
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 27739–27769.
DOI: 10.3934/math.20241347
Received: 12 August 2024
Revised: 19 September 2024
Accepted: 21 September 2024
Published: 26 September 2024

Research article

Extending neutrosophic set theory: Cubic bipolar neutrosophic soft sets for
decision making

Khulud Fahad Bin Muhaya and Kholood Mohammad Alsager*

Department of Mathematics, College of Science, Qassim University, Buraydah, Saudi Arabia

* Correspondence: Email: ksakr@qu.edu.sa.

Abstract: This research introduced cubic bipolar neutrosophic sets (CBNSs), a novel framework that
significantly enhanced the capabilities of bipolar neutrosophic sets (BNSs) in handling uncertainty
and vagueness within data analysis. By integrating bipolarity and cubic sets, CBNSs provide a
more comprehensive and accurate representation of information. We have defined key operations
for CBNSs and thoroughly investigated their structural properties. Additionally, we have introduced
cubic bipolar neutrosophic soft sets (CBNSSs) as a flexible parameterization tool for CBNSs. To
validate the practical utility of CBNSs, we conducted a case study in decision-making. Our algorithmic
approach effectively addressed the challenges posed by uncertainty and vagueness in the decision-
making process. The results of our research unequivocally demonstrated the superiority of CBNSs
over existing methods in terms of accuracy, flexibility, and applicability. By offering a more nuanced
representation of information, CBNSs provide a valuable tool for researchers and practitioners tackling
complex decision problems.
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1. Introduction

Numerous investigations in applied and social sciences, including engineering, environmental
studies, economics, and management, often deal with ambiguous and inaccurate data. Traditional
methods struggle to address these complexities. Current frameworks like bipolar neutrosophic sets
(BNSs) also face difficulties in managing the inherent uncertainty and vagueness of complex datasets,
hindering accurate representation and analysis, especially in decision-making contexts.

A collection of contemporary theories effectively addresses ambiguities and uncertainties, including
fuzzy set (FS) theories [1], interval-valued fuzzy set theories [2], and bipolar fuzzy sets [3]. Zhang [4]
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proposed an extension of fuzzy set theory by integrating bipolarity, leading to the development of
bipolar-valued fuzzy sets. It is noted that bipolar fuzzy sets (BFS) are particularly suitable for
representing information that encompasses both a property and its negation. Further exploration by
Lee [3] delved into the fundamental operations associated with bipolar-valued fuzzy sets. Additionally,
Lee et al. [5] conducted a comparative analysis of intuitionistic fuzzy sets, interval-valued sets, and
BFSs. For instance, BFSs are characterized by positive and negative membership values within the
range of [−1, 1]. Elements with zero membership indicate a lack of alignment with the specified
property, while the interval (0, 1] signifies varying degrees of membership satisfaction. Conversely,
the interval [−1, 0) suggests an implicit acknowledgment of the counter property by the elements.
Furthermore, the application of BFS-based information has been integrated into decision analysis [6,7].
This is exemplified by the work of Wei et al. [8] (2018), who proposed an expansion of the BFS
framework to include the concept of interval-valued bipolar fuzzy sets (IVBFS) within a multi-attribute
decision-making context. Jun et al. [9] introduced the abstraction of cubic sets, which extend both
interval-valued fuzzy sets and fuzzy sets, allowing for the representation of vagueness through the
simultaneous use of exact and interval values. Riaz and Tehrim [10, 11] further developed a novel
model known as the cubic bipolar fuzzy set (CBFS), which generalizes BFSs to accommodate two-
sided opposing features, thereby enabling the representation of information through both bipolar fuzzy
numbers and interval-valued bipolar fuzzy numbers.

The neutrosophic set is characterized by three distinct membership functions: the truth-membership
function (T), the indeterminacy-membership function (I), and the falsity-membership function (F).
Each of these functions is defined within the context of explicit quantification of indeterminacy. The
values of T, I, and F are constrained to subsets of the real standard or nonstandard interval ]0, 1 + [.
In their work, Wang et al. [12] proposed a single-valued neutrosophic set (SVNS) along with its
associated operators, which serve as subclasses of neutrosophic sets. This innovation allows for
the restriction of these sets to the real standard interval [0, 1], thereby facilitating their application
in scientific and engineering contexts. Additionally, the dual aspects of bipolarity are incorporated
into decision-making processes, where positive information is utilized for favorable or appropriate
descriptions, while negative information highlights aspects that are rejected or implausible. Building
on this concept and the application of BFS, Deli et al. [13] introduced BNSs, exploring their properties,
theorems, and aggregation operators, exemplified through a car purchasing scenario. As BNS emerged
as a compelling field within neutrosophic theory, Deli et al. [14] further advanced the discourse
by presenting the interval-valued bipolar neutrosophic set (IVBN-set), which serves as a broader
generalization encompassing FSs, bipolar sets, neutrosophic sets, and bipolar neutrosophic sets.
Nonetheless, the previously discussed models face challenges related to effective parameterization,
stemming from the constraints of their parametric definitions, which hinder the precise representation
of problem parameters.

Molodtsov [15] introduces an enhanced parameterization tool that offers a thorough and complete
representation of problem parameters by utilizing soft set theory to address uncertainty and ambiguity.
This innovative capability in parameterization, when compared to previous methodologies, has
inspired numerous models in the literature, such as neutrosophic soft sets [16], bipolar neutrosophic
soft sets [17], and bipolar neutrosophic graded soft sets [18]. Although bipolar neutrosophic sets
demonstrate superior efficiency over neutrosophic sets in evaluating real-world problems characterized
by inherent uncertainty-both positive and negative-this simplicity in bipolar neutrosophic sets is
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insufficient for adequately capturing the nuances of ratings or grades due to information constraints.
Likewise, interval-valued bipolar neutrosophic sets fall short in conveying expert opinions based on the
properties of alternatives. This research presents a novel framework termed cubic bipolar neutrosophic
sets (CBNSs), which serves as a generalization of bipolar neutrosophic sets. This new model enhances
accuracy and flexibility relative to prior approaches by encompassing a greater volume of information,
thus rendering it more comprehensive and rational. Specifically, it integrates information in a more
thorough and appropriate manner. To further enhance the parameterization tool, the study explores an
additional model that improves the adequacy of final decisions and the quality of information provided.
Crucially, the application of these proposed models in decision-making is illustrated, demonstrating
their utility in addressing realistic uncertain problems.

Established models like BNSs and IVBN-sets have advanced uncertainty modeling but often fail
to capture the complexities of real-world situations, especially with conflicting data or ambiguous
membership levels. This study introduces CBNSs, a new framework that combines bipolar fuzzy
numbers and interval-valued bipolar fuzzy numbers for a more nuanced representation of uncertainty.
CBNSs enhance the accuracy of modeling complex systems, particularly in decision-making processes
that involve both positive and negative information, such as evaluating investment alternatives by
illustrating trade-offs between potential rewards and risks.

1.1. Comparative analysis

• Comparison with Conventional BNSs:
BNSs struggle with uncertainty due to their binary membership grades. In contrast, CBNSs
offer a more advanced framework with cubic membership grades, allowing for a wider range
of possibility, impossibility, and indeterminacy. This flexibility enables CBNSs to convey more
information and adapt better to different contexts.

• Comparison with Other Related Theories:
CBNSs differ from FSs and interval-valued neutrosophic sets by incorporating bipolarity,
allowing for the representation of both positive and negative information. Their cubic membership
grades provide enhanced flexibility in expressing uncertainty, while an indeterminacy
membership grade addresses ambiguous information. Overall, CBNSs offer a more nuanced
framework than BNSs and are particularly useful for decision-making and information processing
due to their ability to manage uncertainty, imprecision, and indeterminacy.

1.2. Traditional methods

To enhance our research, we expanded the background section to include a detailed analysis of
conventional methods and their limitations. Before cubic bipolar neutrosophic soft sets CBNSSs,
various strategies were used to address uncertainty and imprecision in decision-making, including:

• FSs: FSs introduced by Zadeh offer a mathematical framework for representing uncertainty and
vagueness. However, they are limited to representing uncertainty within a single dimension.

• Interval-Valued Fuzzy Sets: To address the limitations of FSs, interval-valued fuzzy sets were
proposed. These sets allow for the representation of uncertainty using intervals instead of single
values.
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• BFSs: BFSs extend FSs to incorporate both positive and negative membership grades, providing
a more nuanced representation of information.

• Interval-Valued Bipolar Fuzzy Soft Sets: Combining the concepts of interval-valued fuzzy sets
and BFSs, interval-valued bipolar fuzzy soft sets offer a framework for handling uncertainty and
bipolarity in soft set theory.

- Limitations of Traditional Methods:
While these traditional methods have contributed to the field of decision-making, they often face

challenges in handling complex real-world problems. Some limitations include:

• Restricted representation of uncertainty: FSs and interval-valued fuzzy sets may not
adequately capture the full spectrum of uncertainty, especially in situations with conflicting or
contradictory information.

• Lack of bipolarity: FSs and interval-valued fuzzy sets do not consider both positive and negative
aspects of information, limiting their applicability in certain domains.

• Inflexibility: These methods may be less flexible in adapting to different decision-making
scenarios, especially when dealing with highly uncertain or imprecise information.

- The Need for CBNSs:
This study introduces CBNSSs to address the limitations of conventional methods. CBNSSs offer

a flexible framework for managing uncertainty, bipolarity, and imprecision in decision-making by
combining cubic sets, BFSs, and neutrosophic sets for a more detailed representation of information.

This research is organized into five sections. Section 1 provides a foundational overview of the
study, outlining the motivation and research objectives. Section 2 offers a concise review of essential
concepts and notations related to cubic sets, BFSs, neutrosophic sets, and neutrosophic soft sets.
Section 3 introduces the novel concept of CBNSs and elaborates on their fundamental operations,
including complement, union, and intersection. Section 4 delves into the concept of CBNSSs,
presenting their operational rules, definitions, and properties. Finally, Section 5 demonstrates the
practical application of CBNSSs in addressing decision-making challenges within the cubic bipolar
neutrosophic soft set domain.

2. Preliminaries

2.1. Fuzzy set

Definition 1. [1] An FS A in ω = {ẍ1, ẍ2, . . . , ẍn} is given by

A = {(ẍ, µA(ẍ)) : ẍ ∈ ω} ,

where 0 ≤ µA(ẍ) ≤ 1 is the grade of satisfaction of ẍ ∈ ω in the set A.

Definition 2. [2] Let I = [0, 1] be a closed unit interval and aO = [`, u] be a closed subinterval
of I, where 0 ≤ ` ≤ u ≤ 1. Let [L] be the family of all subintervals. The interval-valued fuzzy
set (IVFS) defined on ω is a function f : ω −→ [L]. The set of all IVFSs is denoted by [L]ω and
aO(ẍ) = [`(ẍ), u(ẍ)], for each aO ∈ [L]ω and ẍ ∈ ω, is called degree of membership of ẍ to aO, where
`(ẍ) and u(ẍ) are called lower and upper FSs respectively.
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Definition 3. [9] A cubic set on ω = {ẍ1, ẍ2, . . . , ẍn} can be defined as

K = {〈ẍ, aO(ẍ), λ(ẍ)〉 | ẍ ∈ ω},

where aO is an IVFS on ω and λ is a FS in ω.

2.2. Bipolar valued FS

Definition 4. [4] A bipolar valued FS B on ω = {ẍ1, ẍ2, . . . , ẍn} is defined by a positive membership
function χ+

B, that is χ+
B : ω −→ [0, 1], and a negative membership function χ−B, that is χ−B : ω −→

[−1, 0]. Mathematically, a bipolar valued FS is represented by

B =
{(

ẍ, χ+
B(ẍ), χ−B(ẍ)

)
: ẍ ∈ ω

}
.

Definition 5. [5] An IVBFS over the reference set ω = {ẍ1, ẍ2, . . . , ẍn} is defined as

δ =
{(

ẍ,
[
V+
` (ẍ),V+

u (ẍ)
]
,
[
V−` (ẍ),V−u (ẍ)

])
| ẍ ∈ ω

}
,

where the positive membership degree
[
V+
` (ẍ),V+

u (ẍ)
]
⊆ [0, 1] depicts the satisfaction degree of

an element ẍ to the property corresponding to an IVBFS (δ) and the negative membership degree[
V−` (ẍ),V−u (ẍ)

]
⊆ [−1, 0] depicts the satisfaction degree of an element ẍ to some implicit counter

property corresponding to the IVBFS (δ), respectively, for every ẍ ∈ ω. An interval-valued bipolar
fuzzy number (IVBFN) is written as δ =

{[
V+
` ,V

+
u

]
,
[
V−` ,V

−
u

]}
.

Definition 6. [19] A CBFS over the reference set ω = {ẍ1, ẍ2, . . . , ẍn} is defined as

ACB = {〈ẍ, δ(ẍ),B(ẍ)〉 | ẍ ∈ ω} ,

where δ is an IVBFS on ω and B is a BFS on ω. Thus, CBFS can be rewritten as

ACB =
{〈

ẍ,
[
V+
`A(ẍ),V+

uA(ẍ)
]
,
[
V−`A(ẍ),V−uA(ẍ)

]
,
{
χ+

A(ẍ), χ−A(ẍ)
}〉
| ẍ ∈ ω

}
,

where the interval
[
V+
`A(ẍ),V+

uA(ẍ)
]
⊆ [0, 1] and

[
V−`A(ẍ),V−uA(ẍ)

]
⊆ [−1, 0] represent the interval

valued positive and negative membership degrees, respectively, and χ+
A(ẍ) ⊆ [0, 1] and χ−A(ẍ) ⊆ [−1, 0]

represent the positive and negative membership, respectively.

