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Abstract: Artificial neural networks (ANNs) are the collection of computational techniques or models
encouraged by the shape and purpose of natural or organic neural networks. Furthermore, a cubic
intuitionistic fuzzy (CIF) set is the modified or extended form of a Fuzzy set (FS). Our goal was to
address or compute the model of Aczel-Alsina operational laws under the consideration of the CIF set
as well as Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-conorm (AATCN), where the model of
Algebraic norms and Drastic norms were the special parts of the Aczel-Alsina norms. Further, using
the above invented operational laws, we aimed to develop the model of Aczel-Alsina
average/geometric aggregation operators, called CIF Aczel-Alsina weighted averaging (CIFAAWA),
CIF Aczel-Alsina ordered weighted averaging (CIFAAOWA), CIF Aczel-Alsina hybrid averaging
(CIFAAHA), CIF Aczel-Alsina weighted geometric (CIFAAWG), CIF Aczel-Alsina ordered weighted
geometric (CIFAAOWG), and CIF Aczel-Alsina hybrid geometric (CIFAAHG) operators with some
well-known and desirable properties. Moreover, a procedure decision-making technique was presented
for finding the best type of artificial neural networks with the help of multi-attribute decision-making
(MADM) problems based on CIF aggregation information. Finally, we determined a numerical
example for showing the rationality and advantages of the developed method by comparing their
ranking values with the ranking values of many prevailing tools.
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1. Introduction

To find the finest or best optimal form from the collection of finite alternatives, different
techniques have been proposed by different scholars, such as MADM techniques [1,2], pattern
recognition, artificial neural networks, and artificial intelligence. Various individuals have developed
the MADM tools in different fields [3,4] based on classical set theory. However, because of
complications and complexity in the case of classical set theory, experts have lost a lot of data during
the decision-making process. To solve this problem, the fuzzy set (FS) was developed by Zadeh [5] in
1965 by modifying the function fi;: °C - {0,1} into fi;: °C — [0,1], called truth grade. Furthermore,
the FS has a lot of benefits, but it also has some limitations, such as in the presence of truth grade and
falsity grade, FS has failed because it deals only with truth information and not with falsity information.
For this, the IFS was proposed by Atanassov [6], which covered the truth and falsity grades, such as

fiz: °C - [0,1] and #j3: °C — [0,1] with a condition 0 < iz (a) + #j;(a) < 1. The FS is a special part

of the IFS if we exclude the falsity of information #5: °C — [0,1]. Additionally, to increase the ratio of

correctness, we have also the best option to take the shape of an interval instead of a real number. For
example, during any cricket match between Team A and Team B, we provided our opinion in the shape
of the interval, and we decided that Team A would score between 150 to 180 in the T20 match. For
such type of problem, the IFS and FS are not good; therefore, the idea of interval-valued IFS (IVIFS)

was given by Atanassov [7], with a characteristic 0 < ,u;[ () + 77,;“ (a) < 1, where [u; (a), /1:[ (a)] and

[7]; (a), 77,'7* ()] represents the interval-valued truth and interval-valued falsity information. Moreover,

Jun et al. [8] developed the cubic set, which is the combination of FS and interval-valued FS (IVFS)
[9,10]. Moreover, Kaur and Garg [11] developed the cubic IFS (CIFS), which is the combination of
IFS and IVIFS. The geometric representation of the FSs and their extensions are described in
Figure 1. The model of cubic intuitionistic fuzzy sets is more extensive compared to other existing
models. Further, a detailed review of the above existing models is described in the next sub-sections.

VRN

Fuzzy Sets(Zadeh, 1965)

Cubic Sets (Junetal,,
2012)

N~

2N

Interval-valued IntuitionisticFuzzy Sets Cubic Intuitionistic

IntuitionisticFuzzy Sets Fuzzy Sets (Kaur and
(Atanassov, 1999) (Atanassov, 1986) Garg, 2018)

Figure 1. Geometrical representation of the fuzzy sets and their extensions.
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1.1. Literature review

FS and its extensions have many applications in different fields, and because of their valuable and
dominant structure, FS is better than the classical set, and IFS is more beneficial than FS, but the CIFS
is more advanced and reliable than FS because it is a combination of two different structures, such as
IFS and IVIFS. Some valuable applications are given; for instance, Mardani et al. [12] explored the
aggregation operators for FS. Moreover, Merigo and Casanovas [13] developed the generalized hybrid
aggregation operators for FS and their applications. Additionally, Xu [14] derived the simple
aggregation operators for IFSs, whereas the prioritized aggregation operators for IFS were used by Yu
and Xu [15]. Moreover, Xu and Yager [16] examined the geometric aggregation operators for IFS and
their application in decision-making problems. Garg et al. [17] explored the Schweizer-Sklar
prioritized aggregation operators for IFSs. Wang et al. [18] developed the aggregation operators for
IVIFSs and their applications. Senapati et al. [19] proposed the Aczel-Alsina aggregation operators for
IVIFSs. Shi et al. [20] evaluated the power aggregation operators based on Aczel-Alsina operational
laws for IVIFSs. Wei and Wang [21] studied the geometric aggregation operators for IVIFSs and their
application in decision-making problems. Xu and Chen [22] proposed the geometric aggregation
operators for IVIFSs. Fahmi et al. [23] developed the Einstein aggregation operators for cubic fuzzy
sets. Khan et al. [24] studied the cubical fuzzy aggregation operators and their application in decision-
making problems. Kaur and Garg [25] examined the simple aggregation operators based on cubic IFSs
and their applications. Additionally, Kaur and Garg [26] derived the generalized aggregation operators
(AOs) for cubic IFS and their application in decision-making problems.

1.2. Aczel-Alsina t-norm and t-conorm

Aggregating the collection of finite information is a very challenging task for scholars. The
triangular norms were proposed by Klement and Mesiar [27], which are very valuable and dominant
for evaluating any kind of aggregation operator. Furthermore, Aczel and Alsina [28] developed the
Aczel-Alsina t-norm and t-conorm, which are the modified versions of the algebraic norms. Many
scholars developed different types of aggregation operators based on Aczel-Alsina operational laws,
for instance, Senapati et al. [29] presented the Aczel-Alsina AOs for IFSs. Further, Senapati et al. [30]
developed the Aczel-Alsina AOs for IVIFSs. Moreover, Aczel-Alsina AOs based on hesitant FS were
given by Senapati et al. [31]. Mahmood et al. [32] presented the Aczel-Alsina AOs for complex IFSs
and their application. Senapati et al. [33] examined the geometric AOs for IFSs and their applications.
Ahmad et al. [34] derived the Aczel-Alsina AOs for the intuitionistic fuzzy rough set. Sarfraz et al. [35]
proposed the prioritized Aczel-Alsina AOs for IFSs. Mahmood et al. [36] explored the Aczel-Alsina
power AOs for complex IFSs. Recently, Hussain et al. [37] introduced the intuitionistic fuzzy rough
Aczel-Alsina AOs and their application in decision-making problems. Further, many types of operators
were constructed by well-known scholars, for instance, the model of Dombi operators [38],
Archimedean operators [39], and Frank operators [40]. Moreover, some scholars have modified the
model of IFSs and invented the model of quasirung orthopair fuzzy sets [41], the model of (3, 4)-
quasirung orthopair fuzzy sets [42], g-rung orthopair fuzzy prioritized operators [43], linear
Diophantine fuzzy sets [44], cubic picture fuzzy topology [45], and picture fuzzy soft-max Einstein
operators [46].

AIMS Mathematics Volume 9, Issue 10, 27797-27833.



27800

1.3. Main problems/research gaps/motivations of the proposed techniques

The model for FSs theory and their modifications are very flexible because of their features, where
these techniques are very reliable; however, due to ambiguity and problems, experts have lost a lot of
information during the decision-making procedure. During decision-making assessments, all decision-
makers have faced the following dilemmas, such as

1) How we define a new aggregation operator.

2) How we aggregate the collection of information into a singleton set.

3) How we rank all alternatives to select the best one.

For handling such kinds of problems, the Aczel-Alsina operators based on the CIF set are very
beneficial and consistent for assessing uncooperative and vague information in real-life problems. The
model of Aczel-Alsina norms is described below, such as

Ten (01, A7) when hh = 0,

Ten ((Xl, az) = mln(ali aZ) when hh 00’

1
G (Mm@ + Mm@ orherwise.

Tren (07, 03) when hh = 0,
Y — _
Teen (01, 0) = max(ay, @) when hh o

1
1 — G (Cma-a@N"™+(=Im-@N"™F o rporpise.

Note that 7., (a7, d3) = @;. @, and T, (A7, d3) = a7 + A, — &;. A, describe the algebraic
norms with drastic norms min(a7, @;) and max (a7, @;), which are the special cases of the Aczel-
Alsina norms. After a long assessment, we noticed that the technique of Aczel-Alsina operational laws
is based on CIF sets. Further, the technique of averaging and geometric operators based on Aczel-
Alsina norms for CIF values are also very reliable but have not been invented yet. These techniques
are very capable and strong due to their characteristics and have not been proposed by anyone. The
main motivation of the proposed work is that no one can propose it, and the Aczel-Alsina aggregation
operators for the CIF set and the Aczel-Alsina AOs were proposed for FSs, IFSs, IVIFSs, but not for
cubic IFSs. To propose these operators, many operators are the only parts of the proposed operators
because they are the modified version of the existing operators. The limitations of the existing
techniques are briefly evaluated and discussed in Table 1.

