌))
ℏℏ+(−𝕀𝔫(𝛼2̌))

ℏℏ)
1
ℏℏ

𝑜𝑡ℎ𝔈𝑟𝑤𝑖𝑠𝔈.

 (6) 

𝜋𝑡𝑐𝑛̿̿ ̿̿ ̿̿
ℏℏ(𝛼1̌, 𝛼2̌) = {

𝜋𝑡𝑐𝑛̿̿ ̿̿ ̿̿ (𝛼1̌, 𝛼2̌) 𝑤ℎ𝔈𝑛 ℏℏ = 0,

𝑚𝑎𝑥(𝛼1̌, 𝛼2̌) 𝑤ℎ𝔈𝑛 ℏℏ = ∞,

1 − 𝔈−((−𝕀𝔫(1−𝛼1̌))
ℏℏ+(−𝕀𝔫(1−𝛼2̌))

ℏℏ)
1
ℏℏ

𝑜𝑡ℎ𝔈𝑟𝑤𝑖𝑠𝔈.

 (7) 

Note that 𝜋𝑡𝑛̿̿ ̿̿ (𝛼1̌, 𝛼2̌) = 𝛼1̌. 𝛼2̌  and 𝜋𝑡𝑐𝑛̿̿ ̿̿ ̿̿ (𝛼1̌, 𝛼2̌) = 𝛼1̌ + 𝛼2̌ − 𝛼1̌. 𝛼2̌  described the algebraic 

norms with drastic norms 𝑚𝑖𝑛(𝛼1̌, 𝛼2̌) and 𝑚𝑎𝑥(𝛼1̌, 𝛼2̌). 
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3. Aczel-Alsina Operational laws for CIFSs 

In this section, we aim to develop the Aczel-Alsina norms for CIFSs and try to derive some Aczel-

Alsina operational laws. Further, we prove some important results based on these operational laws. 

Definition 5: For two CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
= ((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�

− , �̈�𝜇�̈�
+ ], [𝜂�⃛�𝜔

− , 𝜂�⃛�𝜔
+ ])) , 𝜔 = 1,2 , we have 

Aczel-Alsina operational laws, such as 

℉𝐶𝑢𝐼𝐹1

/
⊕℉𝐶𝑢𝐼𝐹2

/
=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
(− 𝕀𝔫(1−�̈�𝜇1̈))

ℏℏ
+(−𝕀𝔫(1−�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(
(− 𝕀𝔫(�⃛��⃛�1))

ℏℏ
+(−𝕀𝔫(�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−((−𝕀𝔫(1−�̈�𝜇1̈
− ))

ℏℏ
+(−𝕀𝔫(1−�̈�𝜇2̈

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−((−𝕀𝔫(1−�̈�𝜇1̈

+ ))
ℏℏ
+(−𝕀𝔫(1−�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−((−𝕀𝔫(�⃛��⃛�1

− ))
ℏℏ
+(−𝕀𝔫(�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−((−𝕀𝔫(�⃛��⃛�1

+ ))
ℏℏ
+(−𝕀𝔫(�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

, 
(8) 

℉𝐶𝑢𝐼𝐹1

/
⊗℉𝐶𝑢𝐼𝐹2

/

=

(

 
 
 
 
 
 
 

(𝔈−(
(− 𝕀𝔫(�̈�𝜇1̈))

ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈−(
(−𝕀𝔫(1−�⃛��⃛�1))

ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [𝔈

−((−𝕀𝔫(�̈�𝜇1̈
− ))

ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−((−𝕀𝔫(�̈�𝜇1̈

+ ))
ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[1 − 𝔈
−((−𝕀𝔫(1−�⃛��⃛�1

− ))
ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−((−𝕀𝔫(1−�⃛��⃛�1

+ ))
ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

, 
(9) 

∅�̈�℉𝐶𝑢𝐼𝐹1

/
=

(

 
 
 
 
 
 
 

(1 − 𝔈−(∅�̈�
(−𝕀𝔫(1−�̈�𝜇1̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(∅�̈�
(− 𝕀𝔫(�⃛��⃛�1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅�̈�(−𝕀𝔫(1−�̈�𝜇1̈
− ))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�(−𝕀𝔫(1−�̈�𝜇1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅�̈�(−𝕀𝔫(�⃛��⃛�1

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�(−𝕀𝔫(�⃛��⃛�1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

, (10) 
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(℉𝐶𝑢𝐼𝐹1

/
)
∅�̈�
=

(

 
 
 
 
 
 
 

(𝔈−(∅�̈�
(− 𝕀𝔫(�̈�𝜇1̈))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈−(∅�̈�
(−𝕀𝔫(1−�⃛��⃛�1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [𝔈

−(∅�̈�(−𝕀𝔫(�̈�𝜇1̈
− ))

ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�(−𝕀𝔫(�̈�𝜇1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[1 − 𝔈
−(∅�̈�(− 𝕀𝔫(1−�⃛��⃛�1

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�(−𝕀𝔫(1−�⃛��⃛�1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

. (11) 

Further, we simplify the above techniques based on some suitable examples. For this, we consider 

two CIF numbers, such as ℉1
/
= ((0.5,0.4), ([0.4,0.5], [0.1,0.2]))  and ℉2

/
=

((0.3,0.1), ([0.3,0.5], [0.1,0.4])) with ℏℏ = ∅�̈� = 2, thus 

℉1
/
⊕℉2

/
= ((0.54138,0.08389), ([0.46368,0.62479], [0.03853,0.15692])), 

℉1
/
⊗℉2

/
= ((0.24926,0.40642), ([0.22025,0.37521], [0.13843,0.42732])), 

2 ∗ ℉1
/
= ((0.62479,0.27367), ([0.51442,0.62479], [0.03853,0.10269])), 

(℉1
/
)
2
= ((0.37521,0.51442), ([0.27367,0.37521], [0.13843,0.27063])). 

Theorem 1: For any CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
= ((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�

− , �̈�𝜇�̈�
+ ], [𝜂�⃛�𝜔

− , 𝜂�⃛�𝜔
+ ])) , 𝜔 = 1,2, … , 𝑧, thus 

1) ℉𝐶𝑢𝐼𝐹1

/
⊕℉𝐶𝑢𝐼𝐹2

/
= ℉𝐶𝑢𝐼𝐹2

/
⊕℉𝐶𝑢𝐼𝐹1

/
. 

2) ℉𝐶𝑢𝐼𝐹1

/
⊗℉𝐶𝑢𝐼𝐹2

/
= ℉𝐶𝑢𝐼𝐹2

/
⊗℉𝐶𝑢𝐼𝐹1

/
. 

3) ∅�̈�℉𝐶𝑢𝐼𝐹1

/
⊕∅�̈�℉𝐶𝑢𝐼𝐹2

/
= ∅�̈�(℉𝐶𝑢𝐼𝐹1

/
⊕℉𝐶𝑢𝐼𝐹2

/
). 

4) (℉𝐶𝑢𝐼𝐹1

/
)
∅�̈�
⊗ (℉𝐶𝑢𝐼𝐹2

/
)
∅�̈�
= (℉𝐶𝑢𝐼𝐹1

/
⊗℉𝐶𝑢𝐼𝐹2

/
)
∅�̈�
. 

Proof. 

1) Let 

℉𝐶𝑢𝐼𝐹1

/
⊕℉𝐶𝑢𝐼𝐹2

/
=

(

 
 
 
 
 
 
 
 
 (1 − 𝔈−

((− 𝕀𝔫(1−�̈�𝜇1̈))
ℏℏ
+(− 𝕀𝔫(1−�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 𝔈
−((− 𝕀𝔫(�⃛��⃛�1))

ℏℏ
+(− 𝕀𝔫(�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 
 [1 − 𝔈

−((− 𝕀𝔫(1−�̈�𝜇1̈
− ))

ℏℏ
+(− 𝕀𝔫(1−�̈�𝜇2̈

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−((− 𝕀𝔫(1−�̈�𝜇1̈

+ ))
ℏℏ
+(− 𝕀𝔫(1−�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−((− 𝕀𝔫(�⃛��⃛�1

− ))
ℏℏ
+(− 𝕀𝔫(�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−((− 𝕀𝔫(�⃛��⃛�1

+ ))
ℏℏ
+(− 𝕀𝔫(�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
(− 𝕀𝔫(1−�̈�𝜇2̈))

ℏℏ
+(−𝕀𝔫(1−�̈�𝜇1̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(
(− 𝕀𝔫(�⃛��⃛�2))

ℏℏ
+(−𝕀𝔫(�⃛��⃛�1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−((−𝕀𝔫(1−�̈�𝜇2̈
− ))

ℏℏ
+(−𝕀𝔫(1−�̈�𝜇1̈

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−((−𝕀𝔫(1−�̈�𝜇2̈

+ ))
ℏℏ
+(−𝕀𝔫(1−�̈�𝜇1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−((−𝕀𝔫(�⃛��⃛�2

− ))
ℏℏ
+(−𝕀𝔫(�⃛��⃛�1

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−((−𝕀𝔫(�⃛��⃛�2

+ ))
ℏℏ
+(−𝕀𝔫(�⃛��⃛�1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

= ℉𝐶𝑢𝐼𝐹2

/
⊕℉𝐶𝑢𝐼𝐹1

/
. 

