
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 27687–27703.
DOI: 10.3934/math.20241344
Received: 14 July 2024
Revised: 02 September 2024
Accepted: 19 September 2024
Published: 25 September 2024

Research article

A new stochastic diffusion process based on generalized Gamma-like curve:
inference, computation, with applications

Safa’ Alsheyab and Mohammed K. Shakhatreh*

Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box
3030, Irbid 22110, Jordan

* Correspondence: Email: mkshakhatreh6@just.edu.jo; Tel: +96227201000; Fax: +96227095123.

Abstract: This paper introduces a novel non-homogeneous stochastic diffusion process, useful for
modeling both decreasing and increasing trend data. The model is based on a generalized Gamma-like
curve. We derive the probabilistic characteristics of the proposed process, including a closed-form
unique solution to the stochastic differential equation, the transition probability density function, and
both conditional and unconditional trend functions. The process parameters are estimated using the
maximum likelihood (ML) method with discrete sampling paths. A small Monte Carlo experiment
is conducted to evaluate the finite sample behavior of the trend function. The practical utility of the
proposed process is demonstrated by fitting it to two real-world data sets, one exhibiting a decreasing
trend and the other an increasing trend.
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1. Introduction

Modelling real data, particularly in fields like finance and biology, often involves latent randomness.
Consequently, using deterministic models, such as those based on ordinary or partial differential
equations, to represent this data may lead to inaccuracies. Alternatively, stochastic diffusion processes
(SDPs) can be used, as they are designed to account for the random behavior inherent in these data
sets. Typically, a diffusion process X(t) is a solution of the stochastic differential equation (SDE)

dX(t) = a(t, X(t), θ)dt + b(t, X(t), θ)dW(t), (1.1)

where W is a Wiener process, a(t, X(t), θ), b(t, X(t), θ) are called the drift and diffusion functions
respectively, are known functions, and θ are unknown indexed parameters. Recently, (1.1)
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has been employed to develop various new homogeneous/non-homogeneous SDPs, including the
Log-Logistic [1], Schumer [2], Lomax [3], Weibull [4], Square-Brennan-Schwartz [5], Brennan-
Schwartz [6], Gamma [7], Gompertz [8], and Rayleigh [9] diffusion processes. Most of these studies
have focused on modeling growth data, such as microorganism culture growth [1], the evolution of
electricity net consumption [2], population growth [5], and the growth of the total stock of private
car-petrol [7]. On the other hand, modeling data with a declining trend, such as mortality rates,
unemployment rates, and infectious diseases, remains of great interest. However, there are few SDPs
available for such data. For example, in [3] proposed the Lomax SDP to model the adolescent fertility
rate in Morocco, and in [4] introduced the Weibull SDP to model the age dependency ratio in Morocco.

It is worth mentioning that homogeneous SDPs assume a constant rate for the phenomenon under
consideration, whereas non-homogeneous SDPs allow for variability in the rate. The latter is more
reasonable in many situations. For example, interest rates are typically a function of time, making it
impractical to assume a constant rate. Similarly, while mortality rates can sometimes be constant over
a short period, they often change over time due to various factors, notably education and health care
improvements. Therefore, modeling such phenomena requires non-homogeneous SDPs to provide
insightful analysis and more accurate trend forecasting.

The SDPs introduced in the above-cited references are solved using stochastic calculus methods.
Moreover, statistical inference techniques, particularly the maximum likelihood (ML) estimates, are
employed to estimate the parameters involved in these models. Consequently, the trend function
of the process which is a function in these parameters, can be easily estimated immediately due to
the invariance property. While the ML estimates are satisfactory, the derivation of these estimates
requires the functional form of the processes, which can be summarized through the transition
probability density function. Unfortunately, the transition probability density function is quite difficult
to obtain in many processes, which makes obtaining the estimates of these parameters impossible, and
approximation methods are required in these cases, for example, [10–12], among others.