Table 1. Theoretical comparison between proposed and existing models.

g @
Zadeh [5] Fuzzy sets N X X X X v v
Atanassov [6] Intuitionistic fuzzy sets v v X X X v v
Atanassov [7] Interval-valued Intuitionistic fuzzy sets v v v X X v v
Jun et al. [8] Cubic sets v X v v X v v
Zadeh [9] Interval-valued fuzzy sets N X v X X v v
Turksen [10] Interval-valued fuzzy sets v X v X X v v
Kaur and Garg [11]  Cubic intuitionistic fuzzy sets v v v v X v v
Proposed Aczel-Alsina operators for CIF values vV v v v v v v
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Information in Table 1 briefly describes that the proposed models are very effective because of
their features, where the symbol “x” represents the “no” and the term “yes” is denoted by “V™.
Therefore, according to theoretical assessments, we observed the model of Aczel-Alsina operators for
CIF values is very reliable and dominant compared to others.

1.4. Advantages and major contributions of the proposed techniques

To compile the solution to the above queries, we aim to simplify the model of Aczel-Alsina
operational laws for evaluating the models of average/geometric operators based on it for CIF values.
The model of Aczel-Alsina aggregation operators based on CIF values is the modified version of the
existing technique of FSs and their related extensions. Some advantages of the proposed operators are
as follows: The model of Aczel-Alsina, Algebraic, and Drastic aggregation operators, which are the
special cases of the proposed theory.

The above information contains the special cases of the invented theory. The proposed model is
superior and more dominant because of the parameters that are involved in the structure of the proposed
theory. Inspired by the above observation, we decided to determine the following major contributions
of the proposed manuscript, such as

1) To obtain the Aczel-Alsina operational laws based on the CIF set.

2) To develop the CIFAAWA, CIFAAOWA, CIFAAHA, CIFAAWG, CIFAAOWG, and
CIFAAHG operators with some well-known and desirable properties.

3) A procedure of decision-making technique is presented for finding the best type of artificial
neural networks with the help of MADM problems based on CIF information.

4) A numerical example is provided to show the rationality and advantages of the developed
method by comparison with many prevailing tools. The geometrical interpretation of the
proposed models is briefly evaluated in Figure 2.

RN

To propose the Aczel-
Alsina operationallaws

N S

Vi

To derive the Aczel-Alsina

average/geometric
aggregation operators
To discuss the MADM To compare the proposed
modelbased on proposed ranking values with some Concluding some remarks
operators exisitng models

Figure 2. Geometrical interpretation of the proposed models.
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1.5. The Summary of the proposed theory

This manuscript is arranged as:

In Section 2, we introduce the valuable IFSs, IVIFSs, CIFSs, and their operational laws.

In Section 3, we develop the Aczel-Alsina operational laws and their related results.

In Section 4, we propose the CIFAAWA, CIFAAOWA, CIFAAHA, CIFAAWG, CIFAAOWG,
and CIFAAHG operators. Moreover, some well-known and desirable properties and special cases of
them are discussed.

In Section 5, a procedure of decision-making technique is presented for finding the best type of
artificial neural networks with the help of MADM problems based on CIF information, and a numerical
or practical example is provided to show the rationality and advantages of the developed method by
comparison with many prevailing tools.

In Section 6, we conclude final remarks about the proposed theory.

2. Preliminaries
In this section, we introduce the valuable IFSs, IVIFSs, CIFSs, and their operational laws. The

main goal is to obtain the Aczel-Alsina operational laws and Aczel-Alsina operators based on CIFSs.
For this, we used a universal set °C to state the existing ideas.

Definition 1: [6] Consider a fixed set °C, then the IFS °F{ r 1s given below:
°F/ = {(ﬁﬂ(a),ﬁ'ﬁ(a)) ‘a€ oc}. )
With a characteristic 0 < ji;(a) + #j5(a) < 1, where ji;;(a) and #j;(a) represents the truth and
falsity degrees with a neutral grade 1'9'1-9 (x)=1- (:“u (@) + s (a)). Moreover, the simple form of the
IF number (IFN) is shown by: °F{Fw = (,a'%,ﬁﬁw), w=12..,z
Definition 2: [7] Consider a fixed set °C, then the IVIFS °F{VI r 1s given below:
Flye = (7 @), i @), [ @), ] (@)]): € °C}. @
With a characteristic 0 < jij (@) +7if (@) <1, where [,u; (@), fi; (a)] and [77,7 (), i (@]
represents the interval-valued truth and interval-valued falsity degrees with a neutral grade 1'9'1-9 (a) =
[191; (), 19; (a)] = [1 - ,u: () + n,;’ (@), 1 —jiz (a) + 1775 (a)]. Moreover, the simple form of the IVIF
number (IVIFN) is shown by: °Fly,,. = ([iiz,,. i |, [iig,. iy, ) @ = 1.2, ..., 2.

Definition 3: [11] Consider a fixed set °C, then the CIFS °Féu ;1 given below:

AIMS Mathematics Volume 9, Issue 10, 27797-27833.
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Fluir = {((Ma),ﬁﬁ(a)) (i (@), iif ()], [l (a),ﬁ';,f(a)])> e ). @)

With a characteristic 0 < fiy(a) +#(a) <1 and 0< [l;-[(a) + 77;;(0() <1 , where

[u; (a),[i;{ (a)] and [n; (a),'r'f-,; (a)] represents the interval-valued truth and interval-valued falsity
degrees with a neutral grade dy(a) = [191; (), 19'T(a)] = [1 — ,u:{ (a) + r];; (@), 1 — iz (a) + 7 (a)],
where fij; (@) and #j;; () represents the truth and falsity degrees with a neutral grade Jy(@)=1-
(ﬁﬁ(a) + (a)). Moreover, the simple form of the CIF number (CIFN) is shown by: °Féu1Fw =

((ﬁ%,ﬁﬁw), (i, itk 1, [n;w,n,;’w])) ,w = 1,2, ..., z. Furthermore, the score function and accuracy

function are given, such as

1/ . 1. . e
SSf(OFéuIFw) = E((ﬂu’;‘) - Wﬁw) + 2 (li;i;‘, + ll:f;‘, - My, — 77;;2,)) € [-1,1], 4)

Hag (Fh,) = 2 (G, +in,) + 2 iz, + i, + 57, +7,)) € (1.1 ®

For the above information, we can give some characteristics, such as if sz(°Féu1F1) >
sz (oFéuIFZ) = OFéuIFl > OFéule , if sz (OFéuIFl) < sz (oFéule) = °Féu1F1 < OFéule , if
SSf (oFéuIFl) = sz (oFéule) ,  thus Haf (oFéuIFl) > Haf (OFéuIFZ) = 0Féuur1 > oFéule , if

or/ o/ o/ o/
Hag( FCuIFl) < Hay( FCuIFz) = Feurr, < Feurr,-

Definition 4: [28] The Aczel-Alsina t-norm for a scaler = > 0 is given below:

T (@1, @) whGn ik = 0,
T (X, 05) = min(a@;, @) wh@n hih = oo, ©

1
¢ (Mm@ + Mm@ b thErwisE.,

Ten (ﬁ;, 56) whGn hh = 0,
Trtcnhh(a;, ;) = max(ay, @) whEn hh = oo, )

1
1 — ¢ (- -Im-@)"™)™ 6 pErwisE.

Note that ., (07, d@z) = &7.0; and T, (07, 03) = &7 + @, — &;. @, described the algebraic
norms with drastic norms min(d;, @;) and max(dy, @z).
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3. Aczel-Alsina Operational laws for CIFSs

In this section, we aim to develop the Aczel-Alsina norms for CIFSs and try to derive some Aczel-
Alsina operational laws. Further, we prove some important results based on these operational laws.