2) Let 

℉𝐶𝑢𝐼𝐹1

/
⊗℉𝐶𝑢𝐼𝐹2

/

=

(

 
 
 
 
 
 
 

(𝔈−(
(−𝕀𝔫(�̈�𝜇1̈))

ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈−(
(− 𝕀𝔫(1−�⃛��⃛�1))

ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [𝔈

−((−𝕀𝔫(�̈�𝜇1̈
− ))

ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−((−𝕀𝔫(�̈�𝜇1̈

+ ))
ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[1 − 𝔈
−((−𝕀𝔫(1−�⃛��⃛�1

− ))
ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−((−𝕀𝔫(1−�⃛��⃛�1

+ ))
ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

(𝔈−(
(−𝕀𝔫(�̈�𝜇2̈))

ℏℏ
+(−𝕀𝔫(�̈�𝜇1̈))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈−(
(− 𝕀𝔫(1−�⃛��⃛�2))

ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [𝔈

−((−𝕀𝔫(�̈�𝜇2̈
− ))

ℏℏ
+(−𝕀𝔫(�̈�𝜇1̈

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−((−𝕀𝔫(�̈�𝜇2̈

+ ))
ℏℏ
+(−𝕀𝔫(�̈�𝜇1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[1 − 𝔈
−((−𝕀𝔫(1−�⃛��⃛�2

− ))
ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�1

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−((−𝕀𝔫(1−�⃛��⃛�2

+ ))
ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

= ℉𝐶𝑢𝐼𝐹2

/
⊗℉𝐶𝑢𝐼𝐹1

/
. 
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3) Consider 

∅�̈�℉𝐶𝑢𝐼𝐹1

/
⊕∅�̈�℉𝐶𝑢𝐼𝐹2

/
 

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(∅�̈�
(−𝕀𝔫(1−�̈�𝜇1̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(∅�̈�
(−𝕀𝔫(�⃛��⃛�1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅�̈�(−𝕀𝔫(1−�̈�𝜇1̈
− ))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�(− 𝕀𝔫(1−�̈�𝜇1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅�̈�(−𝕀𝔫(�⃛��⃛�1

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�(− 𝕀𝔫(�⃛��⃛�1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 

(1 − 𝔈−(∅�̈�
(− 𝕀𝔫(1−�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(∅�̈�
(−𝕀𝔫(�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅�̈�(− 𝕀𝔫(1−�̈�𝜇2̈
− ))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�(−𝕀𝔫(1−�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅�̈�(− 𝕀𝔫(�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�(−𝕀𝔫(�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(∅𝑠
(− 𝕀𝔫(1−�̈�𝜇1̈))

ℏℏ
+(−𝕀𝔫(1−�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(∅𝑠
(−𝕀𝔫(�⃛��⃛�1))

ℏℏ
+(−𝕀𝔫(�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅𝑠(− 𝕀𝔫(1−�̈�𝜇1̈
− ))

ℏℏ
+(−𝕀𝔫(1−�̈�𝜇2̈

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅𝑠(−𝕀𝔫(1−�̈�𝜇1̈

+ ))
ℏℏ
+(−𝕀𝔫(1−�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅𝑠(− 𝕀𝔫(�⃛��⃛�1

− ))
ℏℏ
+(−𝕀𝔫(�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅𝑠(−𝕀𝔫(�⃛��⃛�1

+ ))
ℏℏ
+(−𝕀𝔫(�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

 

= ∅�̈�(℉𝐶𝑢𝐼𝐹1

/
⊕℉𝐶𝑢𝐼𝐹2

/
). 

4) Assume that 

(℉𝐶𝑢𝐼𝐹1

/
)
∅�̈�
⊗ (℉𝐶𝑢𝐼𝐹2

/
)
∅�̈�
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=

(

 
 
 
 
 
 
 

(𝔈−(∅�̈�
(− 𝕀𝔫(�̈�𝜇1̈))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈−(∅�̈�
(−𝕀𝔫(1−�⃛��⃛�1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [𝔈

−(∅�̈�(−𝕀𝔫(�̈�𝜇1̈
− ))

ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�(−𝕀𝔫(�̈�𝜇1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[1 − 𝔈
−(∅�̈�(− 𝕀𝔫(1−�⃛��⃛�1

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�(−𝕀𝔫(1−�⃛��⃛�1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

⊗

(

 
 
 
 
 
 
 

(𝔈−(∅�̈�
(−𝕀𝔫(�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈−(∅�̈�
(− 𝕀𝔫(1−�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [𝔈

−(∅�̈�(−𝕀𝔫(�̈�𝜇2̈
− ))

ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�(−𝕀𝔫(�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[1 − 𝔈
−(∅�̈�(−𝕀𝔫(1−�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�(− 𝕀𝔫(1−�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

(𝔈−(∅�̈�
(−𝕀𝔫(�̈�𝜇1̈))

ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈−(∅�̈�
(−𝕀𝔫(1−�⃛��⃛�1))

ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [𝔈

−(∅�̈�(− 𝕀𝔫(�̈�𝜇1̈
− ))

ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�(−𝕀𝔫(�̈�𝜇1̈

+ ))
ℏℏ
+(−𝕀𝔫(�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[1 − 𝔈
−(∅�̈�(− 𝕀𝔫(1−�⃛��⃛�1

− ))
ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�(−𝕀𝔫(1−�⃛��⃛�1

+ ))
ℏℏ
+(−𝕀𝔫(1−�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

 

= (℉𝐶𝑢𝐼𝐹1

/
⊗℉𝐶𝑢𝐼𝐹2

/
)
∅�̈�
. 

4. Aczel-Alsina aggregation operators for CIFSs 

In this section, we develop the novel CIFAAWA operator, CIFAAOWA operator, CIFAAHA 

operator, CIFAAWG operator, CIFAAOWG operator, and CIFAAHG operator. These operators are the 

combination of the Aczel-Alsina operational and CIFNs. Furthermore, we have also stated some 

fundamental properties for the above results. 

Definition 6: For the finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, then the CIFAAWA operator is defined as: 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴:℉𝑧 → ℉, 𝑏𝑦 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) = ∅�̈�

1
℉𝐶𝑢𝐼𝐹1

/
⊕∅�̈�

2
℉𝐶𝑢𝐼𝐹2

/
⊕…⊕∅�̈�

𝑧
℉𝐶𝑢𝐼𝐹𝑧

/

=⊕𝜔=1
𝑧 ∅�̈�

𝜔
℉𝐶𝑢𝐼𝐹𝜔

/
. 

(12) 
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Note that the weighted vector is stated by: ∅�̈�
𝜔
∈ [0,1] with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1. 

Theorem 2: For any finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, we proved that Eq (12) is also a CIFN, such as 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) =

(

 
 
 
 
 
 
 

(1 − 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

, 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

. 
(13) 

Proof. To prove Eq (13), we used mathematical induction. For this, first, we considered the value of 

𝑧 = 2, we have 

∅�̈�
1
℉𝐶𝑢𝐼𝐹1

/
=

(

 
 
 
 
 
 
 

(1 − 𝔈−(∅�̈�
1
(− 𝕀𝔫(1−�̈�𝜇1̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(∅�̈�
1
(− 𝕀𝔫(�⃛��⃛�1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅�̈�
1
(− 𝕀𝔫(1−�̈�𝜇1̈

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�

1
(− 𝕀𝔫(1−�̈�𝜇1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅�̈�

1
(− 𝕀𝔫(�⃛��⃛�1

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�

1
(− 𝕀𝔫(�⃛��⃛�1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

, 

∅�̈�
2
℉𝐶𝑢𝐼𝐹2

/
=

(

 
 
 
 
 
 
 

(1 − 𝔈−(∅�̈�
2
(− 𝕀𝔫(1−�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(∅�̈�
2
(− 𝕀𝔫(�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅�̈�
2
(− 𝕀𝔫(1−�̈�𝜇2̈

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�

2
(− 𝕀𝔫(1−�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅�̈�

2
(− 𝕀𝔫(�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�

2
(− 𝕀𝔫(�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

, 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
) = ∅�̈�

1
℉𝐶𝑢𝐼𝐹1

/
⊕∅�̈�

2
℉𝐶𝑢𝐼𝐹2

/
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=

(

 
 
 
 
 
 
 

(1 − 𝔈−(∅�̈�
1
(− 𝕀𝔫(1−�̈�𝜇1̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(∅�̈�
1
(− 𝕀𝔫(�⃛��⃛�1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅�̈�
1
(− 𝕀𝔫(1−�̈�𝜇1̈

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�

1
(− 𝕀𝔫(1−�̈�𝜇1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅�̈�

1
(− 𝕀𝔫(�⃛��⃛�1

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�

1
(− 𝕀𝔫(�⃛��⃛�1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 

(1 − 𝔈−(∅�̈�
2
(− 𝕀𝔫(1−�̈�𝜇2̈))

ℏℏ
)

1
ℏℏ

, 𝔈−(∅�̈�
2
(−𝕀𝔫(�⃛��⃛�2))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅�̈�
2
(−𝕀𝔫(1−�̈�𝜇2̈

− ))
ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�

2
(−𝕀𝔫(1−�̈�𝜇2̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅�̈�

2
(− 𝕀𝔫(�⃛��⃛�2

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�

2
(−𝕀𝔫(�⃛��⃛�2

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ2
𝜔=1 )

1
ℏℏ

, 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔))

ℏℏ2
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�

− ))
ℏℏ

2
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

+ ))
ℏℏ

2
𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

− ))
ℏℏ

2
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

+ ))
ℏℏ

2
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

. 

Equation (13) is correct for 𝑧 = 2. 

We consider that it is also correct for 𝑧 = 𝑦, thus 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴 (℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑦

/
) =

(

 
 
 
 
 
 
 

(1 − 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑦
𝜔=1 )

1
ℏℏ

, 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔))

ℏℏ𝑦
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

− ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

+ ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

− ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

+ ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

. 

Then, we prove that the Eq (13) is also correct for 𝑧 = 𝑦 + 1, such as 
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𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

= ∅�̈�
1
℉𝐶𝑢𝐼𝐹1

/
⊕∅�̈�

2
℉𝐶𝑢𝐼𝐹2

/
⊕…⊕∅�̈�

𝑦
℉𝐶𝑢𝐼𝐹𝑦

/
⊕∅�̈�

𝑦+1
℉𝐶𝑢𝐼𝐹𝑦+1

/

=⊕𝜔=1
𝑦

∅�̈�
𝜔
℉𝐶𝑢𝐼𝐹𝜔

/
⊕∅�̈�

𝑦+1
℉𝐶𝑢𝐼𝐹𝑦+1

/
 

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑦
𝜔=1 )

1
ℏℏ

, 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔))

ℏℏ𝑦
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

− ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

+ ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

− ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

+ ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

⊕∅�̈�
𝑦+1
℉𝐶𝑢𝐼𝐹𝑦+1

/
 

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑦
𝜔=1 )

1
ℏℏ

, 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔))

ℏℏ𝑦
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�

− ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

+ ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

− ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

+ ))
ℏℏ𝑦

𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
 (1 − 𝔈

−(∅�̈�
𝑦+1

(− 𝕀𝔫(1−�̈�𝜇𝑦+1̈ ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�

𝑦+1
(− 𝕀𝔫(�⃛��⃛�𝑦+1))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∅�̈�
𝑦+1

(− 𝕀𝔫(1−�̈�𝜇𝑦+1̈
− ))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−(∅�̈�

𝑦+1
(− 𝕀𝔫(1−�̈�𝜇𝑦+1̈

+ ))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−(∅�̈�

𝑦+1
(− 𝕀𝔫(�⃛��⃛�𝑦+1

− ))
ℏℏ
)

1
ℏℏ

, 𝔈
−(∅�̈�

𝑦+1
(− 𝕀𝔫(�⃛��⃛�𝑦+1

+ ))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑦+1
𝜔=1 )

1
ℏℏ

, 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔))

ℏℏ𝑦+1
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�

− ))
ℏℏ𝑦+1

𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

+ ))
ℏℏ𝑦+1

𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

− ))
ℏℏ𝑦+1

𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

+ ))
ℏℏ𝑦+1

𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

. 

