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1. Introduction

We initiate our study by the conception of concavity of functions which is stated as follows: Any
function & : [0y, 1] — R is referred to as a convex function if,

E((1 —k)o + kwy) < (1 —k)E(0) + kE(wy), Vo,w; € [0, 01], (1.1)

where k € [0, 1]. Due to the several important geometrical and analytical aspects, convex functions are
discussed from multiple approaches and directions in the literature. They have an immense amount
of applications and generalizations to investigate non-convex problems. Their role in the emergence
of inequalities is unprecedented because this concept itself is closely linked with inequalities. One
can easily relate the that almost fundamental results in the theory of inequalities having a governing
role can be achieved directly or indirectly by considering the convex functions. Now we provide a
significant consequence of convex functions:
Let & : [01,0:] — R be a convex function. Then,

1
8(01 +51) < 1 f Eo)do < E(oy) +8(51).
2 01— 01 Jo 2

From this inequality, one can conclude that this result computes the bounds for the average mean
value integral of convex functions. Moreover, this result serves as a criteria to discuss the concavity
of functions. Also, this result has several applications in the theory of means, special functions, error
analysis probability theory, information theory, etc. Due to the effective range of implications, several
variants of trapezium-type inequalities have been developed and assessed through various classes of
convex functions along with applications. For recent developments, consult [1-6].

Furthermore, we recover the essential prelude relative to interval analysis to attain the required
result. Suppose that the space of all non-empty compact intervals and positive non-degenerate compact
intervals of the real line R are specified by R; and R;. For any A, A, € R, such that A; = [0, 01*]
and A, = [01,, 01" ] and A € R, then

A+ Ay = [014, 0171+ [015, 611 = [014 + 14, 1% + 6171,

and

[/10-]*7 /10-1*]7 /l > 07
AT 14, 0171 =1 [Ao ", Ao1,], A1 <0,
0, A1=0.

The concept of generalized Hukuhara(gh) difference was developed in [7].
Let A, A, € R,. The gh difference is illustrated as:

A0, Ay = [min{or1, — 814, 01" — 617}, max{oi, — 014,01 — 617}

Also, for A; € Ry, the length of interval is computed by w(A;) = o1* —o1,. Then, for all A;, A, € R,
we have

(01 = 010 O1F = 6171, W(A) = w(A),

ﬂlegﬂz B { [0-1* - 61*’ 0-1* - 61*]7 W(ﬂl) S W(ﬂZ).

Some properties linked with the gH-difference are described as follows:
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(1) Arog A1 =1{0}, A6, {0} =A;, (0}, A =-A,
(2) AL 6y Ay = (—Ap) 6 (~ A1) = —(HA2 6 Ay),

(3) A 64 (—Ay) = Ay 6 (—A)) = —(A2 6, Ay),

4) (A + Ay 0, Ay = Ay,

(5) AA; ©3 AA, = A(A; ©; Ay).

For any A, A,,C, D € Ry, consider k; = w(A;) —w(C), Kk, =w(Ay)—w(D), k3 =w(A;)—w(A,),
and x4, = w(C) — w(D). Then:

(A, S, C)+ (A S, D), «iky =0,
(fﬂl eg C) eg (—ﬂz eg D), Ki1ky < 0.
(A S (=C))S4(Ar ©4 (D)), k1k2 2 0, k3k4 < 0,
(2) (A6, A+ (Cog D) =4 (A6, (=0)) + (-HA26; D), kik2 <0,k3k4 <0,
A +0) eg (A, + D), Kk3kyq = 0.
(A1 8, O)8y(Ar ©, D), K1ky > 0, k3k4 > 0,
3B) (A16, Ay) 6, (CO, D) =1 (A & C) + (=(A,6, D)), kikr <0,k364 >0,
(A +(=C)) &, (A + (=D)), k3k4 < 0.

(1) (A + A)e,(C + D) = {

Any function & : [0,6;] — R; is regarded as an 7.V function if E(0) = [E4(0), E*(0)] such that
E.(0) < E*(0), Yo € [o1,01]. Itis crucial to understand that lim,_,,, E(0) exist & lim,_,,, E. (o) and
lim,_,,, &E*(0).

Additionally, an 7.7V function & is assumed to be continuous < both &, and & are continuous.
Presume that &, g : [071,0:] — R;. Then, (E6, g)(0) = E(0) ©, g(0) : [071,01] — Ry, and

E)Ig& (E6, 8)0) = A6 0

exists, if lim,_,,, E(0) = A and lim,_,,, g(0) = ;.

One can notice thatif &, g : [071,0:] — R; obey the continuous property of functions, then &, g is
referred to as a continuous function.

Consequently, we come up with differentiability concepts based on the ©, difference.

Definition 1.1. Presume that & : [0,01] — R is an 1.V function. Then,

S0+ h) e, E(o)
h

&'(0) = lim

is termed as ©, derivative at ¢ € [01,01]. & is differentiable on (0,6,) if it is differentiable almost
everywhere in the domain.

Now, we discuss the concept of 7.V convex functions.

Definition 1.2. Let & : [071,6,] — R be an 1.V function satisfying E(0) = [Ex(0), E*(0)]. Then, it is
considered as an 1.V convex, if

E((1 —k)o + kd1) 2 (1 —k)&E(0y) + kE(61), «€][0,1].
The next result ensures the convexity of functions in the interval domain.
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Theorem 1.1. Let & : [071,01] — R be an 1.V function such that E(0) = [Ex(0), E*(0)]. Then, E is an
1.V convex function & E, is a convex function and E* is a concave function.