....... +

.. . o/
Definition 5: For two CIFNs FCuIFw

Aczel-Alsina operational laws, such as

op/ o/ —
FCuIFl FCuIFz =
1

@

1

)

—

(o)) G;((—un@a))hﬂ(—un@gz))“)ﬂ

OF/

o/
FCuIF1 ® CulF,

)

1

1 1

<1 e CACCE D) R e (A “"(‘ﬁﬁl))m)ﬁ>

)

S

1
J iz ) i " hh\RR
d OF/ = 1- @_(QS(_ Hn(l_“""l)) ) ,1— @_<®S(_ Hn(l—li;}l)) )
s YculF,

1

Gt @—<¢s<—un<ﬁa>>“>;h]

)

AIMS Mathematics

<1 _ (i)™ (= i, )™ (- i) (- nn('ﬁﬁz))hh)ﬁ> ,

y = @ () soom) ") | () (- Hnm;-z»*"")ﬂ,

(@—((— i)+ (= (i, )™ ) g (=i, )+ (- Hn(l—ﬁm))””)“)
o () "+ (-m(iz)) )" o= un(n:q))hﬂ(—Hnozz-z))“)“],

B (RS T E ) & @—«—uno—ﬁa»hﬂ(—un@—ﬁzz»“)ﬂ

],

= (('ullwnn(u) (e, iz, ) ['Iﬁw"l"-w])),w = 1,2, we have

(8)

N

)

9)

: (10)

Volume 9, Issue 10, 27797-27833.
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1

(6—(«5;(— (i )" 4 _ @—(es;(—un(l—ﬁm))“)ﬁ),

1 1

A ()" )" (6 mG) ")

(OFéuIFl) = ’ ’ . (11)

[t N A e
Further, we simplify the above techniques based on some suitable examples. For this, we consider
two CIF  numbers, such as °F{ = ((0.5,0.4),([0.4,0.5], [0.1,0.2])) and °F£ =
((0.3,0.1), ([0.3,0.5],[0.1,0.4])) with h = @ = 2, thus
°F{ D °F/ ((0.54138,0.08389), ([0.46368,0.62479],[0.03853,0.15692])),
°F{ X °F/ ((0.24926,0.40642), ([0.22025,0.37521],[0.13843,0.42732])),
2 % °F{ = ((0.62479,0.27367), ([0.51442,0.62479], [0.03853,0.10269])),
(01:{)2 = ((0.37521,0.51442), ([0.27367,0.37521],[0.13843,0.27063])).
Theorem 1: For any CIFNs °Féu1F = ((/'i%,'r']'-ﬁw), (i, . iis: ) 70 n;;w])) ,w =12, ..,z thus
1) oFéuIFl D OFéuIF = 0Féule D OFéuu«"1
2) oFéuIFl ® OFéuIFZ = 0Féule ® OFéuu«"1

" o/ o/ — o/ o/
3) FCuIF1 @ @ FCuIFz @ ( FCuIF1 FCuIFz)

N _ (F. & °F @s
4) ( FCuIFl) ® ( FCuIFz) ( FCuIF1 FCuIFz)
Proof.
1) Let
R E T L L (CRUR RS

o/ o _
FCu1F1 S FCuIF2 =

AIMS Mathematics Volume 9, Issue 10, 27797-27833.
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1 1

(1 _ g mming )™ (=i )™ (=i, )+ (- nnmﬁl))m)ﬁ) ,

P (CECE )R C Hn(l—ﬂﬁl))m)%, L ((m(mag) "+ (- Hn(l_ﬁzi))hh);h]’

)

()"l ) ) @«nn<ﬁ-s2>>”+<nn@a»”)ﬂ

— op/ op/
- FCU.IFZ @ FCU.IFI.

2) Let
o/ o/
Feur, @ Feur,

(6—((— i)'+ (=i, )™ 4 (- i, )+ (- Hn(l—'ﬁ-ﬁz))“)“>,

(o)™ o)™ (- Hn@;l))%(-Hn@zz))””)hlh],

B o R (=) i LA (R LTS nnwz))*"")*‘l”‘]

(6—((— i)'+ (=i )™ ) 4 (- (i, )+ (- Hn(l—ﬁ-ﬁl))””)“)

(o) )T (- un(ﬂ;..z))”ﬂ(_Hn(ﬂﬁl))hh)&l]’

gl )T () ()))]

_ op/ or/
= FCuIFz ® FCu,IFl'
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3) Consider

- / < /
®S FCU.IF1 @ ®S FCuIF2
1 1

<1 _ (0= )" (s—(q‘?(‘““(ﬁﬁl))m)ﬁ) :

1 - (O Hn(l—ﬂ;l))“)%, 1 -0 un(l_u;.l))“fh],

)

o ()" (8- Hn@a»"")ﬂ
(1 I CACE P R R CAC ““(ﬁﬁz))m)m),

1— (;5‘(‘55(‘ H“(l‘ﬂﬁ'z))hh)%, 1 — @‘(é’S(‘“n(l‘ﬂﬁé))hh)%]’

)

(5—((25'5(— Hn(ﬁ'ﬁz))hh)ﬁ @_(65(_ Hn(ﬁ;f-z))hh)ﬁl
(1 _ (oot )"+ (- 1y )T (05 i) (- nn('ﬁﬁz))“)ﬁ) ,

1 = g (o)) (- Hn(l—ﬂ;-z))hh)%, L (oem(amng )" un(l-u,t-.z))hh)hlh] ,

1 1

(- Hn(ﬁﬁl))hh+(-Hn('ﬁﬁz))hh)ﬁ, @-(ws(-ﬂn(ﬁ%))hh+(-Hn(ﬁ%))hh)fm]

— o (on/ ory/
- ®S( FCuIF1 @ FCuIFz)'
4)  Assume that

B B
(oFé‘uIFl) ® (oFé‘uIFz)
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1

(cs-(é's(— )" )™ g _ (8- Hn(l-ﬁm))hh)ﬁ>

)

)

) @—@‘s(—wwz-l))““)“l“],

1

[1 e GG ) I P O un(w;-l))’lh);h]

(6—(@(—%(@»2))"")“, L e un(l—ﬁﬁz))“)“)

)

- (6(- Hn(ﬂﬁ’z))hh)% @—(c')'s(— Hn(ﬂﬁz))m);h] ,

1- @_(é.s(_ﬂn(l_ﬁﬁz))hh)%, 1 -0 Hn(lﬁﬁz))hh)ﬂ

(Gs-(as's(— i )"+ (= Ity )™ 1 (B i1, ) (- un(l-ﬁﬁz))“)“),

)

o) o)) @-<¢~s<—nnwz-l))hﬂ(-Hn@;z))“);h],

1 = o) (i )T | (i) (- <>>>]

Bs
= (oFé‘uIFl ® c>Féuu?z) :

4. Aczel-Alsina aggregation operators for CIFSs

In this section, we develop the novel CIFAAWA operator, CIFAAOWA operator, CIFAAHA
operator, CIFAAWG operator, CIFAAOWG operator, and CIFAAHG operator. These operators are the
combination of the Aczel-Alsina operational and CIFNs. Furthermore, we have also stated some

fundamental properties for the above results.

Definition 6: For the finite collection of CIFNs °Féu 7, =

((ﬁ%' ﬁﬁw)‘ ([“/:w' ﬁ;}w]' [U;w, i, ])) ,w=1,2,...,z, then the CIFAAWA operator is defined as:

w

CulFAAW A: °F# - °F, by

o/ o/ o/ _ & Yop/ i 2o/ * Zon/
CulFAAWA( Fewrr, Feurpy FCuIFz) =0s Feurr, © Os Feyp, @ . @ Bs Feyyp,

[N
— Z o /
- w=1 Q)S 1::CuIFw'

(12)
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Note that the weighted vector is stated by: (550) € [0,1] with Y2 _, (550) =1

) . . op/ —
Theorem 2: For any finite collection of CIFNs Feurr, =

(G ) (i ) i 5,1)) @ = 1.2, 2 we proved that Eq (12)is also a CIFN, such as
CulFAAW A(Flyy, °Féu1F2 Feur,) =

<1 _ @—(anﬂdsw(_ﬂn(l_ﬁu'w))hh)hh G (Efo 195 ( (i nw))hh) )

h

{1 (S—(zfmai's“’(—ﬂn(l—u;[&,))hh)ﬁ, 1 — g (B 8 (- m(1-i,)) ] (13)

./
'\

Proof- To prove Eq (13), we used mathematical induction. For this, first, we considered the value of

\
' )

(558l ) i (nzw))hh);h]

z = 2, we have
1

(1 JaTa—— @—w's(—nn(ﬁm»“)ﬁ),

vt = | (|1 T e nnwl))””)ﬂ' ,
es‘<‘”"*<-““<ﬁm>>“>”l”,@;—<«s‘:<—nn<ﬁa>>*"“);h]
6., = 1-@-@'f(-ﬂn(l—naz))“fi1_@—@:(-Hn@_uz-z)f‘“)hlh]' ,

)

(6o )" @-(dsz(—ﬂn(ﬁ%J)M)hlh]

o/ o/ — 10 / A ° /
CuIFAAWA( FC‘LLIF ) FCuIFz) - ®S FCuIF1 @ ¢ FC‘U.IFZ
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1

<1 _ (8 i )" (65 m”hh)

1

T e )

1

@—(dsl(—ﬂn(ﬁ;il))hh)% @—(dsl( (it )"

)

1

< 1 — ¢ (35 CmOie )™ (65 (-mGi le))hh

i
h
.2 L _ \\h % . hi
1 - O CmmR))" g (6 mO)

e (07w )")” (673"

)

(1 _ (a8 i, )™ (e 6 (-1 nw))hh )

o 1
PR A G O o) B AP o S A CEY CR hh)hh],

)

gz, ) @-(za=1é‘f(—un(ﬁzw))“)"l"]

Equation (13) is correct for z = 2.
We consider that it is also correct for z = y, thus

o/ o/ op/ =
CuIFAAWA( Flutry Frurry - FCu,py)

