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using augmented Lyapunov-Krasovskii functionals and several less conservative inequalities, delay-
dependent anti-windup synthesis criteria are obtained in accordance with the feasibility of linear
matrix inequalities. Subsequently, the optimization of the initial condition set is addressed. Finally, a
simulation example illustrates the availability and technique advantages of the proposed results.

Keywords: anti-windup design; time-delay systems; saturating actuators; event-triggered mechanism
Mathematics Subject Classification: 93C10, 93D15

1. Introduction

In reality, almost all feedback control systems are affected by saturating actuators, and the
existence of saturations could induce poor system performance, instability, and multiple equilibria [1].
In general, two typical approaches have been employed to tackle actuator saturations. The first
approach is to directly design the feedback controller with consideration of actuator saturations [2–5],
while the other approach is to first design a desirable controller satisfying some performance indices
without taking saturations into account and afterwards synthesize an anti-windup (AW) compensator
to alleviate saturation effects [6–8]. Under the AW strategy, one can perform the separation design,
some standard techniques can be utilized to design the nominal controller. Moreover, compared to
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the direct design approach, the AW strategy has better application intuition and is thus more attractive
for practicing engineers. When dealing with saturation nonlinearities, the polytopic models and the
modified sector conditions (SCs) are two routine techniques [6, 7, 9, 10]. In particular, using modified
SCs, the AW synthesis criteria can be characterized by linear matrix inequalities (LMIs) [7].

Meanwhile, time delays are frequently unavoidable in a large number of control systems, which is
another key factor resulting in system instability and performance degradation [11–15]. In the past two
decades, abundant research has also been dedicated to the AW design for actuator-saturated control
systems with time delays [16–20]. For example, in [16], delay-independent and delay-independent
AW synthesis conditions have been established in the formwork of LMI by utilizing the Lyapunov-
Krasovskii (L-K) approach and the modified SC. Moreover, in [17], delay-dependent SCs have been
explored, and augmented L-K functionals as well as Wirtinger-based integral inequality have been
employed to improve the previous results. In addition, dynamic AW compensators have been designed
in [18, 19] for linear control systems containing a state delay, and the AW synthesis problem has been
studied in [20] for sampled-data time-delay systems.

Over the past several decades, communication networks have been embedded in many practical
systems, and the resulting networked control systems (NCSs) have become a highly concerned
research issue. However, the network bandwidth is definitely limited. Under the traditional time-
triggered scenario, the embedding of a network in a control system could lead to the phenomenon
of network congestion [21–23]. As a result, some imperfections will inevitably occur in NCSs, e.g.,
packet dropouts and disorders, and communication delays. To be able to mitigate network-induced
phenomena, some scholars proposed the event-triggered mechanisms (ETMs) based on which certain
redundant data are not allowed to be released by means of pre-designed triggering conditions [24–26].
So far, the state estimation and control for NCSs have been widely investigated under ETMs, and a
great quantity of remarkable results have been acquired [27–31].

In the past decade or so, the control synthesis has also been addressed for NCSs subject to
saturating actuators under the ETMs [32–36]. For instance, dynamic output feedback control has been
studied [32] for discrete LPV systems under two independent triggering conditions, and state feedback
control has been discussed in [33] for continuous linear systems under a static ETM. In particular, the
static AW design problem has been sufficiently considered in [37–39] under several ETMs, and the
dynamic AW synthesis problem has been investigated in [40] under the dynamic ETM. However, it is
observed that time delays have been ignored in the majority of existing references, possibly due to the
complex mathematical deduction, which is the motivation for the present study.

This paper focuses on the event-triggered AW synthesis for linear systems subject to time-varying
state delay and saturating actuators. Using the dynamic triggering condition, delay-dependent SCs,
and augmented L-K functionals together with some less conservative inequalities, the delay-dependent
AW synthesis criteria have been derived in light of the solvability of LMIs. Then, the maximization
about the initial condition set (ICS) has been concretely discussed. Finally, a numerical example
illustrates the availability of the obtained results and technique advantages of this paper. The main
contributions of this study are highlighted as follows: 1) The delay-dependent AW synthesis criteria
are established for the first time for linear time-delay systems under a dynamic ETM. 2) In order to
abate the intrinsic conservatism, novel delay-dependent SCs containing double integral terms have
been explored. Moreover, some less conservative inequalities are utilized to estimate the upper bound
of the derivatives of L-K functionals as well as the lower bound of L-K functionals.
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Notation. Rn: n-dimensional Euclidean space; ‖ · ‖2: 2-norm of a vector; C1[−τ, 0]: The space of
continuously differentiable vector functions φ within [−τ, 0]; ET : The transposition of E; R > 0 (≥ 0):
R is a symmetric and positive definite (positive semi-definite) matrix; λM(Q): The maximum eigenvalue
of a matrix Q; I: The identity matrix; Sym(M) , M + MT .

2. Problem formulation

Consider the linear system with time-varying delay and saturating actuatorsẋp(t) = Apxp(t) + Apd xp(t − τt) + Bpsat(u(t)),
yp(t) = Cpxp(t),

(1)

where xp(t) ∈ Rnx is the system state, yp(t) ∈ Rny is the system output, u(t) ∈ Rnu is the control input,
and Ap, Apd, Bp, and Cp are known matrices of appropriate dimensions. τt is a time-varying state
delay satisfying 0 ≤ τt ≤ τ and µ1 ≤ τ̇t ≤ µ2. sat(u) = col{sat(u1), sat(u2), . . . , sat(um)} is a vector
saturation function representing saturating actuators, where sat(ul) = min{ūl, |ul|}sign(ul) with ūl > 0
(l = 1, 2 . . . nu) being the saturation levels.

