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1. Introduction

This paper considers the truncated Bratu−Picard (tBP) model in a one-dimensional case as follows:{
u′′(x) + λ

∑M
i=0

(u(x))n

n! = 0, x ∈ [0, 1], M ∈ N ∪ {0}
u(0) = u(1) = 0.

(1.1)
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In Model (1.1), if we consider M = ∞ and λ > 0, then, the classical Bratu model will be obtained
where its exact solution is known. This case has many applications in science and engineering.
The Bratu type equation is also used in a large variety of applied fields, such as modeling thermal
reaction processes in combustible non-deformable materials, including the solid fuel ignition model,
the electrospinning process for the production of ultra-fine polymer fibers, modeling some chemical
reaction-diffusion, questions in geometry and relativity about the Chandrasekhar model, radiative heat
transfer, and nanotechnology [1–9]. Several numerical methods have been developed to approximate
the solution of the Bratu equation [10–14]. Most existing methods yield one of the two solutions to
the equation (the lower solution), for example, a Laplace transform decomposition algorithm [15],
the direct shooting and Lie-group shooting methods [16], the perturbation iterations, parameter
perturbations, splines methods [17], finite difference methods, and multigrid methods [18]. The lower
and upper solutions in the case of multiple solutions are obtained using Boyd’s approach [19]. In [1],
Mickens’ nonstandard finite difference method (NSFD) has been used to solve the Bratu−Gelfand
equation, and a comparison with the standard finite difference method has shown that the results of
the NSFD method are more accurate. Also, the NSFD scheme converges to both lower and upper
solutions. Buckmire [1] applied Mickens’ nonstandard finite difference method (NSFD) and compared
the performances of the Adomian decomposition method, Boyd’s pseudospectral method, the nonlinear
shooting method, standard finite difference (SFD), and NSFD methods. Buckmire reported that the
NSFD method may converge to both solutions (the lower and the upper one) and is more accurate
than SFD. A smart NSFD scheme for the second-order nonlinear boundary value problem has been
discussed in Erdogan [20]. A more general compact exponentially fitted method is used in [21] and
SFD and NSFD approaches are considered as special cases. Recently, a numerical method has been
presented to solve the Bratu-type equation based on the compact finite difference method (CFD) [22];
this method converges to lower and upper solutions and is more accurate than the finite difference
approach.

In this paper, we intend to present the nonstandard compact finite difference method (NSCFD) to
study the tBP model. Most previous articles considered only positive solutions but we obtained all
smooth solutions using our proposed method, where some of them are periodic and others are semi-
periodic. We also show theoretically and numerically that there exists a unique solution for λ ≤ 0. We
observe that NSFD has a similar simplicity as an SFD approximation but it is slightly more accurate, in
most cases. In addition, the NSFD method preserves some qualitative features of the continuous-time
model such as boundedness and positivity. The most important weakness of the used method is that
there is no specific method to find the best denominator function in the nonstandard finite difference
method.

We organize the rest of the article as follows: In Section 2, we describe the solutions in different
cases of the tBP model. In Section 3, the NSCFD method is presented for solving the tBP model.
In Section 4, the convergence analysis of the NSCFD method is investigated. In Section 5, the
numerical results obtained by the methods of this study are presented. Finally, the conclusion is drawn
in Section 6.

2. Description of the solutions of the tBP model for different values of M

As we know, in Eq (1.1), M ∈ N∪{0}. We treat the cases of M = 0, M = 1, and M = ∞ separately.
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For the other values of M, we consider the following two subsets of N.{
N2 := {2, 4, 6, 8, ...}
N3 := {3, 5, 7, 9, ...}

.

In the following section, we describe the behaviors of five different states separately.

2.1. Case of M = 0

In this case, we have the following model [23]:

u′′(x) + λ = 0. (2.1)

The exact solution of this case can be obtained directly,

u0
λ(x) =

λ

2
x(1 − x). (2.2)

Also, the maximum value of the solution is:

∥u0
λ∥∞ =

|λ|

8
.