2.3. Neutrosophic set

Definition 7. [11] Assume that ω = {ẍ1, ẍ2, . . . , ẍn} is a reference set ω. Then the neutrosophic set
(NS) is formed as the following structure:

ÂNS =
{(

ẍ,
〈
∂̈t
Â

(ẍ), ∂̈i
Â

(ẍ), ∂̈ f
Â

(ẍ)
〉)
| ẍ ∈ ω

}
,

where ∂̈t
Â

(ẍ), ∂̈i
Â

(ẍ), ∂̈ f
Â

(ẍ) refer to true membership, indeterminacy membership, and falsehood
membership of object ẍ in ω and persist as a mapping:

∂̈t
Â

(ẍ), ∂̈i
Â

(ẍ), ∂̈ f
Â

(ẍ) : Û→ [0, 1].
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Definition 8. [13] A bipolar neutrosophic set BBNS in the reference set ω = {ẍ1, ẍ2, . . . , ẍn} is given
by

BBNS =
{(

ẍ,
〈
BT +

(ẍ),BI+

(ẍ),BF+

(ẍ),BT−(ẍ),BI−(ẍ),BF−(ẍ)
〉)
| ẍ ∈ ω

}
,

where BT +

,BI+

,BF+

→ [0, 1] denote, respectively, the positive-Truth Membership(TM), positive-
Indeterminacy Membership(IM), and positive-Falsity Membership (FM) degrees of an element ẍ ∈ ω
to the property in line with a bipolar NS BBNS , and BT− ,BI− ,BF− → [−1, 0] denote, respectively, the
negative-TM, negative-IM, and negative-FM degrees of an object ẍ ∈ ω.

Definition 9. [13] Let

BBNS
1 =

{(
ẍ,

〈
BT +

N1(ẍ),BI+

N1(ẍ),BF+

N1(ẍ),BT−
N1(ẍ),BI−

N1(ẍ),BF−
N1(ẍ)

〉)
| ẍ ∈ ω

}
,

and
BBNS

2 =
{(

ẍ,
〈
BT +

N2(ẍ),BI+

N2(ẍ),BF+

N2(ẍ),BT−
N2(ẍ),BI−

N2(ẍ),BF−
N2(ẍ)

〉)
| ẍ ∈ ω

}
,

be two BNSs on the reference set ω = {ẍ1, ẍ2, . . . , ẍn}. Then the fundamental operation on BNS is
defined as follows:

1. Union

BBNS
1 ∪ BBNS

2 =

〈
max

{
BT +

N1(ẍ),BT +

N2(ẍ)
}
,
BI+

N1(ẍ)+BI+
N2(ẍ)

2 ,min
{
BF+

N1(ẍ),BF+

N2(ẍ)
}
,

max
{
BT−

N1(ẍ),BT−
N2(ẍ)

}
,
BI−

N1(ẍ)+BI−
N2(ẍ)

2 ,min
{
BF−

N1(ẍ),BF−
N2(ẍ)

} 〉
,

for all ẍ ∈ ω.

2. Intersection

B1
BNS ∩ B2

BNS =

〈
min

{
BN1

T +

(ẍ),BN2
T +

(ẍ)
}
, BN1

I+ (ẍ)+BN2II+ (ẍ)
2 ,max

{
BN1

F+

(ẍ),BN2
F+

(ẍ)
}
,

max
{
BN1

T−(ẍ),BN2
T−(ẍ)

}
, BN1I−(ẍ)+BN2I−(ẍ)

2 ,min
{
BN1

F−(ẍ),BN2
F−(ẍ)

} 〉
,

for all ẍ ∈ ω.

3. Complement

BcBNS
1 =

{(
ẍ,

〈
Bc

N1
T +

(ẍ),Bc
N1I I+

(ẍ),Bc
N1

F+

(ẍ),Bc
N1

T−(ẍ),Bc
N1

I−(ẍ),Bc
N1

F−(ẍ)
〉)
| ẍ ∈ ω

}
=

{
ẍ,

(
{1+} − BN1T T +

(ẍ), {1+} − BN1I+(ẍ), {1+} − BN1
F+

(ẍ),
{1−} − BN1

T−(ẍ), {1−} − BN1I I−(ẍ), {1−} − BN1F−(ẍ)

)∣∣∣∣∣∣ ẍ ∈ ω
}
.

4. Subset
BN1

T +

(ẍ) ≤ BN2
T +

(ẍ), BN1
I+

(ẍ) ≤ BN2
I+

(ẍ), BN1
F+

(ẍ) ≥ BN2
F+

(ẍ),

and
BN1

T−(ẍ) ≥ BT−
N2(ẍ), BN1I−(ẍ) ≥ BN2

I−(ẍ), BN1
F−(ẍ) ≤ BN2

F−(ẍ),

for all ẍ ∈ ω.
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Definition 10. [14] An interval-valued bipolar neutrosophic set (IVBNS) VIBNS (ẍ) in the reference
set ω = {ẍ1, ẍ2, . . . , ẍn} is given by

VIBNS ==

ẍ,


[
VN`

IT +

(ẍ),VNu
IT +

(ẍ)
]
,
[
VN`

II+

(ẍ),VNu
II+

(ẍ)
]
,
[
VN`

IF+

(ẍ),VNu
IF+

(ẍ)
]
,[

VN`
IT−(ẍ),VNu

IT−(ẍ)
]
,
[
VN`

II−(ẍ),VNu
II−(ẍ)

]
,
[
VN`

IF−(ẍ),VNu
IF−(ẍ)

] 
∣∣∣∣∣∣∣ ẍ ∈ ω

 ,
where VN`

IT +

, VNu
IT +

, VN`
II+

, VNu
II+

, VN`
IF+

, VNu
IF+

→ [0, 1] and VN`
IT− , VNu

IT− , VN`
II− , VNu

II− ,
VN`

IF− , VNu
IF− → [−1, 0], such that the family of all IVBNS sets over ω will be denoted by IVBNSω.

Definition 11. [14] For VIBNS
1 ,VIBNS

2 ∈ IVBNSω, some operations are defined as follows:

1. Union

VIBNS
1 ∪ VIBNS

2 =


max

{
V1N`

I`+

,V2N`
IT +

}
,max

{
V1Nu

IT +

,V2Nu
IT +

}
,min

{
V1N`

II+

,V2N`
II+

}
,

min
{
V1Nu

II+

,V2Nu
II+

}
,min

{
V1N`

IF+

,V2N`
IF+

}
,min

{
V1Nu

IF+

,V2Nu
IF+

}
,

min
{
V1N`

IT− ,V2N`
IT−

}
,min

{
V1Nu

IT− ,V2Nu
IT−

}
,max

{
V1N`

II− ,V2N`
II−

}
,

max
{
V1Nu

II− ,V2Nu
II−

}
,max

{
V1N`

IF− ,V2N`
IF−

}
,max

{
V1Nu

IF− ,V2Nu
IF−

}

,

for all ẍ ∈ ω.

2. Intersection

VIBNS
1 ∩ VIBNS

2 =


min

{
V1N`

IT +

,V2N`
IT +

}
,min

{
V1Nu

IT +

,V2Nu
IT +

}
,max

{
V1N`

II+

,V2N`
II+

}
,

max
{
V1Nu

II+

,V2Nu
II+

}
,max

{
V1N`

IF+

,V2N`
IF+

}
,max

{
V1Nu

IF+

,V2Nu
IF+

}
,

max
{
V1N`

IT− ,V2N`
IT−

}
,max

{
V1Nu

IT− ,V2Nu
IT−

}
,min

{
V1N`

II− ,V2N`
II−

}
,

min
{
V1Nu

II− ,V2Nu
II−

}
,min

{
V1N`

IF− ,V2N`
IF−

}
,min

{
V1Nu

IF− ,V2Nu
IF−

}

,

for all ẍ ∈ ω.

3. Complement

VcIBNS
1 =

(
ẍ,

{
Vc

1N`
IT +

,Vc
1Nu

IT +

,Vc
1N`

II+

,Vc
1Nu

II+

,Vc
1N`

IF+

,Vc
1Nu

IF+

,

Vc
1N`

IT− ,Vc
1Nu

IT− ,Vc
1N`

II− ,Vc
1Nu

II− ,Vc
1N`

IF− ,Vc
1Nu

IF−

}∣∣∣∣∣∣ ẍ ∈ ω
)

=

ẍ,


{1+} − V1Nu

IT +

, {1+} − V1N`
IT +

, {1+} − V1Nu
II+

,

{1+} − V1N`
II+

, {1+} − V1Nu
IF+

, {1+} − V1N`
IF+

,

{1−} − V1Nu
IT− , {1−} − V1N`

IT− , {1−} − V1Nu
II− ,

{1−} − V1N`
II− , {1−} − V1Nu

IF− , {1−} − V1N`
IF−


∣∣∣∣∣∣∣∣∣∣∣ ẍ ∈ ω

 .
4. Subset
VIBNS1 ⊆ VIBNS2 if

V1N`
IT +

≤ V2N`
IT +

, V1Nu
IT +

≤ V2Nu
IT +

, V1N`
II+

≥ V2N`
II+

, V1Nu
II+

≥ V2Nu
II+

,

V1N`
IF+

≥ V2N`
IF+

, V1Nu
IF+

≥ V2Nu
IF+

,

and

V1N`
IT− ≤ V2N`

IT− , V1Nu
IT− ≤ V2Nu

IT− , V1N`
II− ≥ V2N`

II− , V1Nu
II− ≥ V2Nu

II− ,

V1N`
IF− ≥ V2N`

IF− , V1Nu
IF− ≥ V2Nu

IF− , for all ẍ ∈ ω.
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5. Equality
VIBNS1 = VIBNS2 if

V1N`
IT +

= V2N`
IT +

, V1Nu
IT +

= V2Nu
IT +

, V1N`
II+

= V2N`
II+

, V1Nu
II+

= V2Nu
II+

,

V1N`
IF+

= V2N`
IF+

, V1Nu
IF+

= V2Nu
IF+

,

and

V1N`
IT− = V2N`

IT− , V1Nu
IT− = V2Nu

IT− , V1N`
II− = V2N`

II− , V1Nu
II− = V2Nu

II− ,

V1N`
IF− = V2N`

IF− , V1Nu
IF− = V2Nu

IF− , for allẍ ∈ ω.

2.4. Soft set

Definition 12. [15] Let ω = {ẍ1, ẍ2, . . . , ẍn} and E = {ë1, ë2, . . . , ëm} be a reference set and attribute
set, respectively. Then, a soft set (SS) over ω is given by the structure:

S = {(ë, 〈S (ë)〉) | ë ∈ E},

where S is a mapping given by:

S : E → P(ω).

Here, P(ω) refers to the collection of subsets of the reference set ω.

Definition 13. [16] Let ω = {ẍ1, ẍ2, . . . , ẍn} and E = {ë1, ë2, . . . , ëm} be a reference set and attribute
set, respectively. Then, a neutrosophic Soft Set over ω is given by the structure:

S N = {(ë, 〈S T (ë), S I(ë), S F(ë)〉) | ë ∈ E},

where S N is a mapping given by:

S N : E → PN(ω).

Here, PN(ω) refers to the collection of subsets of the reference set ω.

Definition 14. [17] Let ω = {ẍ1, ẍ2, . . . , ẍn} and E = {ë1, ë2, . . . , ëm} be a reference set and attribute
set, respectively. A bipolar neutrosophic SS FB in reference set ω is given by

FB ={(
ë,

〈
BNS

T +

(ë),BNS
I+

(ë),BNS
F+

(ë),BNS
T−(ë),BNS

I−(ë),BNS
F−(ë)

〉)
| ë ∈ E, ẍ ∈ ω

}
,

where BNS
T +

,BNS
I+

,BNS
F+

→ [0, 1] denote, respectively the positive-TM, positive-IM, and positive-
FM degrees of an element ẍ ∈ ω to the property in line with a FB, and BNS

T− ,BN
I− ,BNS

F− → [−1, 0]
denote, respectively the negative-TM, negative-IM and negative-FM degrees of an object ẍ ∈ ω.
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3. CBNSs

3.1. CBNSs

In this part, we introduce the definition of CBNSs and their basic operations, derive their properties,
and provide some examples.