In this article, we introduce a novel stochastic model related to a particular type of the generalized
Gamma-like stochastic diffusion model. The generalized Gamma probability distribution, proposed
in [13], is particularly useful for modeling diverse types of data, especially lifetime data. The
probability density function of the generalized Gamma distribution is

f (t; a, α, p) ∝ tα−1 exp
{
−

( t
a

)p}
, (1.2)

where a, α, p > 0. Note that a is a scale parameter, while the other two parameters are shape
parameters. Additionally, this distribution includes several other common distributions, such as the
exponential, gamma, and Weibull distributions, as special cases. However, we shall consider the
following version of the generalized Gamma distribution with one parameter:

f (t;α) ∝ tα exp{−b1(α) tb2(α)},

where b1(α), b2(α) > 0.
We are motivated to introduce a novel SDP that is designed to model various types of trend data,

particularly decreasing and increasing trends. This contrasts with many existing SDPs in the literature,
which typically model only a single type of trend. Interestingly, the proposed SDP, based primarily
on a generalized gamma-like distribution with a single parameter, effectively accommodates both
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decreasing and increasing trend data. It is important to note that adding more parameters does not
necessarily improve the modeling of such data. For instance, the two-parameter Weibull stochastic
diffusion, as discussed in [4], does not significantly enhance the analysis of the data described in the
data section. Moreover, introducing additional parameters can complicate the process of obtaining
maximum likelihood estimates.

Our main contributions in this paper are as follows: Firstly, we define a novel SDP capable of
modeling decreasing and increasing trend data through careful selection of its drift function, which
involves a single parameter. Secondly, we thoroughly study the main characteristics of the proposed
process by demonstrating its existence and uniqueness, determining the transition probability density
function, calculating the moments of the process, and analyzing both the trend and conditional trends.
Notably, the trend function is proportional to the probability density function given in (1.1). Thirdly,
the SDP parameters are estimated using the maximum likelihood method. While the likelihood
function appears intractable, which is common in various SDPs, it becomes manageable due to the
kernel function being a log-normal distribution. By applying the log-likelihood function, the process
simplifies after some elementary algebra. Fourthly, we conduct simulation experiments to demonstrate
the consistency of the maximum likelihood estimates. Finally, two real-world applications exhibiting
decreasing and increasing trends are analyzed, and the SDP outperforms several existing processes.

The paper is organized as follows: Section 2 provides a description of the novel SDP and its
characteristics, including the solution of the process, the transition probability density function (TPDF),
and the moments. In Section 3, the process parameters are obtained using the maximum likelihood
estimation method with discrete sampling of the process. A small Monte Carlo experiment is conducted
in Section 4. The performance of the proposed process is applied to a real-world data set in Section 5.
Finally, some concluding remarks are given in Section 6.

2. The model and its probabilistic characteristics

In this section, we introduce a new one-dimension stochastic diffusion process. Some features of
the process, such as the existence of the solution, transition probability distributions, and moments, are
explained and derived.

2.1. The generalized Gamma-like curve (GGC) stochastic diffusion model

The GGC process is defined as the non-homogeneous diffusion process depending on {X(t), t ∈
[t1,T ], t1 > 0} assuming values in (0,∞) with infinitesimal moments given by

a(t, X(t), θ) =
(
α

t
−

103

α
t−102/α

)
X(t), b1/2(t, x(t), θ) = σX(t), (2.1)

where t1 is the initial time and T is the last time. The above-described process can be formally viewed
as a solution to the following SDP:

dX(t) =
(
α

t
−

103

α
t−102/α

)
X(t)dt + σX(t)dW(t); x(t1) = x1, (2.2)
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where σ > 0, and α ∈ R \ {0} is a non-zero real constant. Clearly, the solution of (2.2) can be obtained
via the one-dimensional Itô’s integral as follows:

X(t) = X1 +

∫ T

t1

(
α

t
−

103

α
t−102/α

)
X(t)dt + σ

∫ T

t1
X(t)dW(t).

2.2. Existence and uniqueness

Here, we show the existence and uniqueness of the solution for the GGC process given via in (2.2).
Toward this goal, it is enough to verify that the infinitesimal moments satisfy uniform Lipschitz and
linear growth conditions; see [11].

Theorem 2.1. The SDE in (2.2) possesses a unique solution.