(1 _ (B Hn(l—m))m)ﬁ, G (Z0= 05" H“(ﬁﬁw))m)m> ,

0 ES
T AT CLICE ) i @-(zz,_lw(-nn(l_p;@))*”ﬂ,

)

02" 0) ") (g-(za-l@'f(—nn(ﬁ%w))’”fh]

Then, we prove that the Eq (13) is also correct for z = y + 1, such as
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Cul FAAWA(

.1 .2
= 05 oFéuIFl D 0

OF/

or/
F CulF,’

CulFy’

op/
FCuIF2

—_mY » Wor/ i Y+l,/
—@w=1 (Z)S FCuIF(‘J @ Q)S FCuIFy+1

+

gl

o

(1 — g (s

P AR CRICE )

1

6. (-1n(ii, ) ") " g-(25h

1
Mjﬁﬁ

)

1

)

1

1

)

., °F/
® - @ 6. Foyr, ® 657
(1 {28 ) (a2 nn('ﬁ-ﬁw))’m)%)
T T A G CR )
(20185 (- 10, )" )" (e 867 (- G, )
- a0 ) )y gl (o))

o)) @(zz-les's%nn(ﬁsw))’m)ﬂ

1
65 (- Hn(l-ﬂu’ep))hh)hh, e (Z05

1

1

)

Hence, Eq (13) is correct for all positive values of z.

AIMS Mathematics

R o)) g e el (mlon) )"

i (o))"

)

+1°F/
CulFy 41

CulF,

)

1
Mjﬁﬁ

@ O

) y+1o /
CuIFy+ 1

1

|

L
R

5 un(ﬁﬁw))f"’)ﬁ) |

],

1

|
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Property 1: If°FéuIFw = °Féu1F = ( iz, 1), (L i3], [7],7,7]};])),0) =1,2, ...,z then

o/ o/ o/ _ o/
CuIFAAWA( Feuir, “Feutpy -+ FCuIFZ) = Feuip- (14)

Proof. Let °FéuIFw = °FéuIF = ( fig, 1), ([ﬂ;,ﬂ,ﬂ, [Tlﬁ,n};])),w =1,2, ..., z, thus

L)

o/
F CulF,

CulF,’ **

CulFAAW A(°F.

CulFy’

(1 _ g (Zhn é;w(—ﬂn(l—ﬂum))hh)ﬁ, G (Z6=165"(- H“(ﬁ'ﬁw))hh)ﬁ)

A ES
P TS CLYCE ) i P > LA C Hn(l-u;-w>>h”)hh],

)

(55 i ) i ﬂn('ﬁ%w))hh)hh]
<1 — @‘(Zim dsw(—]ln(l—ﬂil))m)ﬁ, @"( b=a 05" (- H"(ﬁﬁ))m)m),

1 hh)hh

S
T R AICCE) ) LR DAL R CEI C) ]

)

g (T ) )" (- unw))“)’:’i‘

)

(1 _ g (CmO-m)") (- Hn(ﬁﬁ»hh)ﬁ)

S

R (GLUCET ) i L @‘((‘“"(1‘ﬂﬁ))hh)ml,

ok @—«—nn(ﬁz»””)*‘l”]

)

(1 - @C-m), @),

_ ({1 - @i, 1 - @n(1-7)] )

() ()
= (G i), iz i), 57,75 1)) = “Flg

Property 2: 1f °Fyp,, < Fiup, . it means that fi,, < i iy, 2 iy, and fig, < jig, ™ i, <
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‘u;w**'n;w = n;w**’ TI:)_&) = n;)_w**’ then
CUlFAAWA(°F Ly, F i oo Flos, ) < CUFAAWA(F ip, Fluipys oo Féur,)- (15)

. / et eee - e
Proof. Consider that °F¢, . < < °Fcur, » which means that fi,;, <[, 7, =15 and fi,; <

Ii;;;u**'ﬁ:f;u < H;wa M, 2 n;w**,nﬁw = U;w , thus
iy, < ip =21 —jiy, =1 —ji = In(1— i) =In(1-j7)

= —n(1 - fig,) < — In(L - i)
1

(z 6" (~ (1 - i, )" ) (2 By (= In(1 — i ))hh)hi
(2 35" (- Hn(l—ﬂuw))hh>h_ —(Z G5 (= In(1 —ji ))hh>

1 1

= G (Zzzu 195 ( Hn(l ﬂuw)) h_ > ( 1®5 lln 1= ”#w))hh)h

1

hh

B~

1
K G ) o P T L (S )
1
= @ v \\RR\RR
1 @—(Zi,:lqa;“’(_un(l_%))“)hh <1- @—(zzm@s (-mn(1-iz5,)) )hh
Similarly, for the lower and upper parts of the truth grade, we have
1

) e 7 2 - RN U
=1— @—(ZzZu:1 Ps (— Hn(l—#u}u))hh)hh <1-— (E—<Zw=1 Ds (— Hn(l—#u‘&, )) )hh

1
R A A G G0 I P - L G AY)
Further, for the falsity of information, we have

1
hh)ﬁ

i, 2 5, = InCin, ) = In(i, )

= — (i, ) < —In(iiy,) = Y 6" (= (i, )" < > 6.7 (= (i, )"
w=1 w=1

1 1
32 z hh
(z¢ (= (i, ))“) z—(Z ¢'s°’(—nn(ﬁ%;>)“)
w=1
- (Sm 8 G YT o (26 (i, ) )
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1 1
Z - W hh\RR z - W wx\\ MR\ AR
e DA A M) I I DAL A CLIC A ) R
Finally, by the score function and accuracy function, we can easily get the following results, such
as

CuIFAAWA(°FéuIF1, °Féu,F2, - °Féu1Fz) < CulFAAWA(Fgr,, Feur,, - Feuir, ).

Property 3: 1f B, = ((min s iy, ) (min iz min 7, | i, i, ) ) and

oFguIFw = <(m£1x ‘ullw , m(gn n”lw) , ([ma;)ix ‘ul'_lw , mafle MZ(»] ) [m(jn r";w , m(gn 77;@])), then

Fourr, < CUFAAWA(F L5, Frir s oo Flor, ) < Fluir, . (16)
Proof. Considering Property 1 and Property 2, we have
CulFAAW A(°F,

/ / + + + _ op+

CulF AAWA(OFéuIFl’ OFéulel ""OFé‘uIFZ) = CulF AAWA(°FEu1F1, Feurr, ""OFEuIFZ) = °Feurr, -
Thus, we have

OFEuIF“’ < CulFAAWA (OFéuIFl’ OFé‘uIFz’ e 0FéuIFZ) = OFZuIFw'

Definition 7: For the finite collection of CIFNs °Féu 15, =

((ﬁﬂ;,,' ﬁﬁw)’ ([”;:w’ 'a.:‘-"c()]’ [U;w, 77;72,])) ,w=1,2,...,z, then the CIFAAOWA operator is defined as
CulFAAOWA: °F? > °F, by
CulFAAOWA(°F L5 Flr s oo Floss,)

_ & Yop/ i 2o/ * Zon/ _ i Dor/ (17)
- QS FCuIFO(l) @ ®5 FCuIFO(z) @ @ ¢S FCuIFO(Z) - (ZU=1 QS FC‘LLIFO(O_,).

Note that the weighted vector is stated by: é.sw € [0,1] with Y2 _, (Z').sw =1 with 0(w) <
0(w — 1), where we can get the order of the CIFNs by the score function.

) ) . op/ —
Theorem 3: For any finite collection of CIFNs Fou F, =

((ﬁ%, ﬁ'ﬁw), ([,u;w, [i;}w], [n;w, 77;;(,)])) ,w = 1,2, ..., z, we proved that Eq (17) is also a CIFN, such as

AIMS Mathematics Volume 9, Issue 10, 27797-27833.
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CuIFAAOWA(°Féu,F1, °Féu1F2, e °Féum)

1 1

. W . hh\RA 2 . w hh\hh
1- (S_( =195 (_ Hn(l_“”oﬁw))) ) ,Q;_(E‘Fl Ds (_ H“("'ﬁo(w))) )

)

1 1
hh

s) o hh\ ki Z ) . hh
1- @'(Zg’““’s (- (1-Hi) )M,1 - @'(Z“’”Q’S (Fn(1-tti) > (18)

1 1

@_<ZCZU=1 dsw(_ Hn(ﬁ'f_io(au)))hh>E @_<Zi)=1 dsw(_ Hn(ﬁgo(w)))hh>ﬁ

)

Proof. Straightforward.

Property 4: IfoFéule = °Féu,F = ((ﬂwnn): ([z, iit], [n;,n,ﬂ)),w =1,2,...,2, then

CulF AAOWA(OFé‘uIFl’ OF/Culpz' o oFéuIFZ) = Flyp- (19)
Proof. Straightforward.
Property 5: If °Féu1Fw < °FGurr, » it means that i, < fi;: i, =05 and fip < fig i <

o FE see— Kk seed seaf KK
Hiiiy ’nﬁw = nnw ’nﬁw = nna) » then

CulFAAOWA(F Ly, Floi s o Florr, ) < CUIFAAOWA(FGiir,, Fértrys oo Fiuar, ). (20)

CulFy’

Proof. Straightforward.

