
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 27704–27720.
DOI: 10.3934/math.20241345
Received: 29 August 2024
Revised: 11 September 2024
Accepted: 14 September 2024
Published: 25 September 2024

Research article

Derivation of some solitary wave solutions for the (3+1)- dimensional
pKP-BKP equation via the IME tanh function method

Abeer S. Khalifa1,2, Hamdy M. Ahmed3, Niveen M. Badra1, Jalil Manafian4,5,*, Khaled H.
Mahmoud6, Kottakkaran Sooppy Nisar7 and Wafaa B. Rabie8

1 Department of Physics and Engineering Mathematics, Faculty of Engineering, Ain Shams
University, Abbassia, Cairo, Egypt

2 Department of Mathematics, Faculty of Basic Sciences, The German University in Cairo (GUC),
Cairo, Egypt

3 Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk
Academy, Cairo, Egypt

4 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz,
Tabriz, Iran

5 Natural Sciences Faculty, Lankaran State University, 50, H. Aslanov str., Lankaran, Azerbaijan.
6 Department of Physics, College of Khurma University College, Taif University, Taif 21944,

Saudi Arabia
7 Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin

Abdulaziz University, Alkharj 11942, Saudi Arabia
8 Department of Engineering Mathematics and Physics, Higher Institute of Engineering and

Technology, Tanta, Egypt

* Correspondence: Email: j manafianheris@tabrizu.ac.ir.

Abstract: This study is focusing on the integrable (3+1)-dimensional equation that combines
the potential Kadomtsev-Petviashvili (pKP) equation with B-type Kadomtsev-Petviashvili (BKP)
equation, also known as the pKP-BKP equation. The idea of combining integrable equations has
the potential to produce a variety of unexpected outcomes such as resonance of solitons. This article
provides a wide range of alternative exact solutions for the pKP-BKP equation in three dimensional
form, including dark solitons, singular solitons, singular periodic solutions, Jacobi elliptic function
(JEF) solutions, rational solutions and exponential solution. The improved modified extended (IME)
tanh function method is employed to investigate these solutions. All of the obtained solutions for
the investigated model are presented using the Wolfram Mathematica program. To further help in
understanding the solutions’ physical characteristics and dynamic structure, the article provides visual
representations of some derived solutions using 2D representation in addition to the 3D graphs via
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symbolic computation. This article aims to use a potent strategy using a powerful scheme to derive
different solutions with various structures. Additionally, the results greatly improve and enhance the
literature’s solutions to a combined pKP-BKP equation and allow deep understanding of the nonlinear
dynamic system through different exact solutions.

Keywords: potential Kadomtsev-Petviashvili-B-type Kadomtsev-Petviashvili; NPDE; IME tanh
function method; solitary wave solutions
Mathematics Subject Classification: 35B35, 35C07, 35C08, 35C09

