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Abstract: This research introduced cubic bipolar neutrosophic sets (CBNSs), a novel framework that
significantly enhanced the capabilities of bipolar neutrosophic sets (BNSs) in handling uncertainty
and vagueness within data analysis. By integrating bipolarity and cubic sets, CBNSs provide a
more comprehensive and accurate representation of information. We have defined key operations
for CBNSs and thoroughly investigated their structural properties. Additionally, we have introduced
cubic bipolar neutrosophic soft sets (CBNSSs) as a flexible parameterization tool for CBNSs. To
validate the practical utility of CBNSs, we conducted a case study in decision-making. Our algorithmic
approach effectively addressed the challenges posed by uncertainty and vagueness in the decision-
making process. The results of our research unequivocally demonstrated the superiority of CBNSs
over existing methods in terms of accuracy, flexibility, and applicability. By offering a more nuanced
representation of information, CBNSs provide a valuable tool for researchers and practitioners tackling
complex decision problems.

Keywords: fuzzy logic; neutrosophic sets; bipolar neutrosophic sets; cubic bipolar neutrosophic sets;
cubic bipolar neutrosophic soft sets; operations; structural properties; decision making
Mathematics Subject Classification: 03B52, 03E72

1. Introduction

Numerous investigations in applied and social sciences, including engineering, environmental
studies, economics, and management, often deal with ambiguous and inaccurate data. Traditional
methods struggle to address these complexities. Current frameworks like bipolar neutrosophic sets
(BNSs) also face difficulties in managing the inherent uncertainty and vagueness of complex datasets,
hindering accurate representation and analysis, especially in decision-making contexts.

A collection of contemporary theories effectively addresses ambiguities and uncertainties, including
fuzzy set (FS) theories [1], interval-valued fuzzy set theories [2], and bipolar fuzzy sets [3]. Zhang [4]
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proposed an extension of fuzzy set theory by integrating bipolarity, leading to the development of
bipolar-valued fuzzy sets. It is noted that bipolar fuzzy sets (BFS) are particularly suitable for
representing information that encompasses both a property and its negation. Further exploration by
Lee [3] delved into the fundamental operations associated with bipolar-valued fuzzy sets. Additionally,
Lee et al. [5] conducted a comparative analysis of intuitionistic fuzzy sets, interval-valued sets, and
BFSs. For instance, BFSs are characterized by positive and negative membership values within the
range of [—1,1]. Elements with zero membership indicate a lack of alignment with the specified
property, while the interval (0, 1] signifies varying degrees of membership satisfaction. Conversely,
the interval [—1,0) suggests an implicit acknowledgment of the counter property by the elements.
Furthermore, the application of BFS-based information has been integrated into decision analysis [6,7].
This is exemplified by the work of Wei et al. [8] (2018), who proposed an expansion of the BFS
framework to include the concept of interval-valued bipolar fuzzy sets (IVBFS) within a multi-attribute
decision-making context. Jun et al. [9] introduced the abstraction of cubic sets, which extend both
interval-valued fuzzy sets and fuzzy sets, allowing for the representation of vagueness through the
simultaneous use of exact and interval values. Riaz and Tehrim [10, 11] further developed a novel
model known as the cubic bipolar fuzzy set (CBFS), which generalizes BFSs to accommodate two-
sided opposing features, thereby enabling the representation of information through both bipolar fuzzy
numbers and interval-valued bipolar fuzzy numbers.

The neutrosophic set is characterized by three distinct membership functions: the truth-membership
function (T), the indeterminacy-membership function (I), and the falsity-membership function (F).
Each of these functions is defined within the context of explicit quantification of indeterminacy. The
values of T, I, and F are constrained to subsets of the real standard or nonstandard interval ]0, 1 + [.
In their work, Wang et al. [12] proposed a single-valued neutrosophic set (SVNS) along with its
associated operators, which serve as subclasses of neutrosophic sets. This innovation allows for
the restriction of these sets to the real standard interval [0, 1], thereby facilitating their application
in scientific and engineering contexts. Additionally, the dual aspects of bipolarity are incorporated
into decision-making processes, where positive information is utilized for favorable or appropriate
descriptions, while negative information highlights aspects that are rejected or implausible. Building
on this concept and the application of BFS, Deli et al. [13] introduced BNSs, exploring their properties,
theorems, and aggregation operators, exemplified through a car purchasing scenario. As BNS emerged
as a compelling field within neutrosophic theory, Deli et al. [14] further advanced the discourse
by presenting the interval-valued bipolar neutrosophic set (IVBN-set), which serves as a broader
generalization encompassing FSs, bipolar sets, neutrosophic sets, and bipolar neutrosophic sets.
Nonetheless, the previously discussed models face challenges related to effective parameterization,
stemming from the constraints of their parametric definitions, which hinder the precise representation
of problem parameters.

Molodtsov [15] introduces an enhanced parameterization tool that offers a thorough and complete
representation of problem parameters by utilizing soft set theory to address uncertainty and ambiguity.
This innovative capability in parameterization, when compared to previous methodologies, has
inspired numerous models in the literature, such as neutrosophic soft sets [16], bipolar neutrosophic
soft sets [17], and bipolar neutrosophic graded soft sets [18]. Although bipolar neutrosophic sets
demonstrate superior efficiency over neutrosophic sets in evaluating real-world problems characterized
by inherent uncertainty-both positive and negative-this simplicity in bipolar neutrosophic sets is
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insufficient for adequately capturing the nuances of ratings or grades due to information constraints.
Likewise, interval-valued bipolar neutrosophic sets fall short in conveying expert opinions based on the
properties of alternatives. This research presents a novel framework termed cubic bipolar neutrosophic
sets (CBNSs), which serves as a generalization of bipolar neutrosophic sets. This new model enhances
accuracy and flexibility relative to prior approaches by encompassing a greater volume of information,
thus rendering it more comprehensive and rational. Specifically, it integrates information in a more
thorough and appropriate manner. To further enhance the parameterization tool, the study explores an
additional model that improves the adequacy of final decisions and the quality of information provided.
Crucially, the application of these proposed models in decision-making is illustrated, demonstrating
their utility in addressing realistic uncertain problems.

Established models like BNSs and IVBN-sets have advanced uncertainty modeling but often fail
to capture the complexities of real-world situations, especially with conflicting data or ambiguous
membership levels. This study introduces CBNSs, a new framework that combines bipolar fuzzy
numbers and interval-valued bipolar fuzzy numbers for a more nuanced representation of uncertainty.
CBNSs enhance the accuracy of modeling complex systems, particularly in decision-making processes
that involve both positive and negative information, such as evaluating investment alternatives by
illustrating trade-offs between potential rewards and risks.

1.1. Comparative analysis

e Comparison with Conventional BNSs:

BNSs struggle with uncertainty due to their binary membership grades. In contrast, CBNSs
offer a more advanced framework with cubic membership grades, allowing for a wider range
of possibility, impossibility, and indeterminacy. This flexibility enables CBNSs to convey more
information and adapt better to different contexts.

e Comparison with Other Related Theories:

CBNSs differ from FSs and interval-valued neutrosophic sets by incorporating bipolarity,
allowing for the representation of both positive and negative information. Their cubic membership
grades provide enhanced flexibility in expressing uncertainty, while an indeterminacy
membership grade addresses ambiguous information. Overall, CBNSs offer a more nuanced
framework than BNSs and are particularly useful for decision-making and information processing
due to their ability to manage uncertainty, imprecision, and indeterminacy.

1.2. Traditional methods

To enhance our research, we expanded the background section to include a detailed analysis of
conventional methods and their limitations. Before cubic bipolar neutrosophic soft sets CBNSSs,
various strategies were used to address uncertainty and imprecision in decision-making, including:

e FSs: FSs introduced by Zadeh offer a mathematical framework for representing uncertainty and
vagueness. However, they are limited to representing uncertainty within a single dimension.

¢ Interval-Valued Fuzzy Sets: To address the limitations of FSs, interval-valued fuzzy sets were
proposed. These sets allow for the representation of uncertainty using intervals instead of single
values.
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e BFSs: BFSs extend FSs to incorporate both positive and negative membership grades, providing
a more nuanced representation of information.

e Interval-Valued Bipolar Fuzzy Soft Sets: Combining the concepts of interval-valued fuzzy sets
and BFSs, interval-valued bipolar fuzzy soft sets offer a framework for handling uncertainty and
bipolarity in soft set theory.

- Limitations of Traditional Methods:
While these traditional methods have contributed to the field of decision-making, they often face
challenges in handling complex real-world problems. Some limitations include:

e Restricted representation of uncertainty: FSs and interval-valued fuzzy sets may not
adequately capture the full spectrum of uncertainty, especially in situations with conflicting or
contradictory information.

e Lack of bipolarity: FSs and interval-valued fuzzy sets do not consider both positive and negative
aspects of information, limiting their applicability in certain domains.

o Inflexibility: These methods may be less flexible in adapting to different decision-making
scenarios, especially when dealing with highly uncertain or imprecise information.

- The Need for CBNSs:

This study introduces CBNSSs to address the limitations of conventional methods. CBNSSs offer
a flexible framework for managing uncertainty, bipolarity, and imprecision in decision-making by
combining cubic sets, BFSs, and neutrosophic sets for a more detailed representation of information.

