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1. Introduction

It is known that delays, in general, cause instability, chaos, and damage to structures [1]. This has
brought considerable attention to many researchers who have tried possible treatments for the problem
that may control these delay factors. These studies, generally speaking, among others, led to a sufficient
condition on the dominance of the damping term on the delayed term to ensure the exponential stability.
In this paper, we study the problem

utt = ∆u + µ1(t)∆ut − µ2(t)ut(t − τ), in Ω × R+,

u(x, t) = 0, on ∂Ω × R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

ut(x, t − τ) = f0(x, t − τ), in Ω × (0, τ),

(1.1)
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where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω. The
functions µ1, µ2 : R+ → (0,∞) are bounded differentiable functions, and the constant τ > 0
corresponds to the time lag. The functions u0, u1, and f0 belong to appropriate spaces that will be
determined later in our existence and uniqueness result. In the one-dimensional space, this problem
describes the motion of a string with both ends fixed. The term ∆ut describes the structural damping of
the object and is often called strong damping (which is a special case of Kelvin–Voigt damping), while
the term µt(t−τ) is the retarded time derivative of the state. The interaction between damping and time
delay arises in many real-life models, such as signal processing [2] and vehicle suspension systems [3].
Delays are omnipresent and intrinsic in many processes and phenomena. For instance, in engineering,
data are often collected by means of a sensor and then analyzed. Afterwards, a decision is sent to an
actuator to apply it, involving a time lag that may not be negligible. Ignoring this time lag can lead to
inaccurate results. Time retardation also exists in many fields, such as signal theory, drilling, milling,
digital control, rotation, and even phenomena involving human reactions. For more applications on this
topic, we refer to the books [4–6]. In the absence of the retarded term (µ2(t) ≡ 0), it is well known that
the energy of the system decreases exponentially to zero as t → ∞; we refer the reader to [7–9]. In the
case where µ1(t) and µ2(t) are constants, Datko [10] showed that when µ2 > 0 and µ1 = 0, the system
is unstable no matter how small µ2 is, whether appearing in the main equation or even in the boundary
feedback [11]. Xu, Yung, and Li [12] and Nicaise and Pignotti [13,14] showed that the system could be
stabilized by adding a linear frictional damping term µ1ut (instead of ∆ut in (1.1)) under the condition
that the weight of this term override the delay term, that is,

µ2 ≤ µ1, ∀t ≥ 0. (1.2)

This work has motivated many researchers to investigate various types of problems, for instance,
viscoelastic wave equations of finite memory type [15, 20, 23] and infinite memory type [16], abstract
evolution equations [17], nonlinear wave equations [18, 19, 21], and plate equations [22, 24].
In the case of non-constant coefficients with µ1(t) > 0, we mention the work of Benaissa,
Benguessoum, and Messaoudi [25], who proved the well-posedness of the problem

utt = ∆u − µ1(t)ut − µ2(t)ut(t − τ),

and established an exponential decay result under the condition that there exist positive constants M,
M̃, and k < 1 such that∣∣∣∣∣∣µ′1(t)

µ1(t)

∣∣∣∣∣∣ < M, |µ2(t)| < kµ1(t), |µ′2(t)| < M̃µ1(t), ∀t ≥ 0. (1.3)

In addition, they required µ1(t) to be non-increasing. Barros, Nonato, and Raposo [26] extended this
result to the case of time-varying delays (τ(t)). Further, it has been shown that the viscoelastic damping∫ t

0
g(t − s)∆u(s)ds can also control the delay term and drive the system to equilibrium in an exponential

fashion, we refer the reader to [16, 17, 27] and the references therein.
Our interest here is to study the interaction between the strong damping and the delay term and the
possibility of obtaining exponential stability. A slightly different problem considered by Messouadi,
Fareh, and Doudi [28], namely,

utt = ∆u + µ1∆ut − µ2∆ut(t − τ),
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with the same initial and boundary conditions as in (1.1), and proved the existence and uniqueness of
solutions. Moreover, they established that the energy decays exponentially if |µ2| < µ1. This result was
beneficial in being implemented in different types of problems, for instance [29–31].
As far as we know, all studies suggest the dominance of the delay coefficient by one of the damping, for
all time in order to reach the equilibrium state exponentially. Considering the impact of a delay factor
possibly surpassing the controlling term, we shall explore in this work whether the system can still
achieve stability. Our study, based on problem (1.1), reveals that, under specific conditions, exponential
stability remains attainable even when the damping term does not consistently outweigh the delayed
retarded term.

