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Abstract:  This paper introduces a new class of multivariable operators called (ny,--- ,n,)-
hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators
Q=(Q, ---,Q,)is said to be an (ny, - - - , n,,)-hyponormal tuple for some (ny,--- ,n,) € N" if

Z <[ank’ Q;”]wk lwr) >0, VY (w)i<kem € K™

1<k, I<m
We show several properties of this class that correspond to the properties of joint hyponormal operators.
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1. Introduction

Throughout this work, we will denote by B(K) the algebra of bounded linear operators acting on
a complex Hilbert space K. For Q € B(K), we denote by ker(Q) and Q" for the null space and the
operator adjoint of @, respectively. An operator Q € B(K) is said to be normal if Q' Q = QQ* [10, 18,
20], hyponormal if [Q*, Q] := Q'Q - QQ" > 0 (||Qul| > |IQ*wl| ¥ w € K) [7,22]). Note that

[Q,Q] >0 = ([ Q",Qw|w)y>0 YweXK.

The authors in [14] have introduced the concept of n-hyponormality for some positive integer n as
follows: an operator Q is said to be n-hyponormal if [Q",@"] > 0, or equivalently (||Q'w| >
IQ"w|| Y w € K). Note that

Q" Q20 = ([ Q" QANw|w)>20 YweK.

We invite the reader to reading [14, 15, 24] for more details on this topic.
In recent years, the study of some concepts of operators theory in several variables has been studied
at several levels by many authors, based on studies carried out on the theory of operators in one variable
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(see [1-3,8,9]). We mention here the following concepts related to our study, namely, joint normality,
joint hyponormality and joint quasihyponormality. A tuple Q = (Qy, - ,Q,,) € B(K)™", is said to be
joint normal [4-6] if Q satisfies the following conditions:

QR =QQ Y ke{l, - ,mp,
Q. @]=0 kel m).
However, Q = (Qy, - - - ,Q,,) is said to be a joint hyponormal ( [4]) if

Z ([Q, Qlwrlw) >0, VYV (w)iskem € K™
1<,k <m
Note that Q" := (Q}, -+ , Q).
Recently, Sid Ahmed et al. [17] have introduced the concept of joint m-quasihyponormal as follows:
Antuple Q = (Qy, -+ ,Q,) € B(K)" is said to be a joint m-quasihyponormal if Q satisfies

> (@@, QlQwilw) =0, V (@)izian € K"

1<l k <m

In this work, we present natural generalizations of joint hyponormalty to (ny, - - - , n,,)-hyponrmality
and joint quasihyponormality to (g1, - , g,)-quasi-(n, - - - , n,,)-hyponrmality. Q = (Qy, - ,Q,,) is
said to be an (ny, - - - , n,)-hyponormal if

D {I@", @exlw) 20, Y (@)iziem € K™,

1<l k <m

for some (ny,--- ,n,) € N, and it is said to be (q1, - - , ¢;n) quasi-(ny, - - - , n,)-hyponrmal if

DL A@QMQ, @@ wlw)y =0, ¥ (@disken € K"

1<l k <m

for some (ny,--- ,n,) € N"and (q, - ,qn) € N".

Additional references regarding tuples of operators are cited here [12, 16, 19,21,23].
2. Class of (ny, - - - ,n,)-Hyponormality of operators

In this section, the definition and properties corresponding to the (ny, - - - , n,,)-hyponormal tuples of
operators are introduced.

Definition 2.1. Let Q = (Qy,--- ,Q,,) € B(K)" . We say that Q is an n = (ny, - -- , n,)-hyponormal
tuple if the operator matrix ([ank, Q' ]) = (QZ"" Q- '™ is positive on @ K that

)lsk,lSm | <k<m

1<k, I<m
is
D A@", Qo lwy =0, for (@oizkzm € K. 2.1)

1<k, I<m
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It is clear from this definition that Q is an n-hyponormal tuple if

Q"' & Q. Q)

Q".Qr| Q" Q. @y
[Q*H,Qn] —

Q@] [@=ay| . . . @

is positive operator on @<, K =Ko --- K.