This research is organized into five sections. Section 1 provides a foundational overview of the
study, outlining the motivation and research objectives. Section 2 offers a concise review of essential
concepts and notations related to cubic sets, BFSs, neutrosophic sets, and neutrosophic soft sets.
Section 3 introduces the novel concept of CBNSs and elaborates on their fundamental operations,
including complement, union, and intersection. Section 4 delves into the concept of CBNSSs,
presenting their operational rules, definitions, and properties. Finally, Section 5 demonstrates the
practical application of CBNSSs in addressing decision-making challenges within the cubic bipolar
neutrosophic soft set domain.

2. Preliminaries

2.1. Fuzzy set
Definition 1. [/]An FS A in w = {Xy, X, ..., X,} is given by

A ={(X ua(¥) : X € w},
where 0 < ua(%) < 1 is the grade of satisfaction of X € w in the set A.
Definition 2. [2] Let T = [0, 1] be a closed unit interval and @ = [{,u] be a closed subinterval
of I, where 0 < ¢ < u < 1. Let [L] be the family of all subintervals. The interval-valued fuzzy
set (IVFS) defined on w is a function U : w — [LL]. The set of all IVFSs is denoted by [L]” and

@(%) = [€(X), u(%)], for each @ € [L]” and X € w, is called degree of membership of X to @, where
£(%) and u(X) are called lower and upper FSs respectively.
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Definition 3. /9] A cubic set on w = {Xy, Xy, ..., X,} can be defined as
K = {(X, @(%), (X)) | ¥ € w},
where @ is an IVFS on w and A is a FS in w.

2.2. Bipolar valued FS

Definition 4. [4] A bipolar valued FS B on w = {1, Xy, ..., X,} is defined by a positive membership
function x3, that is x5 : w — [0, 1], and a negative membership function g, that is yz @ 0 —
[—1,0]. Mathematically, a bipolar valued F'S is represented by

B = {(& x5 (), x5 (%) : ¥ € w}.
Definition 5. [5] An IVBFS over the reference set w = {X1, X, ..., X,} is defined as
5 = (4 [V (D). VL[V, (). V(0] | & € ),

where the positive membership degree [VZ(X),V;(X)] C [0, 1] depicts the satisfaction degree of
an element X to the property corresponding to an IVBFS (6) and the negative membership degree
[Vg()‘c'),V;()'é)] C [-1,0] depicts the satisfaction degree of an element X to some implicit counter
property corresponding to the IVBFS (6), respectively, for every X € w. An interval-valued bipolar
Sfuzzy number (IVBFN) is written as § = {[V;, V;] , [V;, V,;]}.

Definition 6. [/9] A CBFS over the reference set w = {X1, X, ..., X,} is defined as
A = {(%,6(2), B(D) | & € w},
where 6 is an IVBFS on w and B is a BFS on w. Thus, CBFS can be rewritten as
A = {(x, [V (D), Vi D], [V (D), Via®]L (0,02 (D) | & € o},

where the interval [VZA(X),V;A(X)] C [0,1] and [VEA(X),V;A(X)] C [-1,0] represent the interval
valued positive and negative membership degrees, respectively, and y;(X) C [0, 1] and x (%) C [-1,0]
represent the positive and negative membership, respectively.

2.3. Neutrosophic set

Definition 7. [11] Assume that w = {X, Xs,...,X,} is a reference set w. Then the neutrosophic set
(NS) is formed as the following structure:

Ays = {(5.(8,(0.0,0). 8. () | 5 € ],

where 8;\\ (¥), ak (%), 02 (X) refer to true membership, indeterminacy membership, and falsehood
membership of object X in w and persist as a mapping:

&, (%), 0 (%), &, () : U - [0, 1],
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Definition 8. [13] A bipolar neutrosophic set BENS in the reference set w = {%, %, ..., X,} is given
by
B = {(% (B" (8, B" (8, B (8, B (1), B (,B" (9))) | & € 0},

where BT BI" BF" — [0,1] denote, respectively, the positive-Truth Membership(TM), positive-
Indeterminacy Membership(IM), and positive-Falsity Membership (FM) degrees of an element i € w
to the property in line with a bipolar NS BB¥S, and BT B! ,Bf — [~1,0] denote, respectively, the
negative-TM, negative-IM, and negative-FM degrees of an object X € w.

Definition 9. [/3] Let

BYY = {( (B (0. By, (0. B (1), B, (00, Bl (9. B, (1)) | € o]
and

BIYS = {(5, (BRA (). By, (2), B (), BY, (), B, (), B, () | i € w),

be two BNSs on the reference set w = {X,X,,...,X%X,}. Then the fundamental operation on BNS is

defined as follows:

1. Union

2

max (BT (), B (9)] , 20220 min (BE (i), BE (), >
max (BT (9), B, (0}, 20220 min [B7 (), BL, o)) [

BENS U BEMS = <
forall ¥ € w.

2. Intersection

B, ENS () BN :< min (B, (2), By (1)), 200200 ma (B, ™ (), Bro™ () >

—_ B I B 1_ Y . = /e T e
max {BNlT O Byo" (x)}, w,mln {BNlF (%), Bno" (x)}

forall ¥ € w.
3. Complement
BN = {(x, (B5, " (), By I (20, By, (0, By, (0. By, (0. By, (9)) | & € wf
{x ({1+} —Bn T (), (17} = By I* (), {17} - BNIF*@),) ‘e w} .

{
{17} = By 7™ (), {17} = By I (), {17} — By F~ (%)
T < BT (®), By (X) <Byv (3, Bm' (%) 2By (%),

4. Subset

and
Byi” (%) 2 Bi,(%), Byl (X) =By (%), By (%) <Byp' (%),

forall i € w.
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Definition 10. [I4] An interval-valued bipolar neutrosophic set (IVBNS) V8NS5 (%) in the reference
set w = {X, Xo,...,X,} is given by

IBNS [T @, VT Ve @), VT @)L [ V™ @), VT @] ]
Y% ==X, _ _ _ _ _ _ Xewl,
Ve (), VT G Ve (), Vv GO [V (), Vv F (%)

where VN(’IT+: VNMIT+: Vwm, VNum, VNZIF+; VNMIF+ — [0,1] and Vy /", V7, Yy /", V',
Vnet™, VIt — [=1,0), such that the family of all IVBNS sets over w will be denoted by IVBNS®.

Definition 11. [14] For VIBNS 'VIBNS e [VBNS®, some operations are defined as follows:

1. Union

16t T I T s i i

max {wa » Vone } , max {VlNu s Vony } , MIN {wa » Vone s

. I+ I\ o 7 IF oo IF* 7
min Vi, , Yoy, } ,min {wa » Vone } ,min {VlNu s Vo' 1,

: 1T~ 1T~ : 1T~ 1T~ 11~ 17~
min\Viy, ", Voyne } ,min {Vuvu » Vonu ] ;max \Viys" , Vone' 1,

1 1 IF- 17~ 1P~ 7
max {un s Vony },max {Vwe , Vone Vinve'™ 5 Vo }

IBNS IBNS __
VIBNS | WIBNS —

, max

forall ¥ € w.

2. Intersection

. I I . I I i i
min {wa » Vong } , min {un s Yoy } , max {Vlw , Vone } ,
I I 7 P 7 7
max {VlNu » Vo } , max {Vuvf » Vone } , max {VlNu » Vony } ,
- - - - . - - ’
max {Vlm’ » Vo } , Max {VlNu , Vo } , MIN {VINE , Vone } 5

: 11 1 : I1F~ IF~ : IF~ IF~
mln{Vmu » Vawu },mln{sz » Vane },mm{un » Vawu

IBNS IBNS __
WIBNS ( IBNS -

forall ¥ € w.

3. Complement

cIBNS INC 1Nu
Vl

c IT™ c IT™ c II” (I c IF~ c IF™
VIN[ ’VlNu ’Vth’ ’VlNu ’Vth’ ’VlNu

() = Vi 1) = Vi (1) = Vi

c IT* ¢ IT* c I c It ¢ IF* ¢ IF*
5 { Vive »Vivd >Vine »Viy, -V ,V , }
b

)'c'ea))

L = VT (1 = VST = VT |
=1 - = (1- T (1- (| *EW|-
{17} = Vin " AT =V 17 =V,
(17 = Vin " (1 = Vi (17 = Vi /F
4. Subset
VIBNS,; € VIBNS, if
Vine™ < Vou", Vivd T < Von'", Vi > Von ", Vind" > Vou, ',
Vine™ = Vo™, Vivd ™ = Von'",
and

VineT < Vo, VivdT < Von'", Vi > Von ", Vvl > Vou,'",
Vine™ = Voo, VivdT > Vonl',  forall i € w.
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5. Equality
VIBNS; = VIBNS, if
T+ T+ T+ T+ I I i+ 1
Vinve =Vong ", Vive ™ =Von,'" Vine" = Vone ', Vive =Vou,'",
IF* IF* IF* IF*
Vine™ =Von/" Vive =V, ",
and
IT- IT- IT- IT- - - - -
Vine =Von/* Vive ™ =Von,'" Vine" = Vone' Vive = Von,'",
IF- IF- IF- IF- ..
Vine = Vone \ =Von.'" for alli € w.
2.4. Soft set
Definition 12. [15] Let w = {Xy, X,...,%,} and E = {é1,é,,...,¢é,} be a reference set and attribute

set, respectively. Then, a soft set (SS) over w is given by the structure:

S =1{e.(S®)) | é < E},

where S is a mapping given by:

S E - Plw).
Here, P(w) refers to the collection of subsets of the reference set w.