1. Introduction

The nonlinear partial differential equations (NPDEs) have been used several scientific domains,
such as earth sciences, engineering, physics, and other fields of technology [1–5]. The study of the
nonlinear local waves is helpful to understand the dynamic behaviors of nonlinear waves [6–8]. Many
researchers have focused on accurate and numerical solutions for NPDEs [9–13]. In particular, these
studies have played an important role in the development of nonlinear optical materials and optical
soliton propagation [14–17]. Several solutions, either solitary wave solutions or exact solutions, have
been identified for NPDEs [18–21]. It is well known that nonlinear differential equations (NLDEs)
with variable coefficients can better describe various nonlinear local waves than the ones with constant
coefficients [22–25]. Therefore, it is important to find local wave solutions of NLDEs with variable
coefficients. There are many classical methods for solving NLDEs, such as a lightweight method [26],
account service network [27], quaternary ammonium salt surfactant [28], effect on electromagnetic
vibration and optimized structure [29], and impedance matching [30]. In physics disciplines such
as fluids, plasma theory, and nonlinear optics. Hosseini et al. [31, 32] studied many novel models
such as the generalized Kadomtsev-Petviashvili equation and the 3D generalized Korteweg-De Vries
(KdV) equation in order to obtain newly created soliton solutions through different approaches. Li
and Tian systematically solved the Cauchy problem of the general n-component nonlinear Schrödinger
equations based on the Riemann-Hilbert method and N-soliton solutions. Moreover, they proposed a
conjecture about the law of nonlinear wave propagation [33]. Yang, Tian, and Li successfully solved
the soliton solutions of the focusing nonlinear Schrödinger equation with multiple high-order poles
under nonzero boundary conditions for the first time [34]. In recent years, nonlinear local waves such
as exact wave solutions and analytical methods have become a hot topic in nonlinear field and attracted
the attention of many scholars. With respect to soliton resolution conjecture, Li, Tian, Yang, and
Fan have done some interesting work in deriving the solutions of Wadati-Konno-Ichikawa equation,
complex short pulse equation, and short pulse equation with the help of the Dbar-steepest descent
method. They solved the long-time asymptotic behavior of the solutions of these equations, and proved
the soliton resolution conjecture and the asymptotic stability of solutions of these equations. The
potential Kadomtsev-Petviashvili (pKP) and the B-type Kadomtsev-Petviashvili (BKP) equations were
combined to create the nonlinear pKP-BKP equation that offered a new integrable (3+1)-dimensional
equation, having beneficial features [35–38]. Researchers [37] verified the integrability of these
equations. Several unexpected outcomes may be produced due to the idea of combining two integrable
systems with each other [39–42]. However, finding certain integrable systems is always an essential
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and difficult problem in theoretical physics. In [43], solitons were studied by Hirota due to the
conjunction of Sawaka-Kotera and the Korteweg-de Vries (SK-KdV) equations. Wazwaz [44, 45]
obtained multi soliton solutions using the Caudrey-Dodd-Gibbon (KdV-CDG) equation in conjunction
with the extended form of the Korteweg-de Vries equation. Wazwaz [46] obtained two reduced
forms of (3+1)-dimensional pKP-BKP equation, which were built from the standard form, as well as
retrieving a full spectrum of this used equation. As a result, for each of the three models that were under
this investigation, a range of solutions, including kink, single, periodic, and exponential solutions, were
determined. Almatrafi [47, 48] studied many models to get solitary wave solutions to many fractional
models using different approaches. Finding the so-called soliton molecules for an integrable nonlinear
system has become a popular issue in recent years. In fact, integrating two integrable systems together
frequently yields a wide range of surprising outcomes.

We plan to derive solutions of the following integrable (3+1)-dimensional pKP-BKP [46] with
various exact traveling wave solutions as the result of the parameters’ arbitrary values:

φxt + α
(
15(φx)3 + 15φxφxxx + φxxxxx

)
x

+ β (6φxφxx + φxxxx) + γ
(
φxxxy + 3

(
φxφy

)
x

)
+aφxx + bφxy + cφxz −

γ2

5α
φyy(x, y, z, t) = 0, (1.1)

where α, β, γ, a, b, and c act as arbitrary parameters having real values that will be calculated during
this work. φ(x, y, z, t) represents a polynomial function in terms of x, y, z that refer to the space
variables also t that denotes the time variation. This polynomial function appears with its partial
derivatives to describe the breather wave profiles. This equation was examined as unanticipated
unique waves having a significant amplitude that are maintained for a brief duration of time, satisfying
localization in both the space and time domains [49–51]. The (3+1)-dimensional pKP-BKP equation
is especially important for investigating complicated wave dynamics in systems like as fluids, plasmas,
and optical media, as it represents the propagation of nonlinear waves in three spatial dimensions
and one temporal dimension. By including wave interactions that take place both longitudinally and
transversely, we expand the conventional KP equation and illustrate how perturbations in one direction
can propagate over many spatial dimensions. Moreover, comprehension phenomena like shallow water
waves, ion-acoustic waves in plasmas, and optical pulses in nonlinear media where the stability and
development of the wave depend critically on the balance between nonlinearity and dispersion, requires
a comprehension of this equation.