Remark 2.1. The following observations can be derived from Definition 2.1.
(i) When m = 1, then Q is an n-hyponormal if and only if [Q"", Q"] > 0. Note that

Q", Q'] >0 = ((Q", Q'|w|w) >0 = ||Qw| = |Q"w| Y we%K.
(ii) If m = 2, then Q = (Q;, Q,) is n = (ny, ny)-hyponormal pair if and only if

Q" Q' :( Qa1 ay )zo,

[Q*n2 in] [Q*nz ng]

which can be expressed as:

< Q", (@' lw, |w1> <[Q*"1 (@ |w, |w2>
(1@, @ ws | 1) + (1", @ 1w | ws)
0

v +

for all (w;, w,) € K>.

Example 2.1. Let Q = (Qy, - - - , Q,,) such that each Q; be ni-hyponomal fork = 1,--- ,m. If [@;, Q] =
O fork # I. Then, @ = (Qy,--- ,Q,,) is ann = (ny, - - - , n,)-hyponormal tuple.
Taking into consideration [Q}, Q] = O for k # [ and Q; is an n;-hyponprmal, we may rewrite

Z < *nk in wk | wl> Z < *I’lk sz]wk | (Uk>

1<k, I<m 1<k<m
> 0, for (wp)i<kem € K™.

The following theorem introduces a characterization for the studied class of multivariable operators.

Theorem 2.1. A fuple Q = (Qy,--- ,Q,,) € B(K)" is an (ny,- - - ,n,,)-hyponormal tuple if and only if

Z Q™ wy

1<k<m

Z 0 (2.2)

Z <Q (1)1|Q wk

1<k,I<m

for every wy, - ,w, € K.
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Proof. We observe that

<[Q7n[, sz]w, | a)k> > 0, Y Wi, ,Wy € K.

1<k, I<m

~

And so it is

s MM

(( Q- Q") w | wi) 20
<

o Y @@t Y, (@araio)s

1<k, I<m 1<k, I<m
= <Q wy | Q wk> Z <Q7"’w1 | QZ”kwk> >0

1<k, I<m 1<k, I<m

= Z <Q w; | Q wk < Z Q*"’w, | Z ankwk> >0
1<k, I<m I<i<m 1<k<m

= Q”kw Qo) -|| 3 Qe 20
1<k, [ 1<l<m

Thus, the desired equivalence is obtained.

Remark 2.2. When you choose n = (1,---, 1), Theorem 2.1 coincides with [4, Remark 1].

Corollary 2.1. Let Q = (Qy, - ,Q,) € B(K)" be an (ny,--- ,n,)-hyponormal tuple of operators.

Then,
ﬂ ker(@") € ker( Z QZ'”)

1<k<m 1<k<m

Proof. Letw € ﬂ ker(QZ") and taking into account Theorem 2.1, we obtain

1<k<m

2
2, Qe

Z <szw | Q}”w> - > 0.
1<k,I<m 1<k<m
=0
Hence,
| > aref <o
1<k<m

Consequently,

Z Q"w =0, andso w € ker( Z QZ”").

1<k<m 1<k<m

Remark 2.3. When m = 1, it is well known that if Q is an n-hyponormal single operator, then

ker(@") C ker(Q™).
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Proposition 2.1. Let Q € B(K) and consider Q= @Q,---,Q). Then, Q is an (n,- - ,n)-hyponormal
tuple if and only if Q is an n-hyponormal.

Proof. We have

Qis n-hyopnromal

= ||Qu||-Q"w||=0, ¥V weK
= QWi+ + w)lF = IQ™ (Wi + -+ + wy)lI* > 0 for each collection wy, - - - , Wy € ||,
k1 2
= @Y w)la ) w)-| > @l =0
1<i<m 1<k<m 1<k<m
®1 2
— Z (Q'w; | Q'wy) — || Z Q wk” >0
1<k, I<m 1<k<m
= Qis (n,--- ,n) —hyponormal tuple (by Theorem 2.1).

O

Lemma 2.1. Let Q = (Q1, - ,Q,,) € B(K)", and let u := (uy,- -+ ,u,) € C". If Qis an (ny, -+ ,n,)-

hyponormal tuple. Then, uQ = (u1Qy, - - , unQy) is an (ny, - - - , n,,)-hyponormal tuple.
Proof. Using some calculations and taking into account that U/ is an (ny,- - - , n,)-hyponormal tuple,
we have

Z Q)™ w; | Q)" wy - || Z (,Ule)*n’wz||2

1<k, l<m 1<i<m
_ , _ _ 2
= D (Ao m Qo) -] Y @artel
1<k,I<m 1<i<m
11—, ] r—N, kN —1 2
= Z <Qkk w) | Q) kkwk)> - ” Z Q" l“’l”
1<k,I<m 1<i<m
2
t3/)
= Z <sz%01 | Q;”'/’k> - || Z Q, 1%01“
1<k,l<m 1<i<m
> 0.