2.2. Case of M = 1

For this case, Eq (1.1) is converted to [24]:

u′′(x) + λ(1 + u(x)) = 0. (2.3)

Based on the value of λ, the solution of Model (1.1) is as follows:
(1) If λ = 0, the equation has only trivial solution ux

λ = 0.
(2) If λ < 0, we have the following solution:

u(x) = u0
λ(x) = −1 +

1

e
√
−λ − e−

√
−λ

[(
1 − e−

√
−λ

)
e
√
−λx +

(
e
√
−λ − 1

)
e−
√
−λx

]
. (2.4)

As λ→ −∞, the solution has a horizontal asymptote, ∥u1
λ∥∞ ↑ 1.

(3) For λ > 0, λ , (mπ)2, the following solution is obtained:

u(x) = u1
λ(x) = −1 + cos

(√
λx

)
+

1 − cos
(√
λ
)

sin
(√
λ
) sin

(√
λx

)
. (2.5)

But for λ = (mπ)2, (m ∈ {2, 4, 6, ...}), two cases are distinguished. For λ = (mπ)2, (m ∈ {2, 4, 6, ...}),
Eq (1.1) has many solutions in the following form:

u1
λ(x) = sin(mπx), (2.6)

and for λ = (mπ)2, (m ∈ {3, 5, 7, ...}), there is no continuous solution for Eq (1.1).
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2.3. Case of M = ∞

In this case, Eq (1.1) is converted to the Gelfand−Bratu equation in standard form [23]:{
u′′(x) + λeu(x) = 0, x ∈ [0, 1], λ ∈ R,
u(0) = u(1) = 0.

(2.7)

We have the following two cases based on the value of λ:
(1) The exact solution for λ > 0 has the following form:

u(x) = u∞λ (x) = −2 ln
[

cosh((x− 1
2 ) θ2 )

cosh( θ4 )

]
,

θ =
√

2λ cosh
(
θ
4

)
.

(2.8)

Equation (2.7) has two solutions for 0 < λ < λc, one solution for λ = λc, and no solutions for λ > λc.
From the relation 1 = 1

4

√
2λc sinh

(
θ
4

)
, the critical value of λc is obtained as λc ≈ 3.513830719.

Also, the exact solution of (2.8) is symmetric around x = 1
2 .

(2) The exact solution for λ < 0 is unique and has the following form:
u(x) = u∞λ (x) = −2 ln

[
cos((x− 1

2 ) θ2 )
cos( θ4 )

]
,

θ =
√
−2λ cos

(
θ
4

)
.

(2.9)

2.4. Case of M ∈ N2

For example, we consider the case of M = 2 and we have the following equation [23]:

u′′(x) + λ
(
1 + u(x) +

1
2

u(x)2
)
= 0. (2.10)

Model (2.10) has two solutions for 0 < λ < λc, one solution for λ = λc, and no solution for λ > λc,
which λc ≈ 3.96. For λ < 0, there is a unique solution. Also, a similar result can be obtained for the
other values in N2.

2.5. Case of M ∈ N3

For example, we consider the case of M = 3 and M = 5, and we obtain the following equations [23]:

u′′(x) + λ
(
1 + u(x) +

1
2

u(x)2 +
1
6

u(x)3
)
= 0, (2.11)

u′′(x) + λ
(
1 + u(x) +

1
2

u(x)2 +
1
6

u(x)3 +
1

24
u(x)4 +

1
120

u(x)5
)
= 0. (2.12)

Equations (2.11) and (2.12) have infinitely many solutions for λ > 0 and a unique solution for λ < 0.
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3. The solution method

In this section, we use the CFD and NSCFD methods to approximate the solutions of the truncated
Bratu−Picard Problem (1.1). To compute the numerical solution, we first subdivide the range of [0, 1]
into N subintervals of width h = 1

N , thus node points x j = jh, j = 0, 1, ...,N, are obtained. Consider
the following notations:

ui ≈ u(xi), u′i ≈ u′(xi), u′′i ≈ u′′(xi).