To stabilize the system (1), we assume that an output feedback controller has been designed asẋc(t) = Acxc(t) + Bcyp(t),
u(t) = Ccxc(t) + Dcyp(t),

(2)

where xc(t) ∈ Rnc is the controller state, and Ac, Bc, Cc, and Dc are dimension-compatible matrices.
To mitigate the adverse effects caused by saturating actuators, as in [6, 7], one can add the anti-

windup term to modify the controller (2) asẋc(t) = Acxc(t) + Bcyp(t) + Ecϕ(u(t)),
u(t) = Ccxc(t) + Dcyp(t),

(3)

where Ec is the AW gain matrix, and ϕ(u(t)) , sat(u(t)) − u(t).
Here, we assume that the output signals are transmitted over communication networks. More

specifically, to save the communication resources, a dynamic ETM is adopted, and then the
controller (2) can be further written as follows:ẋc(t) = Acxc(t) + Bcyp(tk) + Ecϕ(u(t)),

u(t) = Ccxc(t) + Dcyp(tk), t ∈ [tk, tk+1), k = 0, 1, 2, . . . .
(4)

In (4), the triggering instants tk (k = 0, 1, 2, . . .) are determined by the updating algorithm as

tk+1 =min
{
t | t > tk, ξ(t) + θ(δ1yT

p (t)yp(t) + δ2e−ζt − eT (t)e(t)) ≤ 0
}
, t0 = 0, (5)

where e(t) , yp(tk) − yp(t), θ > 0, 0 < δ1 < 1, δ2 > 0, ζ > 0 are given scalars, and ξ(t) is generated by

ξ̇(t) = −λξ(t) + δ1yT
p (t)yp(t) + δ2e−ζt − eT (t)e(t), (6)

where ξ(0) = ξ0 ≥ 0 and λ > 0.
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Remark 1. From (5), we have the relation δ1yT
p (t)yp(t) + δ2e−ζt − eT (t)e(t) ≥ −1

θ
ξ(t), t ∈ [tk, tk+1).

Then, one obtains from (6) that ξ̇(t) ≥ −(λ + 1
θ
)ξ(t). Moreover, it follows that ξ(t) ≥ e−(λ+ 1

θ )tξ0. Noting
ξ0 ≥ 0, it is obvious that the dynamic variable ξ(t) is non-negative, which means that the triggering
interval could be enlarged. Therefore, the dynamic ETM has more potential to save communication
resources compared to the static ETM without the introduction of dynamic variables. In (5) and (6),
the term δ2e−ζt is used to avoid the Zeno behavior while ensuing the asymptotic stability of the
overall systems [37]. On other hand, it is worth mentioning that there are other ETMs available
in existing references, such as the sampled-data-based ETM [25], the memory-based ETMs [27], and
the switching ETM [31]. Under such ETMs, the corresponding results can also be obtained, which is
our further work.

Define x(t) , col{xp(t), xc(t)} ∈ Rn, where n̄ = nx + nc. Then, from (1) and (4), one has the system

ẋ(t) = Ax(t) +Ad x(t − τt) + (B + REc)ϕ(u(t)) + Bee(t), (7)

where

A =

[
Ap + BpDcCp BpCc

BcCp Ac

]
, Ad =

[
Apd 0
0 0

]
,

B =

[
Bp

0

]
, R =

[
0
I

]
, Be =

[
BpDc

Bc

]
.

The initial condition of (5) is denoted as φ(θ) = col{φp(θ), φc(θ)}, which is supposed to belong to

ℵρ =

{
φ(θ) ∈ C1[−τ, 0] : max

θ∈[−τ,0]
‖φ(θ)‖2 ≤ ρ1, max

θ∈[−τ,0]
‖φ̇(θ)‖2 ≤ ρ2

}
. (8)

For some nu × n̄ matrices U, V1, V2, V3, and V4, one can define the vector as below:

v(t) =Ux(t) + V1

∫ t

t−τt

x(r)dr + V2

∫ t−τt

t−τ
x(r)dr

+ V3

∫ t

t−τt

∫ t

θ

x(r)
τt

drdθ + V4

∫ t−τt

t−τ

∫ t−τt

θ

x(r)
τ − τt

drdθ. (9)

Then, under the assumption that

|vl(t)| ≤ ūl, l = 1, 2, . . . , nu, (10)

we have the delay-dependent SC [1]

− 2ϕT(u(t))H[ϕ(u(t)) +K x(t) + Dce(t) − v(t)] ≥ 0, (11)

where H > 0 is any nu × nu diagonal matrix, and K = [DcCp Cc].
For the special case (τt ≡ τ, t > 0), one can simplify the vector v(t) in (11) as

v(t) = Ux(t) + V1

∫ t

t−τ
x(r) dr + V2

∫ t

t−τ

∫ t

θ

x(r)
τ

drdθ. (12)
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Remark 2. In [17], the modified delay-dependent SCs are developed to tackle the nonlinearity ϕ(u(t)).
Compared to the SCs in [17], the double integral terms V3

∫ t

t−τt

∫ t

θ

x(r)
τt

drdθ and V4

∫ t−τt

t−τ

∫ t−τt

θ

x(r)
τ−τt

drdθ are
further incorporated in the sector condition (11) to decrease the conservatism except the term Dce(t)
concerning the ETM.