O

Remark 2.4. The property of being (ny, - - - , n,,)-hyponormal for a tuple Q = (Qy, - - - , Q,,) of operators
is indeed invariant under permutations of the operators in Q.

The following proposition describes some properties of n-hyponormal m-tuples of operators.

Proposition 2.2. Let Q = (Q1,- - ,Q,) € B(K)" be an (ny,- - - ,n,,)-hyponormal tuple. The following
properties hold:

1) If N € B(H) is a normal operator such that N' commutes with each @, then, NQ :=
(NQk,--- ,NQ,) is (ny,- -+ ,n,)-hyponormal tuple.

2) For any unitary operator ‘W € B(K), the tuples WQW* = (WQW*,--- , WQ,W*) is
(ny,- - ,n,)-hyponormal tuple.
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Proof. 1) Given that N is a normal operator for which NQ, = QN for k = 1,--- ,m, and referring
to Fuglede-Putnam theorem [11], we obtain N*Q; = Q.N*. Based on these statements, we can obtain
the relationships

>N ol (N w) - || Y (NQ) ™ wi”

1<k,I<m 1<k<m

= D (Ve NTQre) | Y NGl
1<k,I<m 1<k<m

= D @y 1@ vwy) - || Z QN ™ el
1<k,I<m 1<k<m

= Z <Q’”‘w; Q’”wk || Z o il
1<k,l<m 1<k<m

> 0.

Therefore, NQ := (NQy, - -- , NQ,,) is n-hyponormal tuple. From it, the desired results are produced.
2) Suppose any unitary operator V € B (K) such that,

(VQV)™, (VQV)™]

[VQ" V", V@ V']
VIQ", Q1V".

Hence, for each collection wy, - - - , w,, € K, we have

DL VAV, (VAVYwlw) = D (VIQ" @1V wr | wi)

1<k, I<m 1<k, I<m
- Z( Q" QV w | V' wy)
1<i, j<m
> 0.
Which is ends of the proof O

The following theorem generalizes the statement (1) of Proposition 2.2.

Theorem 2.2. Ler Q = (Qy,--- ,Q,) € BK)" and W = (Wy,---,W,) € BK)" for which the
following conditions are satisfied

W, Q, = QW, forallk,le{l,---,m},
W =QW; forallk,lefl,---,m), (2.3)

W W, =WW, forallk,lefl, - ,m}
IfQisan (ny,--- ,n,)-hyponormal tuple, then WQ := (WQ,,--- , W,Q,,) is too.

Proof. Let wy,--- ,w, € K, and taking into account (2.3), we may write
AWQ)™, (W Jorlw) = (((Wi@)™ (Wi — (Wi (Wi@)™ Jo | )

AIMS Mathematics Volume 9, Issue 10, 27784-27796.
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We have

Z (W)™, (WiQ)™wi | wi)

1<k, I<m

1<k, I<m

= > (wrer,

1<k, I<m

(@ wrweay - wraarw; o )
<(WZk [Q;ml N sz](W;‘”’a), | wk).

D AWHQ", QW wr | i

sz ]"Wf"’(u, | wk)

= Q" QW w | W )

1<k, I<m

= > Q" QW w | W )

1<k, I<m

1<k, I<m

where y, = W, w;fori=1,--- ;mand wy,--- ,w, € K.

In view of the fact that Q is an (ny, - - - , n,,,)-hyponorml tuple, we can obt

This completes the proof.

Z (W)™, (WiQ)™|w; | wi) = 0.

1<k, I<m

D AQ" @l ),

ain

O

Theorem 2.3. Let N € B(K) be an invertible operator and Q = (Q; -+ ,Q,,) € B(H)" be a tuple
of operators such that each Q; commutes with N*N fork = 1,--- ,m. Then, Q = (Q;--- ,Q,) is an
(ny,- -+ ,n,)-hyponormal tuple if and only if

NQN = (NQN7',--- , NQ,NYisan (n,--- ,n,)-hyponormal tuple.