For the second derivative, we have the following compact finite difference scheme [24]:
14u′′1 − 5u′′2 + 4u′′3 − u′′4 =

12
h2 (u0 − 2u1 + u2) ,

u′′i−1 + 10u′′i + u′′i+1 =
12
h2 (ui−1 − 2ui + ui+1) , i = 1, ...,N − 1,

−u′′N−4 + 4u′′N−3 − 5u′′N−2 + 14u′′N−1 =
12
h2 (uN−2 − 2uN−1 + uN) .

(3.1)

The truncation error for System (3.1) is O(h4) and the matrix form of (3.1) is as follows:

A2U′′ =
1
h2 B2U,

where

A2 =



14 −5 4 −1 0 . . . 0
1 10 1 0 0 . . . 0
0 1 10 1 0 . . . 0

0 . . .
. . .
. . .
. . .
. . . 0

... . . . 0 1 10 1 0
0 . . . 0 1 10 1 0
0 . . . 0 −1 4 −5 14


(N−1)×(N−1)

,

B2 =



−24 12 0 0 . . . 0
12 −24 12 0 . . . 0

0 . . .
. . .
. . .

. . . 0
... . . . 0 12 −24 12
0 . . . 0 0 12 −24


(N−1)×(N−1)

, (3.2)

U = [u1, u2, ..., uN−1]T and U′′ = [u′′1 , u
′′
2 , ..., u

′′
N−1]T .

3.1. Implement of the CFD scheme for the tBP model

From Eq (1.1), we have u′′i = −λ
∑M

n=0
(ui)n

n! , i = 1, ...,N − 1. By inserting this relation into
System (3.1), the following nonlinear system is obtained:

−λ
(
14

∑M
n=0

(u1)n

n! − 5
∑M

n=0
(u2)n

n! + 4
∑M

n=0
(u3)n

n! −
∑M

n=0
(u4)n

n!

)
= 12

h2 (u0 − 2u1 + u2) ,
−λ

(∑M
n=0

(ui−1)n

n! + 10
∑M

n=0
(ui)n

n! +
∑M

n=0
(ui+1)n

n!

)
= 12

h2 (ui−1 − 2ui + ui+1) , i = 1, ...,N − 1,
−λ

(
−

∑M
n=0

(uN−4)n

n! + 4
∑M

n=0
(uN−3)n

n! − 5
∑M

n=0
(uN−2)n

n! + 14
∑M

n=0
(uN−1)n

n!

)
= 12

h2 (uN−2 − 2uN−1 + uN) .
(3.3)
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3.2. Implement of the NSCFD scheme for the tBP model

The nonstandard finite-difference scheme (NSFD) is well-developed by Mickens [25, 26]. It has
many advantages that have been shown by many researchers [20, 21, 27]. One of the critical points in
NSFD schemes is that the second derivative can be approximated by the following general form:

u′′(x j) ≈
u j−1 − 2u j + u j+1

ϕ(h)
, j = 1, ...,N − 1, (3.4)

instead of the following standard form approximation:

u′′(x j) ≈
u j−1 − 2u j + u j+1

h2 , j = 1, ...,N − 1,

where the function ϕ(h) satisfies:
ϕ(h) = h2 + O(h4). (3.5)

In fact, as h→ 0, the standard finite difference and nonstandard finite difference schemes are identical.
For obtaining the nonstandard compact finite difference method, we replace the function h2 in

System (3.1) with the nonlinear function ϕ(h) = 2 ln (cosh(h)) such that it satisfies Property (3.5).
Therefore, we have the following relations:

14u′′1 − 5u′′2 + 4u′′3 − u′′4 =
12

2 ln(cosh(h)) (u0 − 2u1 + u2) ,
u′′i−1 + 10u′′i + u′′i+1 =

12
2 ln(cosh(h)) (ui−1 − 2ui + ui+1) , i = 1, ...,N − 1,

−u′′N−4 + 4u′′N−3 − 5u′′N−2 + 14u′′N−1 =
12

2 ln(cosh(h)) (uN−2 − 2uN−1 + uN) .
(3.6)

The matrix form of (3.6) is as follows:

A2U′′ =
1

2 ln (cosh(h))
B2U,

where matrices A and B have been defined in Relation (3.2).
By inserting the Relation u′′i = −λ

∑M
n=0

(ui)n

n! , i = 1, ...,N−1, in System (3.6), the following nonlinear
system is obtained:
−λ

(
14

∑M
n=0

(u1)n

n! − 5
∑M

n=0
(u2)n

n! + 4
∑M

n=0
(u3)n

n! −
∑M

n=0
(u4)n

n!