Our goal is to make maximum use of Eq (1.1) by involving its parameters to create more forms
of analytical, exact solutions when employing a suitable, simple, easy method and with the aid of
symbolic computations. A wide range of solitons and other exact wave solutions have been studied by
many researchers using the IME tanh functional method [52, 53]. We compute different solitons and
other exact wave solutions using the IME tanh functional method for Eq (1.1). This combination is
a newly created study and does not exist in others, where the used IME tanh function method gives
the ability to yield precise analytical solutions to NPDE with efficiency, adaptability, and insights.
This method yields a wide range of solutions, including Jacobi epsilon function, exponential, singular
periodic, rational, singular soliton, and dark soliton solutions. Moreover, the recovered solutions
validate both strength and usefulness for the implemented method.

The structure of this article is as follows: An overview of the suggested model and its theoretical
underpinnings is given in Section 1. The major points of the IME tanh function method is presented
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in Section 2. In Section 3, we use the Wolfram Mathematica software to summarize the obtained
results, carrying out symbolic computations. In Section 4, we use 3-D, contour, and 2-D simulations
to graphically represent several dynamic wave patterns of various soliton solutions. In Section 5, we
report the conclusions.

2. Mathematical preliminaries of the IME tanh function method

We present the general framework of the IME tanh function method that will be applied in a later
section. We begin by examining the NPDE that is displayed below [53, 54]

Z
(
∅,∅x,∅y,∅z,∅t,∅xx,∅xy,∅xz...

)
= 0, (2.1)

whereZ acts as a polynomial that is represented by ∅(x, y, z, t) and some of its partial derivatives with
respect to both time and space domains.
Step 1. By employing the wave transformation shown below

∅(x, y, z, t) = F (ζ); ζ = x + ky + ℵz − ωt, (2.2)

where F represents the solution function, k, ℵ, and ω are few actual constants to be
assessed afterwards.

Next, from inserting Eq (2.2) into Eq (2.1) and after rearranging, an obtained nonlinear ordinary
differential equation (NLODE) can be constructed as:

J(F , F ′, F ′′, F ′′′, . . . . . .) = 0. (2.3)

Step 2. According to the applied method, the solution of Eq (2.3) takes the following form:

F (ζ) =

N∑
m=0

LmW
m(ζ) +

N∑
m=1

AmW
−m(ζ), (2.4)

where Lm and Am (m = 1, 2, ...) provide for constant values to be calculated, with the requirement that
LN and AN cannot both be zero at the same time.
Step 3. Next, by performing the balancing between both of the nonlinearity and the dispersion of
Eq (2.3) to determine the value of the number N, besidesW(ζ) having the following constraint:

W
′(ζ) = ε

√
r0 + r1W(ζ) + r2W

2(ζ) + r3W
3(ζ) + r4W

4(ζ), (2.5)

where ε = ±1 and ri (0 ≤ i ≤ 4) are constants of real values.
From the different possible values of r0–r4, we obtain from (2.5) the various kinds of fundamental

solutions as follows:
Case 1. r0 = r1 = r3 = 0,

W(ζ) =

√
−

r2

r4
sech(

√
r2 ζ), r2 > 0, r4 < 0,

W(ζ) =

√
−

r2

r4
sec(
√
−r2 ζ), r2 < 0, r4 > 0,
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W(ζ) =
−ε
√

r4 ζ
, r2 = 0, r4 > 0.

Case 2. r1 = r3 = 0,

W(ζ) = ε

√
−

r2

2r4
tanh

(√
−

r2

2
ζ

)
, r2 < 0, r4 > 0, r0 =

r2
2

4r4
,

W(ζ) = ε

√
r2

2r4
tan

(√
r2

2
ζ

)
, r2 > 0, r4 > 0, r0 =

r2
2

4r4
,

W(ζ) =

√
−r2m2

r4(2m2 − 1)
cn

(√
r2

2m2 − 1
ζ

)
, r2 > 0, r4 < 0, r0 =

r2
2m2(1 − m2)