The 7.7V analogues of the trapezium inequality through containments ordering relation is given as
follows:
Let & : [01,01] — R; be an 7.V convex function. Then,

61_0-1 o

2 2

For, comprehensive review, see [8].

g-Symmetric Calculus. Throughout the investigation, let I = [0,0,] be any arbitrary subset of R
such that 0 € I and q € (0,1). Then, the g-geometric set is expressed as I; = {qolo € I}. Taking
the benefit of this set, the classical symmetric quantum difference operator and left and right quantum
symmetric derivatives are defined as follows:

Definition 1.3 ([9]). Let & : I — R. Then the symmetric quantum variant derivative operator is

-1\ _
Digy = 2L K8 Ly,

(@' -aqk

And, DE(0) = &(0), where k = 0 provided that & is differentiable at k = 0. If & is a differentiable
Junction at k € Iy, then limy_,; DyE(x) = &' (k).

The quantum symmetric number is described as

. q"-q"
Ngs = T —q

Recently, Bilal et al. [10] proposed the conception of quantum symmetric operators over finite
intervals. Presume that I = [07,0;] C R, 0 € I and 0 < q < 1. Then the left sided quantum symmetric
derivative is given as

Definition 1.4 ( [10]). Presume that & : J — R is a continuous function. Then

Ea@'k+ (1 -qgho) —Eak+ (1 -q)o)

n D00 = @ - k-

K # 0.

And, ; DE(01) = limg,1 o, DyE(k), if the limit exists. If oy = 0, then , Di&E = Dy&E.
Consequently, the corresponding integral operator is stated as

Definition 1.5. Presume that & : J — R is a continuous function. Then
01 s
f EW)r Ak = (1 —or(@ =) D @ E@" 8 + (1 - ™))
a1 n=0

= @1 -1 - ) ) a"E@"'6 + (1 - g o).

n=0
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If oy = 0, then it coincides with the symmetric quantum integrals operator in [9]. For more detail
concerning quantum symmetric differences, see [11].

Definition 1.6 ( [12]). Let & : I — R be a continuous function. Then,

Elak+ (1 —q)6) —&E@ '« + (1 —q)s))
(™' = q)(6; — &) ’

And, 5'D38(6 1) = limg_, 6'D38(K), if the limit exists. If 6, = 0, then 5‘D§18 = D;é&.

D&K)= K # 6.

Definition 1.7 ( [12]). Presume that & : I — R is a continuous function. Then,

" ©
f Ewdik = (61 —o)@ ' - q) Z a'E@" oy + (1 - ¢ Hsy)

1 n=0

= @1 -0 - ) ) a"E@" o + (1 - ")),
n=0

Clearly, a function is said to be right quantum symmetric integrable if Y >~ q*""'E(q*" 'k + (1 —
a**1)6,) converges. Remember that the above-discussed operators do not coincide with classical
Jackson q operators.

Recently, Cortez et al. [13] investigated the interval-valued quantum symmetric operators in interval
space based on Hukuhara differences, which are described as

Definition 1.8. Suppose & : I — R, is continuous 1.V function. Then, the left interval-valued quantum
symmetric difference operator is defined as

8 o+(1-a7Ho1)eE(ao+(1-q)o1)
. D,’ _ (q—l_q)(g_o.lg)( ] ) 8(’ ) % * o1,
17as : i a4~ 0)9:8(qe
111’IIQ_)0-1 O'IDa,s = Q(q_—]fq), 0o=07.

And the corresponding integral operator is expressed as

Definition 1.9. Let & € C([01,01],R;). Then the mlfl’s—integml operator is described as

I el
f &) djo = (@' - ) - o) Y @' E@" 61 + (1 - "))

a1 n=0

= (1= - o) ), a"E@"'6) + (1 - g™ Hory).

n=0

One can easily observe that a function is considered to be LV left q-symmetric integrable if
> oar @™oy + (1 — g**Hory) converges.

In 2013, Tariboon and Ntouyas [14] noticed some limitations of g-Jackson operators over finite
intervals in impulsive difference equations and developed the q operators over finite interval connected
with left point and explored its several implications in both impulsive difference equations and
inequalities as well. This development paved another way to investigate integral inequalities. Alp and
his coauthors [15] noticed that the trapezoidal inequality established in [16] is not correct and provided
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the new proof by using the concept of the support line of differentiable convex functions, and also
established several midpoint quantum estimates. The authors of [17] analyzed the error estimates of
the Milne rule by utilizing the Jensen-Mercer inequality and quantum calculus along with applications.
Nosheen et al. [18] concluded some new quantum symmetric counterparts of basic inequality results,
such as Holder’s inequality and error inequalities of one point rule associated with s-convex functions.
To prove the Hermite-Hadamard inequality analytically, it was necessary to introduce the right quantum
operators. In 2022, Kunt et al. [19] introduced the right sided quantum operators and provided their
applications in integral inequalities. For a complete investigation, see [20-27].