Proof. First, we show that the GGC process satisfies a uniform Lipschitz. To do so, consider x, y ∈ R+

and t ∈ [t1,T ]. It then follows that

|a(t, x) − a(t, y)| + |
√

b(t, x) −
√

b(t, y)| = |a(t, x − y)| + |
√

b(t, x − y)|,

=

∣∣∣∣∣∣
(
α

t
−

103

α
t−102/α

)
(x − y)

∣∣∣∣∣∣ + |σ(x − y)|,

=

(∣∣∣∣∣∣
(
α

t
−

103

α
t−102/α

)∣∣∣∣∣∣ + |σ|
)
|x − y|,

≤

(
sup

t1≤t≤T

∣∣∣∣∣∣
(
α

t
−

103

α
t−102/α

)∣∣∣∣∣∣ + |σ|
)
|x − y| .

On the other hand, the process satisfies linear growth since for y = 0, we have that

|a(t, x)|2 + |
√

b(t, x)|2 ≤
(
|a(t, x)| + |

√
b(t, x)|

)2
,

≤

[(
sup

t1≤t≤T

∣∣∣∣∣∣
(
α

t
−

103

α
t−102/α

)∣∣∣∣∣∣ + |σ|
)
|x|

]2

,

≤

(
sup

t1≤t≤T

∣∣∣∣∣∣
(
α

t
−

103

α
t−102/α

)∣∣∣∣∣∣ + |σ|
)2

(1 + |x|)2.

Thus, there exists an almost surely (a.s.) continuous process {x(t), t ∈ [t1,T ]; t1 > 0} that is the unique
solution of the SDE (2.2) with probability 1. □

2.3. Probability distribution of GGC process

The determination of the probability distribution for the solution of the GGC process plays a
central role in studying the fundamental characteristics of the proposed process, especially its mean
function, which serves as a basis for trend analysis. Moreover, since the process parameters are
unknown, estimating these quantities using methods like maximum likelihood requires knowledge of
the probability distribution of the sample path. The explicit solution of the SDE (2.2) can be obtained
by considering the transformation Y(t) = log(X(t)). Upon applying Itô’s formula to y, we have the
following:
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dY(t) =
1

X(t)
dX(t) −

1
2X2(t)

σ2X2(t)dt,

=

(
α

t
−

103

α
t−102/α −

σ2

2

)
dt + σdW(t),

where Y(t1) = log(X1). On integrating the above equation, we obtain,

Y(t) − Y(t1) =
∫ t

t1

(
α

s
−

103

α
s−102/α −

σ2

2

)
ds + σ(W(t) −W(t1)),

and hence

Y(t) = Y(t1) + α log(t/t1) −
103/α

1 − 102

α

(t
−102
α +1 − t

−102
α +1

1 ) −
σ2

2
(t − t1) + σ(W(t) −W(t1)).

Therefore, the solution in terms of the original GGC process.

X(t) = X1

(
t
t1

)α
exp

(
−

103

−102 + α
(t
−102
α +1 − t

−102
α +1

1 ) −
σ2

2
(t − t1)

)
eσ(W(t)−W(t1)). (2.3)

Observe that the process Y(t) is a Gaussian process if and only if the initial condition Y1 is a
constant or is normally distributed. Since the initial condition is constant a.s, i.e., P(Y1 = y1) = 1,
and Y(t) is a Markovian process, it then follows that the finite-dimensional distribution of Y(t)
is normal. Consequently, the finite dimensional distribution of X(t) is log-normal distribution.
Additionally, the TPDF of X(t) given X(s) where s < t follows a log-normal distribution denoted
by Λ1(µ(s, t, xts), σ2(t − s)), where µ(s, t, xs) is given by

µ(s, t, x) = log(x) + α log(t/s) −
103

−102 + α
(t
−102
α +1 − s

−102
α +1) −

σ2

2
(t − s).

Therefore, the TPDF of the process considered has the following form:

f (y, t|xs, s) =
1
y

[
2πσ2(t − s)

]−1/2
exp

(
−

[log(y) − µ(s, t, xs)]2

2σ2(t − s)

)
. (2.4)

2.4. Mean function of the process

Since X(t) is distributed according to Λ1(µ(s, t, xs), σ2(t − s)), it then follows from the properties of
the lognormal distribution that the nth conditional moment of X(t) given X(s) is

E[Xn(t)|X(s) = xs] = exp
(
nµ(s, t, xs) +

n2σ2

2
(t − s)

)
.