r4(2m2 − 1)2 ,

W(ζ) =

√
−m2

r4(2 − m2)
dn

(√
r2

2 − m2 ζ

)
, r2 > 0, r4 < 0, r0 =

r2
2(1 − m2)

r4(2 − m2)2 ,

W(ζ) = ε

√
−

r2m2

r4(1 + m2)
sn

(√
−

r2

1 + m2 ζ

)
, r2 < 0, r4 > 0, r0 =

r2
2m2

r4(m2 + 1)2 ,

where m is the modulus of the Jacobi elliptic functions.
Case 3. r0 = r1 = r2 = 0,

W =
4r3

r2
3ζ

2 − 4r4
, r4 , 0,

W =
r3

2r4
exp

(
εr3

2
√
−r4

ζ

)
, r4 < 0.

Case 4. r3 = r4 = 0,

W(ζ) = −
r1

2r2
+ exp(ε

√
r2 ζ), r2 > 0, r0 =

r2
1

4r2
,

W(ζ) = −
r1

2r2
+
εr1

2r2
sin(
√
−r2 ζ), r0 = 0, r2 < 0,

W(ζ) = −
r1

2r2
+
εr1

2r2
sinh(2

√
r2 ζ), r0 = 0, r2 > 0,

W(ζ) = ε

√
−

r0

r2
sin(
√
−r2 ζ), r1 = 0, r0 > 0, r2 < 0,

W(ζ) = ε

√
r0

r2
sinh(

√
r2 ζ), r1 = 0, r0 > 0, r2 > 0.

Case 5. r0 = r1 = 0, r4 > 0,

W(ζ) = −

r2 sec2

( √
−r2

2
ζ

)
2ε
√
−r2r4 tan

( √
−r2

2
ζ

)
+ r3

, r2 < 0,
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W(ζ) =

r2sech2
( √

r2

2
ζ

)
2ε
√

r2r4 tanh
( √

r2

2
ζ

)
− r3

, r2 > 0, r3 , 2ε
√

r2r4,

W(ζ) =
1
2
ε

√
r2

r4

(
1 + tanh

( √
r2

2
ζ

))
, r2 > 0, r3 = 2ε

√
r2r4.

Step 4. By inserting the presumably stated solutions in Eqs (2.4) and (2.5) into Eq (2.3), one can
raise W(ζ) as a polynomial function. A series of algebraic non-linear equations resulting from the
coefficients equalization of Wi(ζ), (i = 0,±1,±2, ...), to zero may be solved using a software such as
Wolfram Mathematica. Then, for Eq (2.1), we obtain a variety of exact solutions.

The IME tanh function method is highly helpful for obtaining precise analytical solutions and
gaining a deeper comprehension of soliton dynamics by comparing the proposed scheme with the other
most current approaches. It can be challenging to control because to its complexity and sensitivity to
initial conditions. Alternative methods offer increased adaptability and enhancement, although at the
expense of increased complexity. The specific requirements of the issue, for example, the kind of the
PDEs, determining the boundary constrains and the intended ratio of computational practicality to the
analytical expertise, dictate which technique is applicable.

3. Extraction of novel solutions

Using Eq (2.2), Eq (1.1) becomes the following NLODE:(
a + bk + cℵ − ω −

γ2k2

5α
+ 6(β + γk)F ′ + 45α

(
F ′

)2
+ 15αF (3)

)
F ′′ +

(
β + γk + 15αF ′

)
F (4)

+αF (6)(x, y, z, t) = 0. (3.1)

After executing the integration step once with respect to ζ on Eq (3.1) and when we set the integration
constant to zero, we get

3(β+γk)
(
F ′

)2
+15α

(
F ′

)3
+(β+γk)F (3)+

(
a + bk + cℵ − ω −

γ2k2

5α
+ 15αF (3)

)
F ′+αF (5)(x, y, z, t) = 0.