The paper is organized as follows: In Section 2, we outline our assumptions and provide a result on
existence and uniqueness justifying our computation. Following that, in Section 3, we establish and
prove our exponential stability result. Section 4 contains the numerical validation of our result.

2. Preliminaries

In this section, we prepare some material to rely on in establishing the proof of our main result
in Section 3. Throughout this article, the notation ‖ · ‖ stands for the norm of L2, and Cp stands for
Poincaré’s constant, which is the least constant such that ‖u‖2 ≤ Cp‖∇u‖2 for all u ∈ H1

0(Ω). Further,
we impose the following two hypotheses:
(A1) The functions µ1(t) and µ2(t) are differentiable such that

0 < µ1 ≤ µ1(t) ≤ µ1 and 0 ≤ µ2(t) ≤ µ2, ∀t ≥ 0.

(A2) The following inequality holds

τ2µ2
2µ1 + 2

√
2τµ2

√
τµ2Cp + Cp + µ2

2C2
p + µ1

2 < µ1.

Remark 1. From (A2) we conclude that τµ2 < 1.

Remark 2. The differentiability condition on µ1(t) and µ2(t) is to ensure the well-posdeness of (1.1).

Remark 3. Unlike [26], we do not require any monotonicity condition on µ1(t) and µ2(t). Moreover,
the function µ1(t) does not need to dominate µ2(t) for all t ≥ 0 as imposed in the literature [13,21,26].
An example of such functions is given in Section 4.

Part of the main idea here is rewriting the main equation as

utt = ∆u + µ1(t)∆ut +
∂

∂t

∫ t

t−τ
µ2(s + τ)ut(s) ds − µ2(t + τ)ut(t),

and as a consequence, we obtain the new form

∂

∂t

[
ut −

∫ t

t−τ
µ2(s + τ) ut(s) ds

]
= ∆u + µ1(t)∆ut − µ2(t + τ)ut. (2.1)

We define the modified energy functional

E(t) :=
1
2

∫
Ω

(
ut −

∫ t

t−τ
µ2(s + τ) ut(s) ds

)2

dx +
1
2
‖∇u‖2, (2.2)

AIMS Mathematics Volume 9, Issue 10, 27770–27783.



27773

whereas classical energy is

E(t) :=
1
2
‖ut‖

2 +
1
2
‖∇u‖2, t ≥ 0. (2.3)

We shall consider the functional E(t) in (2.2). The passage from E(t) to E(t) will be made clear at the
end of the proof of our theorem.
For completeness, we state an existence and uniqueness theorem.

Theorem 2.1. Assume that (A1) and (A2) are satisfied. Then, given u0, u1 ∈ H1
0(Ω), f0 ∈ L2(Ω×(−τ, 0))

and T > 0, there exists a unique weak solution to the problem (1.1) on [0,T ) such that

u ∈ C([0,T ); H1
0(Ω)) ∩ C1([0,T ); L2(Ω)) and ut ∈ L2([0,T ); H1

0(Ω)).

For the proof, one can use the semigroup theory approach combining the arguments in [17, 28, 32].

3. Energy decay

Within this section, we reveal and prove the exponential decay result, which reads

Theorem 3.1. Assume that (A1) and (A2) are fulfilled. Then, there exist positive constants C and k
such that the classical energy E(t) satisfies, along the solution of (1.1), the estimate

E(t) ≤ CE(0)e−kt, ∀t ≥ 0.

For the construction of the proof, we craft the following technical lemmas.