In [28,29] the authors computed the estimates of one one-point integration rule incorporated with
1 .V functions and delivered applications as well. Following the idea of the previously discussed paper,
Costa and Roman Flores [30] computed several fuzzy integral inequalities. In 2018, Zhao et al. [31,32]
delivered the Jensen’s and trapezium type inequalities associated with 7.7V-h-convex functions and
1.V Chebyshev kinds of inequalities, respectively. Budak et al. [33] initiated the development of
fractional versions of the trapezium inequalities for 7.V convex functions defined by the means of
containment ordering. In [34] the authors presented the class of 7.V two-dimensional harmonic
convex functions and derived several fractional integral inequalities by taking into account Raina’s
integral operators. Lou et al. [35] devoted their efforts to develop the notion of 7.7V quantum calculus
based on generalized Hukuhara differences and provided the applications to inequalities. Motivated
by the technique of [35], Kalsoom et al. [36] worked on 7.7V general quantum calculus by the means
of Hukuhara differences and explored some applications to the Hermite-Hadamard inequality. Ali
et al. [37] extended the idea presented in [36] for the right 7.V-(p, q) operators and presented their
key properties. Bin-Mohsin et al. [38] stated another class of generalized convexity based on a left-
right ordering relation named as LR-fuzzy bi-convex function, and delivered Hermite-Hadamard and
its weighted forms type results. In 2022, Duo and Zhou [39] examined the coordinated integral
inequalities by considering the two-dimensional convex functions generalized integral operator having
a non-singular kernel. In [40] the authors reported the parametric fractional versions of inequalities
through convex functions and presented some visuals to support their outcomes.

The principal intent of this article is to examine the right sided quantum symmetric operators in
the frame work of 7.V functions along with their implications. We structured our study into two
portions: In the initial portion of the study, we recover some vital details, background, and inspiration
of the research. In the next part, we introduce the 7.V right symmetric quantum derivative operators
based on generalized Hukuhara difference and discuss their key properties. Based on the newly
developed quantum operators, a new antiderivative operator is developed. Also, some crucial results,
including the fundamental theorem of calculus and several other properties will be provided. Later on,
several Hermite-Hadamard-type inequalities will be proved by both graphical and analytical methods
essentially utilizing the convexity of the function. We will also present a visual breakdown in the
support of principal findings.

2. 7.V right g-symmetric operators

In the current part of the study, interval-valued quantum symmetric operators are based on ©,
differences. First, we introduce the notion of interval-valued right symmetric quantum difference and
integral operators and their properties.
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2.1. 51d£1,‘\,—0perat0r and its properties

Now, we investigate the right 7.V g-symmetric difference and integral operators and their
properties. The space of left g-symmetric differentiable operators is denoted by dfl,s.

Definition 2.1. Suppose & : I — R, is a continuous 1.V function. Then, the right 1.V q-symmetric
difference operator is defined as

& o+(1-a7")81)8,E(@0+(1-0)61)
Sipi = <q*1—q><g—5%( " 8(, ) 0 % 61,
&5 1 i q 0)8:E(qo
lim,_,, mDaJ = W’ 0=4.

Example 2.1. Assume that & : [0,1] — R; is an 1.V function such that E@o) = [—40,50]. Then, we
compute ‘5'Dfl,s8(p) by implementing Definition 2.1, and we have

*Dj, &(0)

B [-4q7'0 —4(1 — g6y, 5q7'o +5(1 — q7)611 6, [4a0 — 4(1 — q)61, 590 + 5(1 — q)6i]
- (a ' —a)e—6)

_[4q7'0—4(0 —q ™6, +4qo +4(1 — )61, 5q7'0 + 5(1 —q 716 — 5q0 — 5(1 — @)6;]

- (@' —a)o—61)

_[4a! - -6, 5(a" — @) - 6)]

- (@' -a)o-61)

= [-4,5].

Theorem 2.1. A function & : [071,01] — R, is 1.V right q-symmetric differentiable at o € [01,0,] &
Ey and E* are right quantum symmetric differentiable at o € [0y, 6], and

% D, (o) = [min{” D E.(0), *'DgE* ()}, max{” Dq,E4(0), *' D E*(0)}]. 2.1

Proof. Assume that & is an 7.V right g-symmetric differentiable function. Then, there exists g, and
g* such that ©' D (o) = [g«, ¢*], and by considering Definition 1.8, we that

0r0) = min{&(q“g + (- ) - &uae+ (- wb) E1q e+ -a o) - & (e + (1 - q)(ﬁ)}’
(@' -a)o-0d1) (@' —a)o—d1)

and

¢*(0) = max {&(q‘lg +(1-q "6 —8Eulao+ (1 - q)él)’ E @ 'o+ (I -q )-8 (ao+ (1 - q)él)}
(@' -a)o-91) (@' —a)e-d1)

exist. Then, %' Dy &, (o) and °' D, E*(0) exist, and (2.1) is straight forward.

Conversely, suppose &, and E* are right g-symmetric differentiable at 0. If 9Dy E,(0) <
31 DysE*(0), then

[61Dq,s8*(9)’ o Dq,sa*(Q)]

_ [8*(01’19 +(1-q7)8) = E(ao+ (1 -a)d) & 'o+1-q ")) —E*(ae+ (- Q)él)]

- (@' -ae-36) ’ (@' -ae-36)

&0+ (1-a7)81) 6, E(qo + (1 - q)d))

- @' -ae-46) '
Similarly, if ©' Dy ;&*(0) < °'Dq ;&4 (0), then °' D, E(0) = [*' D E*(0), * Dy, sE4(0)]. O
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Now we provide another characterization of the right g-symmetric derivative based on the
monotonic property of functions.

Theorem 2.2. Let & : [01,01] = Ry and if it is 1.V right q-symmetric differentiable on [0y, 61], then
(1) D}, E(o) = [51 Dy.sE4(0), ° Dq’SS*(Q)], if & is l-increasing.
(2) D}, E(o) = [61Dq,58*(g), 5‘Dq,s8*(g)], if & is I-decreasing.