(3.2)
It is possible to simplify Eq (3.2) to have:

3(β+γk)H2 +15αH3 + (β+γk)H′′+
(
a + bk + cℵ − ω −

γ2k2

5α
+ 15αH′′

)
H++αH(4)(x, y, z, t) = 0, (3.3)

such that H(ζ) = F ′(ζ). Thus, by applying principle of balance that was mentioned in Section 2 to
Eq (3.3), the exact solutions for Eq (3.3) can be constructed in the manner described as follows:

H(ζ) = L0 + L1W(ζ) + L2W
2(ζ) +

A1

W(ζ)
+
A2

W2(ζ)
. (3.4)

By placing the constraint in Eq (2.5), using Eqs (3.4) and (3.3), we obtain a polynomial in W(ζ).
All terms having the same power are put together and seated to be equal zero, which generates an

AIMS Mathematics Volume 9, Issue 10, 27704–27720.



27710

algebraic non-linear equations system. The coming scenarios of solutions are produced using the
Wolfram Mathematica software program in order to solve these equations. It is stipulated that neither
L2 nor A2 may be zero simultaneously.
Case-(1): If r0 = r1 = r3 = 0, the sets of solutions listed below are resulted:

(1.1) L0 = L1 = A1 = A2 = 0, L2 = −2r4, a = −bk − cℵ + ω +
γ2k2

5α − 4(β + γk)r2 − 16αr2
2.

(1.2) L0 = L1 = A1 = A2 = 0, L2 = −4r4, a =
25αω+4β2−25αbk−25αcℵ+8βγk+9γ2k2

25α .

The following structures are the outcome of certain exact solutions to Eq (1.1), as per the set of
solutions (1.1):

(1.1,1) If r2 > 0 and r4 < 0, we obtain the following dark soliton solution:

φ1.1,1(x, y, z, t) = 2
√

r2 tanh
[
(x + ky + ℵz − ωt)

√
r2

]
. (3.5)

(1.1,2) If r2 < 0 and r4 > 0, we obtain the following singular periodic solution:

φ1.1,2(x, y, z, t) = −2
√
−r2 tan

[
(x + ky + ℵz − ωt)

√
−r2

]
. (3.6)

(1.1,3) If r2 = 0 and r4 > 0, we obtain the following rational solution such that x + ky + ℵz − ωt , 0:

φ1.1,3(x, y, z, t) =
2

x + ky + ℵz − ωt
. (3.7)

While considering the set (1.2), the following solution can be constructed for Eq (1):

(1.2,1) If r2 > 0 and r4 < 0, we obtain the following dark soliton solution:

φ1.2,1(x, y, z, t) = 4
√

r2 tanh
[
(x + ky + ℵz − ωt)

√
r2

]
. (3.8)

(1.2,2) If r2 < 0 and r4 > 0, we obtain the following singular periodic solution:

φ1.2,2(x, y, z, t) = −4
√
−r2 tan

[
(x + ky + ℵz − ωt)

√
−r2

]
. (3.9)

(1.2,3) If r2 = 0 and r4 > 0, we obtain the following rational solution such that x + ky + ℵz − ωt , 0:

φ1.2,3(x, y, z, t) =
4

x + ky + ℵz − ωt
. (3.10)

Case-(2): If r1 = r3 = 0, the sets of solutions listed below are resulted:

(2.1) L0 = L1 = A1 = A2 = 0, L2 = −2r4, a = −bk − cℵ + ω +
γ2k2

5α − 12αr0r4, r2 = −
β+γk

4α .

(2.2) L0 = L1 = A1 = 0, L2 = −2r4, A2 = −2r0, a = −bk− cℵ+ω+
12βγk
49α +

6β2

49α +
79γ2k2

245α + 48αr0r4, r2 =

−
β+γk
28α .