Definition 15. Consider a universal setω. A CBNS ACBNS defined over the universe setω is an ordered
pair which is defined as follows:

ACBNS =
{〈

ẍ,VIBNS (ẍ),BBNS (ẍ)
〉
| ẍ ∈ ω

}
,

where VIBNS =
{
VIT +

(ẍ),VII+

(ẍ),VIF+

(ẍ),VIT−(ẍ),VII−(ẍ),VIF−(ẍ)
}

is called IVBNS,

whereas BBNS =
{
BN+

(ẍ),BN−(ẍ)
}

is called BNS. Consider the interval I = [−1, 1]. Suppose that [I+]
and [I−] are the collection of all subintervals of [0, 1] and [−1, 0], respectively. Then, we obtain the
mappings:

VIT +

(ẍ)→ [I+] | VIT +

(ẍ) =
[
V`

IT +

(ẍ),Vu
IT +

(ẍ)
]
,

VII+

(ẍ)→ [I+] | VII+

(ẍ) =
[
V`

II+

(ẍ),Vu
II+

(ẍ)
]
,

VIF+

(ẍ)→ [I+] | VIF+

(ẍ) =
[
V`

IF+

(ẍ),Vu
IF+

(ẍ)
]
,

and
VIT−(ẍ)→ [I−] | VIT−(ẍ) =

[
V`

IT−(ẍ),Vu
IT−(ẍ)

]
,

VII−(ẍ)→ [I−] | VII−(ẍ) =
[
V`

II−(ẍ),Vu
II−(ẍ)

]
,

VIF−(ẍ)→ [I−] | VIF−(ẍ) =
[
V`

IF−(ẍ),Vu
IF−(ẍ)

]
.

Similarly, we get
BN+

(ẍ)→ [I+] | BN+

(ẍ) =
[
BT +

(ẍ),BI+

(ẍ),BF+

(ẍ)
]
,

BN−(ẍ)→ [I−] | BN−(ẍ) =
[
BT−(ẍ),BI−(ẍ),BF−(ẍ)

]
.

Then, the CBNS ACBNS is represented as

ACBNS = {〈
[
V`

IT +

,Vu
IT +

]
,
[
V`

II+

,Vu
II+

]
,
[
V`

IF+

,Vu
IF+

]
,
[
V`

IT− ,Vu
IT−

]
,[

V`
II− ,Vu

II−
]
,
[
V`

IF− ,Vu
IF−

]〉
,
(
BT +

,BI+

,BF+

,BT− ,BI− ,BF−
)}
.

Note that the set of all CBNSs over ω will be denoted by CωBN .

Example 1. Let ω = {ẍ1, ẍ2, ẍ3} be a universe set. Suppose an IVBNS VIBNS in ω is defined by

VIBNS = {
〈
[0.2, 0.8]II+

, [0.3, 0.6]II+

, [0.4, 0.5]IF+

, [−0.8,−0.5]II− , [−0.6,−0.3]II− , [−0.4,−0.3]IF−
〉
/ẍ1,〈

[0.4, 0.6]IT +

, [0.3, 0.7]II+

, [0.1, 0.3]IF+

, [−0.7,−0.5]IT− , [−0.6,−0.2]II− , [−0.5,−0.4]IF−
〉
/ẍ2,〈

[0.3, 0.8]IT +

, [0.4, 0.7]II+

, [0.3, 0.4]IF+

, [−0.9,−0.5]IT− , [−0.4,−0.3]II− , [−0.8,−0.5]IF−
〉
/ẍ3

}
,

and a BNS BBNS is a set of ω and is defined by

BBNS = {〈0.4, 0.3, 0.1,−0.6,−0.2,−0.3〉/ẍ1, 〈0.2, 0.3, 0.7,−0.04,−0.5,−0.4〉/ẍ2,

〈0.4, 0.6, 0.2,−0.01,−0.7,−0.4〉/ẍ3} .
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Then, the CBNSs ACBNS =
〈
VIBNS ,BBNS

〉
will have the tabular representation as in Table 1.

Table 1. Tabular representation of the CBNSs.

ACBNS =
〈
VIBNS ,BBNS

〉
ACBNS VIBNS BBNS

ẍ1

〈
[02, 0.8]IT +

, [03, 0.6]II+

, [0.4, 0.5]IF+

, (0.4, 0.3, 0.1,−0.6,−0.2,−0.3)
[−0.8,−0.5]IT− , [−0.6,−0.3]II− , [−0.4,−0.3]IF−

〉
ẍ2

〈
[0.4, 0.6]IT +

, [0.3, 0.7]II+

, [0.1, 0.3]IF+

, (0.2, 0.3, 0.7,−0.04,−0.5,−0.4)
[−0.7,−0.5]IT− , [−0.6,−0.2]II− , [−0.5,−0.4]IF−

〉
ẍ3

〈
[0.3, 0.8]IT +

, [0.4, 0.7]II+

, [0.3, 0.4]IF+

, (0.4, 0.6, 0.2,−0.01,−0.7,−0.4)
[−0.9,−0.5]IT− , [−0.4,−0.3]II− , [−0.8,−0.5]IF−

〉
Definition 16. Let ACBNS

1 = 〈VIBNS
1 ,BBNS

1 〉 and ACBNS
2 = 〈VIBNS

2 ,BBNS
2 〉 ∈ C

BN
ω , where

ACBNS
1 =


 ẍ,


[
V`1

IT +

(ẍ),Vu1
IT +

(ẍ)
]
,
[
V`1

II+

(ẍ),Vu1
II+

(ẍ)
]
,
[
V`1

IF+

(ẍ),Vu1
IF+

(ẍ)
]
,[

V`1
IT−(ẍ),Vu1

IT−(ẍ)
]
,
[
V`1

II−(ẍ),Vu1
II−(ẍ)

]
,
[
V`1

IF−(ẍ),Vu1
IF−(ẍ)

]  ,{
BT +

1 (ẍ),BI+

1 (ẍ),BF+

1 (ẍ),BT−
1 (ẍ),BI−

1 (ẍ),BF−
1 (ẍ)

}
 : ẍ ∈ ω

 ,
and

ACBNS
2 =


 ẍ,


[
V`2

IT +

(ẍ),Vu2
IT +

(ẍ)
]
,
[
V`2

II+

(ẍ),Vu2
II+

(ẍ)
]
,
[
V`2

IF+

(ẍ),Vu2
IF+

(ẍ)
]
,[

V`2
IT−(ẍ),Vu2

IT−(ẍ)
]
,
[
V`2

II−(ẍ),Vu2
II−(ẍ)

]
,
[
V`2

IF−(ẍ),Vu2
IF−(ẍ)

]  ,{
BT +

2 (ẍ),BI+

2 (ẍ),BF+

2 (ẍ),BT−
2 (ẍ),BI−

2 (ẍ),BF−
2 (ẍ)

}
 : ẍ ∈ ω

 .
1. Then, ACBNS

1 ⊆ ACBNS
2 if, and only if:

i. VIBNS
1 ⊆ VIBNS

2 for all ẍ ∈ ω, and we have:

V`1
IT +

(ẍ) ≤ V`2IT +

(ẍ), Vu1
IT +

(ẍ) ≤ Vu2
IT +

(ẍ), V`1
II+

(ẍ) ≥ V`2II+

(ẍ),

Vu1
II+

(ẍ) ≥ Vu2
II+

(ẍ), V`1
IF+

(ẍ) ≥ V`2IF+

(ẍ), Vu1
IF+

(ẍ) ≥ Vu2
IF+

(ẍ),

and
V`1

IT−(ẍ) ≤ V`2IT−(ẍ), Vu1
IT−(ẍ) ≤ Vu2

IT−(ẍ), V`1
II−(ẍ) ≥ V`2II−(ẍ),

Vu1
II−(ẍ) ≥ Vu2

II−(ẍ), V`1
IF−(ẍ) ≥ V`2IF−(ẍ), Vu1

IF−(ẍ) ≥ Vu2
IF−(ẍ).

ii. BBNS
1 ⊆ BBNS

2 for all ẍ ∈ ω, and we have:

BT +

1 (ẍ) ≤ BT +

2 (ẍ), BI+

1 (ẍ) ≤ BI+

2 (ẍ), BF+

1 (ẍ) ≥ BF+

2 (ẍ),

BT−
1 (ẍ) ≥ BT−

2 (ẍ), BI−
1 (ẍ) ≥ BI−

2 (ẍ), BF−
1 (ẍ) ≤ BF−

2 (ẍ).
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2. Then, ACBNS
1 = ACBNS

2 if, and only if:

V`1
IT +

(ẍ) = V`2
IT +

(ẍ), Vu1
IT +

(ẍ) = Vu2
IT +

(ẍ), V`1
II+

(ẍ) = V`2
II+

(ẍ),

Vu1
II+

(ẍ) = Vu2
II+

(ẍ), V`1
IF+

(ẍ) = V`2
IF+

(ẍ), Vu1
IF+

(ẍ) = Vu2
IF+

(ẍ),

V`1
IT−(ẍ) = V`2

IT−(ẍ), Vu1
IT−(ẍ) = Vu2

IT−(ẍ), V`1
II−(ẍ) = V`2

II−(ẍ),

Vu1
II−(ẍ) = Vu2

II−(ẍ), V`1
IF−(ẍ) = V`2

IF−(ẍ), Vu1
IF−(ẍ) = Vu2

IF−(ẍ),
for all ẍ ∈ ω,

and
BT +

1 (ẍ) = BT +

2 (ẍ), BI+

1 (ẍ) = BI+

2 (ẍ), BF+

1 (ẍ) = BF+

2 (ẍ),

BT−
1 (ẍ) = BT−

2 (ẍ), BI−
1 (ẍ) = BI−

2 (ẍ), BF−
1 (ẍ) = BF−

2 (ẍ),
for all ẍ ∈ ω.

Definition 17. Let ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN, where

ACBNS =


 ẍ,


[
V`

IT +

(ẍ),Vu
IT +

(ẍ)
]
,
[
V`

II+

(ẍ),Vu
II+

(ẍ)
]
,
[
V`

IF+

(ẍ),Vu
IF+

(ẍ)
]
,[

V`
IT−(ẍ),Vu

IT−(ẍ)
]
,
[
V`

II−(ẍ),Vu
II−(ẍ)

]
,
[
V`

IF−(ẍ),Vu
IF−(ẍ)

]  ,{
BT +

(ẍ),BI+

(ẍ),BF+

(ẍ),BT−(ẍ),BI−(ẍ),BF−(ẍ)
}

 : ẍ ∈ ω

 .
If

V`
IT +

(ẍ) ≤ BT +

(ẍ) ≤ Vu
IT +

(ẍ), V`
II+

(ẍ) ≤ BI+

(ẍ) ≤ Vu
II+

(ẍ),

V`
IF+

(ẍ) ≤ BF+

(ẍ) ≤ Vu
IF+

(ẍ),

and

V`
IT−(ẍ) ≤ BT−(ẍ) ≤ Vu

IT−(ẍ), V`
II−(ẍ) ≤ BI−(ẍ) ≤ Vu

II−(ẍ),

V`
IF−(ẍ) ≤ BF−(ẍ) ≤ Vu

IF−(ẍ),

for all ẍ ∈ ω, then ACBNS is called an internal cubic bipolar neutrosophic set (ICBNS).

Example 2. Let ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN.I fVIBNS

=
{〈

[0.2, 0.8]IT +

, [0.3, 0.6]II+

, [0.4, 0.7]IF+

, [−0.8,−0.5]IT− , [−0.6,−0.5]II− , [−0.3,−0.1]IF−
〉
/ẍ1

}
,

and
BBNS = {〈0.4, 0.5, 0.6,−0.6,−0.55,−0.2〉 /ẍ1} ,

for all ẍ ∈ ω, then ACBNS = 〈VIBNS,BBNS〉 is an ICBNS.

Definition 18. Let ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN, where

ACBNS =


 ẍ,


[
V`

IT +

(ẍ),Vu
IT +

(ẍ)
]
,
[
V`

II+

(ẍ),Vu
II+

(ẍ)
]
,
[
V`

IF+

(ẍ),Vu
IF+

(ẍ)
]
,[

V`
IT−(ẍ),Vu

IT−(ẍ)
]
,
[
V`

II−(ẍ),Vu
II−(ẍ)

]
,
[
V`

IF−(ẍ),Vu
IF−(ẍ)

]  ,{
BT +

(ẍ),BI+

(ẍ),BF+

(ẍ),BT−(ẍ),BI−(ẍ),BF−(ẍ)
}

 : ẍ ∈ ω

 .
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If
BT +

(ẍ) <
[
V`

IT +

(ẍ),Vu
IT +

(ẍ)
]
, BI+

(ẍ) <
[
V`

II+

(ẍ),Vu
II+

(ẍ)
]
,

BF+

(ẍ) <
[
V`

IF+

(ẍ),Vu
IF+

(ẍ)
]
,

and

BT−(ẍ) <
[
V`

IT−(ẍ),Vu
IT−(ẍ)

]
, BI−(ẍ) <

[
V`

II−(ẍ),Vu
II−(ẍ)

]
,

BF−(ẍ) <
[
V`

IF−(ẍ),Vu
IF−(ẍ)

]
,

for all ẍ ∈ ω, then ACBNS is called an external cubic bipolar neutrosophic set (ECBNS).

Example 3. Let ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN. If VIBNS

=
{〈

[0.2, 0.8]IT +

, [0.3, 0.6]II+

, [0.4, 0.7]IF+

, [−0.8,−0.5]IT− , [−0.6,−0.5]II− , [−0.3,−0.1]IF−
〉
/ẍ1

}
,

and
BBNS = {〈0.1, 0.7, 0.3,−0.3,−0.8,−0.5〉 /ẍ1} ,

for all ẍ ∈ ω, then ACBNS = 〈VIBNS,BBNS〉 is an ECBNS.