Lemma 3.2. The modified energy functional E(t) satisfies the estimate

E′(t) ≤(µ2(t + τ)ε3 − 1)µ2(t + τ)‖ut‖
2 + ε1‖∇u‖2 + (ε2 − 1)µ1(t)‖∇ut‖

2

+

(
1
ε1

+
µ1(t)
ε2

)
τ

4

∫ t

t−τ
µ2

2(s + τ)‖∇ut(s)‖2 ds

+
τ

4ε3

∫ t

t−τ
µ2

2(s + τ)‖ut(s)‖2 ds, t ≥ 0,

along the solution of (1.1) and for every positive constant {εi}
3
i=1.

Proof. Multiplying Eq (2.1) by ut −
∫ t

t−τ
µ2(s + τ)ut(s) ds and integrating over Ω one obtains

E′(t) = − µ1(t)‖∇ut‖
2 − µ2(t + τ)‖ut‖

2 +

∫
Ω

∇u ·
∫ t

t−τ
µ2(s + τ)∇ut(s) ds dx

+ µ1(t)
∫

Ω

∇ut ·

∫ t

t−τ
µ2(s + τ)∇ut(s) ds dx

+ µ2(t + τ)
∫

Ω

ut

∫ t

t−τ
µ2(s + τ)ut(s) ds dx, t ≥ 0.

Exploiting Young’s inequality, we are able to find the three estimates below, for any positive constants
ε1, ε2 and ε3,∫

Ω

∇u ·
∫ t

t−τ
µ2(s + τ)∇ut(s) ds dx ≤ ε1‖∇u‖2 +

τ

4ε1

∫ t

t−τ
µ2

2(s + τ)‖∇ut(s)‖2 ds,

AIMS Mathematics Volume 9, Issue 10, 27770–27783.



27774

the second one

µ1(t)
∫

Ω

∇ut ·

∫ t

t−τ
µ2(s + τ)∇ut(s) ds dx

≤ ε2µ1(t)‖∇ut‖
2 +

τµ1(t)
4ε2

∫ t

t−τ
µ2

2(s + τ)‖∇ut(s)‖2 ds,

and the last one ∫
Ω

µ2(t + τ)ut

∫ t

t−τ
µ2(s + τ)ut(s) ds dx

≤ ε3µ
2
2(t + τ)‖ut‖

2 +
τ

4ε3

∫ t

t−τ
µ2

2(s + τ)‖ut(s)‖2 ds, t ≥ 0.

Combining the three estimates leads to the result. �

Lemma 3.3. The functional

V1(t) := e−β1t
∫ t

t−τ

∫ t

s
eβ1(σ+τ)µ2

2(σ + τ)‖ut(σ)‖2 dσ ds,

satisfies, along the solution of (1.1) and for any positive number β1,

V ′1(t) ≤ −β1V1(t) −
∫ t

t−τ
µ2

2(s + τ)‖ut(s)‖2 ds + τµ2
2(t + τ)eβ1τ‖ut‖

2, t ≥ 0.

Proof. Performing differentiation of the functional V1(t) with respect to time leads to

V ′1(t) = − β1V1(t) − e−β1t
∫ t

t−τ
eβ1(σ+τ)µ2

2(σ + τ)‖ut(σ)‖2 dσ

+ e−β1t
∫ t

t−τ
eβ1(t+τ)µ2

2(t + τ)‖ut(t)‖2 ds

= − β1V1(t) − e−β1t
∫ t

t−τ
eβ1(σ+τ)µ2

2(σ + τ)‖ut(σ)‖2 dσ

+ τeβ1τµ2
2(t + τ)‖ut‖

2, t ≥ 0. (3.1)

Since
eβ1t ≤ eβ1(σ+τ), σ ∈ [t − τ, t],

the integral term in (3.1) can be estimated as

−e−β1t
∫ t

t−τ
eβ1(σ+τ)µ2

2(σ + τ)‖ut(σ)‖2 dσ ≤ −
∫ t

t−τ
µ2

2(s + τ)‖ut(s)‖2 ds,

for all t ≥ 0. Hence the result follows. �

If we replace ut by ∇ut in Lemma 3.3 and perform a similar calculation, we obtain the following
conclusion.
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Lemma 3.4. The functional