Next, several inequalities are provided, which are crucial for the derivation of our main results.

Lemma 1. [11, 12] Let the n × n matrix Z > 0, the continuously differentiable vector function ψ(s) :
[ι1, ι2]→ Rn, and scalars ι1 and ι2 (ι1 < ι2) be given. The following integral inequalities hold:

(1)
∫ ι2

ι1

ψ̇T (s)Zψ̇(s)ds ≥
1

ι2 − ι1
ςT

1 Zς1 +
3

ι2 − ι1
ςT

2 Zς2 +
5

ι2 − ι1
ςT

3 Zς3,

(2)
∫ ι2

ι1

ψT (s)Zψ(s)ds ≥
1

ι2 − ι1

( ∫ ι2

ι1

ψ(s)ds
)T

Z
( ∫ ι2

ι1

ψ(s)ds
)

+
3

ι2 − ι1
ςT

4 Zς4,

(3)
∫ ι2

ι1

∫ ι2

θ

ψ̇T (s)Zψ̇(s)dsdθ ≥ 2ςT
5 Zς5 + 4ςT

6 Zς6,

where

ς1 =ψ(ι2) − ψ(ι1), ς2 = ψ(ι2) + ψ(ι1) −
2

ι2 − ι1

∫ ι2

ι1

ψ(s)ds,

ς3 =ψ(ι2) − ψ(ι1) +
6

ι2 − ι1

∫ ι2

ι1

ψ(s)ds −
12

(ι2 − ι1)2

∫ ι2

ι1

∫ ι2

θ

ψ(s)dsdθ,

ς4 =

∫ ι2

ι1

ψ(s)ds −
2

ι2 − ι1

∫ ι2

ι1

∫ ι2

θ

ψ(s)dsdθ,

ς5 =ψ(ι2) −
1

ι2 − ι1

∫ ι2

ι1

ψ(s)ds,

ς6 =ψ(ι2) +
2

ι2 − ι1

∫ ι2

ι1

ψ(s)ds −
6

(ι2 − ι1)2

∫ ι2

ι1

∫ ι2

θ

ψ(s)dsdθ.

Lemma 2. [13] For a given n × n matrix S > 0, two vectors ϑ1 ∈ R
n and ϑ2 ∈ R

n, a scalar α ∈ (0, 1),
as well as any n × n matrices M1 and M2, the following inequality is true:

Ω(α, S ) ≥ϑT
1 [S + (1 − α)(S − M1S −1MT

1 )]ϑ1

+ ϑT
2 [S + α(S − MT

2 S −1M2)]ϑ2

+ 2ϑT
1 [αM1 + (1 − α)M2]ϑ2,

where Ω(α, S ) = (1/α)ϑT
1 Sϑ1 + [1/(1 − α)]ϑT

2 Sϑ2.

3. Main results

For convenience of presentation, we first introduce some notations as follows:

εi ,[0n̄×(i−1)n̄ In̄ 0n̄×[(8−i)n̄+nu+ny]], 1 ≤ i ≤ 7,
ε8 ,[0nu×7n̄ Inu 0nu×(ny+n̄)], ε10 , [0n̄×(7n̄+nu+ny) In̄],
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ε̂i ,[0n̄×(i−1)n̄ In̄ 0n̄×[(5−i)n̄+nu+ny]], 1 ≤ i ≤ 4,
ε̂5 ,[0nu×4n̄ Inu 0nu×(ny+n̄)], ε̂7 , [0n̄×(4n̄+nu+ny) In̄],

Ξ1 ,


ε1

τtε4

(τ − τt)ε5

τtε6

(τ − τt)ε7


, Ξ2 ,


ε10

ε1 − (1 − τ̇t)ε2

(1 − τ̇t)ε2 − ε3

ε1 − ε4 + τ̇t(ε4 − ε6)
ε2 − ε5 + τ̇t(ε7 − ε2)


,

Ξ3 ,
[
K − U 0nu×2n̄ − τtV1 − (τ − τt)V2

− τtV3 − (τ − τt)V4 I Dc 0n̄u×n̄
]
,

Ξ4 ,[T1 0n̄×(6n̄+nu+ny) T2], C , [Cp 0],
Ξ5 ,[A Ad 0n̄×5n̄ (B + REc) Be − I],
Ξ6 ,diag{Q1 + δ1C