(2.3) L0 = L1 = L2 = A1 = 0, A2 = −2r0, a = −bk − cℵ + ω +
γ2k2

5α − 12αr0r4, r2 = −
β+γk

4α .
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The produced set of solutions (2.1) indicates that Eq (1.1) has exact solutions, which can be phrased as:

(2.1,1) If r0 =
r2

2
4r4

, r2 < 0, and r4 > 0, we obtain the following dark soliton solution:

φ2.1,1(x, y, z, t) =
√
−2r2 tanh

[
(x + ky + ℵz − ωt)

√
−

r2

2

]
− (x + ky + ℵz − ωt)r2. (3.11)

(2.1,2) If r0 =
r2

2
4r4

, r2 > 0, and r4 > 0, we obtain the following singular periodic solution:

φ2.1,2(x, y, z, t) = −
√

2r2 tan
[
(x + ky + ℵz − ωt)

√
r2

2

]
+ (x + ky + ℵz − ωt)r2. (3.12)

(2.1,3) If r0 =
m2(1−m2)r2

2

(2m2−1)2
r4

, r2 > 0, r4 < 0, and 1
√

2
< m ≤ 1, we obtain the following JEF solution:

φ2.1,3(x, y, z, t) = 2m
(
(m − 1)(x + ky + ℵz − ωt)r2

2m2 − 1
+

√
r2

2m2 − 1
E

[
(x + ky + ℵz − ωt)

√
r2

2m2 − 1

])
,

(3.13)
where E is a Jacobi epsilon function.
Special case, when setting m = 1 in Eq (3.13), we obtain the following dark soliton solution:

φ2.1,4(x, y, z, t) = 2
√

r2 tanh
[
(x + ky + ℵz − ωt)

√
r2

]
. (3.14)

(2.1,4) If r0 =
(1−m2)r2

2

(2−m2)2
r4

, r2 > 0, r4 < 0 and 0 < m ≤ 1, then we obtain the following JEF solution:

φ2.1,5(x, y, z, t) =

2m2
√

r2
2−m2 E

[
(x + ky + ℵz − ωt)

√
r2

2−m2

]
r2

. (3.15)

Special case, when setting m = 1 in Eq (3.15), we obtain the following dark soliton solution:

φ2.1,6(x, y, z, t) =
2
√

r2
tanh

[
(x + ky + ℵz − ωt)

√
r2

]
. (3.16)

(2.1,5) If r0 =
m2r2

2

(m2+1)2
r4

, r2 < 0, r4 > 0, and 0 < m ≤ 1, we obtain the following JEF solution:

φ2.1,7(x, y, z, t) = 2m
(

(x + ky + ℵz − ωt)r2

m2 + 1
+ E

[
(x + ky + ℵz − ωt)

√
−

r2

m2 + 1

] √
−

r2

m2 + 1

)
. (3.17)

Special case, when setting m = 1 in Eq (3.17), we obtain the following dark soliton solution:

φ2.1,8(x, y, z, t) = r2

(x + ky + ℵz − ωt) +

√
−

2
r2

tanh
[
(x + ky + ℵz − ωt)

√
−

r2

2

] . (3.18)

The mentioned set of solutions (2.2) indicates that Eq (1.1) has exact solutions, which can be
phrased as:
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(2.2,1) If r0 =
r2

2
4r4

, r2 < 0, and r4 > 0, we obtain the following singular soliton solution:

φ2.2,1(x, y, z, t) = −2
(
(x + ky + ℵz − ωt)r2 −

√
−2r2 coth

[
(x + ky + ℵz − ωt)

√
−2r2

])
. (3.19)

(2.2,2) If r0 =
r2

2
4r4

, r2 > 0, and r4 > 0, we obtain the following singular periodic solution:

φ2.2,2(x, y, z, t) = 2
(
r2(x + ky + ℵz − ωt) +

√
2r2 cot

[
(x + ky + ℵz − ωt)

√
2r2

])
. (3.20)

The above set of solutions (2.3) indicates that Eq (1.1) has exact solutions, which can be phrased as:

(2.3,1) If r0 =
r2

2
4r4

, r2 < 0, and r4 > 0, we obtain the following singular soliton solution:

φ2.3,1(x, y, z, t) = (x + ky + ℵz − ωt)r2 +
√
−2r2 coth

[
(x + ky + ℵz − ωt)

√
−

r2

2

]
. (3.21)

(2.3,2) If r0 =
r2

2
4r4

, r2 > 0, and r4 > 0, we obtain the following singular periodic solution:

φ2.3,2(x, y, z, t) = (x + ky + ℵz − ωt)r2 +
√

2r2 cot
[
(x + ky + ℵz − ωt)

√
r2

2

]
. (3.22)

Case-(3): If r0 = r1 = r2 = 0, the resulted set of solutions is mentioned below:

L0 = A1 = A2 = 0, L1 = −r3, L2 = −2r4, β = −γk, ω = a + bk + cℵ −
γ2k2

5α
.