Definition 13. [16] Let w = {Xy, X,...,%,} and E = {é1,é,,...,¢é,} be a reference set and attribute
set, respectively. Then, a neutrosophic Soft Set over w is given by the structure:

SN = ((6,(ST(2),S(),SF(&))) | é € E),

where S y is a mapping given by:

SN E > PN(w).
Here, Pn(w) refers to the collection of subsets of the reference set w.

Definition 14. [17] Let w = {Xy, X,...,X,} and E = {é1,é,,...,¢é,} be a reference set and attribute
set, respectively. A bipolar neutrosophic SS F® in reference set w is given by

FB =

{(e.(Bys"™ @), Bus" (@), Bys" (@), Bus™ (@), Bus” (6),Bys” (@) | € E, % € w},

where BysT ,Bys' . Bys? — [0, 1] denote, respectively the positive-TM, positive-IM, and positive-
FM degrees of an element ¥ € w to the property in line with a F?, and BysT ,By' ,Bys? — [-1,0]
denote, respectively the negative-TM, negative-IM and negative-FM degrees of an object X € w.
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3. CBNSs

3.1. CBNSs
In this part, we introduce the definition of CBNSs and their basic operations, derive their properties,
and provide some examples.
Definition 15. Consider a universal set w. A CBNS A°BNS defined over the universe set w is an ordered
pair which is defined as follows:
ACBNS — {<x, VIBNS (.X), BBNS (x)> | ie (1)} ,
where VIBNS = (V11" (i), VI (%), VIF" (), VIT" (), VI (%), VI ()} is called IVBNS,

whereas BBNS = {BM(}&), BNf()'c')} is called BNS. Consider the interval I = [-1,1]. Suppose that [1,]
and [1_] are the collection of all subintervals of [0, 1] and [—1, 0], respectively. Then, we obtain the

mappings:
V) - L1V @) = [V 0, 7 @),

V) - LV ) = [V 0, v ),
V) - LV 6 = [V 0,7 @)

and . ) . .
V@) - [ VT ) = [V @), V@)

V() - L1 V@) = [V @), V@),
VI @) - L1V @) = [V @), @)

Similarly, we get
BY' (9 — [L]1BY' (%) = [B" (0, B" (8, B" (3)],

BY (9 — [1] 1BV (%) = [B" (8, B" (), B" (3)].
Then, the CBNS A“BNS is represented as
AN = (v [ e [ e,
[v/" v, |.[v/ v ). (8", B",B" . B",B",B")}.
Note that the set of all CBNSs over w will be denoted by C3,,.

Example 1. Let w = {X|, X», X3} be a universe set. Suppose an IVBNS V'BNS in w is defined by

VIBNS — ([0.2, 0.81"",0.3,0.6]""",[0.4,0.51"7",[-0.8,-0.5]"", [-0.6, -0.31"", [-0.4, —0.3]’F’> /1,
(104,0.6]"",10.3,0.71"",[0.1,0.3]",[-0.7,-0.5]"", [-0.6,-0.2]"", [-0.5, -0.4]'"} /5,
(103,0.8]"",[0.4,0.7]"",[0.3,0.4]",[-0.9,-0.5]"", [-0.4,-0.3]"",[-0.8, -0.5]'"" "} / 3} ,

and a BNS BBYS is a set of w and is defined by

BN ={(0.4,0.3,0.1,-0.6,—0.2, —0.3) /%, (0.2,0.3,0.7, —0.04, —0.5, =0.4)/ »,
(0.4,0.6,0.2,-0.01,-0.7, —0.4) / i3} .
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Then, the CBNSs ACBNS = <VIBN 5 BBNS > will have the tabular representation as in Table 1.

Table 1. Tabular representation of the CBNSs.

ACBNS _ <VIBNS BBNS>
ACBNS VIBNS

BBNS
¥ ([02, 0.81'7",103,0.61"",[0.4,0.5]"F", (0.4,0.3,0.1,-0.6,-0.2, -0.3)
[-0.8,-0.51""",[-0.6,-0.3]""",[-0.4, —0.3]“”’)
¥ ([0.4, 0.6]'"",10.3,0.71'"",10.1,0.31"7", (0.2,0.3,0.7,-0.04, -0.5, —0.4)
[-0.7,-0.51"",[-0.6,-0.2]""",[-0.5,-0.4]")
i3 ([0.3, 0.81'7",[0.4,0.71'"",10.3,0.4]"7" (0.4,0.6,0.2,-0.01,-0.7, -0.4)

[-0.9,-0.5]"7",[-0.4, —0.3]"", [-0.8, —0.5]““)

Definition 16. Let ACENS = (VIENS BENS) qnd ASBNS = (VIBNS BBNS) € CBN, \where
Ve @, VT @] | Va™ ©), VT @] Va0, Vi B,
X, - - - - - - ’
ASBNS = Vo' (), Vi @[, | Va0, V" @[, |Va'™ (), V" (%) X€wy,
(BI" (), B] (), B (0, B] (9),B] (),B] ()]

and

P Vo (30), Vo T ()], Vo (0), Vo' (D], | Ve (2), V' (3],
ASBNS = 117 VT (3), Vi T @)L [V (2), Vo @] Ve 0, VT @] [ | iecwt.
(BI" (%), B (). BY (). BY (),B} (), B ()]
1. Then, ASBNS C ASPNS if, and only if:

i. VIENS < IBNS for all % € w, and we have:

VT ®) < Ve, VaT @ < VT @ V@) 2 Ve (@),

V" (®) 2 Vo @, Vol @2 Ve (), Va0 2 V' @),
and

Vo'l () <V (8), V' () <V ®), Vo @)=V (%),

V(0 2 V" (), Vo' @) 2 VL"), Va'l @) 2V (%)

ii. B?NS C BI;NSfor all X € w, and we have:

Bl (x) <BI (%), B!I'(% <BL (%), B (%) =B (%),
BT () =Bl (%), B! (=B} %), B () <B (X.
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2. Then, AICBNS = ASBNS if, and only if:

Vo (1) =V (@), Va0 =V @, Vo) =Va'" (),
Va0 = Vo ®, Vo' ® =V (), Va® =",
Va" (D= V" (@), V" ®) =V, @, Vo' (®=Vn" (¥,
Va0 = Vo' (), Vo™ @ =V (), V@) =V (),
forall X € w,

and
Bl (¥)=B] (¥), B (¥ =B %), Bl (%)=B) %),

Bl (¥) =B; (¥), B! (¥ =B}, B (¥)=Bj (%),

forall ¥ € w.

Definition 17. Let ABNS = (Y/BNS BBNS) ¢ Ciy» where

o T @V @] [T @, V@ V@,V @)
AT =3 VAT @, VT @]V @, V@] VT @ VT @) e

(B"" (). B (1), B (), B" (%), B/ (2).B" (1))

If
v/ @ <BT ) <V, (®), V@ <B @<V (),
V(%) < BF () < V()

and
V() <BT () <V, (), V@ <BT®) <V (),
V(%) < BT (%) < VT (%),

for all X € w, then A°®™S is called an internal cubic bipolar neutrosophic set (ICBNS).

Example 2. Let A“BNS = (V/BNS BENS) € Cu .1 fVIBNS

= {([0.2, 0.8]7",[0.3,0.6]"" ,[0.4,0.7'F" ,[-0.8,-0.5]"" ,[-0.6,-0.5]"" ,[-0.3, —0.1]”‘"’) /xl} i

and
B = {(0.4,0.5,0.6,-0.6, —0.55, -0.2) / %},

for all 3 € w, then ABNS = (VIBNS BBNSY js an ICBNS.

Definition 18. Ler ABNS = (Y/BNS BBNS) ¢ Cy\» where

. VT (3), VT @)L | VAT (30, VTG0 | VA (), VI ()],
ACPNS = 317 VAT (3), VT (®) | (VAT G, VI @] | VAT ), V@) | ] ke wy.

(BT (%), B" (1), B (1), BT (), B (), B" ()}
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If
B (@) ¢ [V, 0,V @], B ®e |V @V @),

BT () ¢ [V, (0, V. ®)],
and
BT () ¢ |V @),V @], B @ ¢V 0,V @),
BT () ¢ [V, (0, V. ®)],
for all ¥ € w, then A®™S is called an external cubic bipolar neutrosophic set (ECBNS).

Example 3. Ler A“BNS = (V/BNS BBNS) € Cw | If VIBNS
= {([0.2, 0.8]'7",10.3,0.6]"" ,[0.4,0.71'F" ,[-0.8, -0.5]""",[-0.6, —0.5]"" ,[-0.3, —0.1]“”) /xl} i

and

B2Y = {(0.1,0.7,0.3,-0.3, -0.8, —0.5) / %},
for all % € w, then ACBNS = (VIBNS BBNSY js an ECBNS.

Remark 1. Ler A“BNS = (VIBNS BBNSy e C% . Then, A“®™ is said to be neither ICBNS nor ECBNS if:

Vi) <BY (%) < ViIx) and V; (%) < BV (%) <V, (%),

and
BV (%) ¢ (V7(%),VI(®) and BY (%) ¢ (V;(¥),V,(¥) forallie€ w.