The conditional mean which considers as the trend function can be obtained using (n = 1). That is

E[X(t)|X(s) = xs] = xs

( t
s

)α
exp

(
−

103

−102 + α
(t
−102
α +1 − s

−102
α +1)

)
. (2.5)
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On the other hand, the mean function or the unconditional trend of the process is given by

E[X(t)] = xt1

(
t
t1

)α
exp

(
−

103

−102 + α
(t
−102
α +1 − t

−102
α +1

1 )
)
, (2.6)

where the above equation is obtained under the assumption that P(X(t1) = x1) = 1. Notice that when
α > 0, it then follows that the trend function is proportional to one-parameter generalized Gamma
density. Similarly, other statistical measures such as the variance, Skewness, and Kurtois can be
obtained. In particular, the variance of the process is

Var[X(t)] = E[X2(t)] − (E[X(t)])2 = x2
t1

(
t
t1

)2α

exp
(
−

2(103)
−102 + α

(t
−102
α +1 − t

−102
α +1

1 )
) (

eσ
2(t−t1) − 1

)
.

3. Inference on the process

Once the process, along with its basic properties, is introduced and discussed, it becomes important
to examine its significance in simulation and application. However, the presence of unknown
parameters makes trend analysis in practice difficult. Consequently, these parameters need to be
estimated, and the maximum likelihood estimate emerges as a suitable choice, given the known
functional form of the TPDF. Furthermore, ML estimates possess advantageous properties such as
invariance, efficiency, and asymptotic normality.

3.1. ML estimates

Here, the two parameters involved in the drift and diffusion functions are estimated using the ML
method. We consider discrete sampling observations of the process x(t1), x(t2), . . . , x(tn) at times
t1, t2, . . . , tn = T . For simplicity, put t j+1 − t j = h and use xi to refer to x(ti) = xi. The likelihood
function of θ = (α, σ2)T can be obtained from Eq (2.4), taking into account that the initial condition
taking P(X(t1) = x1) = 1, is

L(θ) =
n−1∏
j=1

f (x j+1, t j+1|x j, t j),

=

n−1∏
j=1

1
x j+1

[
2πσ2(t j+1 − t j)

]−1/2
exp

(
−

[log(x j+1) − µ( j, j + 1, x j)]2

2σ2(t j+1 − t j)

)
.

The log-likelihood equation is

ℓ(α, σ2) = −
n − 1

2
log(2πh) −

n − 1
2

log(σ2) −
n−1∑
j=1

log(x j+1)

−
1

2σ2h

n−1∑
j=1

[
log(

x j+1

x j
) − α log(

t j+1

t j
) +

103

−102 + α
(t
−102
α +1

j+1 − t
−102
α +1

j ) +
σ2h

2

]2

.

(3.1)

The ℓ(α, σ2) can be maximized by solving the nonlinear likelihood equation obtained by differentiating
with respect to θ = (α, σ2)T . The first partial derivatives of ℓ(α, σ2) are given by
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∂ℓ(α, σ)
∂α

=

n−1∑
j=1

(Hα, j +
σ2h

2
)
[
− log(

t j+1

t j
) +

105

α2(−102 + α)

(
log(t j+1)t

−102
α +1

j+1 − log(t j)t
−102
α +1

j

)
−

103

(−102 + α)2

(
t
−102
α +1

j+1 − t
−102
α +1

j

)]
, (3.2)

∂ℓ(α, σ))
∂σ2 = −

n − 1
2σ2 +

1
2σ4h

n−1∑
j=1

H2
α, j −

n−1∑
j=1

h
8
, (3.3)

where

Hα, j = log(
x j+1

x j
) − α log(

t j+1

t j
) +

103

−102 + α
(t
−102
α +1

j+1 − t
−102
α +1

j ).