The exact solutions to Eq (1.1) that arise from the gathered set of solutions, have the following
displayed forms:

(3.1) If r4 , 0, r3 , 0 and (x+ky+ℵz−ωt)2r2
3−4r4 , 0, the following rational solution is produced as:

φ3.1(x, y, z, t) =
4(x + ky + ℵz − ωt)r2

3

(x + ky + ℵz − ωt)2r2
3 − 4r4

. (3.23)

(3.2) If r4 < 0 and r3 , 0, the following exponential solution is produced as:

φ3.2(x, y, z, t) = r3

√
−

1
r4

e
(x+ky+ℵz−ωt)r3

2
√
−r4

[
1 +

1
2

e
(x+ky+ℵz−ωt)r3

2
√
−r4

]
. (3.24)

Case-(4): If r3 = r4 = 0, the raised set of solutions is generated as:

L0 = L1 = L2 = 0, A1 = −r1, A2 = −2r0, β = −γk − 5αr2, ω = a + bk + cℵ −
γ2k2

5α
− 4αr2

2.

By using the acquired set of solutions with Eq (1.1), the below analytical solution is derived:
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(4.1) If r0 =
r2

1
4r2

and r2 > 0, the following exponential solution is produced such that r1 −

2r2e(x+ky+ℵz−ωt)
√

r2 , 0:

φ4.1(x, y, z, t) = −
2r1
√

r2

r1 − 2r2e(x+ky+ℵz−ωt)
√

r2
. (3.25)

(4.2) If r0 > 0, r1 = 0, and r2 < 0, a singular periodic solution is produced on the following form:

φ4.2(x, y, z, t) = 2
√
−r2 cot

[
(x + ky + ℵz − ωt)

√
−r2

]
. (3.26)

(4.3) If r0 > 0, r1 = 0, and r2 > 0, an obtained singular soliton solution appears:

φ4.3(x, y, z, t) = 2
√

r2 coth
[
(x + ky + ℵz − ωt)

√
r2

]
. (3.27)

Case-(5): If r0 = r1 = 0, and r4 > 0, the sets of solutions listed below are resulted

(5.1) L0 = A1 = A2 = 0, L1 = −r3, L2 = −2r4, a = −bk − cℵ + ω +
γ2k2

5α −
(β+γk)r2

3
4r4

−
αr4

3
16r2

4
, r2 =

r2
3

4r4
.

(5.2) L0 = L1 = A1 = A2 = r3 = 0, L2 = −2r4, ω = a + bk + cℵ + 4(β + γk)r2 −
γ2k2

5α + 16αr2
2.

By inserting the above parameters (5.1) for Eq (1.1), getting the following solution:

(5.1,1) If r2 > 0 and r3 = 2
√

r2r4, we obtain the following dark soliton solution:

φ5.1,1(x, y, z, t) =
√

r2

(
tanh

[
1
2

(x + ky + ℵz − ωt)
√

r2

]
+ 4 log

(
1 − tanh

[
1
2

(x + ky + ℵz − ωt)
√

r2

]))
.