TC, (1 − τ̇t)(Q2 − Q1),−Q2, 04n̄+nu ,−I, τ2Z},

Ξ7 ,


ε1 − ε2

ε1 + ε2 − 2ε4

ε1 − ε2 + 6ε4 − 12ε6

 , Ξ8 ,


ε2 − ε3

ε2 + ε3 − 2ε5

ε2 − ε3 + 6ε5 − 12ε7

 ,

Γ1 ,P +
1
τ


0 0 0 0 0
∗ 4Q1 0 −6Q1 0
∗ ∗ 4Q2 0 −6Q2

∗ ∗ ∗ 12Q1 0
∗ ∗ ∗ ∗ 12Q2


, Γ2 ,


τI
−I
−I
0
0


,

w1t ,

∫ t

t−τt

x(r)
τt

dr, w2t ,

∫ t−τt

t−τ

x(r)
τ − τt

dr,

w3t ,

∫ t

t−τt

∫ t

θ

x(r)
τ2(t)

drdθ, w4t ,

∫ t−τt

t−τ

∫ t−τt

θ

x(r)
(τ − τt)2 drdθ,

ϑ(t) ,col{x(t), x(t − τt), x(t − τ),w1t,w2t,w3t,w4t, ϕ(u(t)), e(t), ẋ(t)},
Z ,diag{Z, 3Z, 5Z}, Z̄ , diag{Z̄, 3Z̄, 5Z̄}.

For the analysis of the stability of the system (7), we select the augmented L-K functional

V(t) =σT (t)Pσ(t) +

∫ t

t−τt

xT (r)Q1x(r)dr +

∫ t−τt

t−τ
xT (r)Q2x(r)dr

+ τ

∫ 0

−τ

∫ t

t+θ
ẋT (r)Zẋ(r)drdθ +

δ2

ζ
e−ζt + ξ(t), (13)

where σ(t) = col{x(t), τtw1t, (τ−τt)w2t, τtw3t, (τ−τt)w4t}, P is a symmetric matrix, and Q1 > 0, Q2 > 0,
Z > 0 are some matrices.

Theorem 1. Let the scalars ε , 0, δ1 > 0, δ2 > 0, ζ > 0, and β > 0 be given. Suppose that there exists
5n̄ × 5n̄ symmetric matrix P̄, n̄ × n̄ matrices Q̄1 > 0, Q̄2 > 0, Z̄ > 0, X, 3n̄ × 3n̄ matrices S̄ 1, S̄ 2, nu × n̄
matrices Y, G1, G2, G3, G4, nc × nu matrix W, nu × nu diagonal matrix H̄ > 0, such that the LMIs as
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below are satisfied: 
Π̄(0, τ̇t) ΞT

7 S̄ 1
√
δ1ε

T
1 XCT

∗ −Z̄ 0
∗ ∗ −I

 < 0, τ̇t ∈ {µ1, µ2}, (14)


Π̄(τ, τ̇t) ΞT

8 S̄ T
2

√
δ1ε

T
1 XCT

−Z̄ 0
∗ −I

 < 0, τ̇t ∈ {µ1, µ2}, (15)

[
ū2

l /β N̄l

N̄T
l Γ̄1 + (2/τ)Γ2Z̄ΓT

2

]
≥ 0, l = 1, 2, . . . , nu, (16)

where

Π̄(τt, τ̇t) , Sym
(
ΞT

1 P̄Ξ2 − ε
T
8 Ξ̄3 + Ξ̄T

4 Ξ̄5
)

+ Ξ̄6

− (2 − α)ΞT
7 Z̄Ξ7 − (1 + α)ΞT

8 Z̄Ξ8

− Sym
{
ΞT

7 [αS̄ 1 + (1 − α)S̄ 2]Ξ8
}
,

Ξ̄3 ,
[
KXT − Y 0nu×2n̄ − τtG1 − (τ − τt)G2

− τtG3 − (τ − τt)G4 H̄ Dc 0nu×n̄
]
,

Ξ̄4 , [I 0n̄×(6n̄+nu+ny) εI], N̄ = [Y G1 G2 G3 G4],
Ξ̄5 , [AXT AdXT 0n̄×5n̄ (BH̄T + RW) Be − XT ],
Ξ̄6 , diag{Q̄1, (1 − τ̇t)(Q̄2 − Q̄1),−Q̄2, 04n̄+nu ,−I, τ2Z̄},

Γ̄1 , P̄ +
1
τ


0 0 0 0 0
∗ 4Q̄1 0 −6Q̄1 0
∗ ∗ 4Q̄2 0 −6Q̄2

∗ ∗ ∗ 12Q̄1 0
∗ ∗ ∗ ∗ 12Q̄2


.

Then, the system (7) is asymptotically stable for all initial conditions ξ0 and φ(θ) ∈ ℵρ satisfying
V(0) ≤ β under the AW gain matrix Ec = WH̄−T .

Proof. Differentiating the L-K functional (13), and then combining (6), (11), one has

V̇(t) =2σT (t)Pσ̇(t) + xT (t)Q1x(t) − xT (t − τ)Q2x(t − τ)
+ (1 − τ̇t)xT (t − τt)(Q2 − Q1)x(t − τt)

+ τ2 ẋT (t)Zẋ(t) − τ
∫ t

t−τ
ẋT (r)Zẋ(r)dr − δ2e−ζt + ξ̇(t)

≤2σT (t)Pσ̇(t) + xT (t)Q1x(t) − xT (t − τ)Q2x(t − τ)
+ (1 − τ̇t)xT (t − τt)(Q2 − Q1)x(t − τt)

+ τ2 ẋT (t)Zẋ(t) − τ
∫ t

t−τ
ẋT (r)Zẋ(r)dr

− 2ϕT (u(t))H[ϕ(u(t)) +K x(t) + Dce(t) − v(t)]
+ δ1xT (t)CTCx(t) − eT (t)e(t). (17)
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Using an auxiliary function-based inequality (i.e., the inequality (1) in Lemma 1) yields