Let S (θ) = (∂ℓ(θ)/∂α, ∂ℓ(θ)/∂σ2)T be the score function. Then, the MLE of θ̂ = (α̂, σ̂2) can be
obtained by solving S (θ) = 0. Unfortunately, the MLEs cannot be obtained in closed form, and
numerical methods are required to obtain these estimates. From Eq (3.3), we obtain

σ̂2

2
=

1
h


1 + 1

n − 1

n−1∑
j=1

H2
α̂, j


1/2

− 1

 . (3.4)

On substituting (3.4) in Eq (3.2) the following nonlinear equation is obtained for the estimator α̂:

n−1∑
j=1

(
Hα̂, j +

σ̂2h
2

)[
− log(

t j+1

t j
) +

105

α̂2(α̂ − 102)

(
log(t j+1)t1− 102

α̂

j+1 − log(t j)t
1− 102

α̂

j

)
(3.5)

−
103

(α̂ − 102)2 (t1− 102
α̂

j+1 − t1− 102
α̂

j )
]
= 0.

Let g(α) be the left-hand side equation (3.6). Therefore, the ML estimate of α can be achieved by
solving the non-linear equation g(α) = 0.

3.2. Estimated trend functions and confidence bounds

Once the ML estimates of α andσ2 are obtained, we proceed to provide estimates for the conditional
mean and the mean of the process. Due to the invariance property of the ML estimates, see for example
Theorem [5.28, 308] in [14], the ML estimates for the conditional mean and the unconditional mean
can be obtained. Let α̂ and σ̂2 be the ML estimates of α and σ2, respectively, then the estimated
conditional mean of the process (ECMF) is

Ê(X(t)|X(s)) = xs

( t
s

)α̂
exp

(
−

103

−102 + α̂

(
t
−102
α̂
+1 − s

−102
α̂
+1

))
. (3.6)

Similarly, the estimated mean function (EMF) of the process is

Ê(X(t)|X(t1)) = x1

(
t
t1

)α̂
exp

(
−

103

−102 + α̂

(
t
−102
α̂
+1 − t

−102
α̂
+1

1

))
, (3.7)
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where in the above equation we used the assumption that P(X(t1) = x(t1)) = 1.
At time, we would like to obtain a confidence band for the CMF and MF of the process. From

Eq (2.4), we have that for t > s, X(t)|X(s) follows Λ1(µ(s, t, xxs), σ2(t − s).) Therefore, we have that

Z =
ln(X(t)) − µ(s, t, xs)

σ
√

t − s
∼ N(0, 1).

Consequently, a (1 − α)100% confidence band for z is determined by P(−Zγ/2 ≤ Z ≤ Zγ/2) = 1 − γ, for
γ ∈ (0, 1).

P

−Zγ/2 ≤
log

(
x(t)
x1

)
− α log

(
t
t1

)
+ 103

−102+α
(t
−102
α +1 − t

−102
α +1

1 ) + σ
2

2 (t − t1)

σ
√

t − t1
≤ Zγ/2

 ≈ 1 − γ.

Therefore, the (1 − γ)100% confidence bound (CB) for X(t) is

xlower(t) ≤ x(t) ≤ xupper(t), (3.8)

where,

xlower(t) = x1 exp
[
−Zγ/2σ

√
t − t1 + α log

(
t
t1

)
−

103

−102 + α
(t
−102
α +1 − t

−102
α +1

1 ) −
σ2

2
(t − t1)

]
,

xupper(t) = x1 exp
[
Zγ/2σ

√
t − t1 + α log

(
t
t1

)
−

103

−102 + α
(t
−102
α +1 − t

−102
α +1

1 ) −
σ2

2
(t − t1)

]
.

4. Simulation experment

Here, our primary goal is to illustrate the pattern of the GGC process by simulating sample
trajectories. Additionally, we use these sample paths to evaluate the frequentist performance of the ML
estimates for the trend function of the GGC process. The following algorithm describes the procedure
for simulating a trajectory of the GGC process computed at N time points.

Algorithm

1: Initialize, t1, T, N, x1, α, σ,
2: Compute ∆ := T−t1

N ,

3: For j = 2, . . . ,N, do
(a) Discretize the time interval [t1,T ], into N time points with each point computed as ti =

ti−1 + (i − 1)∆,
(b) Generate a standard normal observation, i.e., Z : N(0, 1), and the increments are computed

as W j = W j−1 +
√
∆ Zi,

(c) The sample path of the GGC process can be obtained upon using (2.3), i.e., X j =

X j−1

( t j

t j−1

)α
exp

{
− 103

−102+α
(t
−102
α +1

j − t
−102
α +1

j−1 ) − σ
2

2 (t j − t j−1)
}

exp
(
σ(W j −W j−1)

)
.