Proof. Assume that Q = (Q, - ,Q,) is an (ny,---

,ny)-hyponormal tuple. We need to show that

NQN' = (NQN7',--- ,NQ,N7Y)is an (ny,--- ,n,)-hyponormal tuple. In fact, let w,--- ,w,, €

H, we have

AIMS Mathematics

D, (IvaN )™ (NQNT)"|wy | o)

INQ"N™' NQ'N " |wy | w)

<
<
(N@™. Q"IN wy | w)
(NQ@™. Q"IN wi | NN ;)
<

NNIQ™, QIN wy | N7 )
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> (1@ @TVN NN w | VN'NN"w))

1<k, I<m
= Z <[ank’ Q;l]]')bk I l//l> (1,0] = VN*NN‘le)
1<k, I<m

>

Conversely, assume that NQN 7! := (NQN7',---  NQ,N')is an (n,-- ,n,)-hyponormal tuple.
Set Q. = N@N~! for k = 1,--- ,m. We can check that each @, commutes with (N~')"N~!, and
moreover

(N_IQI(N_I)_Ia e 7N_1Qm(N_1)_l) = (N_1Q1N9 e ’N_IQmN) = (Ql, e ’Qm)-

Based on the first statement, we have (N"'@,N,--- ,N~'Q,N) is an (ny, - - - , n,,)-hyponormal tuple,
and so it shall be (Qy,--- ,Q,) is an (ny, - - - , n,,)-hyponormal tuple. O

Definition 2.2. ( [5]) An operator Q = (Qy,- - ,Q,) € B(H)" is said to be (ny, - - - , n,)-normal tuple
if
[Q', @1=0, V klefl,---,m},

Q™. Q¥]=0.Vkefl, - m}

Theorem 2.4. Let Q = (Qy,--- ,Q,) € B(K)" and n = (ny,--- ,n,) € N". The following statements
hold:

) IfQisan (ny,: - ,n,)-hyponormal tuple, then Q" is an (ny, - - - , n,,)-hyponormal tuple if and only if
(l@" @|wlwy=im(|Q", @|wlw)y=0, YweK, ki=1,- m

2) Assume that Q = (Q,---,Q,) be commuting tuple of operators. If Q and Q" are (ny,--- ,n,)-
hyponormal tuple, then Q is an (ny, - - - , n,,)-normal tuple.

Proof. 1) Letk,l €{1,2,---,m}, we observe that

[(Q;km)*’ ank] [Q;lz’ ank]
- Qe -ara

= -|l@™ Q.

Assume that Q and Q* are (ny, - - ,n,)-hyponormal tuples. It follows that for each finite collections

w1, Wy € K, we have
> A{l@" @ |olw) =0,

1<k, I<m

> (@™ @*Jarie)=o0.

1<k, I<m

AIMS Mathematics Volume 9, Issue 10, 27784-27796.



27792

Or equivalently,

Z <[Q}ml’ sz]‘“l | wk> >0,

1<k, I<m

Z <[Q}:"", Q;”] w; | a)k> <0.

1<k, I<m

For fixed couple (ko, lp), let wy, --- , w,, € K be chosen so that w, = 0 for p ¢ {ko, lp}. Applying the
first inequality and the second inequality above to the tuple (wy, --- , w,,), we obtain respectively,

*nko nko *n;O nlO *nlo nko *I’lko ”10
<[Qko ’ Uko ]wko | wk0>+<[Qlo ’ Qlo ]wlo | wl°>+<[Qlo ’ Qko ]wlo l wk0>+<[Qko ’ Qlo ]wlo | wk0> >0,
and

w1y, 1 #1), ) #1), 7 #y, 7
<[Qk0 0, Qkoo] Wi, | wko>+<[QlO 0’ QZOO] wy, | wlo>+<[Q[0 0’ QK(())] wj, | wk0>+<[Qk0 0’ QZOO] wy, | Cl)k0> <0.