Example 4. Let A“BNS = (V/BNS BENS) € Cy . If VIBNS
= {([0.2, 0.8]'7",10.3,0.6]"" ,[0.4,0.7]'F" ,[-0.8, -0.5]""",[-0.6, —0.5]"" ,[-0.3, —0.1]“”) /xl} ,

and

BN = {(0.5,0.4,0.5,-0.3,-0.8, -0.5) /%, },
for all 3 € w, then ABNS = (VIBNS BBNSY is not an ICBNS or an ECBNS.

Theorem 1. Let A“®NS = (V/BNS BENS) e C%. . which is not an ECBNS. Then, there exists & € w such
that:

VI (%) < BT (%) < VIT' (%) V(%) < B" (%) < V' (%),
VIF () < BT (%) < VIF' (%) VI (%) < BT (%) < VIT (%),
VIF () <B"(®) < VIE ) or VI (%) <BF (%) < VIF (%)

Proof. Suppose that ABNS = (VIBNS BBNSy ¢ C@ . Then, A®™ is ECBNS. By using Definition 18,
we get:

BN (%) ¢ (V7(3), Vi(%), BY () ¢ (V,(0),V, (%), Vi€ow.
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Since A®BNS is not an ECBNS in w, we have:

BN (%) € (V/(%),Vi(®), BY(¥)e(V,(5),V,(¥), Yicw.

That means:

Vi) <BM®) < VIR, Vi) <BY (%) <V, (%)

O

Theorem 2. Let A“®N = (VBNS BENS) e Co | If AP s both ICBNS and ECBNS, then:

B" (1) e |[LOVTHu U], B e [LvTHu o),
B (0 e LV uuw™), BT @ e [LvTHuuw™),
B (¥) € [LOVHUUNT)| and BT (3) € [LOVT) U U],

for all X € w, where:

L™y =V (@) | s ew), UNVT)={VI"@)|iecw,
LV = V'@ icw), UWT)={VI@®]|icw],
LV = Vi @) i o), U ={VI7@) | icw),
LV ={Vi (@) | s cw), UNVT)={VI"(@)|icw,
LV =V @ licw), UVT)={VI@®]|icw],
LV ={vi" @) licw), U™ ={VI ()] icw).

Proof. Suppose that ACBNS = (VIBNS BBNS)y ¢ ¢ Then, A“®™ is both ICBNS and ECBNS. By using
Definitions 17 and 18, we get:

Vi) <BM®) < VIE), V(&) <BY(X) <V (%),

and
BY () € (Vi(9), Vi(0), BY () & (V, (), V,(9).
Thus,
BN (%) = V/(¥) or B¥'(¥) = V;/(%), BV (%) = V, (%) or BN (%) = V, (%).
Hence,
BN (%) e [L(VH U UNY], BY (X e[L(V)HUUN].
O
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3.2. Basic operations on CBNSs

In this part, we introduce some basic operations with examples for CBNS.

Definition 19. Ler ABNS = <VIBNS ,BBNS> € Cy,, where:

VAT @, VT @] VAT G, VT @)LV @), VT3],
AN = BN TG, VT @)L [V 0, VI @] [V @,V @) ] e w)
(BT (0, B" (), B" (), BT (%), B" (%), B" (%)}
The complement of A°BNS is denoted by A°“BNS and is defined by:
VT @ = (1 -V, VT = (1= VT (),
Vi@ =11 -V @, Vi@ = 10 - v ),
VI @) = (1M -V, @), v @) = (1) - v ),
VT @) = {17 - VT @), VET @) = (1T -V T (),
V@) = (17 -V @), Ve @ = {17y - V),
VI @ = {17 -V @, v @ = (10 - v ),
and.:
BT (%) = (1"} -B" (%), B®={1"}-B" (%,
B (%) = (1T} -B" (1), BT () ={1"}-B" (&),
B (%) = {17} =B (), B (®={1"}-B" (%),
forall ¥ € w.

Theorem 3. Let ACNS = (VIENS BBNS) € Ca | If AN is an ICBNS, then A““®™S is also an ICBNS.

Proof. Since ACBNS = <VIBNS, BBNS> is an ICBNS in w, we have:

V(%) < BT (%) < V), VM@ <B (%) <V, (%),
V@ <BT @ < VST @ VT @ <BT @ <T@,
V'@ <B %)<V, or V(&) <BF %)<V, (%),

which means:

1=V @ <BT ) < (1M - VI ), (17 -V ) <BY () < {11 - VT (),
(1N -V <BT®) < (17 -V ®), (10 -V o) <BT () < (17) - VT (),
(I =-VT @ <B" )< {17} =V (%) or {(17}-VI" () <B" (0 < {17} -V{" (%),

and this means A°“BNS is also an ICBNS in w. 0O
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Theorem 4. Let ABNS = <V’BNS ,BBNS > € Co.. If A°®NS is an ECBNS, then A““®™S is also an ECBNS.
Proof. The proof can be easily stated according to Definitions 18 and 19. O

Definition 20. Let

v Vo7 (), V' ) [Va" (0, VT |, | Vo™ (0, Va7 (0],
AP =0 T [V @, Va T @)L [Va @, Va T @) [Va T @V @) ] ke wy,
(BT, B (0, B (0, By T (3), By (3), By ()

and

L VR0, VLT 0] | Ve (0, VT @)L [V (1), VLT ()],
ASENS = . Vo (0, Vi ' (D), Vo (0, Vo' ()], Vo' ), V" @] || icwy,
(BT (), Ba" (), B (), BaT (%), Ba' (%), BoT ()]

be two CBNSs in w.

Then, the union is defined as:

[max {Vt’llrr(x),vler(x) , max {VL¢11T+(55),V1421T+(55) ],
[min (Vi (), Vo' () min { V. ™" (), Vo™ ()]
min {V,, /7" (), VT ()], min { V.01 (), V.o ()]
min {Vo, """ (), Voo (9}, min {7, (), Vo™ ()]
max {Va " (), V! ()], max {V " (0), Vo' (9)}],
max (Vo' (), Vo' ()} max {V.a'" (0, V. (0)}]

< max B, (1), B, (), B0 min (B, 7 (), B, ()] >

AT U ATPV(5) = iewp.

2
min {B," (), B, (9}, 2420, max (B, (1), B," (3)]

Definition 21. Let

. Vo' &), VT @), [Va™ (0, Vi @), | Va T (), VT (9],
AT = | Va' ), Va T @] | Va @), Va" @)L [Va' @,V @ | | rkew ¢,
(BT ). B (), B, (), BT (), B (), BT ()
and
4 V! (), VoI ()|, Ve (%), Vo' ()], | VR (), Vo!T ()],
ASENS = | Ve (3, VT @)L [ Vel (D), VT (@], | Ve 0, VT @] |7 |iiew ¢,

(B (%), By (x), B (), B} (), B (), By ()]
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be two CBNSs in w. Then, their intersection is defined as:

(A1CBNS N AgBNS)(X) —

min {VfllT+ (X), V! (55)} , min

max Vo' (), V! ()'é)} , max

V"' (%), Vo™ ()}
max {Va " (%), Vo™ ()} , max {Viy 7 (), V.o (%)
[min (V17" (3), Ve (9], min {Vy /7" (3), Vo™ (8)}]
Vo™ (), V! ()} min {V.a ' (3), Vo™ ()}
< min (BT (), B ()}, -0 @

max {B] (), B ()}

min

B ()+B) (%)

=2 min B (%), BY ()]

Example 5. Let w = {X,, X,}. Then,

CBNS _
AP =

and

CBNS _
AP =

are two CBNSs in w.

1. Then, the complement of a cubic bipolar neutrosophic set (ACBNS), is given as follows:

c¢CBNS __
Aj =

X1,

IT" 10.4,0.51"",[0.44,0.55]"F",

[-0.4,-0.2]""",[-0.7,-0.5]"",[-0.3, -0.3]"F }
{0.5,0.8,0.1,-0.67, —0.45, —0.3}

) 7" 10.2,0.51"",10.4,0.51"",

2 [-0.6,-0.5]"T",[-0.38, -0.3]""",[-0.5, -0.2]'F" } ’

{0.5,0.7,0.4,-0.2, -0.7, 0.5}

) 7" 10.5,0.71"",[0.5,0.71'F",

) [20.66,-0.4], [=0.8, -0.7]"", [-0.2, —0.1]F"
{0.4,0.7,0.3, 0.6, -0.4, —=0.01}

) 117 10.2,0.3]'",10.4,0.81F",

2 [-0.77,-0.5]""",[-0.4,-0.3]"",[-0.9, -0.2]"F
{0.8,0.5,0.4,-0.7,-0.3, -0.01}

b

2

) 177 10.5,0.6]"",10.45,0.56]'F",
) [20.8,-0.6]"",[<0.5,~0.3]"", [~0.7, ~0.7]"
{0.5,0.2,0.9, -0.23, -0.55, =0.7}
) 17" 10.5,0.81"",10.5,0.61"F",
> { [-0.5,-0.4)'"",[-0.7,-0.62]"" ,[-0.8, -0.5]"F
{0.5,0.3,0.6, 0.8, —0.3, —0.5}

2. Then, their union is given as follows:

AIMS Mathematics

Volume 9, Issue 10

V'™ (8), V'™ (@1]