Remark 1. Let ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN. Then, ACBNS is said to be neither ICBNS nor ECBNS if:

V+
` (ẍ) ≤ BN+(ẍ) ≤ V+

u (ẍ) and V−` (ẍ) ≤ BN−(ẍ) ≤ V−u (ẍ),

and
BN+(ẍ) <

(
V+
` (ẍ),V+

u (ẍ)
)

and BN−(ẍ) <
(
V−` (ẍ),V−u (ẍ)

)
for allẍ ∈ ω.

Example 4. Let ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN. If VIBNS

=
{〈

[0.2, 0.8]IT +

, [0.3, 0.6]II+

, [0.4, 0.7]IF+

, [−0.8,−0.5]IT− , [−0.6,−0.5]II− , [−0.3,−0.1]IF−
〉
/ẍ1

}
,

and
BBNS = {〈0.5, 0.4, 0.5,−0.3,−0.8,−0.5〉 /ẍ1} ,

for all ẍ ∈ ω, then ACBNS = 〈VIBNS,BBNS〉 is not an ICBNS or an ECBNS.

Theorem 1. Let ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN, which is not an ECBNS. Then, there exists ẍ ∈ ω such
that:

VIT +

` (ẍ) ≤ BT +

(ẍ) ≤ VIT +

u (ẍ) VII+

` (ẍ) ≤ BI+

(ẍ) ≤ VII+

u (ẍ),

VIF+

` (ẍ) ≤ BF+

(ẍ) ≤ VIF+

u (ẍ) VIT−
` (ẍ) ≤ BT−(ẍ) ≤ VIT−

u (ẍ),

VII−
` (ẍ) ≤ BI−(ẍ) ≤ VII−

u (ẍ) or VIF−
` (ẍ) ≤ BF−(ẍ) ≤ VIF−

u (ẍ).

Proof. Suppose that ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN. Then, ACBNS is ECBNS. By using Definition 18,
we get:

BN+(ẍ) <
(
V+
` (ẍ),V+

u (ẍ)
)
, BN−(ẍ) <

(
V−` (ẍ),V−u (ẍ)

)
, ∀ẍ ∈ ω.
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Since ACBNS is not an ECBNS in ω, we have:

BN+(ẍ) ∈
(
V+
` (ẍ),V+

u (ẍ)
)
, BN−(ẍ) ∈

(
V−` (ẍ),V−u (ẍ)

)
, ∀ẍ ∈ ω.

That means:

V+
` (ẍ) ≤ BN+(ẍ) ≤ V+

u (ẍ), V−` (ẍ) ≤ BN−(ẍ) ≤ V−u (ẍ).

�

Theorem 2. Let ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN. If ACBNS is both ICBNS and ECBNS, then:

BT +

(ẍ) ∈
[
L(VIT +

) ∪ U(VIT +

)
]
, BI+

(ẍ) ∈
[
L(VII+

) ∪ U(VII+

)
]
,

BF+

(ẍ) ∈
[
L(VIF+

) ∪ U(VIF+

)
]
, BT−(ẍ) ∈

[
L(VIT−) ∪ U(VIT−)

]
,

BI−(ẍ) ∈
[
L(VII−) ∪ U(VII−)

]
and BF−(ẍ) ∈

[
L(VIF−) ∪ U(VIF−)

]
,

for all ẍ ∈ ω, where:

L(VIT +

) =
{
VIT +

` (ẍ) | ẍ ∈ ω
}
, U(VIT +

) =
{
VIT +

u (ẍ) | ẍ ∈ ω
}
,

L(VII+

) =
{
VII+

` (ẍ) | ẍ ∈ ω
}
, U(VII+

) =
{
VII+

u (ẍ) | ẍ ∈ ω
}
,

L(VIF+

) =
{
VIF+

` (ẍ) | ẍ ∈ ω
}
, U(VIF+

) =
{
VIF+

u (ẍ) | ẍ ∈ ω
}
,

L(VIT−) =
{
VIT−
` (ẍ) | ẍ ∈ ω

}
, U(VIT−) =

{
VIT−

u (ẍ) | ẍ ∈ ω
}
,

L(VII−) =
{
VII−
` (ẍ) | ẍ ∈ ω

}
, U(VII−) =

{
VII−

u (ẍ) | ẍ ∈ ω
}
,

L(VIF−) =
{
VIF−
` (ẍ) | ẍ ∈ ω

}
, U(VIF−) =

{
VIF−

u (ẍ) | ẍ ∈ ω
}
.

Proof. Suppose that ACBNS = 〈VIBNS,BBNS〉 ∈ CωBN. Then, ACBNS is both ICBNS and ECBNS. By using
Definitions 17 and 18, we get:

V+
` (ẍ) ≤ BN+(ẍ) ≤ V+

u (ẍ), V−` (ẍ) ≤ BN−(ẍ) ≤ V−u (ẍ),

and

BN+(ẍ) <
(
V+
` (ẍ),V+

u (ẍ)
)
, BN−(ẍ) <

(
V−` (ẍ),V−u (ẍ)

)
.

Thus,

BN+(ẍ) = V+
` (ẍ) or BN+(ẍ) = V+

u (ẍ), BN−(ẍ) = V−` (ẍ) or BN−(ẍ) = V−u (ẍ).

Hence,

BN+(ẍ) ∈
[
L(V+) ∪ U(V+)

]
, BN−(ẍ) ∈

[
L(V−) ∪ U(V−)

]
.

�
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3.2. Basic operations on CBNSs

In this part, we introduce some basic operations with examples for CBNS.

Definition 19. Let ACBNS =
〈
VIBNS,BBNS

〉
∈ CωBN, where:

ACBNS =


 ẍ,


[
V`

IT +

(ẍ),Vu
IT +

(ẍ)
]
,
[
V`

II+

(ẍ),Vu
II+

(ẍ)
]
,
[
V`

IF+

(ẍ),Vu
IF+

(ẍ)
]
,[

V`
IT−(ẍ),Vu

IT−(ẍ)
]
,
[
V`

II−(ẍ),Vu
II−(ẍ)

]
,
[
V`

IF−(ẍ),Vu
IF−(ẍ)

]  ,{
BT +

(ẍ),BI+

(ẍ),BF+

(ẍ),BT−(ẍ),BI−(ẍ),BF−(ẍ)
}

 : ẍ ∈ ω

 .
The complement of ACBNS is denoted by AcCBNS and is defined by:

VcIT +

` (ẍ) = {1+} − Vu
IT +

(ẍ), VcIT +

u (ẍ) = {1+} − V`
IT +

(ẍ),

VcII+

` (ẍ) = {1+} − Vu
II+

(ẍ), VcII+

u (ẍ) = {1+} − V`
II+

(ẍ),

VcIF+

` (ẍ) = {1+} − Vu
IF+

(ẍ), VcIF+

u (ẍ) = {1+} − V`
IF+

(ẍ),

VcIT−
` (ẍ) = {1−} − Vu

IT−(ẍ), VcIT−
u (ẍ) = {1−} − V` IT−(ẍ),

VcII−
` (ẍ) = {1−} − Vu

II−(ẍ), VcII−
u (ẍ) = {1−} − V` II−(ẍ),

VcIF−
` (ẍ) = {1−} − Vu

IF−(ẍ), VcIF−
u (ẍ) = {1−} − V` IF−(ẍ),

and:

BcT +

(ẍ) = {1+} − BT +

(ẍ), BcI+

(ẍ) = {1+} − BI+

(ẍ),

BcF+

(ẍ) = {1+} − BF+

(ẍ), BcT−(ẍ) = {1−} − BT−(ẍ),

BcI−(ẍ) = {1−} − BI−(ẍ), BcF−(ẍ) = {1−} − BF−(ẍ),

for all ẍ ∈ ω.

Theorem 3. Let ACBNS =
〈
VIBNS,BBNS

〉
∈ CωBN. If ACBNS is an ICBNS, then AcCBNS is also an ICBNS.

Proof. Since ACBNS =
〈
VIBNS,BBNS

〉
is an ICBNS in ω, we have:

V`
IT +

(ẍ) ≤ BT +

(ẍ) ≤ Vu
IT +

(ẍ), V`
II+

(ẍ) ≤ BI+

(ẍ) ≤ Vu
II+

(ẍ),

V`
IF+

(ẍ) ≤ BF+

(ẍ) ≤ Vu
IF+

(ẍ), V`
IT−(ẍ) ≤ BT−(ẍ) ≤ Vu

IT−(ẍ),

V`
II−(ẍ) ≤ BI−(ẍ) ≤ Vu

II−(ẍ) or V`
IF−(ẍ) ≤ BF−(ẍ) ≤ Vu

IF−(ẍ),

which means:

{1+} − VcIT +

u (ẍ) ≤ BT +

(ẍ) ≤ {1+} − VcIT +

` (ẍ), {1+} − VcII+

u (ẍ) ≤ BI+

(ẍ) ≤ {1+} − VcII+

` (ẍ),

{1+} − VcIF+

u (ẍ) ≤ BF+

(ẍ) ≤ {1+} − VcIF+

` (ẍ), {1−} − VcIT−
u (ẍ) ≤ BT−(ẍ) ≤ {1−} − VcIT−

` (ẍ),

{1−} − VcII−
u (ẍ) ≤ BI−(ẍ) ≤ {1−} − VcII−

` (ẍ) or {1−} − VcIF−
u (ẍ) ≤ BF−(ẍ) ≤ {1−} − VcIF−

` (ẍ),

and this means AcCBNS is also an ICBNS in ω. �
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Theorem 4. Let ACBNS =
〈
VIBNS,BBNS

〉
∈ CωBN. If ACBNS is an ECBNS, then AcCBNS is also an ECBNS.

Proof. The proof can be easily stated according to Definitions 18 and 19. �

Definition 20. Let

ACBNS
1 =


 ẍ,


[
V`1

IT +

(ẍ),Vu1
IT +

(ẍ)
]
,
[
V`1

II+

(ẍ),Vu1
II+

(ẍ)
]
,
[
V`1

IF+

(ẍ),Vu1
IF+

(ẍ)
]
,[

V`1
IT−(ẍ),Vu1

IT−(ẍ)
]
,
[
V`1

II−(ẍ),Vu1
II−(ẍ)

]
,
[
V`1

IF−(ẍ),Vu1
IF−(ẍ)

]  ,{
B1

T +

(ẍ),B1
I+

(ẍ),B1
F+

(ẍ),B1
T−(ẍ),B1

I−(ẍ),B1
F−(ẍ)

}
 : ẍ ∈ ω

 ,
and

ACBNS
2 =


 ẍ,


[
V`2

IT +

(ẍ),Vu2
IT +

(ẍ)
]
,
[
V`2

II+

(ẍ),Vu2
II+

(ẍ)
]
,
[
V`2

IF+

(ẍ),Vu2
IF+

(ẍ)
]
,[

V`2
IT−(ẍ),Vu2

IT−(ẍ)
]
,
[
V`2

II−(ẍ),Vu2
II−(ẍ)

]
,
[
V`2

IF−(ẍ),Vu2
IF−(ẍ)

]  ,{
B2

T +

(ẍ),B2
I+

(ẍ),B2
F+

(ẍ),B2
T−(ẍ),B2

I−(ẍ),B2
F−(ẍ)

}
 : ẍ ∈ ω

 ,
be two CBNSs in ω.

Then, the union is defined as:

ACBNS
1 ∪ ACBNS

2 (ẍ) =





ẍ,



[
max

{
V`1

IT +

(ẍ),V`2IT +

(ẍ)
}
,max

{
Vu1

IT +

(ẍ),Vu2
IT +

(ẍ)
}]
,[

min
{
V`1

II+

(ẍ),V`2II+

(ẍ)
}
,min

{
Vu1

II+

(ẍ),Vu2
II+

(ẍ)
}]
,[

min
{
V`1

IF+

(ẍ),V`2IF+

(ẍ)
}
,min

{
Vu1

IF+

(ẍ),Vu2
IF+

(ẍ)
}]
,[

min
{
V`1

IT−(ẍ),V`2IT−(ẍ)
}
,min

{
Vu1

IT−(ẍ),Vu2
IT−(ẍ)

}]
,[

max
{
V`1

II−(ẍ),V`2II−(ẍ)
}
,max

{
Vu1

II−(ẍ),Vu2
II−(ẍ)

}]
,[

max
{
V`1

IF−(ẍ),V`2IF−(ẍ)
}
,max

{
Vu1

IF−(ẍ),Vu2
IF−(ẍ)

}]


,

〈
max

{
B1

T +

(ẍ),B2
T +

(ẍ)
}
, B1

I+ (ẍ)+B2
I+ (ẍ)

2 ,min
{
B1

F+

(ẍ),B2
F+

(ẍ)
}
,

min
{
B1

T−(ẍ),B2
T−(ẍ)

}
, B1

I− (ẍ)+B2
I− (ẍ)

2 ,max
{
B1

F−(ẍ),B2
F−(ẍ)

} 〉



: ẍ ∈ ω



.