τ

∫ t

t−τt

ẋT (r)Zẋ(r)dr ≥
τ

τt
ϑT (t)ΞT

7ZΞ7ϑ(t), (18)

τ

∫ t−τt

t−τ
ẋT (r)Zẋ(r)dr ≥

τ

τ − τt
ϑT (t)ΞT

8ZΞ8ϑ(t). (19)

Noting
∫ t

t−τ
(·)dr =

∫ t

t−τt
(·)dr +

∫ t−τt

t−τ
(·)dr and using Lemma 2, we have from (18) and (19) that

τ

∫ t

t−τ
ẋT (r)Zẋ(r)dr

≥ϑT (t)ΞT
7 [Z + (1 − α)(Z− S 1Z

−1S T
1 )]Ξ7ϑ(t)

+ ϑT (t)ΞT
8 [Z + α(Z− S T

2Z
−1S 2)]Ξ8ϑ(t)

+ 2ϑT (t)ΞT
7 [αS 1 + (1 − α)S 2]Ξ8ϑ(t), (20)

where α , τt/τ, and S 1 and S 2 are 3n̄ × 3n̄ matrices.
For any given n̄ × n̄ matrices T1, T2, utilizing the system (7), the following equation is true

2[xT (t)T1 + ẋT (t)T2][Ax(t) +Ad x(t − τt) + (B + REc)ϕ(u(t)) + Bee(t) − ẋ(t)] = 0. (21)

Let us add the left-hand side of (21) to (17) and use (20). Then, one can obtain

V̇(t) ≤ ϑT (t)Π(τt, τ̇t)ϑ(t), (22)

where

Π(τt, τ̇t) = Sym
(
ΞT

1 PΞ2 − ε
T
8 HΞ3 + ΞT

4 Ξ5
)

+ Ξ6 − (2 − α)
× ΞT

7ZΞ7 − (1 + α)ΞT
8ZΞ8 + (1 − α)ΞT

7 S 1Z
−1S T

1 Ξ7

+ αΞT
8 S T

2Z
−1S 2Ξ8 − Sym

{
ΞT

7 [αS 1 + (1 − α)S 2]Ξ8
}
.

Clearly, if the matrix inequality as below is satisfied:

Π(τt, τ̇t) < 0, (23)

then, we can get from (22) that V̇(t) < 0 is ensured.
Moreover, using the inequality (2) of Lemma 1 and the Jensen inequality [17], the lower bound of

V(t) can be given as

V(t) ≥σT (t)Pσ(t) +
1
τ

( ∫ t

t−τt

x(r)dr
)T

Q1

( ∫ t

t−τt

x(r)dr
)

+
1
τ

( ∫ t−τt

t−τ
x(r)dr

)T

Q2

( ∫ t−τt

t−τ
x(r)dr

)
+

3
τ
κT

1 (t)Q1κ1(t) +
3
τ
κT

2 (t)Q2κ2(t)

+
2
τ

( ∫ 0

−τ

∫ t

t+θ
ẋ(r)drdθ

)T

Z
( ∫ 0

−τ

∫ t

t+θ
ẋ(r)drdθ

)
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=σT (t)[Γ1 + (2/τ)Γ2ZΓT
2 ]σ(t), (24)

where

κ1(t) ,
∫ t

t−τt

x(r)dr −
2
τt

∫ t

t−τt

∫ t

θ

x(r)drdθ,

κ2(t) ,
∫ t−τt

t−τ
x(r)dr −

2
τ − τt

∫ t−τt

t−τ

∫ t−τt

θ

x(r)drdθ.

Denote Nl , [Ul V1l V2l V3l V4l], l = 1, 2, . . . , nu, and suppose that the following
inequalities hold:

(β/ū2
l )NT

l Nl ≤ Γ1 + (2/τ)Γ2ZΓT
2 , l = 1, 2, . . . , nu. (25)

Then, for all initial conditions ξ0 and φ ∈ ℵρ that satisfies V(0) ≤ β, using (24) and (25), and noting
that V̇(t) < 0, we have

|vl(t)|2 = σT (t)NT
(l)N(l)σ(t)

≤(ū2
l /β)σT (t)[Γ1 + (2/τ)Γ2ZΓT

2 ]σ(t)
≤(ū2

l /β)V(t) ≤ (ū2
l /β)V(0) ≤ ū2

l , l = 1, 2, . . . , nu. (26)

From (26), we can see that constraints in (10) are ensured. Meanwhile, it is seen from (25) that
V(t) > 0 for any xt , x(t + s) , 0 (s ∈ [−τ, 0]) under the conditions (25). Noting V̇(t) < 0 again, we
can conclude that the system (7) is asymptotically stable under the assumptions (23) and (25) .

To design the AW gain matrix Ec by means of LMIs, we set T2 = εT1 (δ , 0), and then define
X , T−1

1 , P̄ , X̂PX̂T (X̂ = diag{X, X, X, X, X}),
Q̄i , XQiXT (i = 1, 2), Z̄ , XZXT , H̄ , H−1,

Y , UXT , G j , V jXT ( j = 1, 2, 3, 4), W , EcH̄T ,

S̄ i , X̌S iX̌T (X̌ = diag{X, X, X}, i = 1, 2).