[ max (Vo™ (i), Va!T (8)}, max {Vy /T (), Via'™ (;@)}J e

.max {BI" (), BS ()} , >

9
)

]

I
I

X € w.
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) 7" 10.4,0.51"",[0.44,0.55)F",
X1, _ _ .
"1 [-0.66,-0.4]7",[-0.7,-0.5]", [-0.2, —0.1]'F

{0.5,0.75,0.1,-0.67, =0.425, —0.01)

ACBNS U ACBNS ¥) — N + +
(A ) () ) { 1T 102,031, [0.4,0.51'F",
2s

{0.8,0.6,0.4,-0.7,-0.5,-0.01}

3. Then, their intersection is given as follows:

[-0.4,-0.2]'T",[-0.8,-0.7]"",[-0.3,-0.3]"F
{0.4,0.75,0.3,-0.6, —0.425, —0.3}
) 17 10.2,0.5]"",10.4,0.81F",
> { [-0.6, -0.5]'T", [<0.4, — 0.3]",[-0.9, =0.2]'F
{0.8,0.6,0.4,-0.2, -0.5, 0.5}

) { 7" 10.5,0.71"",10.5,0.7)'F",
1

( AICBNS n AZCBNS) (¥) =

[-0.77,-0.5)"T", [-0.38,-0.3]"",[-0.5, =0.2])'F" } ’

b

I
I

To facilitate the analysis, we define the parameters used throughout this study. A detailed overview

of these parameters is provided in Table 2.

Table 2. Parameters used in the analysis.

AIMS Mathematics

Parameter Description
X Element of the reference set w
ua (%) Grade of satisfaction of X in set A
[£, u] Interval membership degree in IVES
A(X) FS membership degree in a cubic set
X5 (X) Positive membership function of BFS
X5 (X) Negative membership function of BFS

V7 (%), V3 (%)

Positive membership degree in IVBFS

V, (3, V, (%)

Negative membership degree in IVBFS

62\(5&) True membership degree in NS
8;\\ (¥) Indeterminacy membership degree in NS
62 (%) Falsehood membership degree in NS
V77 (%) Interval for IT*
V7T (%) Interval for 17+
VI (%) Interval for /F*
VT (%) Interval for IT-
VI (5%) Interval for 11~
VI (5) Interval for /F~
BN (%) BNS for positive interval
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Table 2. (continued)

Parameter Description

BN (%) BNS for negative interval

BT (%) True membership for positive interval
B’ (i) Indeterminate membership for positive interval
B (%) False membership for positive interval
BT (x) True membership for negative interval
B (%) Indeterminate membership for negative interval
Bf (%) False membership for negative interval
VeI (%) Complement of IT* lower bound
Ve (i) Complement of /T upper bound
VeI (i) Complement of 11 lower bound
VeI (x) Complement of II* upper bound
e Complement of /F* lower bound
VeI (x) Complement of /F* upper bound
Ve () Complement of /T~ lower bound
VT (%) Complement of /T~ upper bound
Vel (%) Complement of 11~ lower bound
VeI (%) Complement of 11~ upper bound
V(%) Complement of 1F~ lower bound
VeIF (%) Complement of 1F~ upper bound
BT (%) Complement of T* in bipolar set
B (%) Complement of /* in bipolar set
B (%) Complement of F'* in bipolar set

p p

BT (x) Complement of 7~ in bipolar set
B (%) Complement of /™ in bipolar set
B (%) Complement of F~ in bipolar set

4. CBNSSs

CBNSs are a novel framework introduced in this research to address the limitations of existing
methods, particularly BNSs, in handling uncertainty and vagueness within data analysis.

Key Components of CBNSs:

Bipolarity: This refers to the ability to represent both positive and negative membership degrees
simultaneously, allowing for a more nuanced representation of information. Cubic Sets: Cubic
sets introduce an interval-valued membership grade, providing a more flexible and expressive
representation of uncertainty. How CBNSs Work:

Representation: CBNSs represent information using a membership triplet, consisting of a truth
membership grade, an indeterminacy membership grade, and a falsity membership grade. Each
membership grade can take values within the interval [0, 1]. Operations: CBNSs support various
operations, including union, intersection, complement, and scalar multiplication, allowing for
mathematical manipulation and analysis. Decision-Making: CBNSs can be applied to decision-
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making problems by defining decision rules and calculating similarity measures between alternatives.
Advantages of CBNSs:

Enhanced Representation: CBNSs provide a more comprehensive and accurate representation of
information compared to BNSs, especially in dealing with complex and uncertain data. Flexibility:
The interval-valued membership grades in CBNSs offer greater flexibility in modeling uncertainty and
vagueness. Versatility: CBNSs can be applied to various domains, including decision-making, pattern
recognition, and information fusion.

4.1. CBNSSs

In this part, we introduce the definition of a CBNSS and its basic operations, derive its properties
and give some definitions.

Let w be a universe set, 7 be a set of parameters and H C . Cyyg <isthe setof all CBNS S s on w.

Definition 22. A pair (F, H) is called a CBNSSs on w, where F is a mapping given by

A CBNSS is a mapping from parameters to C,¢. It is a parameterized family of CBNS-subsets of
w and it can be written as:

(F.H) = (F(e) | e € H} = {(e.F'(e), F*(e)) : e € H],

where B (e) = {VIT (%), VIL (%), VIE (), VIT_ (), VIL (), VIE_ (%))

| V0 () VI (D] | Vi (0 Vit @) [ Vit (0. VIE (@)]) : Ve € H. i € w)

is called intervalued bipolar neutrosophic soft set (IBNSS) whereas TFP2(e) =
{B;:(e)(x) B(F(e)(x) B,He)(x) Bﬂe)(x) ]Bﬂe)(x) Bﬂe)(Jé)} is called bipolar neutrosophic soft set
(BNSS).

Suppose that [1,]and [1_] are the collection of all subintervals of [0, 1] and [—1, 0], respectively,
where

V;T(:)(X), V]?{;e)(x) VT(K)(X) w—[L] , (e)(x) V;—{(g)('x) Vi (e)(x) w — [I],
and
TV o IT s FT s T~ o I~ o F s
BI (0B (0. BE () 0 - L], Bl (0, Bh (9, BE (0 @ — [L].

To illustrate this notion, let us consider the following example.

Example 6. A set of two motorbikes in the universe w given by w = {1, X,} and parameters h = {e; =
styling,e, = price,e3 = stamina }.
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For H = {ey, e3} C h, the set (F,H) = {F(e;),F(e3)} is a CBNSS over w where

X
F =
(e1) {([0.2, 0.3]/7*,10.3,0.5]",[0.4,0.6)'F*, [-0.77,-0.5]'"", [-0.9, -0.3]/", [-0.4, -0.4]/F"} , (0.3,0.4,0.5, -0.6, —0.44, —0.3)°

X
([0.22,0.45]"",10.4,0.6])/'",[0.4,0.6]/F",[-0.2,-0.1)T", [-0.4, =0.3]'"", [-0.7,-0.4]*F"}, (0.3, 0.6,0.5,-0.2, 0.7, —0.5)} ’
Fe3) = {

X

([0.1,0.5]/T*,0.3,0.5]"+,[0.4,0.7]"F*, [-0.6, —0.4]T", [-0.7, —0.3]/"", [-0.3, —0.3]/F"}, (0.1,0.7,0.9, 0.7, -0.2, —0.5)"

X
{[0.2,0.4]"",10.4,0.5]""",[0.7,0.8]"F",[-0.7,-0.2)'T", [-0.6, —0.1]"", [-0.8, 0.3/}, (0.5,0.6,0.7, -0.5, 0.4, —0.4)} '
Then, the CBNSS (F, H) will have a tabular representation as shown in Table 3.

Table 3. Tabular representation of the CBNSS (F, H).

(]F’ 7‘{) €] €3
77 10.3,0.5]'" [ 77 10.3,0.5)'"

@ [0.4,0.6]'7" [-0.77, -0.5]""" [0.4,0.71'F" [-0.6,-0.4)'""
[-0.9,-0.3]1"" [-0.4, -0.4)'F" [-0.7,-0.31"" ,[-0.3, -0.3]'F"
{0.3,0.4,0.5,-0.6, —0.44, —0.3} | {0.1,0.7,0.9,-0.7,-0.2, -0.5}

7" 10.4,0.6]"" [ " 10.4,0.5)'"
W [0.4,0.6]'7" [-0.2,-0.1]""" [0.7,0.81'F" [-0.7,-0.2)'"
[-0.4,-0.3]"" [-0.7,-0.4)"F" [-0.6,—0.6]"" ,[-0.8, —0.8]'F"
{0.3,0.6,0.5,-0.2, —0.7, —0.5} | {0.5,0.6,0.7,-0.5, 0.4, —0.4}

In the following, we introduce the concept of the subset of two CBNSSs and the equality of two
CBNSSs.

Definition 23. Let (F,H) = (F(e) | ¢ € H} = {(e.F'(e).Fi(e)) : e € H| and (G.T) = {G(e) | e €
T} = {(e.G"(e).G%(e)) : e € T be two CBNSS over w,H, and T C 1 Then, define the following:

1. (Equality) (F,H) = (G, T) if, and only if ( iff ), the following conditions are satisfied:

i. H=7T,
ii. F(e) = G(e),Ve € h & FY(e) = GY(e) and FB(e) = GP(e), Ve € h.