)
= 12

2 ln(cosh(h)) (u0 − 2u1 + u2) ,
−λ

(∑M
n=0

(ui−1)n

n! + 10
∑M

n=0
(ui)n

n! +
∑M

n=0
(ui+1)n

n!

)
= 12

2 ln(cosh(h)) (ui−1 − 2ui + ui+1) , i = 1, ...,N − 1,
−λ

(
−

∑M
n=0

(uN−4)n

n! + 4
∑M

n=0
(uN−3)n

n! − 5
∑M

n=0
(uN−2)n

n! + 14
∑M

n=0
(uN−1)n

n!

)
= 12

2 ln(cosh(h)) (uN−2 − 2uN−1 + uN) .
(3.7)

By solving the nonlinear System (3.7), the numerical solution of Model (1.1) is obtained.
Algorithm 1 shows the steps of solving Eq (1.1) using the NSCFD method.

4. Convergence analysis of the nonstandard compact finite difference method

In this section, we discuss the issue of convergence. For this purpose, let Ū = [u(x1), ..., u(xN−1)]T

be the vector of the exact solution. Also, consider, U = [u1, ..., uN−1]T as the vector of the numerical
solution. Moreover, consider ∥.∥ as ∥.∥∞ and E = Ū − U.
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Algorithm 1. NSCFD algorithm for solving Model (1.1).
Step 1: Input λ and N ∈ N.
Step 2: Calculate h = 1

N .
Step 3: Insert u(0) = 0 and u(N) = 0.
Step 4: Construct A2 and B2 matrices using Eq (3.2).
Step 5: Construct U2 matrices using equation ({(U2)i}

N−1
i=1 = −2λ ln(cosh(h))eui).

Step 6: Construct U1 matrices using equation ({(U1)i}
N−1
i=1 = ui).

Step 7: Insert L = A2U2 and R = B2U1.
Step 8: Use step 7 for solving system ({eqi = Li − Ri}

N−1
i=1 ).

Lemma 4.1. Let T = [t1, ..., tN−1]T be the vector of the local truncation error to (3.6). Then, we have

T = O(h4). (4.1)

Proof. For i = 2, ...,N − 2, the local truncation error is obtained as:

ti = (2 ln (cosh(h)))
(
u′′(xi−1) + 10u′′(xi) + u′′(xi+1)

)
− 12 (u(xi−1) − 2u(xi) + u(xi+1)) . (4.2)

By using the Taylor expansion, it can be written as

u(xi+1) = u(xi) + h
1!u
′(xi) + h2

2! u′′(xi) + ... + h6

6! u(6)(xi) + O(h7),
u(xi−1) = u(xi) − h

1!u
′(xi) + h2

2! u′′(xi) − ... + h6

6! u(6)(xi) + O(h7),
u′′(xi+1) = u′′(xi) + h

1!u
′′′(xi) + h2

2! u(4)(xi) + ... + h4

4! u(6)(xi) + O(h5),
u′′(xi−1) = u′′(xi) − h

1!u
′′′(xi) + h2

2! u(4)(xi) − ... + h4

4! u(6)(xi) + O(h5),
2 ln (cosh(h)) = h2 − 1

6h4 + 2
45h6 + O(h8).

(4.3)

By replacing Relation (4.3) in Eq (4.2), we have

ti = −2h4u′′(xi) + O(h6), i = 2, ...,N − 2. (4.4)

Similarly, for i = 1 and i = N − 1, we have{
t1 = −2h4u′′(x1) + O(h6),
tN−1 = −2h4u′′(xN−1) + O(h6).

(4.5)

Therefore, we have
T = O(h4).