(27)

Pre- and post-multiplying (23) by diag{X, X, X, X, X, X, X, H̄, I, X} and its transpose, and
using (27) yields

Π̃(τt, τ̇t) < 0, (28)

where

Π̃(τt, τ̇t) = Sym
(
ΞT

1 P̄Ξ2 − ε
T
8 Ξ̄3 + Ξ̄T

4 Ξ̄5
)

+ Ξ̃6 − (2 − α)
× ΞT

7 Z̄Ξ7 − (1 + α)ΞT
8 Z̄Ξ8 + (1 − α)ΞT

7 S̄ 1Z̄
−1S̄ T

1 Ξ7

+ αΞT
8 S̄ T

2 Z̄
−1S̄ 2Ξ8 − Sym

{
ΞT

7 [αS̄ 1 + (1 − α)S̄ 2]Ξ8
}
,

with Ξ̃6 = Ξ̄6 + diag{δ1XCTCXT , 07n̄+nu+ny}.
Using the fact that Π̃(τt, τ̇t) is convex about τt as well as τ̇t, it follows that (28) can be ensured by

Π̃(0, τ̇t) < 0, τ̇t ∈ {µ1, µ2}, (29)
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Π̃(τ, τ̇t) < 0, τ̇t ∈ {µ1, µ2}. (30)

Noting that α = 0 for the case τt = 0, and applying Schur complement, it can be seen that (29)
and (30) are equivalent to LMIs in (14) and (15), respectively. Pre- and post-multiplying (25)
by diag{X, X, X, X, X} and its transpose, respectively, and meanwhile, employing (27) and Schur
complement yields the LMIs (16). �

Remark 3. In obtaining Theorem 1, an augmented L-K functional (13) with double integral terms and
the novel delay-dependent SC (11) are adopted to alleviate the conservatism. Moreover, an auxiliary
function-based integral inequality is further utilized to estimate the upper bound V̇(t). In addition, the
Wirtinger-based inequality (inequality (2) of Lemma 1) is employed to estimate the lower bounds of
both integral terms

∫ t

t−τt
xT (r)Q1x(r)dr and

∫ t−τt

t−τ
xT (r)Q2x(r)dr.

For the constant delay case (τt = τ), we select the simplified L-K functional

Ṽ(t) = ηT (t)P̃η(t) +

∫ t

t−τ
xT (r)Qx(r)dr + τ

∫ 0

−τ

∫ t

t+θ
ẋT (r)Zẋ(r)drdθ +

δ2

ζ
e−ζt + ξ(t), (31)

where η(t) = col
{
x(t),

∫ t

t−τ
x(r)dr, 1

τ

∫ t

t−τ

∫ t

θ
x(r)drdθ

}
, P̃ is a symmetric matrix, and Q > 0, Z > 0.

Using the inequalities (2) and (3) in Lemma 1, we can estimate the Ṽ(t) as

Ṽ(t) ≥η(t)P̃η(t) +
1
τ

( ∫ t

t−τ
x(r)dr

)T

Q
( ∫ t

t−τ
x(r)dr

)
+ (3/τ)νT

1 (t)Qν1(t) + 2τνT
2 (t)Zν2(t) + 4τνT

3 (t)Zν3(t)
=ηT (t)[Φ1 + 2τΦT

2 ZΦ2 + 4τΦT
3 ZΦ3]η(t), (32)

where

ν1(t) ,
∫ t

t−τ
x(r)dr −

2
τ

∫ t

t−τ

∫ t

θ

x(r)drdθ,

ν2(t) ,x(t) −
1
τ

∫ t

t−τ
x(r)dr,

ν3(t) ,x(t) +
2
τ

∫ t

t−τ
x(r)dr −

6
τ2

∫ t

t−τ

∫ t

θ

x(r)drdθ,

Φ1 ,P̃ +
1
τ


0 0 0
∗ 4Q −6Q
∗ ∗ 12Q

 , Φ2 , [I − I/τ 0],

Φ3 ,[I 2I/τ − 6I/τ2].

Moreover, we define the variables

P̌ , diag{X, X, X}P̃diag{XT , XT , XT }, Q̄ , XQXT ,G j , V jXT ( j = 1, 2). (33)

Then, the AW design criterion for the constant delay case is stated as follows:

AIMS Mathematics Volume 9, Issue 10, 27721–27738.



27731

Corollary 1. Assume that there exist 3n̄ × 3n̄ symmetric matrix P̌, n̄ × n̄ matrices Q̄ > 0, Z̄ > 0, X,
nu × n̄ matrices Y, G1, G2, nc × nu matrix W, nu × nu diagonal matrix H̄ > 0, such that the LMIs as
below hold: [

Ω
√
δ1ε̂

T
1 XCT

∗ −I

]
≤ 0, (34)[

ū2
l /β Ml

MT
l Φ̄1 + 2τΦT

2 Z̄Φ2 + 4τΦT
3 Z̄Φ3

]
≥ 0, l = 1, 2, . . . , nu, (35)

where

Ω =Sym
(
ΥT

1 P̌Υ2 − ε̂
T
5 Υ3 + ΥT

4 Υ5
)