Proof. Suppose that & is an [-increasing and right g-symmetric differentiable function on [0, 9], and
we observe that g~'o + (1 — q™")d; > qo + (1 — q)d; for q € (0, 1). Since I(E) = E* — &, is increasing,
& @ o+ (1 -aho) - &u@ o+ (1 —a)o)]| - [E*(ao + (1 — @)61) - Eulag + (1 - @)5)] > 0,

E'@lo+(1-q)6) -8 (ao+ (1 -q)8) > Eu@ o+ (1 -q7)s)) - Eulge + (1 - q)d)).

Thus,

"D}, &(0)

B [[8*(01_10 +(1-q ™), EXq o+ (1 —a s e [Ex(ao + (1 —q)d)) — E*(qo + (1 — Q)51)]]
- (@' —a)o—6)

3 [&(q_lQ +(1-gq o) -Elao+ (1 —q)d) E*@@lo+(1-q)s)—E*(qo+ (1 - Q)51)]

- (@' -a)e-6) ’ (@' -a)o-6)

= [ Dg,E4(0). ' Dy E*(0)].

Hence, the required result is achieved. By a similar process, we can prove the 2nd result. O

Remark 2.1. If v € (01,01) and & is l-increasing on [0,v) and l-decreasing on (v,d:], then
DL E©) = [ DqsEx(0), "' DoE* ()| on [or1,v) and “ D} E@) = [1Dg.E*(0), *Dq,Exl0)] on
(Ua 61]

Theorem 2.3. Let & : [01,01] — R; be a left symmetric q-differentiable function. Then, for any

v = vy, v*] € Ry and a € R, the mappings & + v and a& are also right q-symmetric differentiable on
[o1,01]. Then:

(1) %D}, (o) + v) = *' D, E(o)
(2) Dl (@E)(©) = o D}, E(e).

Proof. For o € [01,06;] and from Definition 1.8, we have

"D (E(o) +v)

3 [E@ o+ (1 —q sy +vle, [E(qo + (1 — q)d)) + V]
- (@' —a)e—6)

3 Ea o+ (1-a ")) e, Eqo + (1 —q)dy)

- (@' -a)e-6)

= o D;,‘S(Q)

We leave the second proof for interested readers. O
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Theorem 2.4. Let & : [01,0;] — R; be a right q-symmetric differentiable function. For any
v = [v.,v*] € Ry, if (E) — I(v) has a constant sign over [0y, 0], then E &, v is right q-symmetric
differentiable.

Proof. Take o € [01,6:]. Then,

1Dy (E &, v)(0)
_ (E@ o+ (1-a)61) 6, v) &, (E(qo + (1 = )5)) &, V)

(@' -a)o-91)
_ Ealo+ (1 -ahe) e, 8o+ (1 -0q)d)
(@!'—-a)o-9) '

O

Theorem 2.5. Let E,g : [071,01] — R be right q-symmetric differentiable mappings. Then, the sum
&E + g is a right q-symmetric differentiable if one of the following cases hold:

(1) If &, g are equally I-monotonic on [0y, 1], then

D}, (E(o) + g(0)) = "D, E(o) + °' D, ,5(0).

(2) If &, g are differently I-monotonic on [0, 0], then

"D, (E(0) + 8(0)) = *' D E(0) O (1) Dy ,8(0).
Moreover, in both cases, ‘51Dfl’s(8(g) + g(0)) C 51Df1’38(g) + 9 Dfmg(g).

Proof. Suppose &, g are 1.V right g-symmetric differentiable and /-increasing on [0,6;]. Then,
Ey,E*, g5 and g* are left g-symmetric differentiable, and °' Dy E,(0) < "Dy E*(0), ' Dy 8x(0) <
9 D,sg*(0). Then, &, + g, and E* + g* are g-symmetric and

1D}, (E(0) + 8(0))
= | min{*' Dg &4 (0) + ' Dg 184 (0), ' DgsE*(0) + ' Dy,8* ()},
max(*' Dy 84(0) + " Do,g4(©). ' Dy 8 (@) + " Do,g" ©))]
=" Dq.sE4(0) + ' Dgs84(0). "' DgsE*(0) + ' Dg.,g*(0)]
=D, E(o) + ' Dl ,g(0).

By similar proceedings, we can obtain that the result for both & and g are /-decreasing.
Now, suppose that & is [ increasing and g is /-decreasing. Then °'D,E,(0) < °'Dy,E*(0),
*1Dq,s8*(0) < °' Dy s8x(0). Also,

" D, (E(0) + 8(0)) = [min{” Dg &, (0) + ' Dg.18x(0). ' DgsE*(0) + ' Dyg* (@)} »
max{® Dy &, (0) + ' Dg,g4(0). *' Dg,E*(0) + " Dgsg*@}]. (22
And,

1D}, (E(0) 8, (1)’ D} ,8(0)
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="' Dy E4(0), *' Dq,E*(0)] 8¢ (~1) | Dy 8 (0), ” Dy.84(0))
= "' Dq.E4(0), "' DgE*(0)| € |~ ' Dgsg4(0), ="' Dgsg*(©)]
= |min{® Dq,E4(0) + ' Dq.s84(0)}, max{* Dy ,E*(0) + ' Dq,g* (0)}] - 2.3)

By comparing (2.2) and (2.3), we conclude that *' D}, (E(0) + g(0)) = °' Dj; (E(0) ©, (1)’ D (g(0).
Since & + g is l-increasing and decreasing, we get *' D, (E(0) + g(0)) € *' D}, E(0) + *' D, ,g(0), and
the opposite case can be obtained by a similar procedure.
Hence, the required results are achieved. O

Theorem 2.6. Let E,g : [071,01] — R be right q-symmetric differentiable mappings and [(E)—1(g) have
constant sign over domain. Then, & ©, g is a right q-symmetric differentiable if one of the following
cases hold

(1) If &€, g are equally I-monotonic on [0, 0], then

'Di, (E(0) &, g(0)) = *' D}, ,E(0) &, *' D}, ,8(0).