V2(t) := e−β2τ

∫ t

t−τ

∫ t

s
eβ2(σ+τ)µ2

2(σ + τ)‖∇ut(σ)‖2 dσ ds,

satisfies, along the solution of (1.1), and for any positive number β2,

V ′2(t) ≤ −β2V2(t) −
∫ t

t−τ
µ2

2(s + τ)‖∇ut(s)‖2 ds + τµ2
2(t + τ)eβ2τ‖∇ut‖

2, t ≥ 0.

Lemma 3.5. The functional

V3(t) :=
∫

Ω

u
(
ut −

∫ t

t−τ
µ2(s + τ)ut(s) ds

)
dx

satisfies, along the solution of (1.1), and for every positive constant {εi}
6
i=4,

V ′3(t) ≤
(
Cp + ε4Cp + ε5µ1 + ε6Cpµ2

)
‖∇ut‖

2 +

(
µ1

4ε5
+

Cpµ2

4ε6
− 1

)
‖∇u‖2

+
τCp

4ε4

∫ t

t−τ
µ2

2(s + τ)‖∇ut(s)‖2 ds, t ≥ 0.

Proof. Taking the derivative of V3(t) and recalling (2.1) lead to

V ′3(t) =‖ut‖
2 −

∫
Ω

ut

∫ t

t−τ
µ2(s + τ)ut(s) ds dx − ‖∇u‖2

− µ1(t)
∫

Ω

∇u · ∇ut dx − µ2(t + τ)
∫

Ω

uut dx, t ≥ 0.

With the aid of Young’s and Poincaré’s inequalities, one can reach the result. �

Now we introduce the Lyapunov functional

L(t) := E(t) +

3∑
k=1

λkVk, t ≥ 0, (3.2)

where λk, k = 1, 2, 3, are positive constants to be determined later.

Lemma 3.6. There exist two positive constants M1 and M2 such that the functional L satisfies the
equivalence relation

M1E(t) ≤ L(t) ≤ M2

(
E(t) +

∫ t

t−τ
µ2

2(s + τ)‖∇ut‖
2 dx

)
, t ≥ 0.

Proof. First, we reorder the integrals in V1(t) as follows:

V1(t) = e−β1t
∫ t

t−τ

∫ t

s
eβ1(σ+τ)µ2

2(σ + τ)‖ut(σ)‖2 dσ ds
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= e−β1t
∫ t

t−τ

∫ σ

t−τ
eβ1(σ+τ)µ2

2(σ + τ)‖ut(σ)‖2 ds dσ

= e−β1t
∫ t

t−τ
(σ − t + τ)eβ1(σ+τ)µ2

2(σ + τ)‖ut(σ)‖2 dσ

≤ τeβ1τ

∫ t

t−τ
µ2

2(s + τ)‖ut(s)‖2 ds, t ≥ 0.

Similarly

V2(t) ≤ τeβ2τ

∫ t

t−τ
µ2

2(s + τ)‖∇ut(s)‖2 ds, t ≥ 0.

It is obvious when using Young’s and Poincaré’s inequalities, along with assumption (A1), one can
reach the following

L(t) ≤ M2

[
E(t) +

∫ t

t−τ
µ2

2(s + τ)‖∇ut(s)‖2 ds
]
, t ≥ 0.

On the other hand, we exploit Young’s and Poincaré’s inequalities as follow:

L(t) ≥
(
1
2
− λ3δ

) ∫
Ω

(
ut −

∫ t

t−τ
µ2(s + τ)ut(s) ds

)2

dx

+

(
1
2
−

Cpλ3

4δ

)
‖∇u‖2, t ≥ 0.