+ Υ6 + ΥT
7 Z̄Υ7,

Υ1 =


ε̂1

τε̂3

τε̂4

 , Υ2 =


ε̂7

ε̂1 − ε̂2

ε̂1 − ε̂3

 , Υ4 =
[
I 0n̄×(3n̄+nu+ny) εI

]
,

Υ3 =[KXT − Y 0nu×n̄ − τG1 − τG2 H̄ Dc 0nu×n̄],
Υ5 =[AXT AdXT 0n̄×2n̄ (BH̄T + RW) Be − XT ],
Υ6 =diag{Q̄,−Q̄, 02n̄+nu ,−I, τ2Z̄}, M =

[
Y G1 G2

]
,

Υ7 =


ε̂1 − ε̂2

ε̂1 + ε̂2 − 2ε̂3

ε̂1 − ε̂2 + 6ε̂3 − 12ε̂4

 , Φ̄1 = P̌ +
1
τ


0 0 0
∗ 4Q̄ −6Q̄
∗ ∗ 12Q̄

 .
Then, the conclusion of Theorem 1 holds for the case τt = τ.

Remark 4. In deriving above Corollary 1, the lower bound of the integral term
τ
∫ 0

−τ

∫ t

t+θ
ẋT (r)Zẋ(r)drdθ is estimated based on an auxiliary function-based inequality (the

inequality (3) of Lemma 1), which is different from the variable delay situation. Noting that, if
the same technique is utilized in the variable delay situation, the resulting conditions are no longer
LMIs. On the other hand, it is worth mentioning that, using the L-K functional (31), one can establish
the corresponding result for the case that the time delay τt is not differentiate [14, 41].

Next, we are concerned with the optimization of the ICS ℵρ. To estimate V(0), we set

P̄ ≤ diag{L1,L2,L3,L4,L5}, Li > 0 (i = 1, 2, . . . , 5). (36)

Using Jensen integral inequalities [17] and noting that P̄ , X̂PX̂T yields

V(0) ≤
[
λM(X−1L1X−T ) + τ2λM(X−1L2X−T )
+ τ2λM(X−1L3X−T ) + 0.25τ2λM(X−1L4X−T )
+ 0.25τ2λM(X−1L5X−T ) + τλM(X−1Q̄1X−T )
+ τλM(X−1Q̄2X−T )

]
ρ1 + 0.5τ3λM(X−1Z̄X−T )ρ2

+ δ2/ζ + ξ0 , V̂0. (37)

Similarly, we can set

P̌ ≤ diag{L1,L2,L3}, Lĩ > 0 (ĩ = 1, 2, 3). (38)
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Then, we get

Ṽ(0) ≤
[
λM(X−1L1X−T ) + τ2λM(X−1L2X−T )
+ 0.25τ2λM(X−1L3X−T ) + τλM(X−1Q̄X−T )

]
ρ1

+ 0.5τ3λM(X−1Z̄X−T)ρ2 + δ2/ζ + ξ0 ,
ˆ̃V0. (39)

Similar to [17], one can set X−1X−T ≤ xI (x > 0). The inequality is ensured by an LMI[
xI I
I X + XT − I

]
≥ 0. (40)

Furthermore, one introduces the set of LMIs as follows:

Li ≤ piI (pi > 0), Q̄ j ≤ q jI (q j > 0), Z̄ ≤ zI (z > 0), i = 1, 2, . . . , 5, j = 1, 2, (41)
Lĩ ≤ pĩI (pĩ > 0), Q̄ ≤ qI (q > 0), Z̄ ≤ zI (z > 0), ĩ = 1, 2, 3. (42)

Note that the admissible initial conditions satisfy the constraint V(0) ≤ β. For given δ2, ζ, ξ0, and
β, it can be seen from (37) and (39) that the small coefficients of ρ1 and ρ2 correspond to large ρ1 and
ρ2. Then, the maximization of the ICS ℵρ can be achieved by minimizing the coefficients of ρ1 and ρ2.
Correspondingly, the optimization of the ICS ℵρ involved in Theorem 1 as well as Corollary 1 can be,
respectively, expressed as follows:

Prob.1. min
P̄>0,Li>0,Q̄ j>0,Z̄>0,H̄>0,S̄ j,X,Y,Gk ,W,x>0,pi>0,q j>0,z>0

υ1,

s.t., LMIs (14) − (16), (36), (40), and (41) hold,
Prob.2. min

P̌>0,Lĩ>0,Q̄>0,Z̄>0,H̄>0,X,Y,G1,G2,W,x>0,pĩ>0,q>0,z>0
υ2,

s.t., LMIs (34), (35), (38), (40), and (42) hold,

where

υ1 =%x + p1 + τ2 p2 + τ2 p3 + 0.25τ2 p4

+ 0.25τ2 p5 + τq1 + τq2 + 0.5τ3z,

υ2 =%x + p1 + τ2 p2 + 0.25τ2 p3 + τq + 0.5τ3z, % > 0.

Once the optimization problem has the solution, then the AW gain matrix can be solved by Ec = WH̄−T .
Also, two scalars ρ1 and ρ2 involved in ICS ℵρ can be characterized by the relation V̂0 ≤ β or ˆ̃V0 ≤ β.