2. (P-Order) (B,H) Cp (G, T) if, and only if (iff), the following conditions are satisfied:

. HCT,
ii. F(e) Cp G(e),Ve € i & FY(e) C G (e) and FB(e) C GB(e),Ye € T

3. (R - Order) (F, H) C (G, T) if, and only if (iff), the following conditions are satisfied:
i. HCT,

ii. F(e) C G(e),Ve € w, which is equivalent to Fy(e) C Gy(e) and Fp(e) 2 Gg(e), Ve € w.
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Example 7. Refer to Example 6 and take a CBNSS (G, T) over w, which is given in the following
tabular form (see Table 4).

Table 4. Tabular representation of a CBNSS (G, T).

(G, T) e e;
77 10.28,0.451" 77 10.29,0.481"
. [0.3,0.55)'F" [-0.6,-0.4]'" [0.3,0.55]"F" [-0.5,-0.3]"""
1 _ _ _ _
[-0.99, —0.38]"" ,[-0.49, —0.5]'F [-0.78, —-0.39]"" [-0.38, —0.3]'F
{0.38,0.44,0.45, -0.67,-0.5, —0.2} {0.2,0.77,0.8,-0.77, —0.29, 0.4}
T 10.3,0.5)"" T 10.3,0.4)"
. [0.3,0.5]"F,[-0.19, -0.01]'"" [0.55,0.77)"F" [-0.5, -0.1]'T"
2 _ _ _ _
[-0.48,-0.38]"" ,[-0.78, —0.48]"F [-0.67,-0.67]"" ,[-0.88, —0.88]F
{0.38,0.67,0.4,-0.27, -0.78, —0.4} {0.7,0.8,0.2,-0.58, —0.48, —0.3}

Then, it is clear that the CBNSS (F, H) in Example 6 is a P-Order of (G, T).

Example 8. Refer to Example 6 and take a CBNSS (G, T) over w, which is given in the following
tabular form (see Table 5).

Table S. Tabular representation of a CBNSS (G, T).

(G,T) e e3
17 10.28,0.451" 117 10.29,0.481"

% [0.3,0.55]'F",[-0.6, —0.4]'T" [0.3,0.55]"",[-0.5,-0.3]"""
[-0.99, —0.38]"",[-0.49, —0.5]'F" [-0.78,-0.39]""",[-0.38, —0.3]"F"
{0.2,0.3,0.55,-0.5, -0.4, —0.33} {0.01,0.55,0.99, -0.5, —0.2, —0.8}

7" 10.3,0.5]"" 7" 10.3,0.4]""
“ [0.3,0.5]"7",[-0.19, —0.01]'" [0.55,0.771"F" ,[-0.5, -0.1]'"
[-0.48, —0.38]"",[-0.78, —0.48]"F [-0.67, -0.67]"" ,[-0.88, —0.88] "
{0.2,0.5,0.7,-0.1,-0.4,-0.7} {0.44,0.55,0.9,-0.4, 0.3, -0.9}

Then, it is clear that the CBNSS (F, H) in Example 6 is an ®-Order of (G, T).

4.2. Basic operations on CBNSSs

In this part, we introduce some basic operations with examples for CBNSSs.

Definition 24. Let (¥, H) be a CBNSSs over w. The complement of (F, H) is denoted by (F, H)" and
is defined by (F, H)* = (F°, =H), where F° : =H — C$, . is a mapping given by

(F, H) = {F(e) | e € H} = {<e PVC(e),PB”(e)) o€ 4H},
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where

yeIT @), V;{{;)(X) V"T’(E)(x) V;ﬁg(k) V;{(e)(x) yere (e>(x)}

]FVC(e {
{6 [Vi7 @, Vit O [0 Vit 0L [V, Vi )]
[
{

Voo (), VT (D] [ Vit (0, Ve @) [ Vit (0, VL (8)]) : Ve € H. 5 € w]
(81 = Vi@ 1= ViE @] [T = Vi (@, 1= Vi, )],
1= Vi (0, 1= Vi ()] |1 = Vi (0, =1 = Vi, (@),
| -1 = Vi (0. =1 = Vie ()], [-1 - Vik (@), —1 = VIE (D)]) : Ve € H. i € w),

and

I+L

F*(e) = {B;(;)(x) Bﬂ@(x) BT(e)(x) ]B,F(e)(x) Bﬂe)(x) BT(e)(x)}

:{ T(e)(x) 1- 7—-(6)()5) 1- 7—‘(6)()5) T(e)(x) 7—-(6)()5) 7—-(6)()5)}

Example 9. Referring to Example 6, we can write

(F,H) = {F(e))} =
~1([0.2,0.3177,10.3,0.5]"*,[0.4,0.61'F*, [-0.77, -0.5]"" ", [-0.9, —0.3]"", [-0.4, —0.4]" "}, (0.3,0.4,0.5,-0.6, —0.44, —0.3)’

X2
([0.22,0.45]7",[0.4,0.6]""",[0.4,0.6]'F*,[-0.2,-0.1]/T", [-0.4, -0.3]""", [-0.7, -0.4]F"},(0.3,0.6,0.5, 0.2, -0.7, —0.5) } '

By using Definition 24, the complement of the CBNSS(F, H) is

F,H) ={F (e} =

X1
{([0.7, 0.8]'7,[0.5,0.71"", [0.4,0.6]F", [-0.5, —-0.23)'"", [-0.7, -0.1]""", [-0.6, —0.6]'F "), (0.7, 0.6, 0.5, —0.4, —0.56, —0.7) ’

X2
{[0.55,0.78])/T",[0.4,0.6]"",[0.4,0.6)/F",[-0.9,-0.8])'T", [-0.7, -0.6]"", [-0.6, —0.3])/F"}, (0.7,0.4,0.5,-0.8, —0.3, —0.5)} '

Theorem 5. If (F, H) is a CBNSSs over w, then (F, H))" = (F, H).

Proof. Suppose that (F,H) is a CBNSSs over w. The complement (F, #), denoted by (F, H)" =
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(F¢, =H), is defined as:

(F, H)* =({F(e) | e € H) = {(e.F"(e). F¥ (¢)) : e € =H}

= {(V5lle (O, Vo (0. VL (0, Vi (0, Vit (9, VLG ()

(B;(e)(x) Bé‘(e)(x) B‘?(e)(x) B;(e)(x) Bl‘ﬂw(x) B;@(’C))}
= {(3 [ Virey 00, Vit oy D) | | Vit (), Vi, (O] [ Vi 00, Vil ()]
(V570 (0. Vit (O] [V (0. Vil (O] [ Vi (0. Vit D))
(
-

(61 = V0.1 Vi O] [ V01 = Vi )]

|

B ) (0, By (1), Bl (0, Bl (£), Bl (0, BE (1)) : Ye € H., 5 € w]
1-

1= VI (0. 1 = VI (©)]. -1 = VIE (0, -1 = ViE, ()],
1= VI @), =1 = Vi ()] [-1 - Vi, (). -1 Vé%e)(x)] )
(1 B, (), 1 = BY (0,1 =B, (3), -1 - BL (), ~1 - BL (),

T(E)(x)) Yee H, i€ a)} .

Now let (F, H)‘ = (Q, R) = (F, =H). Then, we obtain the following:

(Q.R)

{6 1 (175 0). (1= )] [ (1 0). 1 (1 - )]
[1- (1= Viro®). 1 (1 = V@) [=1 = (-1 = Vi (). - —(—1— o ®)]-
[~1 = (21 = Vi (0) 1 = (1 = Vi @)1 = (-1 Vi»ﬂa(x)) - (=)
’(1 - (1 - B;(a(x))’ B (1 - B;‘(e)(x))’ B (1 - Bge)(jé)) T (_1 - B;(e)(jé)),

—1 = (=1 =Bl (). -1 - (-1 - Bf,(¥)) : Ve € H. & € w]
{< [Véﬂe)(x) ?(e)( )] [V%;(e)( ), V 7"(6)( )] [Vé;(e)( ), V T(e)(x)]
[Ver @ Vo @] [V D Vi @] [Vig o Vir )
(B (), Bl (), BI ) (£), BI- ) (5), Bl (), BL () : Ve € H., i € w)
=(F, H).
O

Definition 25. The union of two CBNSSs (F,H) = (F(e) | e € H} = {(e.F'(e).F¥(e)) : e € H|

and (G,7) = {G(e) | e € T} = {<e,GV(e),GB(e)> ce€ T} over w, denoted by (F, H)U(G,T), is a
CBNSS(U, S), where S = H U T,

FY(e) ifee H-T,
U (e) = GY(e) ifeeT —H,
F'(e)UGY(e) ifee HNT,
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and
F3(e) ifee H-T,
UB(e) = GP%(e) ifee T —H,
FBe) UGB(e) ifec HNT,
Ye € S.

We write (U, S) = (F, H)U(G, T), where
Ule) = U (e). U (o)} = {[F'(e) UG (e)] . |[FP(e) UG (e) |}
Definition 26. The intersection of two CBNSSs

(F,H) = (F(e) | e € H} = {<e IFV(e),IFB(e)> o€ 7{} and

(G,7) = {Gle) | e € T} = {<e, Gv(e),GB(e)> te€ ‘7'} over w, denoted by (F,H)NG,T), is a
CBNSS(U, S), where S=H U T,

FV(e) ifeeH-T,
U (e) = GY(e) ifee T —H,
F'(e)NnGY(e) ifeec HNT,
and

F2(e) ifee H-T,
UB(e) = GPB(e) ifee T —H,
FB(e)NGB(e) ifeec HNT.