4: End do
5: Repeat step 3 m times to obtain m sample paths.
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6: For i = 1, . . . ,m, use the sample path Xi(t j) in step 5 to compute the ML estimates, using Eqs (3.2)
and (3.3), α̂i and σ̂i, respectively.

7: The ML estimates are then given by: α̂ = m−1 ∑m
i=1 α̂i and σ̂ = m−1 ∑m

i=1 σ̂i with mean square
errors respectively, MS E(α̂) = (m− 1)−1 ∑m

i=1(α̂i −α)2 and MS E(σ̂2) = (m− 1)−1 ∑m
i=1(σ̂2

i −σ
2)2.

We generate m = 50 training sample paths using the algorithm described above, varying the
parameters in the graphs. All computations in this paper were performed using R software [15].

(1) In the first scenario, we set the time interval [t1,T ] = [1000, 1010], N = 100, and X(t1) = 9000.
Figure 1 shows that the trajectories vary in direction based on the sign of the parameter α. The
dispersion of the process is influenced by the value of σ; smaller values result in trajectories
that closely follow a single curve, while larger σ values lead to more dispersed yet similarly
trending curves. Using the 50 sample paths, we obtain the maximum likelihood (ML) estimates
of the process parameters and subsequently the ML estimates of the trend function. Figure 1
demonstrates that the estimated trend closely matches the actual trend function, indicating the
reliability of our estimates.

(2) In the second scenario, we consider [t1,T ] = [500, 510], N = 100, and X(t1) = 3000. Similarly,
Figure 2 reveals that the process exhibits either a decreasing or increasing trend. The sample
paths tend to either closely follow a single curve or scatter depending on whether the dispersion
parameter σ is small or large, respectively. Additionally, using 50 sample trajectories, we obtain
the ML estimates of α and σ, and consequently the estimate of the trend function. A closer
examination shows that the ML estimates behave consistently across different scenarios.
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Figure 1. Simulated trajectories of the GGC process along with MF and EMF.
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Figure 2. Simulated trajectories of the GGC process along with MF and EMF.

5. Applications

This section presents the application of our model to two real-world datasets: the number of infant
deaths in the United Kingdom from 1977 to 2020 and CO2 emissions (in kilotons) in Morocco from
1990 to 2020. These annualized data are sourced from the World Bank database. The first dataset
is fitted using the GGC process and compared with two existing models: the two-parameter Weibull
SDP [4] and the Lomax SDP [3], both of which are suitable for modeling data with decreasing trends.
Similarly, the second dataset is fitted using the GGC process and compared with the log-logistic
SDP [1], which is appropriate for modeling data with increasing trends.

5.1. Application to number of infant deaths in the United Kingdom

According to the Royal College of Paediatrics and Child Health (RCPCH), infant death rates in
all countries of the UK have significantly fallen over the past 40 years. Most childhood deaths
occur during the first year of life, particularly in the first month (neonatal period). Newborn deaths
account for 70% to 80% of infant deaths. The vast majority of newborn deaths are due to perinatal
causes, especially preterm birth, and are strongly linked to maternal health and congenital anomalies.
The remaining infant deaths occur due to a wide variety of causes, including sudden unexplained
death in infancy (SUDI). The overall decline in infant death rates since 1980 likely reflects general
improvements in health care, specifically prenatal and newborn care. Breastfeeding and safe sleeping
positions are protective factors for infant survival, especially for premature babies. This study
aims to use a stochastic diffusion process to model the number of infant deaths and to forecast the
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number of infant deaths in the United Kingdom. We use the data from 1977 to 2018, available
at https://databank.worldbank.org/source/world-development-indicators, as training
data to estimate the model parameters: α̂ = −1779.057 and σ̂ = 0.02208178. Consequently, the
estimated trend functions (unconditional EMF and conditional ECMF) are obtained immediately due
to the invariance of ML estimates. Additionally, we use the years 2019 and 2020 to forecast the number
of infant deaths in the UK. The results for the forecasted values for these two years are presented in
Table 1 and shown in Figure 3. These results demonstrate that the GGC process is quite effective in
predicting the values for these years, particularly when employing ECMF. Figure 3 (left panel) displays
the observed data, estimated trend function (EMF), and estimated confidence bands, revealing that the
GGC process fits the current data well and provides accurate predictions. Figure 3 (right panel) further
illustrates the conditional trend function estimation along with forecasts. Moreover, we compare the
proposed diffusion process with the Weibull [4] and Lomax [3] diffusion processes using the current
data. Table 2 lists the estimated parameters and the Akaike information criterion (AIC), showing that
the GGC process has the lowest AIC value and therefore outperforms the two-parameter diffusion
processes. This is also well demonstrated in Figure 3. Moreover, Figure 4 shows the fits made using
the methods mentioned in Table 2, revealing that the GGC process performed much better than the
Weibull [4] and Lomax [3] diffusion processes in modelling the current data.