Property 6: If °F¢yp = ((mai)n Fyiyy » max nnw) ’ ([mﬁjn Mgy » mtjn 'ultw] ’ [ma:);lx i e 77;;&,])> and

OFZ'_ule = <(m£X ,Lluw , m(jn T]nw) ) ([mﬁx 'Ll;w , rna:);lx ,Ll;w] , [m(jn n‘;a) , m(jn T]:)-w])>, then

Feurr, < CUFAAOWA(FLyp, Frii s o Flor ) < Flourr,. (1)
Proof. Straightforward.
Definition 8: For the finite collection of CIFNs °Féu”,w =

((/li%, ﬁ'-ﬁw), ([u;w, ji;-;v], [n;w, n;w])) ,w=1,2,...,z, then the CIFAAHA operator is defined as
CulFAAHA: °F? = °F, by

op/ op/ or/
CulFAAHA(°F e Fourp, s -+ Flwrr, ) )
o 1 " . 20 " . z0 « oo wo %
= @s OFCuIFO(l) D D FCuIFO(z) D .00 FCuIFO(Z) =Ba=1 95 FCuIFO(w)'
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Note that the weighted vector is stated by: (Z')'Sw € [0,1] with Y2 _, (Z')'Sw =1 with 0(w) <

O(w — 1), where we can get the order of the CIFN by the score function and Feutry =

Z(ZS;A,w°Féu,Fw, w = 1,2, ...,z with another weight vector (ZSWw € [0,1] with .2 _, Q)Ww =1.
Theorem 4: For any finite collection of CIFNs oFéule =

(([1%, 'r';'-ﬁw), ([u;w, ﬁ;}&)], [n;w, 77;;&)])) ,w=12,..,z, we proved that Eq (22) is also a CIFN, such as

CulFAAHA(Fhyyr ) Florrr o Floi) =
1

1

= gm0 i) ) o (mam (i) )

)

1 1

hh

1-— ({(25:1@&)(" H"(l‘”ﬁotw)_))hh)ﬁ, 1 — @—<22,=1¢'s“’(_ H“<1—ﬂlozw)+))m> ' (23)

)

1 1

o - _\\h\AR . - w " hAN TR
03_<Z‘Z"=1®5 (=10 ) )hh ({(E“’“@S (=) >hh

)

Proof. Straightforward.

Property 7: If °Fl = “Flosp = (i i), (i i3] [ 1) ) @ = 1,2, .., 2, then

of/

or/ or/ _ op/
CUIFAAHA( F CulFy’ "7 FCuIFZ) = °Feurr- (24)

CulFy’
Proof. Straightforward.

Property 8: If oFéule < °Fgurr, » it means that iy, < fi;: i, =05 and fiy < g i <

o FE o I sonf KX
iy iy = i M, 2 Th, > then

CulF AAHA(OFé’uIFl’ OFéuIFz' e OFéuIFZ) < CulF AAHA(°FZ”;L,F1, Feurr, ""OFE‘LIFZ)' (25)

Proof. Straightforward.
. op— _ . .o . .-"__ . .-_“ - .-.|: u-: .",-,I,-
Property 9: If °F¢yp = ((m{;n Ay, ,mae)lxnnw),([magn Hy;, »min '“uw]' [mfxnnw ,ma:ilxnnw])> and
o + _ .o . . ...‘" --_“ ...': . ---.T . --...1_
Fur, = ((mas i, mini, ). (st »ma it ] [mini, i ])). then
Four, < CulFAAHA(FL,,.. , °F/ °F/ ) < °F&
culr, S LU ( CulFy’ T CulFy’ CuIFz) S TPewr,- (26)
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Proof. Straightforward.

Definition 9: For the finite collection of CIFNs °Féu 15, =

(([1%, i ) (L, 5 ], [n;w, n;w])) ,w = 1,2, ..., z, then the CIFAAWG operator is defined as:
CulFAAWG: °F? - °F, by

CUlFAAW G (F Loy Floir, s o Flowar, )
L (2')‘51 o stz o Q.).Sz , o/ ¢.Sw (27)
= ( FCuIFl) ® ( FCuIFz) ®..& ( FCuIFZ) —Yw=1 ( FCuIFw) .

Note that the weighted vector is stated by: @ Sw € [0,1] with )2 _, (550) =1.

Theorem S: For any finite collection of CIFNs °Féu IF, =

(([1%, i) (i, i 1 17 n;w])) ,w =1,2,..., z, we proved that the Eq (27) is also a CIFN, such
as

o op/ op/ —
CU-IFAAWG( FCuIFl’ FCuIFz’ o FCuIFZ) -

1 1

(@-( e 8 (i, )" (55 65 Hn(l—ﬁ‘ﬁw))hh)ﬁ>

)

1 1
g ol )" oo™\ e

AR

P U CUICE W S e ST CH U

Proof. Straightforward.

Property 10: 1f °Ff, . = “Flo = ((iin i), ([iig it ], [iig i3 ) ) @ = 1,2, ., 2, then

of/

o/ or/ _ o/
CUIFAAWG( F CulFy’ ***’ FCuIFZ) = Feurr- (29)

CulFy’

Proof. Straightforward.
Property 11: If °Féu”,w < °FGuir, » it means that fi,. < it i =T and i < fiy iy <
#;w**,n;w > n,;w**,n;;w > ﬁ;{w**, then

of/

CUWlFAAWG (OF/ CulFy’ = oFéule) < CUWFAAWG (OFELIFy Feurr, - OFZ‘ZIFZ)- (30)

CulFy’

Proof. Straightforward.

Property 12: If °F¢p = ((m{jn Hyiy, » max Tlnw) : ([mazn Mgy mazn 'u;&v] ’ [mfx i T U;w])> and
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oFguIFw = <(ma2)1X ‘ullw ’ m(gn n”lw) , ([ma;)ix ‘ul'_lw , mafle MZ(»] , [m(jn r";w , m(gn 77;@])), then

Furr, < CUIFAAWG (°Féu,F1, °Féu,F2, ...,°Féu,FZ) < Fluir, (31)
Proof. Straightforward.

Definition 10: For the finite collection of CIFNs °Féu IR, =

(([1%, i ) (L, i ], [7777(0’ n;w])) ,w = 1,2, ..., z, then the CIFAAOWG operator is defined as:
CulFAAOWG: °F? = °F, by

CulFAAOWG (°Féu,pl, °Féulpz, oy °Féum)

1

.2
- (OFéulFo(l))ms ® (OFéulFo(z))ms ®..® (oFéulFo(z))Q)S (32)

2 (op! 2
=Qu=1 ( FCulFo(w)) '

- Z

Note that the weighted vector is stated by: é'sw € [0,1] with Y2 _, (Z.S'Sw =1 with 0(w) <
0(w — 1), where we can get the order of the CIFN by the score function.

Theorem 6: For any finite collection of CIFNs °Féu IF, =

(([1%, i )» ([y;w, ;'i;}w], [n;w, n,;’w])) ,w = 1,2, ...,z we proved that the Eq (32) is also a CIFN, such
as

CulFAAOWG (°Féu,pl, °Féulpz, oy °Féu1p)

o ) R\TR
(g_(ziFl@S (_H“(”ﬂo(w))) )hh

1

W hh\hh
1= (5_(25“% LG ) )

)

1 1

B0 (oo, ) ") (o i) )" @

—_ ) )

1 1

. Gj_(Zzzl(z-)-sw(_ Hn(1—ﬁ§0(w)))hh>ﬁ’ 1 @—(Zim ¢'sw(— Hn(1—'7'7";7"0(@)))hh>ﬁ

Proof. Straightforward.

Property 13: 18%F,. = Flyye = (i i), ([t it 5, 371)) 0 = 1.2, 2. then

o/ o/ o/ _ o/
CuIFAAOWG( Feurr Feurpyr FCuIFZ) = Feurr- (34)

Proof. Straightforward.

AIMS Mathematics Volume 9, Issue 10, 27797-27833.



27819

Property 14: If °Féu,Fw < °FGur, » it means that i, < fi;; i, =05 and fiy, < g " iy <

o FE e see— Kk seet soef KK
‘uﬂ(u 'nﬁw = nrlw ’nﬁw = nnw ’ then

CUlFAAOW G (F oy Floirs o Flowr, ) < CUIFAAOWG (Feyi,, Fivirys - Fowir,).  (35)

CulFy’

Proof. Straightforward.

Property 15: If °F¢yp = ((m{jn By, s max Unw) ) ([mazn F, » mazn 'u;w] ’ [mjx iy max 77;;;,])) and

°Fé_uIFw = <(ma:;1x [,l“w , mﬂin n”lw) , ([ma;)ix ‘u;w , m{:’;lX ,Ll;w] ) [m(jn T'T;w , m(gn 7’];;-(‘)])>, then

Feurr, < CUIFAAOWG (°Féu,F1, °Féu,F2, ...,°Féu,Fz) < Flur,. (36)
Proof. Straightforward.