Ve € S.

We write (U, S) = (F, H)N(G, T"), where
U(e) = {ﬂV(e), (LIB(e)} = {[Pv(e) N GV(e)] : [IPB(e) N GB(e)]} .

Example 10. For w = {1, X»} and parameters {e,, >, e3}, let (F, H) and (G, T ) be CBNSSs in w with
the tabular representations in Tables 6 and 7, respectively.

Table 6. Tabular representation of the CBNSS (7, H).

(F,H) e es
" 10.3,0.55]"" [ 7 10.3,0.5)"
@ [0.4,0.6)"7",[-0.77,-0.5]"" [0.4,0.72]"" [-0.6,-0.4]"
[-0.91,-0.3]"",[-0.43, -0.4)"F" [-0.73,-0.3]"",[-0.32, -0.3]'F"
{0.12,0.4,0.52, -0.6, —0.45, —0.3} | {0.12,0.7,0.8,-0.7, 0.2, —0.5}
7" 10.3,0.5]"" [ T 10.4,0.51"
W [0.4,0.62]F",[-0.3,-0.1]""" [0.8,0.85]F",[-0.52,-0.3]'
[-0.4,-0.3]"" [-0.75,-0.4]"F" [-0.64,-0.6]"" ,[-0.8, —0.8]"F"
{0.4,0.6,0.7, -0.2, 0.2, —0.5} | {0.54,0.64,0.72,-0.5,-0.4, —0.44} |
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Table 7. Tabular representation of the CBNSS (G, T).

G, 1) e

€

€3

7 10.22,0.31"
[0.2,0.31'F",[-0.77,-0.5]""
[-0.91,-0.55]"",[-0.4, —0.4]""
{0.4,0.31,0.51,-0.6,-0.525,-0.3} |

7" 10.21,0.51""
[0.2,0.4]7" [-0.3,-0.1]'T"
[-0.4,-0.3]""",[-0.7, -0.4]"F
| {0.34,0.61,0.55,-0.25, —0.45, —0.5}

X

703,05
[0.4,0.6)'F" [-0.77,-0.5]""
[-0.9,-0.31"",[-0.4, —0.4]"""
{0.3,0.4,0.5, 0.6, —0.44, —0.3}

" 10.5,0.51""
[0.3,0.51%" [-0.22,-0.11]'""
[-0.7,-0.32]"" [-0.5,-0.4]'F"
{0.31,0.48,0.5, —0.62, —0.44, —0.5}

7 10.3,0.51'"
[0.14,0.5]" [-0.62, -0.4]'T

[-0.73,-0.3]"",[-0.38,-0.3]""
{0.2,0.5,0.4,-0.72,-0.315,-0.5}

" 10.4,0.61""
[0.72,0.81"" [-0.7, —0.3]""

[-0.65,-0.6]"",[-0.87, —0.8]"F"
{0.67,0.46,0.72, —0.55, 0.4, 0.4}

Then, the union (U,S) = (F,H)U(G,T) and intersection (U,S) = (F,H)N(G,T) are given in

Tables 8 and 9, respectively.

Table 8. Tabular representation of (U, S) = (F, H) U (G, T).

(U’ S) €] (2] e3
7 10.22,0.3]" T 10.3,0.5]" T 10.3,0.5]"
N [0.2,0.31"F",[-0.77, -0.51""" [0.4,0.61F" [-0.77,-0.5]"" [0.14,0.5)'7",[-0.62, -0.4]"""
1 _ _ _ _ _ _
[-0.91,-0.31"",[-0.4, —0.41'F [-0.9,-0.3]"",[-0.4, —0.4]F [-0.73,-0.31"" [-0.32, -0.3]'F
{0.4,0.355,0.51, -0.6, —0.4875, 0.3} | {0.3,0.4,0.5,—0.6, —0.44, —0.3} | {0.2,0.6,0.4,-0.72,-0.257, 0.5}
" 10.21,0.5]"" 7" 10.5,0.51" " 10.4,0.51"
% [0.2,0.4)F" [-0.3,-0.11"" [0.3,0.51F" [-0.22, -0.11]'" [0.72,0.8]'F" [-0.7, —0.3]'"
[-0.4,-0.3]""",[-0.7, —0.41F" [-0.7,-0.321"" [-0.5, —0.4]"F" [-0.64, —0.6]"" ,[-0.8,-0.8]'F"
| {0.4,0.605,0.55, -0.25, -0.325, 0.5} | {0.31,0.48,0.5, -0.62, —0.44, —0.5) | {0.67,0.55,0.72,-0.55,-0.4,-0.4}
Table 9. Tabular representation of (U, S) = (F, H)N(G, T).
(U,S) e e e
77 10.3,0.55]" 103,057 7 10.3,0.5""
P [0.4,0.6]'F",[-0.77,-0.5]""" [0.4,0.61F",[-0.77,-0.5]""" [0.4,0.72]"7",[-0.6,-0.4]""
1 - — _ — _ _
[-0.91,-0.55]""",[-0.43, -0.4]'F [-0.9,-0.31""[-0.4,-0.4]"F [-0.73, -0.3]""",[-0.38, -0.3]'F
{0.12,0.355,0.52, -0.6, —0.4875, —0.3} {0.3,0.4,0.5,-0.6, -0.44, —0.3} | {0.12,0.6,0.8,-0.7,-0.257,-0.5} |
" 10.3,0.5"" 7" 10.5,0.5]"" 7" 10.4,0.6]""
% [0.4,0.62]'F",[-0.3,-0.1]""" [0.3,0.51F",[=0.22,-0.111"" [0.8,0.851"7",[-0.52, -0.3]"""

[-0.4,-0.31"" [-0.75,-0.41F"
{0.4,0.605,0.7, 0.2, —0.325, —0.5}

[-0.7,-0.32]""",[-0.5, —0.4]"F"
{0.31,0.48,0.5, —0.62, —0.44, —0.5}

[-0.65, —-0.6]""",[-0.87, -0.8]'F"
| {0.54,0.55,0.72, -0.5, —0.4, —0.44} |

Theorem 6. Let [(F,H) = {F(e) | e € H}, (G, H) = {G(e) | e € H}] € C«

true.

1. (F,H) C (G, H)=F,H)NG,H) = F,H),
2. (F,'H) € (G, H)=EF, H)U(G,H) = (G, H).

Proof.

wns- Then, the following are

1. (=) Suppose that (F,H) C (G,H), then we have F(e) C G(e) for all ¢ € H. Let
Since U(e) = F(e) N G(e) = F(e) for all e € H, then

(F,H) = (GG,H) = (U, H).
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(U, H) =F,H).

(&) Suppose that (F, H)N(G, H) = (F,H) and let (F, H)N(G, H) = (U, H). Since U(e) =
F(e) N G(e) for all e € H, we know that F(e) C G(e) for all e € H. Hence, (F, H) C (G, H).

2. (=) Suppose that (F, H) C (G, H), then we have F(e) C G(e) for all e € H. (U, H) = (G, H).

(&) Suppose that (F, H)U(G, H) = (G, H) and let (F, H)J(G, H) = (U, H). Since U(e) =
F(e) U G(e) for all e € H, we know that F(e) C G(e) for all e € H. Hence, (F, H) C (G, H).
O

5. Application of CBNSSs in decision-making

5.1. Similarity measure between CBNSSs

Similarity measures are essential for pattern recognition and clustering analysis, particularly in
fuzzy soft sets. This section will introduce similarity measures for two CBNSSs based on the axioms
of fuzzy soft sets [20], which will be applied in a pattern recognition context.

Definition 27. Let Scpyss be a mapping Scanss @ Chyyg XCyys <= [0,1], then the degree of

<
similarity between (F,,H) € Cy\, < and (F,, H) € C4, . < is defined as Scpnss [(Fr, H) , (Fa, H)],
which satisfies the following properties:

(P1) 0 < Seanss [Fr, H) , (Fy, H) < 1,
(P2) Scpyss [(Fr, H), Fa, H)| = Sewss [(Fa, H), B, H),
(P3) Scanss [(F1, H), (B, H)] = 1 = (F1, H) = (F2, H),

(P4) Scavss [Fr, H), (Fa, H)] = 0 and Scpnss [Fr, H),(F3, H)] = 0 (F5,H) € C%.s < then
Scanss [(Fa, H) , (5, H)] = 0.