(2) If &, g are differently [-monotonic on [0y, 0], then

Dl (E(0) 8, g(0)) = ' D E(0) + (1) D, g(0).

Proof. Assume that [(E) > I(g) and E©, g = [Ex — g4, EF — g7].

Suppose &, g are 7.V right g-symmetric differentiable and /-increasing on [0, §;]. Then, E,, E*, g«
and g* are left g-symmetric differentiable, and %' Dy E,(0) < %' Dy E*(0), ' Dy s8x(0) < %' Dy 8*(0).
Then, &, — g, and & — g* are g-symmetric differentiable, and thus & &, g is a right g-symmetric
differentiable function such that

" Dy (E(0) &, 8(0)) = [min{’ Dy, E,(0) = *' Dy 18+(0), *' Dg,E*(0) = *' Do sg* (0)}
max{* Dq E4(0) — ' Dy 84(0), "' DgsE*(0) — ' Dy,8* (0)}
=¥ Da.E4(0) ~ ¥ Dugu(0). Do () ~ " Daug* )
=["'Da84(0). D8 (@)] 04 [ D181(0). Dy )]
=D, E(0) &, ' Di, ,8(0)-

By similar proceedings, we can obtain the result that both & and g are /-decreasing.
Now, suppose that & is [ increasing and g is /-decreasing. Then, 61Dq,S8*(Q) < 51Dq758*(g),
o Dq8*(0) < o Dy 58+(0). Also,

" D), (E(0) ©; 8(0)) = [min{* D &, (0) = ' Dgs8x(0). "' DgsE*(0) - ' Dyg* (@)} »
max{” Dq,,E.(0) = ' Dg.184(0). * Dq.sE*(0) — ' Dg,g*(0)}]
= [ Dg,E4(0) = ' Dys81(0). *' Dq,E*(0) — ' Dy,8*(0)] - (2.4)

And,
%Dy E(o) + (1)’ D}, ;g(0)
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= "' DqsE4(0), *' Dg,E*(0)] + (=1) " Dq.g*(0), "' Das84(0)]

= | Dq.E4(0). ' Dg,E*(0)] + |~ Dasgx(0). =" Dq.i8*(0)]

= [min{* Dg &, (0) — *' Dq.s84(0)}, max{® Dy E*(0) = ' Dg.,g*(0)}]

= "' DqsE4(0) — ' Dy 84 (0), "' Dy E*(0) — ' Dgsg*(0)]. 2.5)

Comparing (2.4) and (2.5) yields the required result. O

2.2. "I} -integral operator and its properties

In the current part of the study, we introduce the concept of 7.V right q-symmetric integral operator
and its essential characterization. For our convenience, we specify the space of 7.7V right g-symmetric
integrable mappings and the space of all continuous 7.V mappings by ¢ Ifw and v([o1,01],R;)
respectively.

Definition 2.2. Let & € v([01,6:],R}). Then, the 51]é’s—integral operator is described as:

f &0 o =@ - a)o1 — o) )@ E@ o + (1 - q”" o)

a1 n=0
=(1 - )G - o) ) a"E@" oy + (1 = @"*)oy).
n=0

One can easily observe that a function is considered to be 1.V right q-symmetric integrable if
Yo A" E@ oy + (1 — g*"*1)6,) converges.

Theorem 2.7. Let & € v([01,61],R)). Then, & € Ié’s & both &, and &* are right q-symmetric
integrable mappings. Also,

01 1 01
f E(x)°! dik = [ f E, (k) di«, f E* (k) 5‘d;/<] )
o] (o] (o]

Proof. Consider & € ‘511("” Then,

f EK) " dik = (1= )01 — 1) D @ E@" oy + (1 - g™ o)

a1 n=0
= [(1 — )61 - 1) Y " EL@ o+ (1= a8, (1 - )G — o) Y @ E* @ oy + (1 - gy .
n=0 n=0

This implies that both &, and &* are right q-symmetric integrable mappings.

Conversely, suppose that &, and &* are g-symmetric integrable mappings and &, < &*. Then, the
result is obvious.