Hence, Eq (13) is correct for all positive values of 𝑧.  
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Property 1: If ℉𝐶𝑢𝐼𝐹𝜔

/
= ℉𝐶𝑢𝐼𝐹

/
= ((�̈��̈�, 𝜂�⃛�), ([�̈��̈�

−, �̈��̈�
+], [𝜂�⃛�

−, 𝜂�⃛�
+])) , 𝜔 = 1,2, … , 𝑧, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) = ℉𝐶𝑢𝐼𝐹

/
. (14) 

Proof. Let ℉𝐶𝑢𝐼𝐹𝜔

/
= ℉𝐶𝑢𝐼𝐹

/
= ((�̈��̈�, 𝜂�⃛�), ([�̈��̈�

−, �̈��̈�
+], [𝜂�⃛�

−, 𝜂�⃛�
+])) , 𝜔 = 1,2, … , 𝑧, thus 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

, 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈��̈�))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

, 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(1−�̈��̈�

−))
ℏℏ𝑧

𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈��̈�

+))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�

−))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�

+))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

(1 − 𝔈−(
(−𝕀𝔫(1−�̈��̈�))

ℏℏ
)

1
ℏℏ

, 𝔈−(
(− 𝕀𝔫(�⃛��⃛�))

ℏℏ
)

1
ℏℏ

) ,

(

 
 
 
 [1 − 𝔈

−((−𝕀𝔫(1−�̈��̈�
−))

ℏℏ
)

1
ℏℏ

, 1 − 𝔈
−((−𝕀𝔫(1−�̈��̈�

+))
ℏℏ
)

1
ℏℏ

] ,

[𝔈
−((−𝕀𝔫(�⃛��⃛�

−))
ℏℏ
)

1
ℏℏ

, 𝔈
−((−𝕀𝔫(�⃛��⃛�

+))
ℏℏ
)

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

, (∑ ∅�̈�
𝜔

𝑧

𝜔=1

= 1) 

=

(

 
 

(1 − 𝔈𝕀𝔫(1−�̈��̈�), 𝔈𝕀𝔫(�⃛��⃛�)) ,

(
[1 − 𝔈𝕀𝔫(1−�̈��̈�

−), 1 − 𝔈𝕀𝔫(1−�̈��̈�
+)] ,

[𝔈𝕀𝔫(�⃛��⃛�
−), 𝔈𝕀𝔫(�⃛��⃛�

+)]
)

)

 
 

 

= ((�̈��̈�, 𝜂�⃛�), ([�̈��̈�
−, �̈��̈�

+], [𝜂�⃛�
−, 𝜂�⃛�

+])) = ℉𝐶𝑢𝐼𝐹
/

. 

Property 2: If ℉𝐶𝑢𝐼𝐹𝜔

/
≤ ℉𝐶𝑢𝐼𝐹𝜔

∗∗  , it means that �̈�𝜇�̈� ≤ �̈�𝜇�̈�
∗∗ , 𝜂�⃛�𝜔 ≥ 𝜂�⃛�𝜔

∗∗   and �̈�𝜇�̈�
− ≤ �̈�𝜇�̈�

− ∗∗, �̈�𝜇�̈�
+ ≤
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�̈�𝜇�̈�
+ ∗∗

, 𝜂�⃛�𝜔
− ≥ 𝜂�⃛�𝜔

− ∗∗, 𝜂�⃛�𝜔
+ ≥ 𝜂�⃛�𝜔

+ ∗∗
, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

∗∗ , ℉𝐶𝑢𝐼𝐹2
∗∗ , … ,℉𝐶𝑢𝐼𝐹𝑧

∗∗ ). (15) 

Proof. Consider that ℉𝐶𝑢𝐼𝐹𝜔

/
≤ ℉𝐶𝑢𝐼𝐹𝜔

∗∗  , which means that �̈�𝜇�̈� ≤ �̈�𝜇�̈�
∗∗ , 𝜂�⃛�𝜔 ≥ 𝜂�⃛�𝜔

∗∗   and �̈�𝜇�̈�
− ≤

�̈�𝜇�̈�
− ∗∗, �̈�𝜇�̈�

+ ≤ �̈�𝜇�̈�
+ ∗∗

, 𝜂�⃛�𝜔
− ≥ 𝜂�⃛�𝜔

− ∗∗, 𝜂�⃛�𝜔
+ ≥ 𝜂�⃛�𝜔

+ ∗∗
, thus 

�̈�𝜇�̈� ≤ �̈�𝜇�̈�
∗∗ ⇒ 1− �̈�𝜇�̈� ≥ 1 − �̈�𝜇�̈�

∗∗ ⇒ 𝕀𝔫(1 − �̈�𝜇�̈�) ≥ 𝕀𝔫(1 − �̈�𝜇�̈�
∗∗ ) 

⇒ −𝕀𝔫(1 − �̈�𝜇�̈�) ≤ −𝕀𝔫(1 − �̈�𝜇�̈�
∗∗ ) 

⇒ (∑ ∅�̈�
𝜔
(−𝕀𝔫(1 − �̈�𝜇�̈�))

ℏℏ
𝑧

𝜔=1

)

1
ℏℏ

≤ (∑ ∅�̈�
𝜔
(−𝕀𝔫(1 − �̈�𝜇�̈�

∗∗ ))
ℏℏ

𝑧

𝜔=1

)

1
ℏℏ

 

⇒ −(∑ ∅�̈�
𝜔
(−𝕀𝔫(1 − �̈�𝜇�̈�))

ℏℏ
𝑧

𝜔=1

)

1
ℏℏ

≥ −(∑ ∅�̈�
𝜔
(− 𝕀𝔫(1 − �̈�𝜇�̈�

∗∗ ))
ℏℏ

𝑧

𝜔=1

)

1
ℏℏ

 

⇒ 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

≥ 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

∗∗ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

 

⇒ 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

≤ 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

∗∗ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

 

⇒ 1 − 𝔈−(
∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�̈�𝜇�̈�))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

≤ 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

∗∗ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

. 

Similarly, for the lower and upper parts of the truth grade, we have 

⇒ 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

≤ 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

− ∗∗))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

 

⇒ 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

≤ 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇�̈�

+ ∗∗
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

. 

Further, for the falsity of information, we have 

𝜂�⃛�𝜔 ≥ 𝜂�⃛�𝜔
∗∗ ⇒ 𝕀𝔫(𝜂�⃛�𝜔) ≥ 𝕀𝔫(𝜂�⃛�𝜔

∗∗ ) 

⇒ −𝕀𝔫(𝜂�⃛�𝜔) ≤ − 𝕀𝔫(𝜂�⃛�𝜔
∗∗ ) ⇒ ∑ ∅�̈�

𝜔
(− 𝕀𝔫(𝜂�⃛�𝜔))

ℏℏ
𝑧

𝜔=1

≤ ∑ ∅�̈�
𝜔
(−𝕀𝔫(𝜂�⃛�𝜔

∗∗ ))
ℏℏ

𝑧

𝜔=1

 

⇒ −(∑ ∅�̈�
𝜔
(−𝕀𝔫(𝜂�⃛�𝜔))

ℏℏ
𝑧

𝜔=1

)

1
ℏℏ

≥ −(∑ ∅�̈�
𝜔
(− 𝕀𝔫(𝜂�⃛�𝜔

∗∗ ))
ℏℏ

𝑧

𝜔=1

)

1
ℏℏ

 

⇒ 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

≥ 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔

∗∗ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

. 

Similarly, for the lower and upper parts of the falsity grade, we have 

⇒ 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

≥ 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔

− ∗∗))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

 



27814 

AIMS Mathematics  Volume 9, Issue 10, 27797–27833. 

⇒ 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�𝜔

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

≥ 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�𝜔

+ ∗∗
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

. 

Finally, by the score function and accuracy function, we can easily get the following results, such 

as 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

∗∗ , ℉𝐶𝑢𝐼𝐹2
∗∗ , … ,℉𝐶𝑢𝐼𝐹𝑧

∗∗ ). 

Property 3: If ℉𝐶𝑢𝐼𝐹𝜔
− = ((min

𝜔
�̈�𝜇�̈� , max𝜔

𝜂�⃛�𝜔) , ([min𝜔
�̈�𝜇�̈�
− , min

𝜔
�̈�𝜇�̈�
+ ] , [max

𝜔
𝜂�⃛�𝜔
− , max

𝜔
𝜂�⃛�𝜔
+ ]))  and 

℉𝐶𝑢𝐼𝐹𝜔
+ = ((max

𝜔
�̈�𝜇�̈� , min𝜔

𝜂�⃛�𝜔) , ([max𝜔
�̈�𝜇�̈�
− , max

𝜔
�̈�𝜇�̈�
+ ] , [min

𝜔
𝜂�⃛�𝜔
− , min

𝜔
𝜂�⃛�𝜔
+ ])), then 

℉𝐶𝑢𝐼𝐹𝜔
− ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ ℉𝐶𝑢𝐼𝐹𝜔

+ . (16) 

Proof. Considering Property 1 and Property 2, we have  

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

+ , ℉𝐶𝑢𝐼𝐹2
+ , … ,℉𝐶𝑢𝐼𝐹𝑧

+ ) = ℉𝐶𝑢𝐼𝐹𝜔
+ , 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≥ 𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

− , ℉𝐶𝑢𝐼𝐹2
− , … ,℉𝐶𝑢𝐼𝐹𝑧

− ) = ℉𝐶𝑢𝐼𝐹𝜔
− . 