Remark 5. If the ETM is not introduced in measurement output y(t), the corresponding optimization
problems can be readily derived by removing some terms involving e(t) in LMIs (14)–(15) and
LMIs (34)–(35), which are respectively denoted as Prob.1’ and Prob.2’. In fact, the AW synthesis
has been considered in [17] for time-delay systems under continuous-time measurement. However,
compared with the techniques used in [17], the double integral terms are further incorporated in L-K
functionals and SCs. In addition, several more advanced inequalities are adopted to estimate the upper
bounds of the derivatives of L-K functionals and the lower bounds of L-K functionals themselves.
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4. Numerical example

Example 1. Let us address the unstable system (1) and the controller (2) with the parameters

Ap =

[
−1.5 1

1 0

]
, Apd =

[
0.5 0.5
0.5 0

]
, Bp =

[
1
0

]
,

Cp =[0 1], Ac = 0, Bc = −1, Cc = 0.15, Dc = −3,
τ =0.5, µ1 = −0.1, µ2 = 0.1, ūl = 10.

The parameters of the triggering conditions (5) and (6) are selected as:

δ1 = 0.005, δ2 = 0.05, ζ = 1, λ = θ = 2, ξ0 = 0.

Solving Prob.1 with β = 1.35, δ = 0.78, and % = 5 × 103, one can obtain the maximum scalars
ρ1 = ρ2 = 11.0493 involved in ICS ℵρ defined in (8) and the AW gain Ec = 0.8083.

In Figures 1 and 2, we plot the state evolution of the closed-loop system and the saturated input,
respectively. In Figure 3, we plot the event-triggering instants. In the simulation, we select τt ≡

0.4 + 0.1sint, φp(θ) = [−0.5 − 3.28], φc(θ) = 0 (φ(θ) ∈ ℵρ). From Figure 1, it is clear that the system
state converges to zero, which verifies the availability of our obtained result. Figure 2 shows that the
control input is saturated within the initial stage. In Figure 3, “1” denotes the triggering and “0” denotes
no triggering, and the total number of event-triggering instances is 137 within [0, 10]. Noting that the
sampling time is 0.01s, it is obvious that the ETM can save the communication resources effectively.
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Figure 1. State evolution of the closed-loop system.
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Figure 2. The saturated control input.
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Figure 3. The event-triggering instants.

For the case without using the ETM, by solving Prob.2’ with β = 1, the maximum scalars ρ
(= ρ1 = ρ2) related to the ICS ℵρ are easily obtained (see Table 1). In Table 1, we also list the upper
bounds of ρ obtained by the result in [20] and some special cases, where Cases I–III correspond to,
respectively, W = 0 in LMIs (34), Φ̄1 = P̌ + diag{0, Q̄/τ, 0} and Φ3 = 0 in LMIs (35), and G2 = 0 in
LMIs (34) and (35).

From Table 1, we can see that Prob.2’ provides the larger estimate of ρ than the result in [17],
which verifies that the proposed techniques in this paper have less conservatism. Noting that Case I
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is related to the controller without the AW term, it is illustrated that the AW strategy can enlarge the
estimate of the ICS. Also, it is seen that Prob.2’ can estimate a larger ρ than Case II, which shows
that our proposed technique dealing with the lower bound of the L-K functional is more effective. In
addition, Prob.2’ can give the larger ρ than Case III, which demonstrates that the double integral term
introduced in delay-dependent SCs can decrease the conservatism.

Table 1. Upper bounds of the scalars ρ related to the set ℵρ
τ = 0.5 τ = 1 τ = 2 τ = 3

Prob.2’ 16.0301|ε=0.75
%=2∗104 13.5219|ε=0.92

%=3∗104 9.6972|ε=0.90
%=5∗104 6.3127|ε=0.96

%=1∗105

[17] 15.5588|δ=0.87
σ=2∗104 12.6312|δ=0.91

σ=3∗104 7.1349|δ=1.09
σ=4∗104 4.5252|δ=1.35

σ=3∗104

Case I 13.6150|ε=0.75
%=2∗104 11.4950|ε=0.92

%=3∗104 8.1025|ε=0.90
%=5∗104 5.1608|ε=0.96

%=1∗105

Case II 15.8474|ε=0.75
%=2∗104 12.8714|ε=0.92

%=3∗104 8.1408|ε=0.90
%=5∗104 4.9639|ε=0.96

%=1∗105

Case III 16.0172|ε=0.75
%=2∗104 13.3877|ε=0.92

%=3∗104 9.0850|ε=0.90
%=5∗104 5.5082|ε=0.96

%=1∗105

5. Conclusions

In the paper, the AW synthesis has been investigated for linear control systems containing time-
varying state delay and saturating actuators under a dynamic ETM. Using novel delay-dependent SCs
and augmented L-K functionals together with several less conservative inequalities, delay-dependent
AW design conditions have been obtained on the basis of the feasibility of a set of LMIs. Then,
the optimization of ICSs has been concretely formulated. In the end, a simulation example has
been provided to show the validity and advantages of our results. Here, it is worth mentioning
that more effective results can be established by incorporating the switching AW design [8] and the
dynamic AW technique [19], which is our further research. Moreover, by using the sampled-data-
based ETM [25], the continuous supervision of the measurement is no longer required. In addition,
the external disturbances might be unavoidable in actual control systems [18,19,42]. Using the similar
analysis as in [18, 19], it is easy to extend our results to control systems with external disturbances.
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