Definition 21. Let

ACBNS
1 =


 ẍ,


[
V`1

IT +

(ẍ),Vu1
IT +

(ẍ)
]
,
[
V`1

II+

(ẍ),Vu1
II+

(ẍ)
]
,
[
V`1

IF+

(ẍ),Vu1
IF+

(ẍ)
]
,[

V`1
IT−(ẍ),Vu1

IT−(ẍ)
]
,
[
V`1

II−(ẍ),Vu1
II−(ẍ)

]
,
[
V`1

IF−(ẍ),Vu1
IF−(ẍ)

]  ,{
B1

T +

(ẍ), B1
I+

(ẍ), B1
F+

(ẍ), B1
T−(ẍ), B1

I−(ẍ), B1
F−(ẍ)

}
 : ẍ ∈ ω

 ,
and

ACBNS
2 =


 ẍ,


[
V`2

IT +

(ẍ),Vu2
IT +

(ẍ)
]
,
[
V`2

II+

(ẍ),Vu2
II+

(ẍ)
]
,
[
V`2

IF+

(ẍ),Vu2
IF+

(ẍ)
]
,[

V`2
IT−(ẍ),Vu2

IT−(ẍ)
]
,
[
V`2

II−(ẍ),Vu2
II−(ẍ)

]
,
[
V`2

IF−(ẍ),Vu2
IF−(ẍ)

]  ,{
BT +

2 (ẍ), BI+

2 (ẍ), BF+

2 (ẍ), BT−
2 (ẍ), BI−

2 (ẍ), BF−
2 (ẍ)

}
 : ẍ ∈ ω

 ,
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be two CBNSs in ω. Then, their intersection is defined as:

(ACBNS
1 ∩ ACBNS

2 )(ẍ) =



ẍ,



[
min

{
V`1

IT +

(ẍ),V`2
IT +

(ẍ)
}
,min

{
Vu1

IT +

(ẍ),Vu2
IT +

(ẍ)
}]
,[

max
{
V`1

II+

(ẍ),V`2
II+

(ẍ)
}
,max

{
Vu1

II+

(ẍ),Vu2
II+

(ẍ)
}]
,[

max
{
V`1

IF+

(ẍ),V`2
IF+

(ẍ)
}
,max

{
Vu1

IF+

(ẍ),Vu2
IF+

(ẍ)
}]
,[

max
{
V`1

IT−(ẍ),V`2
IT−(ẍ)

}
,max

{
Vu1

IT−(ẍ),Vu2
IT−(ẍ)

}]
,[

min
{
V`1

II−(ẍ),V`2
II−(ẍ)

}
,min

{
Vu1

II−(ẍ),Vu2
II−(ẍ)

}]
,[

min
{
V`1

IF−(ẍ),V`2
IF−(ẍ)

}
,min

{
Vu1

IF−(ẍ),Vu2
IF−(ẍ)

}]


,

〈
min

{
BT +

1 (ẍ), BT +

2 (ẍ)
}
,

BI+
1 (ẍ)+BI+

2 (ẍ)
2 ,max

{
BF+

1 (ẍ), BF+

2 (ẍ)
}
,

max
{
BT−

1 (ẍ), BT−
2 (ẍ)

}
,

BI−
1 (ẍ)+BI−

2 (ẍ)
2 ,min

{
BF−

1 (ẍ), BF−
2 (ẍ)

} 〉



: ẍ ∈ ω.

Example 5. Let ω = {ẍ1, ẍ2}. Then,

ACBNS
1 =



 ẍ1,

 IT +

, [0.4, 0.5]II+

, [0.44, 0.55]IF+

,

[−0.4,−0.2]IT− , [−0.7,−0.5]II− , [−0.3,−0.3]IF−

 ,
{0.5, 0.8, 0.1,−0.67,−0.45,−0.3}

 ẍ2,

 IT +

, [0.2, 0.5]II+

, [0.4, 0.5]IF+

,

[−0.6,−0.5]IT− , [−0.38,−0.3]II− , [−0.5,−0.2]IF−

 ,
{0.5, 0.7, 0.4,−0.2,−0.7,−0.5}




,

and

ACBNS
2 =



 ẍ1,

 IT +

, [0.5,0.7]II+

, [0.5, 0.7]IF+

,

[−0.66,−0.4]IT− , [−0.8,−0.7]II− , [−0.2,−0.1]IF−

 ,
{0.4, 0.7, 0.3,−0.6,−0.4,−0.01}

 ẍ2,

 IT +

, [0.2, 0.3]II+

, [0.4, 0.8]IF+

,

[−0.77,−0.5]IT− , [−0.4,−0.3]II− , [−0.9,−0.2]IF−

 ,
{0.8, 0.5, 0.4,−0.7,−0.3,−0.01}




,

are two CBNSs in ω.

1. Then, the complement of a cubic bipolar neutrosophic set (ACBNS)1 is given as follows:

AcCBNS
1 =



 ẍ1,

 IT +

, [0.5, 0.6]II+

, [0.45, 0.56]IF+

,

[−0.8,−0.6]IT− , [−0.5,−0.3]II− , [−0.7,−0.7]IF−

 ,
{0.5, 0.2, 0.9,−0.23,−0.55,−0.7}

 ẍ2,

 IT +

, [0.5,0.8]II+

, [0.5, 0.6]IF+

,

[−0.5,−0.4]IT− , [−0.7,−0.62]II− , [−0.8,−0.5]IF−

 ,
{0.5, 0.3, 0.6,−0.8,−0.3,−0.5}




.

2. Then, their union is given as follows:
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(
ACBNS

1 ∪ ACBNS
2

)
(ẍ) =



 ẍ1,

 IT +

, [0.4,0.5]II+

, [0.44, 0.55]IF+

,

[−0.66,−0.4]IT− , [−0.7,−0.5]II− , [−0.2,−0.1]IF−

 ,
{0.5, 0.75, 0.1,−0.67,−0.425,−0.01}

 ẍ2,

 IT +

, [0.2,0.3]II+

, [0.4, 0.5]IF+

,

[−0.77,−0.5]IT− , [−0.38,−0.3]II− , [−0.5,−0.2]IF−

 ,
{0.8, 0.6, 0.4,−0.7,−0.5,−0.01}




.

3. Then, their intersection is given as follows:

(
ACBNS

1 ∩ ACBNS
2

)
(ẍ) =



 ẍ1,

 IT +

, [0.5, 0.7]II+

, [0.5, 0.7]IF+

,

[−0.4,−0.2]IT− , [−0.8,−0.7]II− , [−0.3,−0.3]IF−

 ,
{0.4, 0.75, 0.3,−0.6,−0.425,−0.3}

 ẍ2,

 IT +

, [0.2, 0.5]II+

, [0.4, 0.8]IF+

,

[−0.6,−0.5]IT− , [−0.4, − 0.3]II− , [−0.9,−0.2]IF−

 ,
{0.8, 0.6, 0.4,−0.2,−0.5,−0.5}




.

To facilitate the analysis, we define the parameters used throughout this study. A detailed overview
of these parameters is provided in Table 2.

Table 2. Parameters used in the analysis.

Parameter Description
ẍ Element of the reference set ω

µA(ẍ) Grade of satisfaction of ẍ in set A
[`, u] Interval membership degree in IVFS
λ(ẍ) FS membership degree in a cubic set
χ+
B(ẍ) Positive membership function of BFS
χ−B(ẍ) Negative membership function of BFS[

V+
` (ẍ),V+

u (ẍ)
]

Positive membership degree in IVBFS[
V−` (ẍ),V−u (ẍ)

]
Negative membership degree in IVBFS

∂̈t
Â

(ẍ) True membership degree in NS
∂̈i
Â

(ẍ) Indeterminacy membership degree in NS
∂̈

f
Â

(ẍ) Falsehood membership degree in NS
VIT +

(ẍ) Interval for IT +

VII+

(ẍ) Interval for II+

VIF+

(ẍ) Interval for IF+

VIT−(ẍ) Interval for IT−

VII−(ẍ) Interval for II−

VIF−(ẍ) Interval for IF−

BN+

(ẍ) BNS for positive interval
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Table 2. (continued)

Parameter Description
BN−(ẍ) BNS for negative interval
BT +

(ẍ) True membership for positive interval
BI+

(ẍ) Indeterminate membership for positive interval
BF+

(ẍ) False membership for positive interval
BT−(ẍ) True membership for negative interval
BI−(ẍ) Indeterminate membership for negative interval
BF−(ẍ) False membership for negative interval
VcIT +

` (ẍ) Complement of IT + lower bound
VcIT +

u (ẍ) Complement of IT + upper bound
VcII+

` (ẍ) Complement of II+ lower bound
VcII+

u (ẍ) Complement of II+ upper bound
VcIF+

` (ẍ) Complement of IF+ lower bound
VcIF+

u (ẍ) Complement of IF+ upper bound
VcIT−
` (ẍ) Complement of IT− lower bound
VcIT−

u (ẍ) Complement of IT− upper bound
VcII−
` (ẍ) Complement of II− lower bound
VcII−

u (ẍ) Complement of II− upper bound
VcIF−
` (ẍ) Complement of IF− lower bound
VcIF−

u (ẍ) Complement of IF− upper bound
BcT +

(ẍ) Complement of T + in bipolar set
BcI+

(ẍ) Complement of I+ in bipolar set
BcF+

(ẍ) Complement of F+ in bipolar set
BcT−(ẍ) Complement of T− in bipolar set
BcI−(ẍ) Complement of I− in bipolar set
BcF−(ẍ) Complement of F− in bipolar set

4. CBNSSs

CBNSs are a novel framework introduced in this research to address the limitations of existing
methods, particularly BNSs, in handling uncertainty and vagueness within data analysis.

Key Components of CBNSs:
Bipolarity: This refers to the ability to represent both positive and negative membership degrees

simultaneously, allowing for a more nuanced representation of information. Cubic Sets: Cubic
sets introduce an interval-valued membership grade, providing a more flexible and expressive
representation of uncertainty. How CBNSs Work:

Representation: CBNSs represent information using a membership triplet, consisting of a truth
membership grade, an indeterminacy membership grade, and a falsity membership grade. Each
membership grade can take values within the interval [0, 1]. Operations: CBNSs support various
operations, including union, intersection, complement, and scalar multiplication, allowing for
mathematical manipulation and analysis. Decision-Making: CBNSs can be applied to decision-
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making problems by defining decision rules and calculating similarity measures between alternatives.
Advantages of CBNSs:

Enhanced Representation: CBNSs provide a more comprehensive and accurate representation of
information compared to BNSs, especially in dealing with complex and uncertain data. Flexibility:
The interval-valued membership grades in CBNSs offer greater flexibility in modeling uncertainty and
vagueness. Versatility: CBNSs can be applied to various domains, including decision-making, pattern
recognition, and information fusion.

4.1. CBNSSs

In this part, we introduce the definition of a CBNSS and its basic operations, derive its properties
and give some definitions.

Let ω be a universe set, ~ be a set of parameters andH ⊆ ~. CωBNS ≺ is the set of all CBNS S s on ω.

Definition 22. A pair (F,H) is called a CBNSSs on ω, where F is a mapping given by

F : H → CωBNS .

A CBNSS is a mapping from parameters to CωBNS . It is a parameterized family of CBNS-subsets of
ω and it can be written as:

(F,H) = {F(e) | e ∈ H} =
{〈

e,FV(e),FB(e)
〉

: e ∈ H
}
,

where FV(e) =
{
VIT +

F (e)(ẍ),VII+

F (e)(ẍ),VIF+

F (e)(ẍ),VIT−
F (e)(ẍ),VII−

F (e)(ẍ),VIF−
F (e)(ẍ)

}
[
VIT−
`F (e)(ẍ),VIT−

uF (e)(ẍ)
]
,
[
VII−
`F (e)(ẍ),VII−

uF (e)(ẍ)
]
,
[
VIF−
`F (e)(ẍ),VIF−

uF (e)(ẍ)
]〉

: ∀e ∈ H , ẍ ∈ ω
}

is called intervalued bipolar neutrosophic soft set (IBNSS) whereas FB(e) ={
BT +

F (e)(ẍ),BI+

F (e)(ẍ),BF+

F (e)(ẍ),BT−
F (e)(ẍ),BI−

F (e)(ẍ),BF−
F (e)(ẍ)

}
is called bipolar neutrosophic soft set

(BNSS).
Suppose that [I+]and [I−] are the collection of all subintervals of [0, 1] and [−1, 0], respectively,

where

VIT +

F (e)(ẍ),VII+

F (e)(ẍ),VIF+

F (e)(ẍ) : ω→ [I+] , VIT−
F (e)(ẍ),VII−

F (e)(ẍ),VIF−
F (e)(ẍ) : ω→ [I−] ,

and

BT +

F (e)(ẍ),BI+

F (e)(ẍ),BF+

F (e)(ẍ) : ω→ [I+] , BT−
F (e)(ẍ),BI−

F (e)(ẍ),BF−
F (e)(ẍ) : ω→ [I−] .

To illustrate this notion, let us consider the following example.