Thus, we have 

℉𝐶𝑢𝐼𝐹𝜔
− ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ ℉𝐶𝑢𝐼𝐹𝜔

+ . 

Definition 7: For the finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, then the CIFAAOWA operator is defined as 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐴:℉𝑧 → ℉, 𝑏𝑦 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

= ∅�̈�
1
℉𝐶𝑢𝐼𝐹0(1)

/
⊕∅�̈�

2
℉𝐶𝑢𝐼𝐹0(2)

/
⊕…⊕∅�̈�

𝑧
℉𝐶𝑢𝐼𝐹𝑜(𝑧)

/
=⊕𝜔=1

𝑧 ∅�̈�
𝜔
℉𝐶𝑢𝐼𝐹0(𝜔).
/

 
(17) 

Note that the weighted vector is stated by: ∅�̈�
𝜔
∈ [0,1]  with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1  with 0(𝜔) ≤

0(𝜔 − 1), where we can get the order of the CIFNs by the score function. 

Theorem 3: For any finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, we proved that Eq (17) is also a CIFN, such as 
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𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

=

(

 
 
 
 
 
 
 
 
 (1 − 𝔈

−(∑ ∅�̈�
𝜔
(− 𝕀𝔫(1−�̈�𝜇0(𝜔)̈

))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�0(𝜔)

))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(1−�̈�𝜇0(𝜔)̈

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�̈�𝜇0(𝜔)̈

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�0(𝜔)

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(�⃛��⃛�0(𝜔)

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 
(18) 

Proof. Straightforward. 

Property 4: If ℉𝐶𝑢𝐼𝐹𝜔

/
= ℉𝐶𝑢𝐼𝐹

/
= ((�̈��̈�, 𝜂�⃛�), ([�̈��̈�

−, �̈��̈�
+], [𝜂�⃛�

−, 𝜂�⃛�
+])) , 𝜔 = 1,2, … , 𝑧, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) = ℉𝐶𝑢𝐼𝐹

/
. (19) 

Proof. Straightforward. 

Property 5: If ℉𝐶𝑢𝐼𝐹𝜔

/
≤ ℉𝐶𝑢𝐼𝐹𝜔

∗∗  , it means that �̈�𝜇�̈� ≤ �̈�𝜇�̈�
∗∗ , 𝜂�⃛�𝜔 ≥ 𝜂�⃛�𝜔

∗∗   and �̈�𝜇�̈�
− ≤ �̈�𝜇�̈�

− ∗∗, �̈�𝜇�̈�
+ ≤

�̈�𝜇�̈�
+ ∗∗

, 𝜂�⃛�𝜔
− ≥ 𝜂�⃛�𝜔

− ∗∗, 𝜂�⃛�𝜔
+ ≥ 𝜂�⃛�𝜔

+ ∗∗
, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐴(℉𝐶𝑢𝐼𝐹1

∗∗ , ℉𝐶𝑢𝐼𝐹2
∗∗ , … ,℉𝐶𝑢𝐼𝐹𝑧

∗∗ ). (20) 

Proof. Straightforward. 

Property 6: If ℉𝐶𝑢𝐼𝐹𝜔
− = ((min

𝜔
�̈�𝜇�̈� , max𝜔

𝜂�⃛�𝜔) , ([min𝜔
�̈�𝜇�̈�
− , min

𝜔
�̈�𝜇�̈�
+ ] , [max

𝜔
𝜂�⃛�𝜔
− , max

𝜔
𝜂�⃛�𝜔
+ ]))  and 

℉𝐶𝑢𝐼𝐹𝜔
+ = ((max

𝜔
�̈�𝜇�̈� , min𝜔

𝜂�⃛�𝜔) , ([max𝜔
�̈�𝜇�̈�
− , max

𝜔
�̈�𝜇�̈�
+ ] , [min

𝜔
𝜂�⃛�𝜔
− , min

𝜔
𝜂�⃛�𝜔
+ ])), then 

℉𝐶𝑢𝐼𝐹𝜔
− ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ ℉𝐶𝑢𝐼𝐹𝜔

+ . (21) 

Proof. Straightforward. 

Definition 8: For the finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, then the CIFAAHA operator is defined as  

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐴:℉𝑧 → ℉, 𝑏𝑦 

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

= ∅�̈�
1
℉𝐶𝑢𝐼𝐹0(1)
∗ ⊕∅�̈�

2
℉𝐶𝑢𝐼𝐹0(2)
∗ ⊕…⊕∅�̈�

𝑧
℉𝐶𝑢𝐼𝐹𝑜(𝑧)
∗ =⊕𝜔=1

𝑧 ∅�̈�
𝜔
℉𝐶𝑢𝐼𝐹0(𝜔)
∗ . 

(22) 
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Note that the weighted vector is stated by: ∅�̈�
𝜔
∈ [0,1]  with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1  with 0(𝜔) ≤

0(𝜔 − 1) , where we can get the order of the CIFN by the score function and ℉𝐶𝑢𝐼𝐹0(𝜔)
∗ =

𝑧∅�̈�
𝜔
℉𝐶𝑢𝐼𝐹𝜔

/
, 𝜔 = 1,2, … , 𝑧 with another weight vector ∅�̈�

𝜔
∈ [0,1] with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1. 

Theorem 4: For any finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, we proved that Eq (22) is also a CIFN, such as 

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) =

(

 
 
 
 
 
 
 
 
 (1 − 𝔈

−(∑ ∅�̈�
𝜔
(− 𝕀𝔫(1−�̈�𝜇0(𝜔)̈

∗ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�0(𝜔)

∗ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 
 [1 − 𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(1−�̈�𝜇0(𝜔)̈

∗ −
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�̈�𝜇0(𝜔)̈

∗ +
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

] ,

[𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�0(𝜔)

∗ −
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�⃛��⃛�0(𝜔)

∗ +
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 
(23) 

Proof. Straightforward. 

Property 7: If ℉𝐶𝑢𝐼𝐹𝜔

/
= ℉𝐶𝑢𝐼𝐹

/
= ((�̈��̈�, 𝜂�⃛�), ([�̈��̈�

−, �̈��̈�
+], [𝜂�⃛�

−, 𝜂�⃛�
+])) , 𝜔 = 1,2, … , 𝑧, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) = ℉𝐶𝑢𝐼𝐹

/
. (24) 

Proof. Straightforward. 

Property 8: If ℉𝐶𝑢𝐼𝐹𝜔

/
≤ ℉𝐶𝑢𝐼𝐹𝜔

∗∗  , it means that �̈�𝜇�̈� ≤ �̈�𝜇�̈�
∗∗ , 𝜂�⃛�𝜔 ≥ 𝜂�⃛�𝜔

∗∗   and �̈�𝜇�̈�
− ≤ �̈�𝜇�̈�

− ∗∗, �̈�𝜇�̈�
+ ≤

�̈�𝜇�̈�
+ ∗∗

, 𝜂�⃛�𝜔
− ≥ 𝜂�⃛�𝜔

− ∗∗, 𝜂�⃛�𝜔
+ ≥ 𝜂�⃛�𝜔

+ ∗∗
, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐴(℉𝐶𝑢𝐼𝐹1

∗∗ , ℉𝐶𝑢𝐼𝐹2
∗∗ , … ,℉𝐶𝑢𝐼𝐹𝑧

∗∗ ). (25) 

Proof. Straightforward. 

Property 9: If ℉𝐶𝑢𝐼𝐹𝜔
− = ((min

𝜔
�̈�𝜇�̈� , max𝜔

𝜂�⃛�𝜔) , ([min𝜔
�̈�𝜇�̈�
− , min

𝜔
�̈�𝜇�̈�
+ ] , [max

𝜔
𝜂�⃛�𝜔
− , max

𝜔
𝜂�⃛�𝜔
+ ]))  and 

℉𝐶𝑢𝐼𝐹𝜔
+ = ((max

𝜔
�̈�𝜇�̈� , min𝜔

𝜂�⃛�𝜔) , ([max𝜔
�̈�𝜇�̈�
− , max

𝜔
�̈�𝜇�̈�
+ ] , [min

𝜔
𝜂�⃛�𝜔
− , min

𝜔
𝜂�⃛�𝜔
+ ])), then 

℉𝐶𝑢𝐼𝐹𝜔
− ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐴(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ ℉𝐶𝑢𝐼𝐹𝜔

+ . (26) 
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Proof. Straightforward. 

Definition 9: For the finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, then the CIFAAWG operator is defined as: 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐺:℉𝑧 → ℉, 𝑏𝑦 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

= (℉𝐶𝑢𝐼𝐹1

/
)
∅�̈�
1

⊗ (℉𝐶𝑢𝐼𝐹2

/
)
∅�̈�
2

⊗…⊗ (℉𝐶𝑢𝐼𝐹𝑧

/
)
∅�̈�
𝑧

=⊗𝜔=1
𝑧 (℉𝐶𝑢𝐼𝐹𝜔

/
)
∅�̈�
𝜔

. 
(27) 

Note that the weighted vector is stated by: ∅�̈�
𝜔
∈ [0,1] with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1. 

Theorem 5: For any finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, we proved that the Eq (27) is also a CIFN, such 

as 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) =

(

 
 
 
 
 
 
 

(𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(�̈�𝜇�̈�))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈−(
∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�⃛��⃛�𝜔))

ℏℏ𝑧
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 [𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(�̈�𝜇�̈�

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�̈�𝜇�̈�

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

] ,

[1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�⃛��⃛�𝜔

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�⃛��⃛�𝜔

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 

)

 
 
 
 
 
 
 

. 
(28) 

Proof. Straightforward. 