Definition 11: For the finite collection of CIFNs °Féu IF, =

(([1%, ﬁ'-ﬁw), ([u;w, ;'i;}w], [n;w, n;w])) ,w = 1,2, ..., z, then the CIFAAHG operators are defined as:
CulFAAHG: °F? = °F, by

CulFAAHG (FLyy, F oy s Flourr )
) Q')'Sl . Q.).Sz . @SZ
= (OFCuIFO(l)) ® (OFCuIFO(Z)) ® ® (oFcuIFD(Z)) (37)
65"

— z *
—®w=1 (OFCuIFO(w))

Note that the weighted vector is stated by: (Z')'Sw € [0,1] with 2 _, (Z')'sw =1 with 0(w) <

O(w — 1), where we can get the order of the CIFN by the score function and °F*Cu,F0(w) =
. wo / . . “ W . z o W

2@y Feyp,, @ = 1,2, ...,z with another weight vector @, € [0,1] with ¥5,_, @,, = 1.

Theorem 7: For any finite collection of CIFNs °F/ =

CulF,

((/li%, ﬁ'-ﬁw), ([u;w, ji;-;v], [n;w, n;w])) ,w=1,2,...,z, we proved that Eq (37) is also a CIFN, such as
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OF/

CulFAAHG (°F/ Culky °Féum)

CulFy’
1

1
@_( - (ZS'sw(— H“(ﬁzozw)»hh)hh’ . @‘(Zﬁ)=1 dsw(— Hn(l_ﬁ%o(w)))hh>hh

1 1

= o (218 (i, ))")" (e (i, ")) @9

) )

1 1

. w ek -\ R\ AR Z i@ Fix AR
. (g—<2i>=1 B (— Hn(l—nﬁo(w) )) )hh, - @_(Zwﬂqjs (— Hn(l—nﬁo(w)+)) >rm

Proof. Straightforward.

Property 16: I °F,. = °Fl = (i i), ([, 7). [777,75]) ) @ = 1.2, ..., 2, then

o/ o/ o/ _ o/
CulFAAH G( Fewrr, Feurpys -+ FCuIFZ) = Furr- (39)
Proof. Straightforward.

Property 17: If OFéule < °FGurr, » it means that i, < fi;; i, =05 and fiy, < g " i <

o FE e soe— Kk eeef soef KX
‘uﬂw 'nﬁw = nnw ’nﬁw = r]nw ? then

CuIFAAHG(OFéuIFl’ OFéuIFZ’ o OFéuIFZ) < CulFAAHG (°F¢urr,, Futryr -+ “Feurr, )- (40)

Proof. Straightforward.

Property 18: If “Frusp, = ((m{jn i, maxify,, ), (| min fiz,, , min i, |, [ maxii, , max "vﬁ])) and

. . eee rr— . . cee— . ...+
°FELu1Fw = <(maa)1x Ay, , min nﬁw) , ([m(j\x Hy,, »max ,u;-;o] , [m(jn T4, » MIN n-ﬁw])>, then

OF/

Feuir, < CUIFAAHG (°F) — ...,°Féu1FZ) < Ffur, - (41)

CulFy’

Proof. Straightforward.
5. Classifications of artificial neutral networks based on proposed operators

In this section, we select the best type of artificial neural network among the five artificial neural
networks based on the proposed method for CIFS. Furthermore, according to the internet, ANNs mean
“artificial neural networks”, which are the collection of computational techniques motivated by the
shape and specification of biological neural networks discovered in the human brain. Based on the
CIFAAWA operator and CIFAAWG operator, we select the best one among five artificial neural
networks.
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For this, we collect a finite collection of alternatives °Feyr,, “Feurr, -5 °Feur, and for each

alternative, we have the collection of finite attributes °F&5;i24t€, R ibute oFaLiibutC with well-

known weight vectors (Z')'Sw € [0,1] with )2 _, (2'5'50) = 1. Further, we get a matrix with the CIF values,
where 0 < jig(a) + (@) <1 and 0 <jif(a) +#F (@) <1 , and [,u; (), fi} (@)] and
[7],; (a),'r']'% (a)] represent the interval-valued truth and interval-valued falsity degrees with a neutral
grade J3(a) = [05 (@), 95 ()] = [1 = jif; () + i1 (@), 1 — jiz (@) + i (@)] , where jiz(a) and
175 (a) represent the truth and falsity degrees with a neutral grade 1'9'1-9 (a)=1- (ﬁﬁ(a) + i (a)).

Moreover, the simple form of the CIF number (CIFN) is shown by: OF{:ule =

((ﬁ%,ﬁﬁw),([ﬁ;&), ,ii;}w], [n;w,r];’w])),w =1,2,...,z. After getting the matrix, we will use the

following procedure for evaluating the best decision between five decisions. The geometrical
representation of the proposed algorithm is mentioned in Figure 3.

Compute
the matrix

Rank all
alternatives
and find the

best one

Normalize
d the
matrix

Find the
score
values

Aggregate
the matrix

Figure 3. The geometrical shape of the proposed algorithm.

Step 1: During the collection of CIF values, we have two possibilities, such as benefit or cost type of
information, if we have cost type of data in the decision matrix, then we aim to normalize the matrix,
such as

(Gt i) Uiz i, i, D) for benefi,

(G i), (i 8, L i) for cost.
However, if we have a benefit type of data, we do not need to normalize the data.
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Step 2: For aggregating the normalized data into a singleton one, we use the CIFAAWA operator and
CIFAAWG operator.
Step 3: For getting the score values, we use Eq (4) or Eq (5).
Step 4: Ranking the order of the alternatives based on their score values to examine the best optimal
among the five ones.

Further, we simplify the above procedure with the help of some practical examples, which are
related to artificial neural networks. For this, we consider five artificial neural networks and select the
best one.

5.1. Numerical example

The ANN technique is used in many fields because of their features and dominancy. In this
example, we aim to consider five alternatives, and for each alternative, we have four attributes with
weight vectors (0.25,0.25,0.25,0.25)7. Furthermore, each alternative can be stated below:

1) Feedforward Neural Networks (FNNs) “°F¢; ;. ”: FNNs are the valuable and simple kind of
ANNS, containing input, hidden, and output layers.

2) Recurrent Neural Networks (RNNs) “°F¢y,;r, s RNNs are specially constructed for coping with
sequential information like time series or natural language.

3) Long Short-Term Memory Networks (LSTMs) “°F¢y,;p,”: LSTMs are a valuable and dominant

type of RNN that evaluates the vanishing gradient problems.
4) Convolutional Neural Networks (CNNs) “°F¢y, ;5 ”: CNNs are specifically designed for the

primary computer vision tasks.

5) Generative Adversarial Networks (GANSs) “°F¢y,r. s GANs consist of two ANNS, a generator,

and a discriminator, that are trained together in a game-like setting.
To choose the best one, we use the following features which are stated as the main attribute or

atributC . atribut€ .

r,‘Fb”t@: Risk analysis, °F¢yjr, " : Growth analysis, Feurr, - Enviromental

criteria, such as: °F¢i%

impact, and °F‘C‘ZT,iFZut(E: Social and political impact. Then, we get the data in Table 2.

After getting the matrix, we will use the following procedure to get the best decision, such as:

Step 1: Because °Fé§?¥i ut€ is the cost type, we aim to normalize the matrix in Table 2, such as

(G 55, (i, i, ) [, 735, 1)) - for bemefit,

(G i), D, i, D i 55,1)) - for cost.
then the normalized matrix is given in Table 3.
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Table 2. Cubic intuitionistic fuzzy decision matrix.