Example 6. A set of two motorbikes in the universe ω given by ω = {ẍ1, ẍ2} and parameters ~ = {e1 =

styling,e2 = price,e3 = stamina }.
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ForH = {e1, e3} ⊆ ~, the set (F,H) = {F (e1) ,F (e3)} is a CBNSS over ω where

F (e1) =

{
ẍ1〈

[0.2, 0.3]IT + , [0.3, 0.5]II+ , [0.4, 0.6]IF+ , [−0.77,−0.5]IT− , [−0.9,−0.3]II− , [−0.4,−0.4]IF−〉 , (0.3, 0.4, 0.5,−0.6,−0.44,−0.3)
,

ẍ2〈
[0.22, 0.45]II+ , [0.4, 0.6]II+ , [0.4, 0.6]IF+ , [−0.2,−0.1]IT− , [−0.4,−0.3]II− , [−0.7,−0.4]IF−〉 , (0.3, 0.6, 0.5,−0.2,−0.7,−0.5)

}
,

F (e3) =

{
ẍ1〈

[0.1, 0.5]IT + , [0.3, 0.5]II+, [0.4, 0.7]IF+ , [−0.6,−0.4]IT− , [−0.7,−0.3]II− , [−0.3,−0.3]IF−〉 , (0.1, 0.7, 0.9,−0.7,−0.2,−0.5)
,

ẍ2〈
[0.2, 0.4]II+ , [0.4, 0.5]II+ , [0.7, 0.8]IF+ , [−0.7,−0.2]IT− , [−0.6,−0.1]II− , [−0.8,−0.3]IF−〉 , (0.5, 0.6, 0.7,−0.5,−0.4,−0.4)

}
.

Then, the CBNSS (F,H) will have a tabular representation as shown in Table 3.

Table 3. Tabular representation of the CBNSS (F,H).

(F,H) e1 e3

ẍ1




IT +

,[0.3, 0.5]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.9,−0.3]II− ,[−0.4,−0.4]IF−


{0.3, 0.4, 0.5,−0.6,−0.44,−0.3}





IT +

,[0.3, 0.5]II+

[0.4, 0.7]IF+

,[−0.6,−0.4]IT−

[−0.7,−0.3]II− ,[−0.3,−0.3]IF−


{0.1, 0.7, 0.9,−0.7,−0.2,−0.5}



ẍ2




IT +

,[0.4, 0.6]II+

[0.4, 0.6]IF+

,[−0.2,−0.1]IT−

[−0.4,−0.3]II− ,[−0.7,−0.4]IF−


{0.3, 0.6, 0.5,−0.2,−0.7,−0.5}





II+

,[0.4, 0.5]IT +

[0.7, 0.8]IF+

,[−0.7,−0.2]IT−

[−0.6,−0.6]II− ,[−0.8,−0.8]IF−


{0.5, 0.6, 0.7,−0.5,−0.4,−0.4}


In the following, we introduce the concept of the subset of two CBNSSs and the equality of two

CBNSSs.

Definition 23. Let (F,H) = {F(e) | e ∈ H} =
{〈

e,FV(e),FB(e)
〉

: e ∈ H
}

and (G,T ) = {G(e) | e ∈

T } =
{〈

e,GV(e),GB(e)
〉

: e ∈ T
}

be two CBNSS over ω,H , and T ⊆ ~ Then, define the following:

1. (Equality) (F,H) = (G,T ) if, and only if ( iff ), the following conditions are satisfied:

i. H = T ,

ii. F(e) = G(e),∀e ∈ ~⇔ FV(e) = GV(e) and FB(e) = GB(e),∀e ∈ ~.

2. (P-Order) (F,H) ⊆P (G,T ) if, and only if ( iff ), the following conditions are satisfied:

i. H ⊆ T ,

ii. F(e) ⊆P G(e),∀e ∈ ~⇔ FV(e) ⊆ GV(e) and FB(e) ⊆ GB(e),∀e ∈ ~

3. (RO - Order) (F, H) ⊆ (G, T) if, and only if (iff), the following conditions are satisfied:

i. H ⊆ T,

ii. F(e) ⊆ G(e),∀e ∈ ω, which is equivalent to FV(e) ⊆ GV(e) and FB(e) ⊇ GB(e),∀e ∈ ω.
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Example 7. Refer to Example 6 and take a CBNSS (G,T ) over ω, which is given in the following
tabular form (see Table 4).

Table 4. Tabular representation of a CBNSS (G,T ).

(G,T ) e1 e3

ẍ1




IT +

,[0.28, 0.45]II+

[0.3, 0.55]IF+

,[−0.6,−0.4]IT−

[−0.99,−0.38]II− ,[−0.49,−0.5]IF−


{0.38, 0.44, 0.45,−0.67,−0.5,−0.2}





IT +

,[0.29, 0.48]II+

[0.3, 0.55]IF+

,[−0.5,−0.3]IT−

[−0.78,−0.39]II− ,[−0.38,−0.3]IF−


{0.2, 0.77, 0.8,−0.77,−0.29,−0.4}



ẍ2




IT +

,[0.3, 0.5]II+

[0.3, 0.5]IF+

,[−0.19,−0.01]IT−

[−0.48,−0.38]II− ,[−0.78,−0.48]IF−


{0.38, 0.67, 0.4,−0.27,−0.78,−0.4}





IT +

,[0.3, 0.4]II+

[0.55, 0.77]IF+

,[−0.5,−0.1]IT−

[−0.67,−0.67]II− ,[−0.88,−0.88]IF−


{0.7, 0.8, 0.2,−0.58,−0.48,−0.3}


Then, it is clear that the CBNSS (F,H) in Example 6 is a P-Order of (G,T ).

Example 8. Refer to Example 6 and take a CBNSS (G,T ) over ω, which is given in the following
tabular form (see Table 5).

Table 5. Tabular representation of a CBNSS (G,T ).

(G,T ) e1 e3

ẍ1




IT +

,[0.28, 0.45]II+

[0.3, 0.55]IF+

,[−0.6,−0.4]IT−

[−0.99,−0.38]II− ,[−0.49,−0.5]IF−


{0.2, 0.3, 0.55,−0.5,−0.4,−0.33}





IT +

,[0.29, 0.48]II+

[0.3, 0.55]IF+

,[−0.5,−0.3]IT−

[−0.78,−0.39]II− ,[−0.38,−0.3]IF−


{0.01, 0.55, 0.99,−0.5,−0.2,−0.8}



ẍ2




IT +

,[0.3, 0.5]II+

[0.3, 0.5]IF+

,[−0.19,−0.01]IT−

[−0.48,−0.38]II− ,[−0.78,−0.48]IF−


{0.2, 0.5, 0.7,−0.1,−0.4,−0.7}





IT +

,[0.3, 0.4]II+

[0.55, 0.77]IF+

,[−0.5,−0.1]IT−

[−0.67,−0.67]II− ,[−0.88,−0.88]IF−


{0.44, 0.55, 0.9,−0.4,−0.3,−0.9}


Then, it is clear that the CBNSS (F,H) in Example 6 is an RO-Order of (G,T ).

4.2. Basic operations on CBNSSs

In this part, we introduce some basic operations with examples for CBNSSs.

Definition 24. Let (F ,H) be a CBNSSs over ω. The complement of (F,H) is denoted by (F,H)c and
is defined by (F,H)c = (Fc,¬H), where Fc : ¬H → CωBNS is a mapping given by

(F,H)c = {Fc(e) | e ∈ H} =
{〈

e,FVc(e),FBc
(e)

〉
: e ∈ ¬H

}
,
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where

FVc(e) =
{
VcIT +(e)(ẍ),VcII+

F (e)(ẍ),VcII+

F (e)(ẍ),VcIT−
F (e) (ẍ),VcII−

F (e)(ẍ),VcIcF−
F (e)(ẍ)

}
=

{〈
ẍ,

[
VcIT +

`F (e)(ẍ),VcII+

uF (e)(ẍ)
]
,
[
VcII+

`F (e)(ẍ),VcII+

uF (e)(ẍ)
]
,
[
VcF (e)
`F (e)(ẍ),VcIF+

uF (e)(ẍ)
]
,[

VcIT−
`F (e)(ẍ),VcIT−

uF (e)(ẍ)
]
,
[
VcII−
`F (e)(ẍ),VcII−

uF (e)(ẍ)
]
,
[
VcIF−
`F (e)(ẍ),VcIF−

uF (e)(ẍ)
]〉

: ∀e ∈ H , ẍ ∈ ω
}

=
{〈

ẍ,
[
1 − VIT +

uF (e)(ẍ), 1 − VIT +

`F (e)(ẍ)
]
,
[
1 − VII+

uF (e)(ẍ), 1 − VII+

`F (e)(ẍ)
]
,[

1 − VIF+

uF (e)(ẍ), 1 − VIF+

`F (e)(ẍ)
]
,
[
−1 − VIT−

uF (e)(ẍ),−1 − VIT−
`F (e)(ẍ)

]
,[

−1 − VII−
uF (e)(ẍ),−1 − VII−

`F (e)(ẍ)
]
,
[
−1 − VIF−

uF (e)(ẍ),−1 − VIF−
`F (e)(ẍ)

]〉
: ∀e ∈ H , ẍ ∈ ω

}
,

and

FBc
(e) =

{
BT +c

F (e)(ẍ),BI+c

F (e)(ẍ),BF+c

F (e)(ẍ),BT−c

F (e)(ẍ),BI−c

F (e)(ẍ),BF−c

F (e)(ẍ)
}
−

=
{
1 − BT +

F (e)(ẍ), 1 − BI+

F (e)(ẍ), 1 − BF+

F (e)(ẍ),−1 − BT−
F (e)(ẍ),−1 − BI−

F (e)(ẍ),−1 − BF−
F (e)(ẍ)

}
.

Example 9. Referring to Example 6, we can write

(F,H) = {F (e1)} =

=

{
ẍ1〈

[0.2, 0.3]IT + , [0.3, 0.5]II+ , [0.4, 0.6]IF+ , [−0.77,−0.5]IT− , [−0.9,−0.3]II− , [−0.4,−0.4]IF−〉 , (0.3, 0.4, 0.5,−0.6,−0.44,−0.3)
,

ẍ2〈
[0.22, 0.45]IT + , [0.4, 0.6]II+ , [0.4, 0.6]IF+ , [−0.2,−0.1]IT− , [−0.4,−0.3]II− , [−0.7,−0.4]IF−〉 , (0.3, 0.6, 0.5,−0.2,−0.7,−0.5)

}
.

By using Definition 24, the complement of the CBNSS(F,H) is

(F,H)c = {Fc (e1)} ={
ẍ1〈

[0.7, 0.8]IT + , [0.5, 0.7]II+ , [0.4, 0.6]IF+ , [−0.5,−0.23]IT− , [−0.7,−0.1]II− , [−0.6,−0.6]IF−〉 , (0.7, 0.6, 0.5,−0.4,−0.56,−0.7)
,

ẍ2〈
[0.55, 0.78]IT + , [0.4, 0.6]II+ , [0.4, 0.6]IF+ , [−0.9,−0.8]IT− , [−0.7,−0.6]II− , [−0.6,−0.3]IF−〉 , (0.7, 0.4, 0.5,−0.8,−0.3,−0.5)

}
.

Theorem 5. If (F,H) is a CBNSSs over ω, then ((F,H)c)c
= (F,H).

Proof. Suppose that (F,H) is a CBNSSs over ω. The complement (F,H), denoted by (F,H)c =
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(Fc,¬H), is defined as:

(F,H)c = {Fc(e) | e ∈ H} =
{〈

e,FVc(e),FBc
(e)

〉
: e ∈ ¬H

}
=

{〈
VcIT +

F (e) (ẍ),VcII+

F (e)(ẍ),VcIF+

F (e) (ẍ),VcIT−
F (e) (ẍ),VcII−

F (e)(ẍ),VcIF−
F (e) (ẍ)

〉
,(

BT +c

F (e)(ẍ),BI+c

F (e)(ẍ),BF+c

F (e)(ẍ),BT−c

F (e)(ẍ),BI−c

F (e)(ẍ),BF−c

F (e)(ẍ)
)}

=
{〈

ẍ,
[
VcIT +

`F (e)(ẍ),VcIT +

uF (e)(ẍ)
]
,
[
VcII+

`F (e)(ẍ),VcII+

uF (e)(ẍ)
]
,
[
VcIF+

`F (e)(ẍ),VcIF+

uF (e)(ẍ)
]
,[

VcIT−
`F (e)(ẍ),VcIT−

uF (e)(ẍ)
]
,
[
VcII−
`F (e)(ẍ),VcII−

uF (e)(ẍ)
]
,
[
VcIF−
`F (e)(ẍ),VcIF−

uF (e)(ẍ)
]〉
,(

BT +c

F (e)(ẍ),BI+c

F (e)(ẍ),BF+c

F (e)(ẍ),BT−c

F (e)(ẍ),BI−c

F (e)(ẍ),BF−c

F (e)(ẍ)
)

: ∀e ∈ H , ẍ ∈ ω
}

=
{〈

ẍ,
[
1 − VIT +

uF (e)(ẍ), 1 − VIT +

`F (e)(ẍ)
]
,
[
1 − VII+

uF (e)(ẍ), 1 − VII+

`F (e)(ẍ)
]
,[

1 − VIF+

uF (e)(ẍ), 1 − VIF+

`F (e)(ẍ)
]
,
[
−1 − VIT−

uF (e)(ẍ),−1 − VIT−
`F (e)(ẍ)

]
,[

−1 − VII−
uF (e)(ẍ),−1 − VII−

`F (e)(ẍ)
]
,
[
−1 − VIF−

uF (e)(ẍ),−1 − VIF−
`F (e)(ẍ)

]
,
〉(

1 − BT +

F (e)(ẍ), 1 − BI+

F (e)(ẍ), 1 − BF+

F (e)(ẍ),−1 − BT−
F (e)(ẍ),−1 − BI−

F (e)(ẍ),

−1 − BF−
F (e)(ẍ)

)
: ∀e ∈ H , ẍ ∈ ω

}
.