Property 10: If ℉𝐶𝑢𝐼𝐹𝜔

/
= ℉𝐶𝑢𝐼𝐹

/
= ((�̈��̈�, 𝜂�⃛�), ([�̈��̈�

−, �̈��̈�
+], [𝜂�⃛�

−, 𝜂�⃛�
+])) , 𝜔 = 1,2, … , 𝑧, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) = ℉𝐶𝑢𝐼𝐹

/
. (29) 

Proof. Straightforward. 

Property 11: If ℉𝐶𝑢𝐼𝐹𝜔

/
≤ ℉𝐶𝑢𝐼𝐹𝜔

∗∗  , it means that �̈�𝜇�̈� ≤ �̈�𝜇�̈�
∗∗ , 𝜂�⃛�𝜔 ≥ 𝜂�⃛�𝜔

∗∗   and �̈�𝜇�̈�
− ≤ �̈�𝜇�̈�

− ∗∗, �̈�𝜇�̈�
+ ≤

�̈�𝜇�̈�
+ ∗∗

, 𝜂�⃛�𝜔
− ≥ 𝜂�⃛�𝜔

− ∗∗, 𝜂�⃛�𝜔
+ ≥ 𝜂�⃛�𝜔

+ ∗∗
, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐺(℉𝐶𝑢𝐼𝐹1

∗∗ , ℉𝐶𝑢𝐼𝐹2
∗∗ , … ,℉𝐶𝑢𝐼𝐹𝑧

∗∗ ). (30) 

Proof. Straightforward. 

Property 12: If ℉𝐶𝑢𝐼𝐹𝜔
− = ((min

𝜔
�̈�𝜇�̈� , max𝜔

𝜂�⃛�𝜔) , ([min𝜔
�̈�𝜇�̈�
− , min

𝜔
�̈�𝜇�̈�
+ ] , [max

𝜔
𝜂�⃛�𝜔
− , max

𝜔
𝜂�⃛�𝜔
+ ])) and 
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℉𝐶𝑢𝐼𝐹𝜔
+ = ((max

𝜔
�̈�𝜇�̈� , min𝜔

𝜂�⃛�𝜔) , ([max𝜔
�̈�𝜇�̈�
− , max

𝜔
�̈�𝜇�̈�
+ ] , [min

𝜔
𝜂�⃛�𝜔
− , min

𝜔
𝜂�⃛�𝜔
+ ])), then 

℉𝐶𝑢𝐼𝐹𝜔
− ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ ℉𝐶𝑢𝐼𝐹𝜔

+ . (31) 

Proof. Straightforward. 

Definition 10: For the finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, then the CIFAAOWG operator is defined as: 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐺:℉𝑧 → ℉, 𝑏𝑦 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

= (℉𝐶𝑢𝐼𝐹0(1)

/
)
∅�̈�
1

⊗ (℉𝐶𝑢𝐼𝐹0(2)

/
)
∅�̈�
2

⊗…⊗ (℉𝐶𝑢𝐼𝐹0(𝑧)

/
)
∅�̈�
𝑧

=⊗𝜔=1
𝑧 (℉𝐶𝑢𝐼𝐹0(𝜔)

/
)
∅�̈�
𝜔

. 

(32) 

Note that the weighted vector is stated by: ∅�̈�
𝜔
∈ [0,1]  with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1  with 0(𝜔) ≤

0(𝜔 − 1), where we can get the order of the CIFN by the score function. 

Theorem 6: For any finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, we proved that the Eq (32) is also a CIFN, such 

as 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

=

(

 
 
 
 
 
 
 
 
 (𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(�̈�𝜇0(𝜔)̈

))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�⃛��⃛�0(𝜔)

))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 
 [𝔈

−(∑ ∅�̈�
𝜔
(− 𝕀𝔫(�̈�𝜇0(𝜔)̈

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�̈�𝜇0(𝜔)̈

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

] ,

[1 − 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�⃛��⃛�0(𝜔)

− ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�⃛��⃛�0(𝜔)

+ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 
(33) 

Proof. Straightforward. 

Property 13: If ℉𝐶𝑢𝐼𝐹𝜔

/
= ℉𝐶𝑢𝐼𝐹

/
= ((�̈��̈�, 𝜂�⃛�), ([�̈��̈�

−, �̈��̈�
+], [𝜂�⃛�

−, 𝜂�⃛�
+])) , 𝜔 = 1,2, … , 𝑧, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) = ℉𝐶𝑢𝐼𝐹

/
. (34) 

Proof. Straightforward. 
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Property 14: If ℉𝐶𝑢𝐼𝐹𝜔

/
≤ ℉𝐶𝑢𝐼𝐹𝜔

∗∗  , it means that �̈�𝜇�̈� ≤ �̈�𝜇�̈�
∗∗ , 𝜂�⃛�𝜔 ≥ 𝜂�⃛�𝜔

∗∗   and �̈�𝜇�̈�
− ≤ �̈�𝜇�̈�

− ∗∗, �̈�𝜇�̈�
+ ≤

�̈�𝜇�̈�
+ ∗∗

, 𝜂�⃛�𝜔
− ≥ 𝜂�⃛�𝜔

− ∗∗, 𝜂�⃛�𝜔
+ ≥ 𝜂�⃛�𝜔

+ ∗∗
, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐺(℉𝐶𝑢𝐼𝐹1

∗∗ , ℉𝐶𝑢𝐼𝐹2
∗∗ , … ,℉𝐶𝑢𝐼𝐹𝑧

∗∗ ). (35) 

Proof. Straightforward. 

Property 15: If ℉𝐶𝑢𝐼𝐹𝜔
− = ((min

𝜔
�̈�𝜇�̈� , max𝜔

𝜂�⃛�𝜔) , ([min𝜔
�̈�𝜇�̈�
− , min

𝜔
�̈�𝜇�̈�
+ ] , [max

𝜔
𝜂�⃛�𝜔
− , max

𝜔
𝜂�⃛�𝜔
+ ])) and 

℉𝐶𝑢𝐼𝐹𝜔
+ = ((max

𝜔
�̈�𝜇�̈� , min𝜔

𝜂�⃛�𝜔) , ([max𝜔
�̈�𝜇�̈�
− , max

𝜔
�̈�𝜇�̈�
+ ] , [min

𝜔
𝜂�⃛�𝜔
− , min

𝜔
𝜂�⃛�𝜔
+ ])), then 

℉𝐶𝑢𝐼𝐹𝜔
− ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝑂𝑊𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ ℉𝐶𝑢𝐼𝐹𝜔

+ . (36) 

Proof. Straightforward. 

Definition 11: For the finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, then the CIFAAHG operators are defined as: 

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐺:℉𝑧 → ℉, 𝑏𝑦 

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

= (℉𝐶𝑢𝐼𝐹0(1)
∗ )

∅�̈�
1

⊗(℉𝐶𝑢𝐼𝐹0(2)
∗ )

∅�̈�
2

⊗…⊗ (℉𝐶𝑢𝐼𝐹𝑜(𝑧)
∗ )

∅�̈�
𝑧

=⊗𝜔=1
𝑧 (℉𝐶𝑢𝐼𝐹0(𝜔)

∗ )
∅�̈�
𝜔

. 

(37) 

Note that the weighted vector is stated by: ∅�̈�
𝜔
∈ [0,1]  with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1  with 0(𝜔) ≤

0(𝜔 − 1) , where we can get the order of the CIFN by the score function and ℉𝐶𝑢𝐼𝐹0(𝜔)
∗ =

𝑧∅�̈�
𝜔
℉𝐶𝑢𝐼𝐹𝜔

/
, 𝜔 = 1,2, … , 𝑧 with another weight vector ∅�̈�

𝜔
∈ [0,1] with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1. 

Theorem 7: For any finite collection of CIFNs ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧, we proved that Eq (37) is also a CIFN, such as 
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𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
)

=

(

 
 
 
 
 
 
 
 
 (𝔈

−(∑ ∅�̈�
𝜔
(− 𝕀𝔫(�̈�𝜇0(𝜔)̈

∗ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(− 𝕀𝔫(1−�⃛��⃛�0(𝜔)

∗ ))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

) ,

(

 
 
 
 
 [𝔈

−(∑ ∅�̈�
𝜔
(−𝕀𝔫(�̈�𝜇0(𝜔)̈

∗ −
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(�̈�𝜇0(𝜔)̈

∗ +
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

] ,

[1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�⃛��⃛�0(𝜔)

∗ −
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

, 1 − 𝔈
−(∑ ∅�̈�

𝜔
(−𝕀𝔫(1−�⃛��⃛�0(𝜔)

∗ +
))
ℏℏ

𝑧
𝜔=1 )

1
ℏℏ

]

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 
(38) 

Proof. Straightforward. 

Property 16: If ℉𝐶𝑢𝐼𝐹𝜔

/
= ℉𝐶𝑢𝐼𝐹

/
= ((�̈��̈�, 𝜂�⃛�), ([�̈��̈�

−, �̈��̈�
+], [𝜂�⃛�

−, 𝜂�⃛�
+])) , 𝜔 = 1,2, … , 𝑧, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) = ℉𝐶𝑢𝐼𝐹

/
. (39) 

Proof. Straightforward. 

Property 17: If ℉𝐶𝑢𝐼𝐹𝜔

/
≤ ℉𝐶𝑢𝐼𝐹𝜔

∗∗  , it means that �̈�𝜇�̈� ≤ �̈�𝜇�̈�
∗∗ , 𝜂�⃛�𝜔 ≥ 𝜂�⃛�𝜔

∗∗   and �̈�𝜇�̈�
− ≤ �̈�𝜇�̈�

− ∗∗, �̈�𝜇�̈�
+ ≤

�̈�𝜇�̈�
+ ∗∗

, 𝜂�⃛�𝜔
− ≥ 𝜂�⃛�𝜔

− ∗∗, 𝜂�⃛�𝜔
+ ≥ 𝜂�⃛�𝜔

+ ∗∗
, then 

𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐺(℉𝐶𝑢𝐼𝐹1

∗∗ , ℉𝐶𝑢𝐼𝐹2
∗∗ , … ,℉𝐶𝑢𝐼𝐹𝑧

∗∗ ). (40) 

Proof. Straightforward. 