oFAtrLbut(E oFAtrlbut(E
CulF; CulF,
°Feurr, ( (0.2,0.7), ) ( (0.71,0.21), )
(0.2,0.3],[0.4,0.5]) ([0.41,0.51],[0.21,0.31])
°Feurr, ( (0.1,0.5), ) ( (0.51,0.11), )
(10.1,0.2],10.2,0.4]) (10.21,0.41],[0.11,0.21])
°Feurr, ( (0.2,0.4), ) ( (0.41,0.21), )
([0.3,0.4],[0.3,0.5]) (10.31,0.51],[0.31,0.41])
°Feurr, ( (0.2,0.3), ) ( (0.31,0.21), )
(10.1,0.2],10.1,0.2]) (10.11,0.21],[0.11,0.21])
Feurr, ( (0.1,0.8), ) ( (0.81,0.11), )
(0.1,0.2],]0.5,0.6]) ([0.51,0.61],[0.11,0.21])
FAqe FAie
°Feurr, ( (0.72,0.22), ) ( (0.73,0.23), )
([0.42,0.52],[0.22,0.32]) (10.43,0.53],[0.23,0.33])
°Feurr, ( (0.52,0.12), ) ( (0.53,0.13), )
([0.22,0.42],[0.12,0.22]) (10.23,0.43],[0.13,0.23])
°Feuir, ( (0.42,0.22), ) ( (0.43,0.23), )
(10.32,0.52],[0.32,0.42]) (0.33,0.53],[0.33,0.43])
°Feurr, ( (0.32,0.22), ) ( (0.33,0.23), )
(10.12,0.22],10.12,0.22]) (0.13,0.23],[0.13,0.23])
Feuir, ( (0.82,0.12), ) ( (0.83,0.13), )
([0.52,0.62],[0.12,0.22]) ([0.53,0.63],[0.13,0.23])
Table 3. Normalized Cubic intuitionistic fuzzy decision matrix.
Tl Pl
°F Culr, ( (0.7,0.2), ) ( (0.71,0.21), )
(10.4,0.5],10.2,0.3]) ([0.41,0.51],[0.21,0.31])
°Fculr, ( (0.5,0.1), ) ( (0.51,0.11), )
(10.2,0.4],10.1,0.2]) (10.21,0.41],[0.11,0.21])
°Furrs ( (0.4,0.2), ) ( (0.41,0.21), )
([0.3,0.5],[0.3,0.4]) ([0.31,0.51],[0.31,0.41])
°Feurr, < (0.3,0.2), ) ( (0.31,0.21), )
([0.1,0.2],10.1,0.2]) ([0.11,0.21],[0.11,0.21])
°Feurrs < (0.8,0.1), ) ( (0.81,0.11), )
([0.5,0.6],0.1,0.2]) ([0.51,0.61],[0.11,0.21])
oFéf;]l:Zut@ °Fé$;;but@
4
°F culr, ( (0.72,0.22), ) ( (0.73,0.23), )
(10.42,0.52],[0.22,0.32]) ([0.43,0.53],[0.23,0.33])
°Feurr, ( (0.52,0.12), ) ( (0.53,0.13), )
([0.22,0.42],[0.12,0.22]) ([0.23,0.43],[0.13,0.23])
°F CulF, ( (0.42,0.22), ) ( (0.43,0.23), )
([0.32,0.52],[0.32,0.42]) ([0.33,0.53],[0.33,0.43])
°Feurr, ( (0.32,0.22), ) ( (0.33,0.23), )
([0.12,0.22],[0.12,0.22]) ([0.13,0.23],[0.13,0.23])
°Feurr, ( (0.82,0.12), ) ( (0.83,0.13), )
(10.52,0.62],[0.12,0.22]) ([0.53,0.63],[0.13,0.23])
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Step 2: For aggregating the normalized data into a singleton one, we use the CIFAAWA operator and
CIFAAWG operator to get the results, shown in Table 4.

Table 4. Aggregated decision matrix.

CIFAAWA Operator CIFAAWG Operator
(0.4204,0.5126), (0.8643,0.0998),

(([0.2077,0.2697], [0.5126,0.6053])) (([0.6824,0.7495], [0.0998,0.1515]))
(qo0ss020771 fozsonnsizen)  (qos1z60eezal f00s170095e0)

B (qoasisoneor] fosososeae)  ((d060530.7408] [0181502077D)
(g DAY b

)

[o) BEE
FCuIF1

o k*
FCuIF2

(0.1515,0.5126), (0.6053,0.0998),

([0.0517,0.0998], [0.3900,0.5126]) ([0.3900,0.5126], [0.0517,0.0998])
Feor, ( (0.5198,0.3900), ) ( (0.5149,0.0517),
([0.2697,0.3394], [0.3900,0.5126]) ([0.7495,0.8096], [0.0517,0.0998])

o k*
FCuIF4

Step 3: For getting the score values, we use Eq (4) to calculate it, as shown in Table 5.

Table 5. The score values of the aggregated values.

CIFAAWA Operator CIFAAWG Operator
Feurr, —0.20622 0.67741
°Feurr, —0.20895 0.6098
Feurr, —0.36904 0.54018
°Feurr, —0.36835 0.44056
°Feurr, —0.00851 0.78353

Step 4: We can get the ranking order of the alternatives based on their score values, and get the best
optimal among the five ones, see Table 6.

Table 6. Ranking values.

Methods Ranking values Best decision
CIFAAWA Operator OFZLIFS > 0F*CZIF1 > 0F*CZIF2 > OFEU& > OFEUF3 OFZZIFS
CIFAAWG Operator  °Feur, > Four, > °Four, > Four, > Feour, °Feurr,

From the Table 6, we observed that the best optimal is °F¢y,r, (Generative Adversarial Networks

(GANS)) by the two different techniques based on CIFSs. Further, we try to discuss different types of
cases using the data in Table 2. For instance, if we exclude the interval-valued information from the
data in Table 2, then the aggregated values are shown in Table 7.

Moreover, we derive the ranking order of the alternatives based on their score values and get the
best optimal among the five (see Table 8).
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Table 7. Score values of IFSs.

IFAAWA Operator IFAA WG Operator
Feurr, -0.0922 0.7645
°Feurr, -0.1203 -0.2975
°Feurr, -0.3048 0.5825
°Feurr, -0.3610 0.5055
Feurr 0.1297 0.8632

Table 8. The ranking results are based on Table 7.

Methods Ranking values Best decision
IFAAWA Operator Fouwr, > Four, > Four, > Four, > Feur, °Furr,
IFAAWG Operator  °Faur, > °Four, > Fowr, > Four, > Fur, °Fuir,

From Table 8, we observed that the best optimal is °F¢y, . (Generative Adversarial Networks

(GANSs)) by the two different techniques based on CIFSs.
Further, we excluded the intuitionistic information from the data in Table 2. The aggregated values
are shown in Table 9.

Table 9. Score values for IVIFSs.

IVIFAAWA Operator IVIFAAWG Operator IVIFAAWA Operator IVIFAAWG Operator

(0.25,0.25,0.25,0.25)  (0.25,0.25,0.25,0.25)  (0.2,0.3,0.2,0.3) (0.2,0.3,0.2,0.3)
°Feuwr,  -0.3202 0.5902 0.9575 0.9739
Feur, -0.2975 0.5217 0.944 0.9673
°Feuir, -0.4332 0.4977 0.9476 0.9558
Feur, -0.3756 0.3756 0.914 0.9452
Fowr,  -0.1467 0.7038 0.9682 0.9818

Moreover, we derive the ranking order of the alternatives based on their score values and get the
best optimal among the five (see Table 10).

Table 10. The ranking results from Table 9.

Methods Ranking values Best decision
CIFAAWA Operator OFELIFS > OFZLIFZ > OFEUFl > OFam} > OFZLIF_; OFZZIFS
(0.25,0.25,0.25,0.25)

CIFAAWG Operator OFELIFS > OFELIFl > OFEUFZ > OFELIFg > OFZLIEL OFZZIFS

(0.25,0.25,0.25,0.25)

CIFAAWA Operator OFELIFS > OFELIFl > OFELIFg > OFEUFZ > OFZLIFl OFZZIFS
(0.2,0.3,0.2,0.3)

CIFAAWG Operator Feurry, > °Fewr, > Fowr, > Four, > Feur, Fuir,

(0.2,0.3,0.2,0.3)

AIMS Mathematics Volume 9, Issue 10, 27797-27833.



27826

From Table 10, we observe that the best optimal is °F¢y, s, (Generative Adversarial Networks

(GANSs)) by the two different techniques based on CIFSs. This means that when we use only IFSs,
IVIFSs, and CIF types of data, the proposed technique could easily get the same results. Moreover, we
check the influence of the parameters and do a comparative analysis of the proposed method with some
methods.

5.2. Influence of parameters

In this subsection, we verify the stability or influences of the proposed work with the help of the
different values of parameters hi > 1.

For this, we consider the data in Table 2, and then based on the CIFAAWA operator and
CIFAAWG operators, we check the ranking results. For the CIFAAWA operator, the influence of the
possible values of Af is shown in Table 11.

Table 11. Influence of the parameter based on the CIFAAWA operator.

Parameter Score values Ranking results
hh =1 -0.2062,-0.2089,-0.3690,-0.3683, - °Feurrs > °Feur, > Four, > Fourr,
0.0085 > °Feurr,
hh =3 -0.2056,-0.208,-0.3685,-0.3675,- °Feurrs > °Feur, > Four, > Four,
0.0075 > °Fgnir,
hh =5 -0.2049,-0.2071,-0.3679,-0.3667.- Feurrs > Fowrr, > Fourr, > Four,
0.0065 > °F e,
hh =7 -0.2043,-0.2062,-0.3673,-0.3659. - Feurrs > Fowrr, > Fourr, > Fourr,
0.0055 > Feur,
hh =9 -0.2037,-0.2053,-0.3668,-0.3651 - Feurrs > Feurr, > Fowr, > Feur,
0.0045 > °Frurr,
hh =11 -0.2031,-0.2045,-0.3662,-0.3644. - Feurrs > Feurr, > Fouwr, > Feurr,
0.0036 > Faur,

From Table 11, we observe that the best optimal is °F¢y,p, (Generative Adversarial Networks

(GANs)) by the Aczel-Alsina weighted averaging based on CIFSs for all possible values of the
parameter. Furthermore, the influence of the possible values of Ah for the CIFAAWG operator is
shown in Table 12.