Thus, we have

lo

<[QZZkO , QZ;O] Wi, | a)k0> + <[Qz)nl° , QZO] wy, | a)10> + <[QZHO , QZSO] wy, | wk0> + <[ngk° , ino] wy, | wko> =0

foreachw e K, k,l=1,--- ,m.
Letting wy, = w;, = w € K, we obtain

(@, @ ]wlw)+ (@, @|wlw)+ (@, @]wlw)+{Q, @"|wlw)=0 @4
for eachw € K, k,[=1,---,m. Letting wy, = w and w;, = —w € K, we obtain

(@7, @1 0)+ (@, Qo a) (@7 @]w| o)~ (@ @] lw)=0. @5)

lo

foreachw e K, k,[=1,--- ,m.
By combining (2.4) and (2.5), we obtain:

(@, @ lolw)+{Q™. @ |wlw)=0, foreach weK and k, =1, ,m.

lo

Hence,

<[Qz*0nlo, szo]w | a)> + <[Q,Zk°, QZ)’O]w | w> =0, foreach we K and k, [=1,--- ,m.

Observing that

(. gt} = (o1 a2, @2 ]o) = @ @ oo}

lo

AIMS Mathematics Volume 9, Issue 10, 27784-27796.
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this implying that
Re<[Q7nz, sz]w lw)=0, YoeXK, ki=1,---,m.

Therefore, [Q;‘"’ , QZ"] is purely imaginary.
Assume that [Q;”’ , Q”k"] is purely imaginary for all k,/ = 1.--- ,m. Thus,

Re([Ql*m, QZk]wlw):O, VoeK, ki=1,--.m.

This means that

(@™ @|wlw)y+(|@™ @|wlw)y=0 for ki=1- m.

Let wy, -+, w, € K, and taking into account that

2 (@ @atog =~ 3 (@ @'forlw).

1<k, I<m 1<k, I<m
However,
*I]\ ¥ k7, k1, 1,
Z <[(Ql PR k]“’l | “’k> - Z <[Qk . Qll]“’l | “’k>'
1<k, I<m 1<k, I<m

The above simplification shows:

2, @y @ otw) = >, (@ @wlw)

1<k, I<m 1<k, I<m

> 0.

Which prove that Q" is an (ny, - - - , n,,)-hyponormal tuple.
2) Obviously that

[Q.Q1=0=[Q". Q=0 Ykie(l- m).
Given that both Q and Q" are (ny, - - - , n,,)-hyponormal, it follows that

> A@, @y | w) =0.

1<k, I<m

In particular,
<[ank, sz]wk lw) =0 fork=1.---,m.

Lemma 2.2. ( [5]) Let 7,8 € B(K) and p, q € N. Then,

[77, 8 = > TS [T, S|SPT.
a+a' =p-1
B+B =q-1

AIMS Mathematics Volume 9, Issue 10, 27784-27796.
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Proposition 2.3. Let Q = (Qy, - ,Q,) € B(K)" andn = (n;,--- ,n,) € N". Q= (Q,-- ,Q,) is an
(ny, -+, ny)-hyponormal tuple, then @ = (Q}',--- , @) is too.

Proof. If g, € {0, 1} forall k € {1,--- ,m}, then [(sz)rk, (Q;”)”] =0forallk,[=1,---,m.
Assume that r, > 1 for all k € {1,--- ,m}, and taking into account Lemma 2.2

(@Y (@ T= ), (@)@, @N@H” @y
a+a’=r—1

BB =ri-1

We infer that

(@™ @y | s | i)

1<k, I<m

<( D, @@y, Q;”](QZ’{)”’(Q?’)#)WI | wk>
a+a’=q—1

BB =qi-1

L Zl ({(1@™. @@ @™ Jor 1@ F@ren))

B+ =1

1<k, Ism

Using the (ny, - - - , n,)-hyponormality of @, we obtain for all (wy)<x<m € K™

> A{l@" @F|wilw) =0,

1<k, I<m

which implies that

> (@™, @ lwrtey =0

1<k, I<m

for all (wy)1<x<m € K. Therefore, Q" is an (ny, - - - , n,,)-hyponormal tuple. O
3. Conclusions

This paper introduces and explores the concept of (ny, - - - , n,)-hyponormal tuples, a new class of
multivariable operators that integrates the notions of joint normal and joint hyponormal operators.
The study demonstrates that (ny, - - - , n,,)-hyponormal tuples inherit several important properties from
joint hyponormal operators. This new class of operators not only enriches the theory of multivariable
operators but also provides a framework for further exploration and analysis of operator tuples.
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