Property 18: If ℉𝐶𝑢𝐼𝐹𝜔
− = ((min

𝜔
�̈�𝜇�̈� , max𝜔

𝜂�⃛�𝜔) , ([min𝜔
�̈�𝜇�̈�
− , min

𝜔
�̈�𝜇�̈�
+ ] , [max

𝜔
𝜂�⃛�𝜔
− , max

𝜔
𝜂�⃛�𝜔
+ ])) and 

℉𝐶𝑢𝐼𝐹𝜔
+ = ((max

𝜔
�̈�𝜇�̈� , min𝜔

𝜂�⃛�𝜔) , ([max𝜔
�̈�𝜇�̈�
− , max

𝜔
�̈�𝜇�̈�
+ ] , [min

𝜔
𝜂�⃛�𝜔
− , min

𝜔
𝜂�⃛�𝜔
+ ])), then 

℉𝐶𝑢𝐼𝐹𝜔
− ≤ 𝐶𝑢𝐼𝐹𝐴𝐴𝐻𝐺(℉𝐶𝑢𝐼𝐹1

/
, ℉𝐶𝑢𝐼𝐹2

/
, … ,℉𝐶𝑢𝐼𝐹𝑧

/
) ≤ ℉𝐶𝑢𝐼𝐹𝜔

+ . (41) 

Proof. Straightforward. 

5. Classifications of artificial neutral networks based on proposed operators 

In this section, we select the best type of artificial neural network among the five artificial neural 

networks based on the proposed method for CIFS. Furthermore, according to the internet, ANNs mean 

“artificial neural networks , which are the collection of computational techniques motivated by the 

shape and specification of biological neural networks discovered in the human brain. Based on the 

CIFAAWA operator and CIFAAWG operator, we select the best one among five artificial neural 

networks. 
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For this, we collect a finite collection of alternatives ℉𝐶𝑢𝐼𝐹1
∗∗ , ℉𝐶𝑢𝐼𝐹2

∗∗ , … ,℉𝐶𝑢𝐼𝐹𝑧
∗∗   and for each 

alternative, we have the collection of finite attributes ℉𝐶𝑢𝐼𝐹1
𝑎𝑡𝑟𝑖𝑏𝑢𝑡𝔈, ℉𝐶𝑢𝐼𝐹2

𝑎𝑡𝑟𝑖𝑏𝑢𝑡𝔈, … ,℉𝐶𝑢𝐼𝐹𝑛
𝑎𝑡𝑟𝑖𝑏𝑢𝑡𝔈  with well-

known weight vectors ∅�̈�
𝜔
∈ [0,1] with ∑ ∅�̈�

𝜔𝑧
𝜔=1 = 1. Further, we get a matrix with the CIF values, 

where 0 ≤ �̈��̈�(𝛼) + 𝜂�⃛�(𝛼) ≤ 1  and 0 ≤ �̈��̈�
+(𝛼) + 𝜂�⃛�

+(𝛼) ≤ 1 , and [�̈��̈�
−(𝛼), �̈��̈�

+(𝛼)]  and 

[𝜂�⃛�
−(𝛼), 𝜂�⃛�

+(𝛼)] represent the interval-valued truth and interval-valued falsity degrees with a neutral 

grade �̈��̈�(𝛼) = [�̈��̈�
−(𝛼), �̈�

�̈�
+(𝛼)] = [1 − �̈��̈�

+(𝛼) + 𝜂�⃛�
+(𝛼), 1 − �̈��̈�

−(𝛼) + 𝜂�⃛�
−(𝛼)] , where �̈��̈�(𝛼)  and 

𝜂�⃛�(𝛼)  represent the truth and falsity degrees with a neutral grade �̈��̈�(𝛼) = 1 − (�̈��̈�(𝛼) + 𝜂�⃛�(𝛼)) . 

Moreover, the simple form of the CIF number (CIFN) is shown by: ℉𝐶𝑢𝐼𝐹𝜔

/
=

((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ], [𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ])) , 𝜔 = 1,2, … , 𝑧 . After getting the matrix, we will use the 

following procedure for evaluating the best decision between five decisions. The geometrical 

representation of the proposed algorithm is mentioned in Figure 3. 

 

Figure 3. The geometrical shape of the proposed algorithm. 

Step 1: During the collection of CIF values, we have two possibilities, such as benefit or cost type of 

information, if we have cost type of data in the decision matrix, then we aim to normalize the matrix, 

such as 

𝑁 = {
((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�

− , �̈�𝜇�̈�
+ ], [𝜂�⃛�𝜔

− , 𝜂�⃛�𝜔
+ ])) 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡,

((𝜂�⃛�𝜔 , �̈�𝜇�̈�), ([𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ], [�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ])) 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡.
 

However, if we have a benefit type of data, we do not need to normalize the data. 
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Step 2: For aggregating the normalized data into a singleton one, we use the CIFAAWA operator and 

CIFAAWG operator. 

Step 3: For getting the score values, we use Eq (4) or Eq (5). 

Step 4: Ranking the order of the alternatives based on their score values to examine the best optimal 

among the five ones. 

Further, we simplify the above procedure with the help of some practical examples, which are 

related to artificial neural networks. For this, we consider five artificial neural networks and select the 

best one. 

5.1. Numerical example 

The ANN technique is used in many fields because of their features and dominancy. In this 

example, we aim to consider five alternatives, and for each alternative, we have four attributes with 

weight vectors (0.25,0.25,0.25,0.25)𝑇. Furthermore, each alternative can be stated below: 

1) Feedforward Neural Networks (FNNs) “℉𝐶𝑢𝐼𝐹1
∗∗  : FNNs are the valuable and simple kind of 

ANNs, containing input, hidden, and output layers. 

2) Recurrent Neural Networks (RNNs) “℉𝐶𝑢𝐼𝐹2
∗∗  : RNNs are specially constructed for coping with 

sequential information like time series or natural language. 

3) Long Short-Term Memory Networks (LSTMs) “℉𝐶𝑢𝐼𝐹3
∗∗  : LSTMs are a valuable and dominant 

type of RNN that evaluates the vanishing gradient problems. 

4) Convolutional Neural Networks (CNNs) “℉𝐶𝑢𝐼𝐹4
∗∗   : CNNs are specifically designed for the 

primary computer vision tasks. 

5) Generative Adversarial Networks (GANs) “℉𝐶𝑢𝐼𝐹5
∗∗  : GANs consist of two ANNs, a generator, 

and a discriminator, that are trained together in a game-like setting. 

To choose the best one, we use the following features which are stated as the main attribute or 

criteria, such as: ℉𝐶𝑢𝐼𝐹1
𝑎𝑡𝑟𝑖𝑏𝑢𝑡𝔈 : Risk analysis, ℉𝐶𝑢𝐼𝐹2

𝑎𝑡𝑟𝑖𝑏𝑢𝑡𝔈 : Growth analysis, ℉𝐶𝑢𝐼𝐹3
𝑎𝑡𝑟𝑖𝑏𝑢𝑡𝔈 : Enviromental 

impact, and ℉𝐶𝑢𝐼𝐹4
𝑎𝑡𝑟𝑖𝑏𝑢𝑡𝔈: Social and political impact. Then, we get the data in Table 2.  

After getting the matrix, we will use the following procedure to get the best decision, such as: 

Step 1: Because ℉𝐶𝑢𝐼𝐹1
𝐴𝑡𝑟𝑖𝑏𝑢𝑡𝔈 is the cost type, we aim to normalize the matrix in Table 2, such as 

𝑁 = {
((�̈�𝜇�̈� , 𝜂�⃛�𝜔), ([�̈�𝜇�̈�

− , �̈�𝜇�̈�
+ ], [𝜂�⃛�𝜔

− , 𝜂�⃛�𝜔
+ ])) 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡,

((𝜂�⃛�𝜔 , �̈�𝜇�̈�), ([𝜂�⃛�𝜔
− , 𝜂�⃛�𝜔

+ ], [�̈�𝜇�̈�
− , �̈�𝜇�̈�

+ ])) 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡.
 

then the normalized matrix is given in Table 3. 
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Table 2. Cubic intuitionistic fuzzy decision matrix. 

 ℉𝐶𝑢𝐼𝐹1
𝐴𝑡𝑟𝑖𝑏𝑢𝑡𝔈  ℉𝐶𝑢𝐼𝐹2

𝐴𝑡𝑟𝑖𝑏𝑢𝑡𝔈 

℉𝐶𝑢𝐼𝐹1
∗∗  

(
(0.2,0.7),

([0.2,0.3], [0.4,0.5])
)  (

(0.71,0.21),
([0.41,0.51], [0.21,0.31])

) 

℉𝐶𝑢𝐼𝐹2
∗∗  

(
(0.1,0.5),

([0.1,0.2], [0.2,0.4])
)  (

(0.51,0.11),
([0.21,0.41], [0.11,0.21])

) 

℉𝐶𝑢𝐼𝐹3
∗∗  

(
(0.2,0.4),

([0.3,0.4], [0.3,0.5])
)  (

(0.41,0.21),
([0.31,0.51], [0.31,0.41])

) 

℉𝐶𝑢𝐼𝐹4
∗∗  

(
(0.2,0.3),

([0.1,0.2], [0.1,0.2])
)  (

(0.31,0.21),
([0.11,0.21], [0.11,0.21])

) 

℉𝐶𝑢𝐼𝐹5
∗∗  

(
(0.1,0.8),

([0.1,0.2], [0.5,0.6])
)  (

(0.81,0.11),
([0.51,0.61], [0.11,0.21])

) 

 ℉𝐶𝑢𝐼𝐹3
𝐴𝑡𝑟𝑖𝑏𝑢𝑡𝔈  ℉𝐶𝑢𝐼𝐹4

𝐴𝑡𝑟𝑖𝑏𝑢𝑡𝔈 

℉𝐶𝑢𝐼𝐹1
∗∗  

(
(0.72,0.22),

([0.42,0.52], [0.22,0.32])
)  (

(0.73,0.23),
([0.43,0.53], [0.23,0.33])

) 

℉𝐶𝑢𝐼𝐹2
∗∗  

(
(0.52,0.12),

([0.22,0.42], [0.12,0.22])
)  (

(0.53,0.13),
([0.23,0.43], [0.13,0.23])

) 

℉𝐶𝑢𝐼𝐹3
∗∗  

(
(0.42,0.22),

([0.32,0.52], [0.32,0.42])
)  (

(0.43,0.23),
([0.33,0.53], [0.33,0.43])

) 

℉𝐶𝑢𝐼𝐹4
∗∗  

(
(0.32,0.22),

([0.12,0.22], [0.12,0.22])
)  (

(0.33,0.23),
([0.13,0.23], [0.13,0.23])

) 

℉𝐶𝑢𝐼𝐹5
∗∗  

(
(0.82,0.12),

([0.52,0.62], [0.12,0.22])
)  (

(0.83,0.13),
([0.53,0.63], [0.13,0.23])

) 

Table 3. Normalized Cubic intuitionistic fuzzy decision matrix. 