The accuracy of the forecast can be quantified using measures such as the mean absolute error
(MAE), the root mean square error (RMSE), and the mean absolute percentage error (MAPE), defined

as follows: MAE = 1
42

∑42
i=1 |x(ti) − x̂(ti)| = 257.9876, RMSE =

√
1
42

∑42
i=1 |x(ti) − x̂(ti)|2 = 330.2669,

and MAPE = 1
42

∑42
i=
|x(ti)−x̂(ti)|

x(ti)
× 100 = 5.1237. Table 3 shows the observed data along with their

corresponding forecast. The value obtained for MAPE is less than 10, and this indicates that we
obtained a high-accuracy prediction.

Table 1. Predictions from EMF and ECMF of the GGC process.

Year Real Data EMF ECMF
2019 2703 2790.843 2763.366
2020 2571 2738.968 2653.739

Table 2. ML estimates of the parameters along with AIC.

Model α β σ AIC
GGC -1779.057 NA 0.02208178 500.9154
Weibull -58.01113386 7.200000 0.02290836 505.927
Lomax -59.05057463 -0.29692752 0.02290831 505.924
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Table 3. Observed data, fits and forecast using the EMF.

Year(t) x(t) x̂(t) Year(t) x(t) x̂(t)
1977 9353 9353.000 1998 4121 4606.083
1978 9011 8999.828 1999 3979 4476.542
1979 9041 8664.142 2000 3814 4352.688
1980 8942 8344.971 2001 3675 4234.245
1981 8433 8041.403 2002 3600 4120.956
1982 7849 7752.580 2003 3619 4012.576
1983 7479 7477.700 2004 3681 3908.874
1984 7264 7216.006 2005 3680 3809.631
1985 7183 6966.78 2006 3676 3714.641
1986 7096 6729.379 2007 3700 3623.708
1987 6991 6503.152 2008 3696 3536.649
1988 6858 6287.515 2009 3614 3453.288
1989 6539 6081.914 2010 3515 3373.459
1990 6189 5885.826 2011 3424 3297.008
1991 5831 5698.758 2012 3324 3223.784
1992 5415 5520.246 2013 3179 3153.648
1993 5031 5349.855 2014 3051 3086.466
1994 4724 5187.171 2015 3010 3022.114
1995 4492 5031.808 2016 2988 2960.472
1996 4342 4883.399 2017 2925 2901.426
1997 4239 4741.599 2018 2817 2844.871

Figure 3. Left panel: observed data against EMF. Right panel: observed data versus ECMF.
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Figure 4. Observed data, EMF using GGC, Weibull, and Lomax diffusion processes.