Now, we introduce the formula to calculate the similarity between two CBNSSs as follows:

Definition 28. Let w = {i,X,,...,X,} be the universal set of elements and h = {ej,e,,...,e,}
be the universal set of parameters. (Fi,H) = {Fi(e)| e H} = {<e,IFY(e),1Ff(e)> tee€ 7—(} and

(Fy, H) = {Fale) | e € H} = {(e, Fg(e),Ff(e» ‘e € 7—(} are two families of CBNSSs in w. We define
Scanss [Fr, H) , (Fa, H)] as follows:

1 m
Seanss [FrH) . Fo H)] = 5= > [Shanss [ H). Fa HO] + Sy [ H) . Fr H)].
=1

where
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ShvssEr, H), (Fa, H) =

min |[VIL' (), VIL G| + min [VIT (), VT G|
+ min VZ, PNEDE Vm(e)(x]) + min VMFI(Q)(x]) Vqu(e)(xJ)
+ min F (oK) Vqu(e)(xj)
min VZ’Fl(e)(xJ) VéFz(e)(xJ) + min 71;((3)()9) Vqu(e)( X))
= | +min | V7 ), Vi G|+ min (VI (), VI ()

IF*
+ min VeF (e)(xj) Vsz(e)(xj)

n m
Zj:l 25:1
IF~

+ min V[F (6)(x1) VEFz(e)(xJ) + min VMF (e)(xj) Vqu(e)(xJ)

max [Vg PREHE Vm(e)(xj)] + max [VIIUTV e G, VI (% j)]
+max | Vi (%)), V[Fz(e)(x]) + max VLlFl(e)(x]) Vqu(e)( j)

[ S E——

IF*
+ max |V, F, (e)( (i), Vm(e)(x,) + max VMF](e)(xj) Vqu(e)(x,-)

Z'}=1 i1

max [Vlgl(e)(xf) V[Fz(e)(x])] + max [VIF (&) Vi ey (X7)
+ max VMF PNEDN VflIFz(e)(xj)]
+ max VL’; PNEHX Vqu(e)('xj)

-
—| +max Vé,F (e)(xj) V[Fz(e)(xj)

1F~
+max | Vg, (%), Vig . (%))

and

SﬁgNss[(Fl ’ 7—(), (Fz, 7‘{)] =

[ min [B?l(e)(xj) BFz(e)(Xj)] + min [BfF (en (X7, BFz(e)(xj)] }
g s +min [BF ENE BFZ(K)(XJ')]

o _[ e [BF (en i) BFz(e)(xf)] +m1n[ Fieeo () B 2(e)(xj)] }
+ min [BF (en K1) sz(g)(xj)]

max [BT (en (i BFz(e)(xj)] + max [Bg(e’)(jéj)’Bg(ei)(xj)] ]
+ max [BF( NEPHX sz(e)(xj)]

21 Xty

max [ Fl(ei)(xj)’ BFz(ei)(xf)] + max [Bgl(ei)(xj)’ Bg(ei)(xj)]
+ max [B;l(ei)(xj)’ Bﬁz@.)(fﬂ]

Then, Sqyesl(Fr, H), (Fa, H)] is a similarity measure between two CBNSSs (Fy, H) and (F,, H).

5.2. The applicability of the proposed similarity metrics in pattern identification

This section presents a methodology for assessing similarity measures between two CBNSSs in
pattern recognition. For example, determining if a person with specific symptoms has a certain disease
can be framed as a supervised pattern recognition task. We construct an ideal CBNSS for the disease
and one for the symptomatic individual. If the similarity measure between these CBNSSs is 0.55 or
higher, it suggests a potential diagnosis of the disease.

The algorithm of this method is as follows:

Step 1. To start, we construct an ideal CBNSS (F, H) = <]FV(e), IFB(e)> for illness, which can be done
with the help of a medical expert.

Step 2. Then, we construct CBNSSs (F;, H) = <IFlV(e), IFlB(e)> ,1=1,2,...,m, on w for ill person(s).
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Step 3. The similarity measures between the ideal (F,H) = <Pv(e),IFB(e)> for illness and the

(B, H) = (IFlV(e), Ff(e)) ,1=1,2,...,m, for ill the person are calculated using the formula given
in Definition 28.

Step 4. If Scpyss [(F, H), (F;, H)] = 0.55, then the ill person is possibly suffering from the diseases,
and if Scpyss [(F, H), (F, H)|] < 0.55, then the ill person is possibly not suffering from the
diseases.

Example 11. This section presents a hypothetical numerical example derived from the aforementioned
decision-making methodology to demonstrate the potential use of the similarity measure of CBNSS in
addressing a medical diagnostic issue. The aim of this problem is to ascertain whether an individual
exhibiting certain visible symptoms is afflicted with diabetes or is not suffering from the condition.

Let w = {X¥; = Highdiabetes, X, = lowdiabetes } be the reference set and w = {e; = sweating, e, =
headache } be a set of certain visible symptoms.

[Step 1] To construct an ideal CBNSS(F, H) = (Fv(e),FB(e)> for illness (diabetes), one can seek
the assistance of a medical expert, as demonstrated in Table 10.

Table 10. Tabular representation of CBNSS (¥, H) for diabetes.

(?, 7_[) €l ()
77 10.3,0.5)"" [ 77 10.3,0.5]""
p [0.4,0.6]F" [-0.77,-0.5]'" [0.4,0.7)'F [-0.6,-0.4]'"
1 _ _ _ _
[-0.9,-0.3]"" [-0.4,—-0.4])'F [-0.7,-0.3]1"" ,[-0.3,-0.3]'F
{0.3,0.4,0.5,-0.6, —0.44, —0.3} | {0.1,0.7,0.9,-0.7,-0.2, -0.5}
7" 10.4,0.6)'" [ 7" 10.4,0.51""
. [0.4,0.6]'F" [-0.2,-0.1]'" [0.7,0.81"F" [-0.7, -0.2]"""
X2 _ _ _ _
[-0.4,-0.3]"" [-0.7, -0.4]'F [-0.6,-0.6]"" ,[-0.8, —0.8]'F
{0.3,0.6,0.5,-0.2, -0.7, —0.5} | {0.5,0.6,0.7,-0.5,-0.4, -0.4}

[Step 2] Construct CBNSSs for ill persons (patients) X and Y, as illustrated in Tables 11 and 12.

[Step 3] By Definition 28, similarity measure between (F,H) and (F\,H) is given by
Secanss [(F, H), (1, H)] = 0.507 and similarity measure between (F,H) and (F,, H) is given by
Scanss [(F, H), (Fa, H)] = 0.6.

[Step 4] Since Scpyss [(F, H), (Fy, H)] = 0.6 > 0.55, therefore patient Y is possibly suffering from
diseases. Again, since Scayss [(F, H), (F, H)] = 0.507 < 0.55, therefore patient X is possibly not
suffering from diseases.
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Table 11. Tabular representation of CBNSS (F, H) for patient X.

(F1,H) € €2
77 10.3,0.55]" 7 10.3,0.51"
% [0.4,0.61"7",[-0.77,-0.5]""" [0.4,0.72]"F" [-0.6,-0.4)""
[-0.91,-0.3]"",[-0.43, —0.4]"F" [-0.73,-0.3]"",[-0.32, -0.30]"F"
{0.12,0.4,0.52, -0.6, —0.45, —0.3} {0.12,0.7,0.8,-0.7,-0.2, -0.5}
17" 10.3,0.51" 7" 10.4,0.51"
),C,Z [0.4,0.62]"",[-0.3,-0.1]"" [0.8,0.85]"F" ,[-0.52,-0.3]'"
[-0.4,-0.3]"" [-0.75,-0.4]"F [-0.64, -0.6]"" ,[-0.8, —0.8]'F"
{0.4,0.6,0.7, 0.2, -0.2, —0.5} {0.54,0.64,0.72,-0.5, —0.4, —0.44}

Table 12. Tabular representation of CBNSS (7>, H) for patient Y.

(F2, 7’{) €] €
77 10.11,0.22)" 77 10.3,0.5]"
N [0.1,0.2]"7"[-0.88, —0.77]'" [0.4,0.6)'7" [-0.77,-0.5]"""
[-0.91,-0.8]"" ,[-0.4, —0.4]"F" [-0.9,-0.7]"" [-0.8, —0.4]"F"
{0.4,0.31,0.51,-0.8, -0.525, —0.9} {0.3,0.4,0.5, 0.6, -0.99, —0.7}
T 10.21,0.5]"" T 10.5,0.51"
% [0.2,0.4]'F" [-0.8, —0.3]'" [0.3,0.5]'7",[-0.8, —0.5]'"
[-0.5,-0.4)"" [-0.7,-0.71"F [-0.7,-0.7]"" [-0.49, —0.4]"F"
{0.34,0.61,0.55, 0.8, —0.45, —0.5} {0.31,0.48,0.5, -0.62, —0.44, —0.5}

6. Conclusions

This research has introduced CBNSs, a novel framework that significantly advances the capabilities
of BNSs in addressing uncertainty and vagueness within data analysis. By integrating bipolarity
and cubic sets, CBNSs offer a more comprehensive and accurate representation of information,
outperforming existing methods in terms of accuracy, flexibility, and applicability.

We have thoroughly investigated the structural properties of CBNSs and defined key operations
related to them. Additionally, we have introduced CBNSSs as a flexible parameterization tool. To
validate the practical utility of CBNSs, we conducted a case study in decision-making, demonstrating
their effectiveness in handling complex scenarios with uncertainty and vagueness. While CBNSs
offer significant advantages, it is important to acknowledge potential limitations. The applicability
of CBNSs may be constrained by the availability and quality of data. Furthermore, the computational
complexity of CBNS operations might be a consideration for large-scale applications.Future research
could explore extending CBNSs (investigating potential extensions) or modifications of CBNSs to
address specific domains or challenges, computational efficiency (developing more efficient algorithms
for CBNS operations), and real-world applications (applying CBNSs to a wider range of real-world
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problems and domains).
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