Taking δ = 1/4λ3 and λ3 < 1/
√

2Cp, we obtain the other (left) relation. �

Proof of Theorem 3.1. Differentiating the functional L(t) and gathering all the estimates from
Lemmas 3.2–3.5 we obtain

L′(t) ≤
[
µ2

2(t + τ)ε3 − µ2(t + τ) + τλ1µ
2
2(t + τ)eβ1τ

]
‖ut‖

2

+

[
ε1 +

(
µ1

4ε5
+

Cpµ2

4ε6
− 1

)
λ3

]
‖∇u‖2

+
[
(ε2 − 1)µ1(t) + τµ2

2(t + τ)λ2eβ2τ

+
(
Cp + ε4Cp + ε5µ1 + ε6Cpµ2

)
λ3

]
‖∇ut‖

2

+

(
τ

4ε3
− λ1

) ∫ t

t−τ
µ2

2(s + τ)‖ut(s)‖2 ds

+

(
τ

4ε1
+
τµ1(t)
4ε2

+
τCpλ3

4ε4
− λ2

) ∫ t

t−τ
µ2

2(s + τ)‖∇ut(s)‖2 ds

− β1λ1V1(t) − β2λ2V2(t), t ≥ 0.

At this stage, we choose the positive constants {εi}
4
i=1 and {λi}

3
i=1 and ignore β1 and β2 with the aim of

satisfying the following inequalities

µ2ε3 + τµ2λ1 < 1 (3.3)
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ε1 <

(
1 −

µ1

4ε5
−

Cpµ2

4ε6

)
λ3 (3.4)

τµ2
2λ2 +

(
Cp + ε4Cp + ε5µ1 + ε6Cpµ2

)
λ3 < (1 − ε2)µ1 (3.5)

τ

4ε3
< λ1 (3.6)

τ

4ε1
+
τµ1

4ε2
+
τCpλ3

4ε4
< λ2. (3.7)

Inequalities (3.3) and (3.6) imply that

µ2

(
ε3 +

τ2

4ε3

)
< 1, (3.8)

which is satisfied when we let ε3 = τ/2 together with the assumption τµ2 < 1, which follows from
(A2). Next, we pick ε5 = µ1 and ε6 = Cpµ2, and by these choices, inequality (3.4) is fulfilled if we
choose λ3 > 2ε1 (we will revisit this selection after fixing ε1 in order to satisfy the equivalence relation
in Lemma 3.6).
Next, we let ε2 = 1/2 and combine inequalities (3.5) and (3.7), connected by λ2, to obtain

τµ2
2
(
τ

2ε1
+ τµ1 +

τCpε1

ε4

)
+ 4ε1Cp + 4ε1ε4Cp + 4ε1C2

pµ2
2

+ 4ε1µ1
2 < µ1. (3.9)

Now, with the choice

ε4 =
τµ2

2
and ε1 =

τµ2√
2
(
4τµ2Cp + 4Cp + 4µ2

2C2
p + 4µ1

2
) ,

inequality (3.9) becomes

τ2µ2
2µ1 + 2

√
2τµ2

√
τµ2Cp + Cp + µ2

2C2
p + µ1

2 < µ1,

which follows from our assumption (A2).
Finally, λ3 needs to fulfill the inequalities 2ε1 < λ3 < 1/

√
2Cp which necessitates

2τµ2√
4τµ2Cp + 4Cp + 4µ2

2C2
p + 4µ1

2
<

1√
Cp
. (3.10)

Squaring both sides of (3.10) yields

4(τµ2)2 − 4 (τµ2) − 4 − 4µ2
2Cp −

4µ1
2

Cp
< 0,

which is valid when τµ2 < 1.
By virtue of the right relation in Lemma 3.6, we may write

L′(t) < −γL(t), t ≥ 0,
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for some positive constant γ and therefore by integration over the interval (0, t) yields

L(t) < L(0)e−γt, t ≥ 0.