So, the result is proven. O

Example 2.2. Let & : [0,2] — R; such that E(k) = [2«, 3«*]. Then,

1
f Sk dx
0
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Al 1
= f 2k dflK, f 329 dflk]
| JO 0

=20 -a) ) (1 - ™), 30 - ) > (1 - q2”+1)2]
- n=0 n=0

=201 - ¢} Z(qzn — g, 3(1 = ¢?) Z(qzn + ot 2q4n+l)j|
n=0

L n=0
(20 +a* -0 3(1+q2—2q)+ 3
B 1+q2 ~ 1+q2 1+q2+q*]|

Theorem 2.8. Ler &, g € v([071,61],R;) and (071,0) € |01, 61]. Then, for @ € R; :
0 5
(1) [M'180) + gl dyx = [7 Ew) dyx+ [ g(k) " ik
(2) [ (@8) w0 T dyc = @ [ 800" di.
Proof. From Definition 2.2,

01
[EG0) + ()] " dik

a1

=(1 - @)1 - 1) ) a" [E(@ oy + (1 = a1 + gu(@* oy + (1 = g )d)
n=0

8*(q2n+10_1 + (1 _ q2n+1)51) + g*(q2n+lo_1 + (1 _ q2n+l)6’1)]

=(1 = @)1 - 1) ) @ [E@ oy + (1 = g )51, @ o + (1 - "))
n=0

+ (1= )@ — o) ) g™ [gu(@ oy + (1= g oy), g* (@™o + (1 - g )6y))
n=0

01 1
= f EK) *1dik + f g(K) *'dik.
o (]

Hence, the first proof is obtained. The proof of the second result is obvious. O

Theorem 2.9. Let E, g € v([01,0,],R)) and (01, 0) C [0y, 81]. Then,

1 J 1
f Ex) dok O f gk dyk C fd E(K) O, g(K) ! dyk.
o a1 A

Furthermore, [(E) — I(g) has constant sign on [0y, 0,],thus

1 01 1
f EK) ' dik o, f g(k) ' dik = f E(K) O (k) "' dgk.
o a1 a1

Proof. We observe that

f min{&, —g*,S* _g*}dld;’(

[oa]
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< minf (Ex = 8x, 8" — g7} 1 dik

a1

01
< maxf {Ei — 84, & — 8"} ' dik

ol
< f max{&, — g., E* — g*} k. (2.6)
a1

Also, we have

6] 1
f EK) *'dik o, f g(k) "'dix
(on] (on]

51 01 J 1
:[min{ @ —g)"dy | (€ =g P dik) . maxt [ (E. — g0 i, f (8*—g*>5ldgk}]

01 1
C min{(&, — g.),E* — g*} ' dik, f max{(&E, — g4), & — g*}‘”dék]
6 |
= f E(K) O (k) "'dk. 2.7)

Comparison of (2.6) and (2.7) results in the desired inequality.

By the notion of generalized Hukuhara difference, if /() > I(g), then E6, g = [E4 — g4, E* — 871,
and if [(E) < I(g), then [E* — g*, &, — g«]. We suppose that /(&) > I(g) on [07,6;] such that E©, g =
[E4 = 8+ & — g*]. This implies that [”'(E, — g.)"dix < [ (&* - g*) *'dk. Now,

01 1 1
f Ee, géldék = [ﬁ min{&, — g4, E* — g*}é'dak, f max{&E, — g4, & — g*}é'dak]

gl (281

1
1 1 01 o1
= [ E, 6‘dfl/<, f &* 5‘dfl/<] S, [f g, dg, f g" 51djl/<]
Il 1 61 1 1
= f E(x) 6‘da/< S, f g(k) 51d;/<.
foxl o

Hence, the desired result is obtained. O

Theorem 2.10. Let & : [071,0,] — R, be right a q-symmetric differentiable function on (0y,06,) and
51D;’S(8(g) e u(loy,01],R)). If € is -monotone on s, k], then

Q .
E(0) ©, E(v) = f 6‘Da’s8(/<) o d;K, v,0 € (01,01). (2.8)
Proof. If & is a 1.V right g-symmetric differentiable function, then &, and &* are right g-symmetric
differentiable mappings, so , DgE. and , D, ,E* are right g-symmetric integrable mappings.

Therefore, & is also a 7.V right g-symmetric integrable function. If & is /-increasing on [0, 1],
then ® D}, (8(k) = | D}, E4(x), * Di, (&*(x)|, and then

0
E.(0) - Eu(v) = f *1Dg &4 (k) ' dik. (2.9)
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0
E()-E(v) = f Dy EX (k) dyk. (2.10)

Since &, < &* and from (2.9) and (2.10), we acquire

&) = EW) + f "D &) ' dik.

Now, from the notion of gh-difference, then
&(0) 6, Ew) = f 9 Dy E(K) T k.

If & is I-decreasing on [o1, 6], then * D}, (E(x)) = | D, (&*(x), ' D}, E.(x)|, and

01
o1 N 01 38
f 'Dy &(k) *'dgk
01

1
o Dq,Sa*(K) o d(slk’ f\d 51Dq,s8* (K) 61d;K:|

[E%(61) - E* (), EX(61) — E4(V)]
[E4(0), E¥(0)] & [E4(), E (V)]
E(0) 8, E(v).

Hence, the required result is acquired. O

Remark 2.2. If € is l-increasing, then (2.8) can be interpreted as

01
&) = &) + f 1Dy E(K) ' dik.

If E is l-decreasing, then (2.8) can be interpreted as

1
Elo) = Ew) &, (-1) f Dy E(K) ik,
It is interesting to observe that the above result does not hold, if & is not [-monotone.

2.3. Applications to Hermite-Hadamard’s inequality

Now we develop the trapezium type inequalities by utilizing the 7.7V right g-symmetric integral
operator.