 ℉𝑪𝒖𝑰𝑭𝟏
𝑨𝒕𝒓𝒊𝒃𝒖𝒕𝕰 ℉𝑪𝒖𝑰𝑭𝟐

𝑨𝒕𝒓𝒊𝒃𝒖𝒕𝕰 

℉𝑪𝒖𝑰𝑭𝟏
∗∗  

(
(0.7,0.2),

([0.4,0.5], [0.2,0.3])
) (

(0.71,0.21),
([0.41,0.51], [0.21,0.31])

) 

℉𝑪𝒖𝑰𝑭𝟐
∗∗  

(
(0.5,0.1),

([0.2,0.4], [0.1,0.2])
) (

(0.51,0.11),
([0.21,0.41], [0.11,0.21])

) 

℉𝑪𝒖𝑰𝑭𝟑
∗∗  

(
(0.4,0.2),

([0.3,0.5], [0.3,0.4])
) (

(0.41,0.21),
([0.31,0.51], [0.31,0.41])

) 

℉𝑪𝒖𝑰𝑭𝟒
∗∗  

(
(0.3,0.2),

([0.1,0.2], [0.1,0.2])
) (

(0.31,0.21),
([0.11,0.21], [0.11,0.21])

) 

℉𝑪𝒖𝑰𝑭𝟓
∗∗  

(
(0.8,0.1),

([0.5,0.6], [0.1,0.2])
) (

(0.81,0.11),
([0.51,0.61], [0.11,0.21])

) 

 ℉𝐶𝑢𝐼𝐹3
𝐴𝑡𝑟𝑖𝑏𝑢𝑡𝔈 ℉𝐶𝑢𝐼𝐹4

𝐴𝑡𝑟𝑖𝑏𝑢𝑡𝔈 

℉𝑪𝒖𝑰𝑭𝟏
∗∗  

(
(0.72,0.22),

([0.42,0.52], [0.22,0.32])
) (

(0.73,0.23),
([0.43,0.53], [0.23,0.33])

) 

℉𝑪𝒖𝑰𝑭𝟐
∗∗  

(
(0.52,0.12),

([0.22,0.42], [0.12,0.22])
) (

(0.53,0.13),
([0.23,0.43], [0.13,0.23])

) 

℉𝑪𝒖𝑰𝑭𝟑
∗∗  

(
(0.42,0.22),

([0.32,0.52], [0.32,0.42])
) (

(0.43,0.23),
([0.33,0.53], [0.33,0.43])

) 

℉𝑪𝒖𝑰𝑭𝟒
∗∗  

(
(0.32,0.22),

([0.12,0.22], [0.12,0.22])
) (

(0.33,0.23),
([0.13,0.23], [0.13,0.23])

) 

℉𝑪𝒖𝑰𝑭𝟓
∗∗  

(
(0.82,0.12),

([0.52,0.62], [0.12,0.22])
) (

(0.83,0.13),
([0.53,0.63], [0.13,0.23])

) 
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Step 2: For aggregating the normalized data into a singleton one, we use the CIFAAWA operator and 

CIFAAWG operator to get the results, shown in Table 4. 

Table 4. Aggregated decision matrix. 

 CIFAAWA Operator CIFAAWG Operator 

℉𝐶𝑢𝐼𝐹1
∗∗  

(
(0.4204,0.5126),

([0.2077,0.2697], [0.5126,0.6053])
) (

(0.8643,0.0998),
([0.6824,0.7495], [0.0998,0.1515])

) 

℉𝐶𝑢𝐼𝐹2
∗∗  

(
(0.2697,0.3900),

([0.0998,0.2077], [0.3900,0.5126])
) (

(0.7495,0.0517),
([0.5126,0.6824], [0.0517,0.0998])

) 

℉𝐶𝑢𝐼𝐹3
∗∗  

(
(0.2077,0.5126),

([0.1515,0.2697], [0.6053,0.6824])
) (

(0.6824,0.0998),
([0.6053,0.7495], [0.1515,0.2077])

) 

℉𝐶𝑢𝐼𝐹4
∗∗  

(
(0.1515,0.5126),

([0.0517,0.0998], [0.3900,0.5126])
) (

(0.6053,0.0998),
([0.3900,0.5126], [0.0517,0.0998])

) 

℉𝐶𝑢𝐼𝐹5
∗∗  

(
(0.5198,0.3900),

([0.2697,0.3394], [0.3900,0.5126])
) (

(0.5149,0.0517),
([0.7495,0.8096], [0.0517,0.0998])

) 

Step 3: For getting the score values, we use Eq (4) to calculate it, as shown in Table 5. 

Table 5. The score values of the aggregated values. 

 CIFAAWA Operator CIFAAWG Operator 

℉𝐶𝑢𝐼𝐹1
∗∗  −0.20622 0.67741 

℉𝐶𝑢𝐼𝐹2
∗∗  −0.20895 0.6098 

℉𝐶𝑢𝐼𝐹3
∗∗  −0.36904 0.54018 

℉𝐶𝑢𝐼𝐹4
∗∗  −0.36835 0.44056 

℉𝐶𝑢𝐼𝐹5
∗∗  −0.00851 0.78353 

Step 4: We can get the ranking order of the alternatives based on their score values, and get the best 

optimal among the five ones, see Table 6. 

Table 6. Ranking values. 

Methods Ranking values Best decision 

CIFAAWA Operator ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗  ℉𝐶𝑢𝐼𝐹5

∗∗  

CIFAAWG Operator ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗ > ℉𝐶𝑢𝐼𝐹4
∗∗  ℉𝐶𝑢𝐼𝐹5

∗∗  

From the Table 6, we observed that the best optimal is ℉𝐶𝑢𝐼𝐹5
∗∗  (Generative Adversarial Networks 

(GANs)) by the two different techniques based on CIFSs. Further, we try to discuss different types of 

cases using the data in Table 2. For instance, if we exclude the interval-valued information from the 

data in Table 2, then the aggregated values are shown in Table 7. 

Moreover, we derive the ranking order of the alternatives based on their score values and get the 

best optimal among the five (see Table 8). 
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Table 7. Score values of IFSs. 

 IFAAWA Operator IFAA WG Operator 

℉𝐶𝑢𝐼𝐹1
∗∗  -0.0922 0.7645 

℉𝐶𝑢𝐼𝐹2
∗∗  -0.1203 -0.2975 

℉𝐶𝑢𝐼𝐹3
∗∗  -0.3048 0.5825 

℉𝐶𝑢𝐼𝐹4
∗∗  -0.3610 0.5055 

℉𝐶𝑢𝐼𝐹5
∗∗  0.1297 0.8632 

Table 8. The ranking results are based on Table 7. 

Methods Ranking values Best decision 

IFAAWA Operator ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗ > ℉𝐶𝑢𝐼𝐹4
∗∗  ℉𝐶𝑢𝐼𝐹5

∗∗  

IFAAWG Operator ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗  ℉𝐶𝑢𝐼𝐹5

∗∗  

From Table 8, we observed that the best optimal is ℉𝐶𝑢𝐼𝐹5
∗∗   (Generative Adversarial Networks 

(GANs)) by the two different techniques based on CIFSs.  

Further, we excluded the intuitionistic information from the data in Table 2. The aggregated values 

are shown in Table 9. 

Table 9. Score values for IVIFSs. 

 IVIFAAWA Operator 

(0.25,0.25,0.25,0.25) 

IVIFAAWG Operator 

(0.25,0.25,0.25,0.25) 

IVIFAAWA Operator 

(0.2,0.3,0.2,0.3) 

IVIFAAWG Operator 

(0.2,0.3,0.2,0.3) 

℉𝐶𝑢𝐼𝐹1
∗∗  -0.3202 0.5902 0.9575 0.9739 

℉𝐶𝑢𝐼𝐹2
∗∗  -0.2975 0.5217 0.944 0.9673 

℉𝐶𝑢𝐼𝐹3
∗∗  -0.4332 0.4977 0.9476 0.9558 

℉𝐶𝑢𝐼𝐹4
∗∗  -0.3756 0.3756 0.914 0.9452 

℉𝐶𝑢𝐼𝐹5
∗∗  -0.1467 0.7038 0.9682 0.9818 

Moreover, we derive the ranking order of the alternatives based on their score values and get the 

best optimal among the five (see Table 10). 

Table 10. The ranking results from Table 9. 

Methods Ranking values Best decision 

CIFAAWA Operator 

(0.25,0.25,0.25,0.25) 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗ > ℉𝐶𝑢𝐼𝐹1
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗  ℉𝐶𝑢𝐼𝐹5

∗∗  

CIFAAWG Operator 

(0.25,0.25,0.25,0.25) 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗ > ℉𝐶𝑢𝐼𝐹4
∗∗  ℉𝐶𝑢𝐼𝐹5

∗∗  

CIFAAWA Operator 

(0.2,0.3,0.2,0.3) 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗ > ℉𝐶𝑢𝐼𝐹1
∗∗  ℉𝐶𝑢𝐼𝐹5

∗∗  

CIFAAWG Operator 

(0.2,0.3,0.2,0.3) 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗ > ℉𝐶𝑢𝐼𝐹4
∗∗  ℉𝐶𝑢𝐼𝐹5

∗∗  
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From Table 10, we observe that the best optimal is ℉𝐶𝑢𝐼𝐹5
∗∗   (Generative Adversarial Networks 

(GANs)) by the two different techniques based on CIFSs. This means that when we use only IFSs, 

IVIFSs, and CIF types of data, the proposed technique could easily get the same results. Moreover, we 

check the influence of the parameters and do a comparative analysis of the proposed method with some 

methods. 