Now let (F,H)c = (Q,R) = (Fc,¬H). Then, we obtain the following:

(Q,R)c

=
{〈

ẍ,
[
1 −

(
1 − VIT +

`F (e)(ẍ)
)
, 1 −

(
1 − VIT +

uF (e)(ẍ)
)]
,
[
1 −

(
1 − VII+

`F (e)(ẍ)
)
, 1 −

(
1 − VII+

uF (e)(ẍ)
)]
,[

1 −
(
1 − VIF+

`F (e)(ẍ)
)
, 1 −

(
1 − VIF+

uF (e)(ẍ)
)]
,
[
−1 −

(
−1 − VIT−

`F (e)(ẍ)
)
,−1 −

(
−1 − VIT−

uF (e)(ẍ)
)]
,[

−1 −
(
−1 − VII−

`F (e)(ẍ)
)
,−1 −

(
−1 − VII−

uF (e)
(ẍ)

)]
,
[
−1 −

(
−1 − VIF−

`F (e)(ẍ)
)
,−1 −

(
−1 − VIF−

uF (e)
(ẍ)

)]〉
,
(
1 −

(
1 − BT +

F (e)(ẍ)
)
, 1 −

(
1 − BI+

F (e)(ẍ)
)
, 1 −

(
1 − BF+

F (e)(ẍ)
)
,−1 −

(
−1 − BT−

F (e)(ẍ)
)
,

−1 −
(
−1 − BI−

F (e)(ẍ)
)
,−1 −

(
−1 − BF−

F (e)(ẍ)
))

: ∀e ∈ H , ẍ ∈ ω
}

=
{〈

ẍ,
[
VIT +

`F (e)(ẍ),VIT +

uF (e)(ẍ)
]
,
[
VII+

`F (e)(ẍ),VII+

uF (e)(ẍ)
]
,
[
VIF+

`F (e)(ẍ),VIF+

uF (e)(ẍ)
][

VIT−
`F (e)(ẍ),VIT−

uF (e)(ẍ)
]
,
[
VII−
`F (e)(ẍ),VII−

uF (e)(ẍ)
]
,
[
VIF−
`F (e)(ẍ),VIF−

uF (e)
(ẍ)

]〉
,
(
BT +

F (e)(ẍ),BI+

F (e)(ẍ),BF+

F (e)(ẍ),BT−
F (e)(ẍ),BI−

F (e)(ẍ),BF−
F (e)(ẍ)

)
: ∀e ∈ H , ẍ ∈ ω

}
=(F,H).

�

Definition 25. The union of two CBNSSs (F,H) = {F(e) | e ∈ H} =
{〈

e,FV(e),FB(e)
〉

: e ∈ H
}

and (G,T ) = {G(e) | e ∈ T } =
{〈

e,GV(e),GB(e)
〉

: e ∈ T
}

over ω, denoted by (F,H)∪̃(G,T ), is a
CBNSS(U,S), where S = H ∪ T ,

UV(e) =


FV(e) if e ∈ H − T ,
GV(e) if e ∈ T −H ,

FV(e) ∪ GV(e) if e ∈ H ∩ T ,
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and

UB(e) =


FB(e) if e ∈ H − T ,
GB(e) if e ∈ T −H ,

FB(e) ∪ GB(e) if e ∈ H ∩ T ,

∀e ∈ S.
We write (U,S) = (F,H)∪̃(G,T ), where

U(e) =
{
UV(e),UB(e)

}
=

{[
FV(e) ∪ GV(e)

]
,
[
FB(e) ∪ GB(e)

]}
.

Definition 26. The intersection of two CBNSSs

(F,H) = {F(e) | e ∈ H} =
{〈

e,FV(e),FB(e)
〉

: e ∈ H
}

and

(G,T ) = {G(e) | e ∈ T } =
{〈

e,GV(e),GB(e)
〉

: e ∈ T
}

over ω, denoted by (F,H)∩̃(G,T ), is a
CBNSS(U,S), where S = H ∪ T ,

UV(e) =


FV(e) if e ∈ H − T ,
GV(e) if e ∈ T −H ,

FV(e) ∩ GV(e) if e ∈ H ∩ T ,

and

UB(e) =


FB(e) if e ∈ H − T ,
GB(e) if e ∈ T −H ,

FB(e) ∩ GB(e) if e ∈ H ∩ T .

∀e ∈ S.
We write (U,S) = (F,H)∩̃(G,T ), where

U(e) =
{
UV(e),UB(e)

}
=

{[
FV(e) ∩ GV(e)

]
,
[
FB(e) ∩ GB(e)

]}
.

Example 10. For ω = {ẍ1, ẍ2} and parameters {e1, e2, e3}, let (F ,H) and (G,T ) be CBNSSs in ω with
the tabular representations in Tables 6 and 7, respectively.

Table 6. Tabular representation of the CBNSS (F ,H).

(F ,H) e1 e3

ẍ1




IT +

,[0.3, 0.55]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.91,−0.3]II− ,[−0.43,−0.4]IF−


{0.12, 0.4, 0.52,−0.6,−0.45,−0.3}





IT +

,[0.3, 0.5]II+

[0.4, 0.72]IF+

,[−0.6,−0.4]IT−

[−0.73,−0.3]II− ,[−0.32,−0.3]IF−


{0.12, 0.7, 0.8,−0.7,−0.2,−0.5}



ẍ2




IT +

,[0.3, 0.5]II+

[0.4, 0.62]IF+

,[−0.3,−0.1]IT−

[−0.4,−0.3]II− ,[−0.75,−0.4]IF−


{0.4, 0.6, 0.7,−0.2,−0.2,−0.5}





IT +

,[0.4, 0.5]II+

[0.8, 0.85]IF+

,[−0.52,−0.3]IT−

[−0.64,−0.6]II− ,[−0.8,−0.8]IF−


{0.54, 0.64, 0.72,−0.5,−0.4,−0.44}
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Table 7. Tabular representation of the CBNSS (G,T ).
(G,T ) e1 e2 e3

ẍ1




IT +

,[0.22, 0.3]II+

[0.2, 0.3]IF+

,[−0.77,−0.5]IT−

[−0.91,−0.55]II− ,[−0.4,−0.4]IF−


{0.4, 0.31, 0.51,−0.6,−0.525,−0.3}





IT +

,[0.3, 0.5]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.9,−0.3]II− ,[−0.4,−0.4]IF−


{0.3, 0.4, 0.5,−0.6,−0.44,−0.3}





IT +

,[0.3, 0.5]II+

[0.14, 0.5]IF+

,[−0.62,−0.4]IT−

[−0.73,−0.3]II− ,[−0.38,−0.3]IF−


{0.2, 0.5, 0.4,−0.72,−0.315,−0.5}



ẍ2




IT +

,[0.21, 0.5]II+

[0.2, 0.4]IF+

,[−0.3,−0.1]IT−

[−0.4,−0.3]II− ,[−0.7,−0.4]IF−


{0.34, 0.61, 0.55,−0.25,−0.45,−0.5}





IT +

,[0.5, 0.5]II+

[0.3, 0.5]IF+

,[−0.22,−0.11]IT−

[−0.7,−0.32]II− ,[−0.5,−0.4]IF−


{0.31, 0.48, 0.5,−0.62,−0.44,−0.5}





IT +

,[0.4, 0.6]IT +

[0.72, 0.8]IT +

,[−0.7,−0.3]IT−

[−0.65,−0.6]II− ,[−0.87,−0.8]IF−


{0.67, 0.46, 0.72,−0.55,−0.4,−0.4}


Then, the union (U,S) = (F,H)∪̃(G,T ) and intersection (U,S) = (F,H)∩(G,T ) are given in

Tables 8 and 9, respectively.

Table 8. Tabular representation of (U, S ) = (F,H) ∪ (G,T ).
(U, S ) e1 e2 e3

ẍ1




IT +

,[0.22, 0.3]II+

[0.2, 0.3]IF+

,[−0.77,−0.5]IT−

[−0.91,−0.3]II− ,[−0.4,−0.4]IF−


{0.4, 0.355, 0.51,−0.6,−0.4875,−0.3}





IT +

,[0.3, 0.5]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.9,−0.3]II− ,[−0.4,−0.4]IF−


{0.3, 0.4, 0.5,−0.6,−0.44,−0.3}





IT +

,[0.3, 0.5]II+

[0.14, 0.5]IF+

,[−0.62,−0.4]IT−

[−0.73,−0.3]II− ,[−0.32,−0.3]IF−


{0.2, 0.6, 0.4,−0.72,−0.257,−0.5}



ẍ2




IT +

,[0.21, 0.5]II+

[0.2, 0.4]IF+

,[−0.3,−0.1]IT−

[−0.4,−0.3]II− ,[−0.7,−0.4]IF−


{0.4, 0.605, 0.55,−0.25,−0.325,−0.5}





IT +

,[0.5, 0.5]II+

[0.3, 0.5]IF+

,[−0.22,−0.11]IT−

[−0.7,−0.32]II− ,[−0.5,−0.4]IF−


{0.31, 0.48, 0.5,−0.62,−0.44,−0.5}





IT +

,[0.4, 0.5]II+

[0.72, 0.8]IF+

,[−0.7,−0.3]IT−

[−0.64,−0.6]II− ,[−0.8,−0.8]IF−


{0.67, 0.55, 0.72,−0.55,−0.4,−0.4}



Table 9. Tabular representation of (U, S ) = (F,H)∩̃(G,T ).
(U, S ) e1 e2 e3

ẍ1




IT +

,[0.3, 0.55]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.91,−0.55]II− ,[−0.43,−0.4]IF−


{0.12, 0.355, 0.52,−0.6,−0.4875,−0.3}





IT +

,[0.3, 0.5]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.9,−0.3]II− ,[−0.4,−0.4]IF−


{0.3, 0.4, 0.5,−0.6,−0.44,−0.3}





IT +

,[0.3, 0.5]II+

[0.4, 0.72]IF+

,[−0.6,−0.4]IT−

[−0.73,−0.3]II− ,[−0.38,−0.3]IF−


{0.12, 0.6, 0.8,−0.7,−0.257,−0.5}



ẍ2




IT +

,[0.3, 0.5]II+

[0.4, 0.62]IF+

,[−0.3,−0.1]IT−

[−0.4,−0.3]II− ,[−0.75,−0.4]IF−


{0.4, 0.605, 0.7,−0.2,−0.325,−0.5}





IT +

,[0.5, 0.5]II+

[0.3, 0.5]IF+

,[−0.22,−0.11]IT−

[−0.7,−0.32]II− ,[−0.5,−0.4]IF−


{0.31, 0.48, 0.5,−0.62,−0.44,−0.5}





IT +

,[0.4, 0.6]II+

[0.8, 0.85]IF+

,[−0.52,−0.3]IT−

[−0.65,−0.6]II− ,[−0.87,−0.8]IF−


{0.54, 0.55, 0.72,−0.5,−0.4,−0.44}


Theorem 6. Let [(F,H) = {F(e) | e ∈ H}, (G,H) = {G(e) | e ∈ H}] ∈ CωBNS . Then, the following are
true.

1. (F,H) ⊆ (G,H)⇐⇒(F,H)∩̃(G,H) = (F,H),

2. (F,H) ⊆ (G,H)⇐⇒(F,H)∪̃(G,H) = (G,H).

Proof.

1. (=⇒) Suppose that (F,H) ⊆ (G,H), then we have F(e) ⊆ G(e) for all e ∈ H . Let
(F,H) � (GG,H) = (U,H). Since U(e) = F(e) ∩ G(e) = F(e) for all e ∈ H , then
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(U,H) = (F,H).

(⇐) Suppose that (F,H)∩̃(G,H) = (F,H) and let (F,H)∩̃(G,H) = (U,H). Since U(e) =

F(e) ∩ G(e) for all e ∈ H , we know that F(e) ⊆ G(e) for all e ∈ H . Hence, (F,H) ⊆ (G,H).

2. (=⇒) Suppose that (F,H) ⊆ (G,H), then we have F(e) ⊆ G(e) for all e ∈ H . (U,H) = (G,H).

(⇐) Suppose that (F,H)∪̃(G,H) = (G,H) and let (F,H)∪̃(G,H) = (U,H). Since U(e) =

F(e) ∪ G(e) for all e ∈ H , we know that F(e) ⊆ G(e) for all e ∈ H . Hence, (F,H) ⊆ (G,H).
�

5. Application of CBNSSs in decision-making

5.1. Similarity measure between CBNSSs

Similarity measures are essential for pattern recognition and clustering analysis, particularly in
fuzzy soft sets. This section will introduce similarity measures for two CBNSSs based on the axioms
of fuzzy soft sets [20], which will be applied in a pattern recognition context.

Definition 27. Let SCBNS S be a mapping SCBNS S : CωBNS 2 ×C
ω
BNS 2→ [0, 1], then the degree of

similarity between (F1,H) ∈ CωBNS 2 and (F2,H) ∈ CωBNS 2 is defined as SCBNS S
[
(F1,H) , (F2,H)

]
,

which satisfies the following properties:

(P̂1) 0 ≤ SCBNS S
[
(F1,H) , (F2,H)

]
≤ 1,

(P̂2) SCBNS S
[
(F1,H) , (F2,H)

]
= SCBNS S

[
(F2,H) , (F1,H)

]
,

(P̂3) SCBNSS
[
(F1,H) , (F2,H)

]
= 1⇐⇒ (F1,H) = (F2,H),

(P̂4) SCBNSS
[
(F1,H) , (F2,H)

]
= 0 and SCBNSS

[
(F1,H) , (F3,H)

]
= 0 (F3,H) ∈ CωBNS 2, then

SCBNS S
[
(F2,H) , (F3,H)

]
= 0.