From Table 12, we observe that the best optimal is °F¢y, s, (Generative Adversarial Networks

(GANSs)) by the Aczel-Alsina weighted geometric based on CIFSs for all possible values of the
parameter. Furthermore, we use the data in Table 2 to perform a comparative analysis of the proposed
method with some existing methods.
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Table 12. Influence of the parameter based on the CIFAAWG operator.

Parameter Score values

Ranking values

hh =1 0.6774,0.6098,0.5401,0.4405,0.7835
hh =3 0.6768,0.609,0.5396,0.4398,0.7827
hh =5 0.6763,0.6083,0.5391,0.439,0.782

hh =7 0.6757,0.6076,0.5386,0.4382,0.7813
hh =9 0.6752,0.6069,0.5381,0.4374,0.7806

hh =11  0.6747,0.6063,0.5375,0.4367,0.7799

Feurr, >
Feurr, >
Four, >
Fourr, >
Four, >

[o) BEE
Fouir, >

°Feurr, > “Feurr, > °Feur,
> °Feurr,

°Feurr, > “Feurr, > °Feur,
> °Feurr,

Feur, > °Four, > °Feur,
> °Feurr,

Feur, > °Four, > °Feuwr,
> °Feurr,

Feur, > °Four, > °Feuwr,
> °Feurr,

°Feuwrr, > “Feurr, > °Feur,
> °Feurr,

5.3. Comparative analysis

In this subsection, our main target is to compare the proposed method with some existing methods
to show the effectiveness of the derived method. For this, we consider the following existing methods,
for instance, Xu [14] addressed the AOs for IFSs. Moreover, Xu and Yager [16] developed the
geometric AOs for IFSs. Wang et al. [18] presented the AOs for IVIFSs. Further, Senapati et al. [19]
derived the geometric AOs for IVIFSs. Wei and Wang [21] addressed the geometric AOs for IVIFSs.
Moreover, Xu and Chen [22] presented the geometric AOs for IVIFSs. Kaur and Garg [25] developed
the AOs for the CIF set. Finally, Kaur and Garg [26] proposed the generalized AOs for CIF values.
Based on the data in Table 2, the comparative analysis is shown in Table 13.

Table 13. Comparative analysis for the CIF values.

Methods Score values Ranking values
Xu [14] Failed Failed
Xu and Yager [16] Failed Failed
Wang et al. [18] Failed Failed
Senapati et al. [19] Failed Failed
Wei and Wang Failed Failed
[21]
Xu and Chen [22] Failed Failed
Kaur and Garg  0.3504,0.2756,0.1253,0.0504,0.5507  °Feur, > °Fowr, > °Four, > Fewr,
[25] > Fur,
Kaur and Garg ~ 0.3498,0.2748,0.1248,0.0496,0.5498  °Feuir, > Fowr, > °Four, > °Fewr,
[26] > Fur,
CIFAAWA -0.2062,-0.209,-0.369,-0.3683,,- °Feurrs > Feurr, > °Fourr, > °Feurr,
operator 0.0085 > °Feurr,

CIFAAWG 0.6774,0.6098,0.5402,0.4406,0.7835  °Fcyr,

operator

O * O ** ok *
> Feurr, > °Four, > °Feourr,
o k*
> FCuIF4
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From Table 13, we see that the best decision is °F¢y,r, (Generative Adversarial Networks (GANSs))

according to the proposed CIFAAWA, CIFAAWG, and the methods proposed by Kaur and Garg [25,26]
because these operators are based on CIF information, but the other existing techniques failed to solve
this problem because they are based on IFS or IVIFSs. If we use only the IFS from the data in Table 2,
then the comparison is stated in Table 14.

Table 14. Comparative analysis for the IFSs.

Methods Score values Ranking values
Xu [14] 0.5005,0.4007,0.2004,0.1004,0.7009  °Feuir, > °Fowr, > Four,
> °Feurr, > °Feur,
Xu and Yager [16]  0.4998,0.3998,0.1998,0.0997,0.6999  °Fcuir, > “Feurr, > °Feur,
> °Feurr, > °Feurr,

Wang et al. [18] Failed Failed
Senapati et al. Failed Failed
[19]
Wei and Wang Failed Failed
[21]
Xu and Chen [22] Failed Failed
Kaur and Garg 0.5005,0.4007,0.2004,0.1004,0.7009  °Feuir, > °Fowr, > Four,
[25] > °Feurr, > °Feurr,
Kaur and Garg 0.4998,0.3998,0.1998,0.0997,0.6999  Feuir, > °Fowr, > Four,
[26] > °Feurr, > °Feurr,
CIFAAWA -0.0922,-0.1203,-0.3048, - Feuwr, > Feurr, > °Fewr,
operator 0.3610,0.1297 > °Feurr, > °Feur,
CIFAAWG 0.7645,-0.2975,0.5825,0.5055,0.8632  °Fcur, > Fouwr, > “Four,
operator > °Feurr, > °Feurr,

From Table 14, we see that the best decision is °F¢,, . (Generative Adversarial Networks (GANSs))

according to the proposed CIFAAWA, and CIFAAWG, the methods proposed by Kaur and Garg
[25,26], Xu [14], and Xu and Yager [16], because these operators are based on CIF information or IFS,
but the other techniques failed to solve this problem because they are based on IVIFSs. If we used only
the IVIFS from the data in Table 2, then the comparison is shown in Table 15.

From Table 15, we see that the best decision is °Fg;,; s, (Generative Adversarial Networks (GANs))

according to the proposed CIFAAWA, CIFAAWG, the methods proposed by Kaur and Garg [25,26],
Wang et al. [18], Senapati et al. [19], Wei and Wang [21], and Xu and Chen [22], because these
operators are based on CIF information and IVIFS.However, the other techniques failed to solve this
problem because they are based on IFSs. Hence the proposed method is massively powerful and
dominant compared to the existing techniques.
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Table 15. Comparative analysis for the IVIFSs.

Methods Score values Ranking values
Xu [14] Failed Failed
Xu and Yager [16] Failed Failed

Wang et al. [18]  0.2004,0.1505,0.0503,0.0005,0.4006  °Feyir, > °Fowr, > Four, > “Four,

o k*
> °Feurr,

Senapatietal.  0.9575,0.9437,0.9475,0.913,0.9682  °Fewr > Feur, > Fouwr, > Fourr,

[19] > °Feurr,

Wei and Wang 0.1998,0.1497,0.0497,- °Feurrs > Feurr, > Feurr, > Fourr,
[21] 0.0005,0.3998 > °Feurr,

Xu and Chen [22] 0.1998,0.1497,0.0497, - °Feurrs > Feurr, > Feurr, > Fourr,
0.0005,0.3998 > °Feurr,

Kaur and Garg ~ 0.2004,0.1505,0.0503,0.0005,0.4006  °F&yr > °Feur, > Feur, > °Four,
[25] > oFEua

Kaur and Garg 0.1998,0.1497,0.0497,- Feurrs > Fouwr, > Four, > Feur,
[26] 0.0005,0.3998 > Furr,

CIFAAWA -0.3202,-0.2975,-0.4332,-0.3756,-  °Feur, > °Four, > °Feur, > Feur,
operator 0.1467 > °Four,

CIFAAWG 0.5902,0.5217,0.4977,0.3756,0.7038  °FZhir, > °Fiuir, > Feur, > Four,

o k*
operator > °Frurr,

6. Conclusions

The model of cubic intuitionistic fuzzy sets is the combination of two different techniques, called
cubic and intuitionistic fuzzy sets, and is a reliable technique to cope with vague and uncertain
information. The major influences of this article are listed below:

1)

2)

3)

4)

We addressed or computed the model of Aczel-Alsina operational laws under the consideration
of the CIF set as well as AATN and AATCN, where the model of Algebraic norms and Drastic
norms are the special parts of the Aczel-Alsina norms.

Using the above invented operational laws, we aimed to develop the model of Aczel-Alsina
average/geometric aggregation operators, called CIFAAWA, CIFAAOWA, CIFAAHA,
CIFAAWG, CIFAAOWG, and CIFAAHG operators with some well-known and desirable
properties.

A procedure of decision-making technique is presented for finding the best type of artificial
neural networks with the help of MADM problems based on CIF aggregation information.
We determined a numerical example for showing the rationality and advantages of the
developed method by comparing their ranking values with the ranking values of many
prevailing tools.

6.1. Limitations of the proposed model

The model of cubic intuitionistic fuzzy sets is very flexible but due to ambiguity and problems,
they are not working in many places. For instance, when a person provides information in the form of
yes, no, and abstinence, then the model of the CIF set has been failed. For this, we aim to compute the

AIMS Mathematics Volume 9, Issue 10, 27797-27833.
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model of cubic picture fuzzy sets and their extensions.
6.2. Future directions

In the future, we will extend the Aczel-Alsina operators to complex cubic intuitionistic fuzzy,
Pythagorean fuzzy, g-rung orthopair fuzzy, and their extensions. Further, we will also concentrate on
their application in green supply chain management, artificial intelligence, road signals, and decision-
making problems.
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