Theorem 2.11. Suppose & : [01,01] — Ry is an 1.V right q-symmetric differentiable function. Then

2 2 5 2

o1q° + 90y a o1q° + 0 1 fl 5 a&(o) + (1 + g — q)&(01)

& — 'Dgy & ) E(0)°'d ) .
( 1+ q? ) l+q % ( 1+q2 ) Si—o1 Jo, ©)"dq(0) 1+¢2
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Proof. Since Eis an 1.V right g-symmetric differentiable function on (o7, d1), there exist two tangents

at%;flgivenas
2 2 2
o019 + 63 5 o1q” + 6y o1q° + 6y

h =6 |———— |+ "Dy Ex | ————— -, 2.11

+(©) *( 1+ g2 ) ¢ *( 1+ q? )(Q 1+ q? @.11)
and

h*()—S* 0'1q2+61 +0p e 0'1q2+61 0'1q2+61 (2.12)

@)= 1+ @2 » T+q )¢ 1@ ) '

Since & is an 7.V convex function, H(0) € &(p), and then applying the 7.V right g-symmetric
integration, we have

1
f H1(0'1,51)61dq(9)
Tl
_fl & 0'1q2+51 LoD & 0'1q2+61 _0'1q2+61
-~ Jo, 1+ @2 N T+ €7 11

2 2 01 2
o1q° + s o1q° + 6 f s o1q° +
= — g é, _— ID ((J _— 1d —_ - 01)———
(51 1) ( 1 + qz )+ q,s ( 1+ q2 )( o Q q(Q) (61 1) 1 + q2

o dq(Q)

2 2
o1q + 0 5 o1q +
=6, — o NE| ———| + (6 — )" D, E| ———
(07 —0o1) ( 1+q2 )+(l o) q, ( 1+q2 )
1 -2 M2 o 4 (1 — g2,y — T4 T o
[( q);:oq @ o+ (1 -q™)é1) T+

2 2 2 2
o1qQ°+01) o1qQ°+ 01\ (a6 —op)+o(l+q°) 019" +6;
=6, - o) |8 2—2 |+ D& -
© 0-1)[ ( 1+q2 ) & ( 1+q2 )( 1+ g2 1+q2
2 2
o1q° + 03 a o1q° + 0y
=01 — & — "Dy &S| ————
@ 0-1)[ ( 1 + g2 ) l+q2 ¢ ( 1+q2 )

») f E(0)"'dq(0).

Now we establish the proof of second containments.
Moreover, the secant line through (o1, E(01)) and (61, E(d1)) can be expressed as:

*6 = Ox
014(0) = Eu(oy) + 2OV @)

01— 0

and

EX(6,) — EF
o1*(0) = & (o) + (;) @) o).
1 — 01

Since &E(p) = [Ex(0), E(0)] is an 1.V convex mapping and w;(0) € E(o), then

f w1(0)"'dg(0)
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_ f [8(01) N 8(5(;) — &(oy) - m)] 1y (o)
o 1= 01
E6)-6& !
= ((51 - 0'1)8(0'1) + —( 513 — 0-(10-1) (f Kéldq(Q) - (51 - 0'1)0-1)

= (01 —oE(o) + (E(6) — E(01)) [(1 - qz)z (@™o + (1 - g*hey) - 0'1)
n=0

01 — 1 2
= (8, — o)E(o)) + (8(51)—8(0-1))(q( 1 0'11):;2 +Qq°)o —0'1)

2 _
61— o) [qS(m) +(+q q)8(51)]

1+q?
- f E(0)"'dg(0).

O

Example 2.3. Let & : [0,2] — R; be an 1.V right q-symmetric differentiable function such that
E(o) = [20°%, —20* + 20]. Then, from Theorem 2.11, we obtain

2
o1q° + 0 2 8 8
1) _ _ - 20.
8( I+ ) 8(1+q2) [(1+q2)2’ dvqp 2

Next, the 1.V right q-symmetric derivative of & is given as 61Dq,38(g) =[-4Q2-q), 42 -9l
Furthermore, the 1.V right q-symmetric integral of & is given as

1 2 \ 2 A
> fo E(0)dix = j; [20°, =207 + 20)°dx

2 1 2 1
_ [8 + 8q 6q 8q 6q

- , 12— + . 2.13
l+g>+q* 1+¢q° l+g’>+qg* 1+¢q? .13)
From the above computations, we have the following containment:
8 _8aQ-a ,, 8  8a2-9
(I+g?)*  1+q* ° (I+g»)* 1+
8q> 16 8q> 16

Slgy—0 M A, M

l+g>+q* 1+¢? l+a>+q* 1+¢?
8(1 +q° - 12> + 12+ 8

5 (I+q q)’ a-+12+38q (2.14)

1+q? 1+q?

Forq= % in (2.14), we have

[2.48,17.52] 2[3.99121, 16.0088] 2 [6.91358, 14.4].
For graphical validation (Figure 1), we take q € (0, 1) in (2.14).
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LUF

M.U.F
RUF
RLF

M.LF
t 0.2 0.4 0 S

Figure 1. This visual justifies the accuracy of Theorem 2.11.