5.2. Influence of parameters 

In this subsection, we verify the stability or influences of the proposed work with the help of the 

different values of parameters ℏℏ ≥ 1.  

For this, we consider the data in Table 2, and then based on the CIFAAWA operator and 

CIFAAWG operators, we check the ranking results. For the CIFAAWA operator, the influence of the 

possible values of ℏℏ is shown in Table 11. 

Table 11. Influence of the parameter based on the CIFAAWA operator. 

Parameter Score values Ranking results 

ℏℏ = 1 -0.2062,-0.2089,-0.3690,-0.3683,-

0.0085 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗  

ℏℏ = 3 -0.2056,-0.208,-0.3685,-0.3675,-

0.0075 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗  

ℏℏ = 5 -0.2049,-0.2071,-0.3679,-0.3667,-

0.0065 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗  

ℏℏ = 7 -0.2043,-0.2062,-0.3673,-0.3659,-

0.0055 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗  

ℏℏ = 9 -0.2037,-0.2053,-0.3668,-0.3651,-

0.0045 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗  

ℏℏ = 11 -0.2031,-0.2045,-0.3662,-0.3644,-

0.0036 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗  

From Table 11, we observe that the best optimal is ℉𝐶𝑢𝐼𝐹5
∗∗   (Generative Adversarial Networks 

(GANs)) by the Aczel-Alsina weighted averaging based on CIFSs for all possible values of the 

parameter. Furthermore, the influence of the possible values of ℏℏ  for the CIFAAWG operator is 

shown in Table 12. 

From Table 12, we observe that the best optimal is ℉𝐶𝑢𝐼𝐹5
∗∗   (Generative Adversarial Networks 

(GANs)) by the Aczel-Alsina weighted geometric based on CIFSs for all possible values of the 

parameter. Furthermore, we use the data in Table 2 to perform a comparative analysis of the proposed 

method with some existing methods. 
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Table 12. Influence of the parameter based on the CIFAAWG operator. 

Parameter Score values Ranking values 

ℏℏ = 1 0.6774,0.6098,0.5401,0.4405,0.7835 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

ℏℏ = 3 0.6768,0.609,0.5396,0.4398,0.7827 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

ℏℏ = 5 0.6763,0.6083,0.5391,0.439,0.782 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

ℏℏ = 7 0.6757,0.6076,0.5386,0.4382,0.7813 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

ℏℏ = 9 0.6752,0.6069,0.5381,0.4374,0.7806 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

ℏℏ = 11 0.6747,0.6063,0.5375,0.4367,0.7799 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

5.3. Comparative analysis 

In this subsection, our main target is to compare the proposed method with some existing methods 

to show the effectiveness of the derived method. For this, we consider the following existing methods, 

for instance, Xu [14] addressed the AOs for IFSs. Moreover, Xu and Yager [16] developed the 

geometric AOs for IFSs. Wang et al. [18] presented the AOs for IVIFSs. Further, Senapati et al. [19] 

derived the geometric AOs for IVIFSs. Wei and Wang [21] addressed the geometric AOs for IVIFSs. 

Moreover, Xu and Chen [22] presented the geometric AOs for IVIFSs. Kaur and Garg [25] developed 

the AOs for the CIF set. Finally, Kaur and Garg [26] proposed the generalized AOs for CIF values. 

Based on the data in Table 2, the comparative analysis is shown in Table 13. 

Table 13. Comparative analysis for the CIF values. 

Methods Score values Ranking values 

Xu [14] Failed Failed 

Xu and Yager [16] Failed Failed 

Wang et al. [18] Failed Failed 

Senapati et al. [19] Failed Failed 

Wei and Wang 

[21] 

Failed Failed 

Xu and Chen [22]  Failed Failed 

Kaur and Garg 

[25] 

0.3504,0.2756,0.1253,0.0504,0.5507 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

Kaur and Garg 

[26] 

0.3498,0.2748,0.1248,0.0496,0.5498 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

CIFAAWA 

operator 

-0.2062,-0.209,-0.369,-0.3683,-

0.0085 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗  

CIFAAWG 

operator 

0.6774,0.6098,0.5402,0.4406,0.7835 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  



27828 

AIMS Mathematics  Volume 9, Issue 10, 27797–27833. 

From Table 13, we see that the best decision is ℉𝐶𝑢𝐼𝐹5
∗∗  (Generative Adversarial Networks (GANs)) 

according to the proposed CIFAAWA, CIFAAWG, and the methods proposed by Kaur and Garg [25,26] 

because these operators are based on CIF information, but the other existing techniques failed to solve 

this problem because they are based on IFS or IVIFSs. If we use only the IFS from the data in Table 2, 

then the comparison is stated in Table 14. 

Table 14. Comparative analysis for the IFSs. 

Methods Score values Ranking values 

Xu [14] 0.5005,0.4007,0.2004,0.1004,0.7009 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗  

Xu and Yager [16] 0.4998,0.3998,0.1998,0.0997,0.6999 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗  

Wang et al. [18] Failed Failed 

Senapati et al. 

[19] 

Failed Failed 

Wei and Wang 

[21] 

Failed Failed 

Xu and Chen [22]  Failed Failed 

Kaur and Garg 

[25] 

0.5005,0.4007,0.2004,0.1004,0.7009 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗  

Kaur and Garg 

[26] 

0.4998,0.3998,0.1998,0.0997,0.6999 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗  

CIFAAWA 

operator 

-0.0922,-0.1203,-0.3048,-

0.3610,0.1297 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗  

CIFAAWG 

operator 

0.7645,-0.2975,0.5825,0.5055,0.8632 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗  

From Table 14, we see that the best decision is ℉𝐶𝑢𝐼𝐹5
∗∗  (Generative Adversarial Networks (GANs)) 

according to the proposed CIFAAWA, and CIFAAWG, the methods proposed by Kaur and Garg 

[25,26], Xu [14], and Xu and Yager [16], because these operators are based on CIF information or IFS, 

but the other techniques failed to solve this problem because they are based on IVIFSs. If we used only 

the IVIFS from the data in Table 2, then the comparison is shown in Table 15. 

From Table 15, we see that the best decision is ℉𝐶𝑢𝐼𝐹5
∗∗  (Generative Adversarial Networks (GANs)) 

according to the proposed CIFAAWA, CIFAAWG, the methods proposed by Kaur and Garg [25,26], 

Wang et al. [18], Senapati et al. [19], Wei and Wang [21], and Xu and Chen [22], because these 

operators are based on CIF information and IVIFS.However, the other techniques failed to solve this 

problem because they are based on IFSs. Hence the proposed method is massively powerful and 

dominant compared to the existing techniques. 
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Table 15. Comparative analysis for the IVIFSs. 

Methods Score values Ranking values 

Xu [14] Failed Failed 

Xu and Yager [16] Failed Failed 

Wang et al. [18] 0.2004,0.1505,0.0503,0.0005,0.4006 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

Senapati et al. 

[19] 

0.9575,0.9437,0.9475,0.913,0.9682 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹3
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

Wei and Wang 

[21] 

0.1998,0.1497,0.0497,-

0.0005,0.3998 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

Xu and Chen [22]  0.1998,0.1497,0.0497,-

0.0005,0.3998 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

Kaur and Garg 

[25] 

0.2004,0.1505,0.0503,0.0005,0.4006 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

Kaur and Garg 

[26] 

0.1998,0.1497,0.0497,-

0.0005,0.3998 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

CIFAAWA 

operator 

-0.3202,-0.2975,-0.4332,-0.3756,-

0.1467 

℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹2

∗∗ > ℉𝐶𝑢𝐼𝐹1
∗∗ > ℉𝐶𝑢𝐼𝐹4

∗∗

> ℉𝐶𝑢𝐼𝐹3
∗∗  

CIFAAWG 

operator 

0.5902,0.5217,0.4977,0.3756,0.7038 ℉𝐶𝑢𝐼𝐹5
∗∗ > ℉𝐶𝑢𝐼𝐹1

∗∗ > ℉𝐶𝑢𝐼𝐹2
∗∗ > ℉𝐶𝑢𝐼𝐹3

∗∗

> ℉𝐶𝑢𝐼𝐹4
∗∗  

6. Conclusions 

The model of cubic intuitionistic fuzzy sets is the combination of two different techniques, called 

cubic and intuitionistic fuzzy sets, and is a reliable technique to cope with vague and uncertain 

information. The major influences of this article are listed below: 

1) We addressed or computed the model of Aczel-Alsina operational laws under the consideration 

of the CIF set as well as AATN and AATCN, where the model of Algebraic norms and Drastic 

norms are the special parts of the Aczel-Alsina norms.  

2) Using the above invented operational laws, we aimed to develop the model of Aczel-Alsina 

average/geometric aggregation operators, called CIFAAWA, CIFAAOWA, CIFAAHA, 

CIFAAWG, CIFAAOWG, and CIFAAHG operators with some well-known and desirable 

properties.  

3) A procedure of decision-making technique is presented for finding the best type of artificial 

neural networks with the help of MADM problems based on CIF aggregation information.  

4) We determined a numerical example for showing the rationality and advantages of the 

developed method by comparing their ranking values with the ranking values of many 

prevailing tools. 

6.1. Limitations of the proposed model 

The model of cubic intuitionistic fuzzy sets is very flexible but due to ambiguity and problems, 

they are not working in many places. For instance, when a person provides information in the form of 

yes, no, and abstinence, then the model of the CIF set has been failed. For this, we aim to compute the 
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model of cubic picture fuzzy sets and their extensions. 

6.2. Future directions 

In the future, we will extend the Aczel-Alsina operators to complex cubic intuitionistic fuzzy, 

Pythagorean fuzzy, q-rung orthopair fuzzy, and their extensions. Further, we will also concentrate on 

their application in green supply chain management, artificial intelligence, road signals, and decision-

making problems. 
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