(3.28)

Through the obtained set of solutions (5.2), the analytical solutions for Eq (1.1) can be obtained
as follows:

(5.2,1) If r2 < 0, we obtain the following singular periodic solution:

φ5.2,1(x, y, z, t) = 2
√
−r2 cot

[
(x + ky + ℵz − ωt)

√
−r2

]
. (3.29)

(5.2,2) If r2 > 0 and r3 , 2
√

r2r4, we obtain the following singular soliton solution:

φ5.2,2(x, y, z, t) = 2
√

r2 coth
[
(x + ky + ℵz − ωt)

√
r2

]
. (3.30)

4. Discussion and physical interpretations of the retrieved solutions

By manipulating the parameters in the model being studied, many sets of values were found
for Eq (1.1) that had not been previously recorded or achieved. To shed light on the mathematical
and physical characteristics of the recovered solutions, many formats of graphs are presented in this
section like the contour plot, 3-D, and 2-D plots of a number of solutions. The dark soliton solution
representation of Eq (3.5) is displayed in Figure 1, when selecting r2 = 0.8, k = 0.7, ℵ = 0.6, ω =

−0.45, y = z = 0, 0 ≤ t ≤ 5 and −15 ≤ x ≤ 15. Dark solitons are localized regions of diminished
amplitudes within a surrounding medium [55]. In fluid dynamics, they could be correlated with regions
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of decreased fluid density or pressure [56,57]. Figure 2 depicts the singular periodic solution of Eq (3.6)
by setting r2 = −0.8, k = 0.7, ℵ = 0.6, ω = 0.85, y = z = 0, 0 ≤ t ≤ 5 and −15 ≤ x ≤ 15. In physical
phenomena, a system can be described as a unique periodic solution when it displays periodic activity
interspersed by sudden, discontinuous changes or extreme occurrences. Non-linearities, boundary
conditions, or external stimuli might be the source of these singularities or discontinuities. Figure 3
displays the rational wave solution of Eq (3.7) when setting the parameters to be as k = 0.9, ℵ =

0.8, ω = −0.6, y = z = 0, 0 ≤ t ≤ 5, and −15 ≤ x ≤ 15. Rational solutions refer to solutions of
partial differential equations (PDEs) that may be represented as a quotient of polynomials. Figure 4
depicts the singular soliton solution of Eq (3.27) with parameters r2 = 0.6, k = −1.9, ℵ = 0.6, a =

0.7, b = 0.8, c = 0.75, α = −0.5, γ = 0.5, y = z = 0, 0 ≤ t ≤ 5 and −15 ≤ x ≤ 15. Singular
solitons are solutions that behave singularly and are often characterized by a small area that includes
an approaching infinity peak or trough. They may depict local phenomena symbolically. These are
less common in physical systems because of their severity.

Figure 1. Graphical depictions of the dark soliton in Eq (3.5).

Figure 2. Graphical depictions of the singular periodic solution in Eq (3.6).
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Figure 3. Graphical depictions of the rational wave solution in Eq (3.7).

Figure 4. Graphical depictions of the singular soliton in Eq (3.27).

5. Conclusions

The (3+1)-dimensional pKP-BKP equation, which was built from the combination of two
different forms, were fully recovered in this article. For this model and after applying the suggested
IME tanh function method, we obtained distinct breather wave solutions. For the integrable studied
model, a range of solutions, including dark and singular solitons; singular periodic, JEF, rational,
and exponential solutions, were determined. In terms of the soliton solutions that are found, solitons
are self-reinforcing waves that are stable and hold their energy and form as they propagate. These
solutions are crucial in understanding how energy or information can propagate without dispersion in
a nonlinear medium. In addition, the periodic solutions represent standing waves or wave packets that
repeatedly interact with a structured medium. Numerous solutions, including dark solitons, singular
solitons, singular periodic solutions, Jacobi elliptic function solutions, and rational and exponential
solutions, are provided by the IME tanh technique, which is based on the extended Riccati equation.
In contrast to alternative methods, this strategy offers fresh approaches to this model’s problems. We
may hope that our achievements will serve and give valuable information to the field of nonlinear
scientific community. Our findings may influence the evolution of integrated data transmission
telecommunication systems. In the future, we may extend our study to examine soliton dynamics
in 2D or 3D fiber arrays, as well as multi-dimensional connected systems. We may also look at the
interactions between vector solitons in connected multi-component systems.
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