Now, we introduce the formula to calculate the similarity between two CBNSSs as follows:

Definition 28. Let ω = {ẍ1, ẍ2, . . . , ẍn} be the universal set of elements and ~ = {e1, e2, . . . , em}

be the universal set of parameters. (F1,H) = {F1(e) | e ∈ H} =
{〈

e,FV
1 (e),FB

1 (e)
〉

: e ∈ H
}

and

(F2,H) = {F2(e) | e ∈ H} =
{〈

e,FV
2 (e),FB

2 (e)
〉

: e ∈ H
}

are two families of CBNSSs in ω. We define
SCBNSS

[
(F1,H) , (F2,H)

]
as follows:

SCBNS S
[
(F1,H) , (F2,H)

]
=

1
2m

m∑
l=1

[
Sl

IBNS S
[
(F1,H) , (F2,H)

]
+ Sl

BNS S
[
(F1,H) , (F2,H)

]]
,

where
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Sl
BNSS[(F1,H), (F2,H)] =

∑n
j=1

∑m
i=1




min

[
VIT +

`F1(ei)
(ẍ j),VIT +

`F2(ei)
(ẍ j)

]
+ min

[
VIT +

uF1(ei)
(ẍ j),VIT +

uF2(ei)
(ẍ j)

]
+ min

[
VII+

`F1(ei)
(ẍ j),VII+

`F2(ei)
(ẍ j)

]
+ min

[
VII+

uF1(ei)
(ẍ j),VII+

uF2(ei)
(ẍ j)

]
+ min

[
VIF+

`F1(ei)
(ẍ j),VIF+

`F2(ei)
(ẍ j)

]
+ min

[
VIF+

uF1(ei)
(ẍ j),VIF+

uF2(ei)
(ẍ j)

]


−


min

[
VIT−
`F1(ei)

(ẍ j),VIT−
`F2(ei)

(ẍ j)
]

+ min
[
VIT−

uF1(ei)
(ẍ j),VIT−

uF2(ei)
(ẍ j)

]
+ min

[
VII−
`F1(ei)

(ẍ j),VII−
`F2(ei)

(ẍ j)
]

+ min
[
VII−

uF1(ei)
(ẍ j),VII−

uF2(ei)
(ẍ j)

]
+ min

[
VIF−
`F1(ei)

(ẍ j),VIF−
`F2(ei)

(ẍ j)
]

+ min
[
VIF−

uF1(ei)
(ẍ j),VIF−

uF2(ei)
(ẍ j)

]




∑n
j=1

∑m
i=1




max

[
VIT +

`F1(ei)
(ẍ j),VIT +

`F2(ei)
(ẍ j)

]
+ max

[
VIT +

uF1(ei)
(ẍ j),VIT +

uF2(ei)
(ẍ j)

]
+ max

[
VII+

`F1(ei)
(ẍ j),VII+

`F2(ei)
(ẍ j)

]
+ max

[
VII+

uF1(ei)
(ẍ j),VII+

uF2(ei)
(ẍ j)

]
+ max

[
VIF+

`F1(ei)
(ẍ j),VIF+

`F2(ei)
(ẍ j)

]
+ max

[
VIF+

uF1(ei)
(ẍ j),VIF+

uF2(ei)
(ẍ j)

]


−


max

[
VIT−
`F1(ei)

(ẍ j),VIT−
`F2(ei)

(ẍ j)
]

+ max
[
VIT−

uF1(ei)
(ẍ j),VIT−

uF2(ei)
(ẍ j)

]
+ max

[
VII−
`F1(ei)

(ẍ j),VII−
`F2(ei)

(ẍ j)
]

+ max
[
VII−

uF1(ei)
(ẍ j),VII−

uF2(ei)
(ẍ j)

]
+ max

[
VIF−
`F1(ei)

(ẍ j),VIF−
`F2(ei)

(ẍ j)
]

+ max
[
VIF−

uF1(ei)
(ẍ j),VIF−

uF2(ei)
(ẍ j)

]




,

and
Sl

BNSS[(F1,H), (F2,H)] =

∑n
j=1

∑m
i=1



 min
[
BT +

F1(ei)
(ẍ j),BT +

F2(ei)
(ẍ j)

]
+ min

[
BI+

F1(ei)
(ẍ j),BI+

F2(ei)
(ẍ j)

]
+ min

[
BF+

F1(ei)
(ẍ j),BF+

F2(ei)
(ẍ j)

] 
−

 min
[
BT−

F1(ei)
(ẍ j),BT−

F2(ei)
(ẍ j)

]
+ min

[
BI−

F1(ei)
(ẍ j),BI−

F2(ei)
(ẍ j)

]
+ min

[
BF−

F1(ei)
(ẍ j),BF−

F2(ei)
(ẍ j)

] 


∑n

j=1
∑m

i=1



 max
[
BT +

F1(ei)
(ẍ j),BT +

F2(ei)
(ẍ j)

]
+ max

[
BI+

F1(ei)
(ẍ j),BI+

F2(ei)
(ẍ j)

]
+ max

[
BF+

F1(ei)
(ẍ j),BF+

F2(ei)
(ẍ j)

] 
−

 max
[
BT−

F1(ei)
(ẍ j),BT−

F2(ei)
(ẍ j)

]
+ max

[
BI−

F1(ei)
(ẍ j),BI−

F2(ei)
(ẍ j)

]
+ max

[
BF−

F1(ei)
(ẍ j),BF−

F2(ei)
(ẍ j)

] 



.

Then, Sc
BNSS[(F1,H), (F2,H)] is a similarity measure between two CBNSSs (F1,H) and (F2,H).

5.2. The applicability of the proposed similarity metrics in pattern identification

This section presents a methodology for assessing similarity measures between two CBNSSs in
pattern recognition. For example, determining if a person with specific symptoms has a certain disease
can be framed as a supervised pattern recognition task. We construct an ideal CBNSS for the disease
and one for the symptomatic individual. If the similarity measure between these CBNSSs is 0.55 or
higher, it suggests a potential diagnosis of the disease.

The algorithm of this method is as follows:

Step 1. To start, we construct an ideal CBNSS (F,H) =
〈
FV(e),FB(e)

〉
for illness, which can be done

with the help of a medical expert.

Step 2. Then, we construct CBNSSs (Fl,H) =
〈
FV

l (e),FB
l (e)

〉
, l = 1, 2, . . . ,m, on ω for ill person(s).
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Step 3. The similarity measures between the ideal (F,H) =
〈
FV(e),FB(e)

〉
for illness and the

(Fl,H) =
〈
FV

l (e),FB
l (e)

〉
, l = 1, 2, . . . ,m, for ill the person are calculated using the formula given

in Definition 28.

Step 4. If SCBNS S
[
(F,H), (Fl,H)

]
≥ 0.55, then the ill person is possibly suffering from the diseases,

and if SCBNS S
[
(F,H), (Fl,H)

]
< 0.55, then the ill person is possibly not suffering from the

diseases.

Example 11. This section presents a hypothetical numerical example derived from the aforementioned
decision-making methodology to demonstrate the potential use of the similarity measure of CBNSS in
addressing a medical diagnostic issue. The aim of this problem is to ascertain whether an individual
exhibiting certain visible symptoms is afflicted with diabetes or is not suffering from the condition.

Let ω = {ẍ1 = Highdiabetes, ẍ2 = lowdiabetes } be the reference set and ω = {e1 = sweating, e2 =

headache } be a set of certain visible symptoms.
[Step 1] To construct an ideal CBNSS(F,H) =

〈
FV(e),FB(e)

〉
for illness (diabetes), one can seek

the assistance of a medical expert, as demonstrated in Table 10.

Table 10. Tabular representation of CBNSS (F ,H) for diabetes.

(F ,H) e1 e2

ẍ1




IT +

,[0.3, 0.5]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.9,−0.3]II− ,[−0.4,−0.4]IF−


{0.3, 0.4, 0.5,−0.6,−0.44,−0.3}





IT +

,[0.3, 0.5]II+

[0.4, 0.7]IF+

,[−0.6,−0.4]IT−

[−0.7,−0.3]II− ,[−0.3,−0.3]IF−


{0.1, 0.7, 0.9,−0.7,−0.2,−0.5}



ẍ2




IT +

,[0.4, 0.6]II+

[0.4, 0.6]IF+

,[−0.2,−0.1]IT−

[−0.4,−0.3]II− ,[−0.7,−0.4]IF−


{0.3, 0.6, 0.5,−0.2,−0.7,−0.5}





IT +

,[0.4, 0.5]II+

[0.7, 0.8]IF+

,[−0.7,−0.2]IT−

[−0.6,−0.6]II− ,[−0.8,−0.8]IF−


{0.5, 0.6, 0.7,−0.5,−0.4,−0.4}


[Step 2] Construct CBNSSs for ill persons (patients) X and Y, as illustrated in Tables 11 and 12.
[Step 3] By Definition 28, similarity measure between (F,H) and (F1,H) is given by

SCBNSS
[
(F,H), (F1,H)

]
= 0.507 and similarity measure between (F,H) and (F2,H) is given by

SCBNSS
[
(F,H), (F2,H)

]
= 0.6.

[Step 4] Since SCBNSS
[
(F,H), (F2,H)

]
= 0.6 > 0.55, therefore patient Y is possibly suffering from

diseases. Again, since SCBNSS
[
(F,H), (F1,H)

]
= 0.507 < 0.55, therefore patient X is possibly not

suffering from diseases.
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Table 11. Tabular representation of CBNSS (F1,H) for patient X.

(F1,H) e1 e2

ẍ1




IT +

,[0.3, 0.55]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.91,−0.3]II− ,[−0.43,−0.4]IF−


{0.12, 0.4, 0.52,−0.6,−0.45,−0.3}





IT +

,[0.3, 0.5]II+

[0.4, 0.72]IF+

,[−0.6,−0.4]IT−

[−0.73,−0.3]II− ,[−0.32,−0.30]IF−


{0.12, 0.7, 0.8,−0.7,−0.2,−0.5}



ẍ2




IT +

,[0.3, 0.5]II+

[0.4, 0.62]IF+

,[−0.3,−0.1]IT−

[−0.4,−0.3]II− ,[−0.75,−0.4]IF−


{0.4, 0.6, 0.7,−0.2,−0.2,−0.5}





IT +

,[0.4, 0.5]II+

[0.8, 0.85]IF+

,[−0.52,−0.3]IT−

[−0.64,−0.6]II− ,[−0.8,−0.8]IF−


{0.54, 0.64, 0.72,−0.5,−0.4,−0.44}


Table 12. Tabular representation of CBNSS (F2,H) for patient Y .

(F2,H) e1 e2

ẍ1




IT +

,[0.11, 0.22]II+

[0.1, 0.2]IF+

,[−0.88,−0.77]IT−

[−0.91,−0.8]II− ,[−0.4,−0.4]IF−


{0.4, 0.31, 0.51,−0.8,−0.525,−0.9}





IT +

,[0.3, 0.5]II+

[0.4, 0.6]IF+

,[−0.77,−0.5]IT−

[−0.9,−0.7]II− ,[−0.8,−0.4]IF−


{0.3, 0.4, 0.5,−0.6,−0.99,−0.7}



ẍ2




IT +

,[0.21, 0.5]II+

[0.2, 0.4]IF+

,[−0.8,−0.3]IT−

[−0.5,−0.4]II− ,[−0.7,−0.7]IF−


{0.34, 0.61, 0.55,−0.8,−0.45,−0.5}





IT +

,[0.5, 0.5]II+

[0.3, 0.5]IF+

,[−0.8,−0.5]IT−

[−0.7,−0.7]II− ,[−0.49,−0.4]IF−


{0.31, 0.48, 0.5,−0.62,−0.44,−0.5}


6. Conclusions

This research has introduced CBNSs, a novel framework that significantly advances the capabilities
of BNSs in addressing uncertainty and vagueness within data analysis. By integrating bipolarity
and cubic sets, CBNSs offer a more comprehensive and accurate representation of information,
outperforming existing methods in terms of accuracy, flexibility, and applicability.

We have thoroughly investigated the structural properties of CBNSs and defined key operations
related to them. Additionally, we have introduced CBNSSs as a flexible parameterization tool. To
validate the practical utility of CBNSs, we conducted a case study in decision-making, demonstrating
their effectiveness in handling complex scenarios with uncertainty and vagueness. While CBNSs
offer significant advantages, it is important to acknowledge potential limitations. The applicability
of CBNSs may be constrained by the availability and quality of data. Furthermore, the computational
complexity of CBNS operations might be a consideration for large-scale applications.Future research
could explore extending CBNSs (investigating potential extensions) or modifications of CBNSs to
address specific domains or challenges, computational efficiency (developing more efficient algorithms
for CBNS operations), and real-world applications (applying CBNSs to a wider range of real-world
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problems and domains).
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