This property is immediately inherited by E(t) through the equivalence with L(t), that is, E(t) ≤ C1e−γt,
t ≥ 0. Now we need to pass to the classical energy E(t). To this end, we employ Minkowski inequality
and the left-hand side relation in Lemma 3.6 to find

‖ut‖ =

∥∥∥∥∥∥ut −

∫ t

t−τ
µ2(s + τ)ut(s) ds +

∫ t

t−τ
µ2(s + τ)ut(s) ds

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ut −

∫ t

t−τ
µ2(s + τ)ut(s) ds

∥∥∥∥∥∥ +

∥∥∥∥∥∥
∫ t

t−τ
µ2(s + τ)ut(s) ds

∥∥∥∥∥∥
≤

√
2C2e−γt/2 +

√
τ

(∫ t

t−τ
µ2

2(s + τ)‖ut(s)‖2 ds
)1/2

, where C2 =
C1

M1
.

Squaring both sides and Young’s inequality with η > 0 leads to

‖ut‖
2 ≤

(
1 +

1
η

)
2C2e−γt + (η + 1) τµ2

2
∫ t

t−τ
‖ut(s)‖2 ds,

or

eγt‖ut‖
2 ≤ 2C2

(
1 +

1
η

)
+ (η + 1) τµ2

2
∫ t

t−τ
eγ(t−s)eγs‖ut(s)‖2 ds

≤ 2C2

(
1 +

1
η

)
+ (η + 1) τµ2

2
(
eγτ − 1
γ

)
sup

t−τ≤s≤t
eγs‖ut(s)‖2

≤ 2C2

(
1 +

1
η

)
+ (η + 1) τµ2

2
(
eγτ − 1
γ

)
sup
0≤s≤t

eγs‖ut(s)‖2, t ≥ τ. (3.11)

By replacing t by s in relation (3.11) and then taking the supremum of both sides, we claim that

sup
0≤s≤t

eγs‖ut(s)‖2 ≤
2C2

(
1 + 1

η

)
1 − (η + 1) τµ2

2
(

eγτ−1
γ

) .
Indeed, for small values of γ, the expression

eγτ − 1
γτ

is close to 1. Therefore, the relation

(η + 1) τµ2
2
(
eγτ − 1
γ

)
= (η + 1) τ2µ2

2
(
eγτ − 1
γτ

)
< 1

is true when τ2µ2
2 < 1, which is guaranteed by assumption (A2) and for small η. Hence, we can

conclude that
‖ut‖

2 ≤ C∗e−γt, ∀t ≥ τ,

for some C∗ > 0. Obviously, a similar estimation holds on [0, τ] as well. The proof is complete. �
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4. Numerical analysis

In this section, we illustrate the exponential decay result stated in Theorem 3.1 through a numerical
example. We approximate the solution of problem (1.1) using the finite difference method in time
and spatial variables. In our numerical example, we let Ω = [0, 1] (1-dimension case), and the time
interval is [0, 10]. The initial functions are u0(x) = sin(x) cos(πx

2 ) and u1(x) = 0. Moreover, based on
the assumptions of Theorem 3.1, we choose µ1(t) = 2 + sin t and µ2(t) = 2 + cos t with τ = 1

72 ,Cp = 1
4 ,

(see Figure 1). We point out that the functions and constants chosen do not comply with (1.3).

Figure 1. The weighted coefficients µ1(t) and µ2(t).

We plot the energy norm in Figure 2. Our approximate solution shows an exponential decay in the
energy norm under the assumptions of Theorem 3.1. The solution evolving to the equilibrium state is
shown in Figure 3.

Figure 2. The exponential decay of the energy norm.
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Figure 3. Solution’s progression to equilibrium state.

Remark 4. Considering the example provided, it becomes evident that the class of functions specified
by condition (1.3) is not optimal; however, we are able to extend this in our assumptions. The question
of finding the optimal range is very interesting to explore.

5. Conclusions

In this paper, we establish that the system incorporating a delay term and weighted coefficient can
achieve exponential stabilization by introducing a strong damping. Importantly, our approach eases
the restrictive conditions found in existing literature, enabling us to include a larger class of functions.
This study opens avenues for exploring the optimal relationship between the damping (whether it is
strong or linear) and the delay term.
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