Theorem 2.12. Suppose & : [071,01] — R, is an 1.V right q-symmetric differentiable function. Then,

o1 +61a%)  a(l — Q)61 — o1, o1+ 619
& + "Dy S| ———
( 1+q2 ) 1+q2 & 1+q2

I a&(o) + (1 + @2 — Q)EG)
j: &) dq(0) 2 1 e =

)
01— 0

Proof. Since & 1s an 1.V right g-symmetric differentiable function on (o7, d1), there exist two tangents

2 .
at % given as

o+ 61q2 s o+ 61q2 o+ 61q2
h =6, | —————— | +"Dg &y | ————— -,
2 *(Q) *( 1+q2 ) Q5% 1+q2 Y 1+q2

and

0'1+61q2 0'1+61q2 0'1+61q2
h* @) =& |———|+9D S| — -—.
2 (Q) ( 1+q2 ) q,s ( 1+q2 )(Q

Since & is an 7.V convex function, H;(0) € &(p), and then applying the 7.7V right g-symmetric
integration, we have

f H2(01,51)61dq(9)

a1

_ ! 0'1+61q2 51 0'1+51q2 0'1+51q2 5
_f:[a( 1+q? )+ Dot T 07 v )| 4@

+61q° +aa2\( [ +619°
(61 - 01)8(%) + 6'Dq,s8(u) ( f 0"dg(0) - (61 - m)u)

1+ 1+q? o 1 +qg?
o +6,9° o +6,9°
=6, — o-QS(ﬁ) + (6, —01)51Dq,s8(ﬁ (2.15)
= +6,9°
1 —o? 22+ 1 (] — g2 — g1 1
[( q);q @y (1= "8 = =05

(6, —01)[8(0-1 +51q2)+51D 8(0'1 +61q2)(q(61 —o)+o(l+d) oy +(51q2)]
= a,s

1 +q? 1 +q? 1 +q? 1+q?
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o +61a%  (1-q)d - T1)s, o1+ 6,19
—(§ — D, &L
(61 0'1)[8( T+ )+ L+ 0,56 T
5 f 80 dg(0). (2.16)
o1

O

Example 2.4. Let & : [0,2] — R; be an 1.V right q-symmetric differentiable function such that
E(o) = [20%, —20% + 20]. Then, from Theorem 2.12, we obtain:

g 0'1+(51q2 _
1+qg2

From (2.17) and (2.13), we obtain the following expression for Theorem 2.12:

4 4

8q _ 8q
(1+ag>* (1+g??

+ 20

. (2.17)

8¢ 81 -a@q-1 8¢  8(1-aRq-1
- , 20 - +
(1+g?)? 1+q? (1+qg?)? 1 +¢?

8q° _ l6q 1 8q° . 16q
l+g>+q* 1+q* l+g>+q* 1+¢?
8(1+q%>-q) 129> +12+8q

1+q2 1+qg?

2|8+

2

(2.18)

Forq= % in (2.18), we have
[1.68,18.32] 2 [3.99121, 16.0088] 2 [6.91358, 14.4]

For graphical validation (Figure 2), we take q € (0, 1) in (2.18).

&(a)

20

15

10

M.L.F

I F
q

s L s s s L n . ——F"’x‘_{-—_‘
L o2 0.4 0.6 0.8
Figure 2. This visual justifies the correctness of Theorem 2.12.

Theorem 2.13. Let & : [01,6,] — R} be an 1.V convex function. Then,

1 51
o375 [f 8(9)0151d39+f 8(9)5151dgg];M_
1— 01

(o] (o] 2
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Proof. Since & is an 7.V convex function, then

o1+0 1
8( 12 1)2 E[S(QO'] +(1 —9)51)+8((1—Q)0-1 +Q51)] (219)
Applying quantum symmetric integration on (2.19) with respect to ‘0" over [0, 1], we have
+6 1 r 1
0 0

and

f | &) djo.  (2.21)

51 — 01 Joy

1 0
f Bloo +(1-)6)'d; = | 8@ o + (1 - ?*1)5)) =
0 n=0

Similarly,

1 1 g
f E(1 - )y +06))"dp = f E0)s, " d30. (2.22)
0

01— 0 o

The combination of (2.20)—(2.22), results in the first containment. To prove our second containment,
we employ the convexity of & Hence, the result is completed. O

Example 2.5. Let & : [0,2] — R; be an 1.V right q-symmetric differentiable function such that
E(o) = [20%, —20* + 20]. Then, from Theorem 2.13, we obtain:

8q* 8(1—q)2q-1) 8q* 8(1 —a)(2q-1)
- , 20 - +

(1+a%)? 1+q? (1+a?)? 1+q?

8q° 16q 8q> 16q

— , 12— +

I1+a2+q* 1+¢? l+a2+q* 1+q2
8(1+q°—q) 129>+ 12+ 8q

1+q2 1+q2

D18+

(2.23)

Forq = % in (2.23), we have
[0.666667, 6] 2 [0.79707, 5.8696] 2 [1.33333, 5.33333].
For graphical validation (Figure 3), we take q € (0, 1) in (2.23).

&(a)

LUF
M.U.F
RUF

RLF
M.L.F
LLF

T n " " 1 " " " 1 " " " 1 " " q
0.2 0.4 0.6 0.8

Figure 3. This visual justifies the correctness of Theorem 2.13.
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3. Conclusions

In the realm of mathematical analysis, one of the key research aims is how to find the derivative of
absolute functions, which are not differentiable at certain points. To handle such kinds of problems,
symmetric calculus plays a vital role. In this paper, we have developed the concept of right interval-
valued quantum symmetric operators and examined numerous properties of operators in the setting
of interval analysis. We have discussed the utility of these operators in inequalities. In favor of
our findings, some visuals have been provided. It is important to observe that the derivative of 7.V
functions involving absolute functions can be computed from our proposed operators. We hope these
operators and techniques will create new avenues of research. Based on these operators, several kinds
of inequalities can be obtained. Also, by utilizing these operators, several results of optimization theory
can be updated. In the future, we will try to establish some error bounds of numerical formulas in the
interval-domain associated with the developed theory.
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