5.2. Application to CO2 emissions (kt) in Morocco

Another application of our model is to analyze Carbon Dioxide (CO2) emissions in Morocco,
measured in kilotons (kt). CO2 emissions primarily result from burning fuels and cement
manufacturing. Since the Industrial Revolution, the increasing combustion of carbon-based
fuels has significantly raised atmospheric CO2 concentrations, accelerating global warming and
contributing to man-made climate change. Additionally, CO2 dissolves in water to form carbonic
acid, which leads to ocean acidification. This subsection examines CO2 emissions (kt) in
Morocco from 1990 to 2020, with data sourced from https://databank.worldbank.org/source/
world-development-indicators. We use the data from 1990-2018 as training data to estimate the
model parameters: α̂ = 81.55085457 and σ̂ = 0.02977168. Therefore, the estimated trend functions
both (the unconditional EMF and the conditional ECMF) are derived directly due to the invariance of
the ML estimates. Similarly, we use the data from 2019 and 2020 to project CO2 emissions in Morocco.
The predicted values for these two years are reported in Table 4 and illustrated in Figure 5. Once again,
the results demonstrate that the GGC process is capable of accurately predicting the values for these
years using both EMF and ECMF. Figure 5 (left panel) depicts the observed data, the estimated trend
function (EMF), and the estimated confidence intervals, indicating that the GGC process accurately fits
the data and yields precise forecasts. Figure 5 (right panel) further demonstrates the conditional trend
function estimation and projections. Furthermore, we compare the proposed diffusion process with the
log-logistic diffusion process [1] using the current dataset. Table 5 presents the estimated parameters
and the AIC criterion, showing that the GGC process has a lower AIC value and thus surpasses the
two-parameter diffusion process. This is also clearly illustrated in Figure 5. Furthermore, Figure 6
displays the fits performed using the methods outlined in Table 5, demonstrating that the GGC process
outperformed the Log-Logistic diffusion process in modeling this data.
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Figure 5. Left panel: observed data against EMF. Right panel: observed data versus ECMF.

Figure 6. Observed data, EMF using GGC, and log-logistic processes.

Table 4. Predictions from EMF and ECMF of the GGC process.

Year Real Data EMF ECMF
2019 70986.3 67764.45 66863.89
2020 66719.5 70480.36 73831.33
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Table 5. ML estimates of the parameters along with AIC.

Model α β σ AIC
GGC 81.55085457 NA 0.02977168 481.1204
log-logistic -0.03638392 0.64735468 0.03437501 490.76

Similarly, the accuracy of the forecast can be assessed using the metrics: MAE = 2567.19, RMSE =
3115.123, and MAPE = 6.032141. Table 6 shows the observed data along with their corresponding
forecast. The MAPE value obtained is less than 10, indicating a high-accuracy prediction.

Table 6. Observed data, fits and forecast using the EMF.

Year(t) x(t) x̂(t) Year(t) x(t) x̂(t)
1990 21497.8 21497.80 2005 43579.9 39011.22
1991 23119.0 22372.13 2006 44991.0 40585.80
1992 24879.0 23281.55 2007 46341.0 42223.10
1993 25577.0 24227.46 2008 48630.2 43925.60
1994 27712.5 25211.30 2009 48765.7 45695.85
1995 28791.8 26234.57 2010 51749.5 47536.51
1996 28484.7 27298.83 2011 55923.5 49450.35
1997 29903.8 28405.71 2012 258076 51440.24
1998 30634.6 29556.88 2013 57595.5 53509.16
1999 32198.7 30754.09 2014 58691.7 55660.21
2000 32876.5 31999.17 2015 60362.5 57896.61
2001 36273.0 33294.00 2016 60289.9 60221.69
2002 37470.0 34640.54 2017 63014.9 62638.94
2003 37251.1 36040.83 2018 64286.1 65151.94
2004 41009.0 37496.99

6. Conclusions

We introduce a new stochastic diffusion process based on generalized Gamma-like curves, referred
to as the GGC process. The GGC process is capable of modeling both increasing and decreasing
trend data. We investigate and derive several structural properties, including the explicit solution
of the process, the transition probability density function, and the moments of the process. The
maximum likelihood method is employed to estimate the GGC process parameters. Simulation studies
demonstrate that the ML estimates are consistent even in small samples. The potential of the GGC
process for analyzing data with a declining trend is illustrated by fitting it to infant mortality data
in the UK. The proposed diffusion process outperforms two existing popular stochastic diffusion
processes that are designed to fit decreasing trend data. Additionally, it is applied to CO2 emissions in
Morocco, which exhibit an increasing trend. The GGC process again showed satisfactory performance
in modeling this data and outperformed the log-logistic SDP, which is suitable for modeling growth
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data.
As with any stochastic diffusion process or model, the GGC process may be inappropriate for

modeling unimodal or bathtub-shaped data. This can be addressed by selecting different infinitesimal
moments or by incorporating additional suitable parameters.

For future work, we plan to model the first passage time using the GGC process with more
applications. Additionally, we will explore other estimation methods, particularly the Bayesian
approach, which may be more powerful in handling other application scenarios.
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