□

Theorem 4.2. Let Ū = [u(x1), ..., u(xN−1)]T be the vectors to the exact solution of the boundary-value
Problem (1.1), U = [u1, ..., uN−1]T be the obtained numerical solution by solving the nonlinear
System (3.7), and E = Ū − U. Then, provided M = ∞, and

λh2
(
1 −

1
6

h2 +
2
45

h4
)
∥B−1

2 ∥∥A2∥∥J∥ ≤ 1,

we have
∥E∥ ≤ O(h2). (4.6)
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Proof. By replacing Taylor expansion 2 ln (cosh(h)) = h2 − 1
6h4 + 2

45h6 +O(h8) with the matrix form of
Eq (3.6), we can write

B2U − h2
(
1 −

1
6

h2 +
2

45
h4

)
A2U′′ = 0. (4.7)

By replacing Relation U′′ = −λeU in Eq (4.7), we have

B2U + λh2
(
1 −

1
6

h2 +
2

45
h4

)
A2eU = 0. (4.8)

For the exact solution, we have

B2Ū + λh2
(
1 −

1
6

h2 +
2

45
h4

)
A2eŪ = T, (4.9)

where T = O(h4) is the local truncation error of (3.6). By using Relations (4.8) and (4.9), we have

B2

(
Ū − U

)
+ λh2

(
1 −

1
6

h2 +
2

45
h4

)
A2

(
eŪ − eU

)
= T,(

B2 + λh2
(
1 −

1
6

h2 +
2
45

h4
)

A2J
)

E = T ′, (4.10)

where E = Ū − U, eŪ − eU = JE + O(h2), J = diag{∂e
u(x)

∂x : x = xi, i = 1, ...,N − 1} is a diagonal matrix
of order N − 1, and T ′ = O(h4). Because the matrix B2 is invertible, Relation (4.10) can be written as
follows: (

I + λh2
(
1 −

1
6

h2 +
2

45
h4

)
B−1

2 A2J
)

E = B−1
2 T ′.

Now if λh2
(
1 − 1

6h2 + 2
45h4

) ∥∥∥B−1
2

∥∥∥ ∥A2∥∥J∥ ≤ 1, then(
I + λh2

(
1 −

1
6

h2 +
2

45
h4

)
B−1

2 A2J
)

is invertible and we have

E =
(
I + λh2

(
1 −

1
6

h2 +
2
45

h4
)

B−1
2 A2J

)−1

B−1
2 T ′.

Thus,

∥E∥ ≤

∥∥∥∥∥∥∥
(
I + λh2

(
1 −

1
6

h2 +
2

45
h4

)
B−1

2 A2J
)−1

∥∥∥∥∥∥∥ ∥∥∥B−1
2

∥∥∥ ∥T ′∥. (4.11)

By using the geometric series theorem, it follows that

∥E∥ ≤

∥∥∥B−1
2

∥∥∥ ∥T ′∥
1 − λh2

(
1 − 1

6h2 + 2
45h4

) ∥∥∥B−1
2

∥∥∥ ∥A2∥∥J∥
,

∥E∥ ≤

∥∥∥B−1
2

∥∥∥ ∥T ′∥
1 − λh2

∥∥∥B−1
2

∥∥∥ ∥A2∥∥J∥
≡

O(h4)
O(h2)

≡ O(h2). (4.12)

Therefore, we have
∥E∥ ≤ O(h2).

□
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5. Numerical solution

In this section, we apply the presented numerical method for the numerical solution of Model (1.1)
and obtain the solutions for different values of λ and M. To solve the nonlinear System (3.7), we use a
simple approach similar to that used by Boyd [19]. We consider u0(x) = A sin(kπx) as an initial guess
because it satisfies the boundary conditions.

The values of parameters A and k depend on M and λ. Specially, in the case of λ > 0, we need
the condition A < umax to obtain the lower solutions, and also, we need A > umax to obtain the upper
solutions, where umax is an approximation for the maximum value of the solution.

For M = 3, we consider A = 9 and k = 2 for the first periodic solution. Also, for the case of M = 5,
we consider A = 13 and k = 3 for the first semi-periodic solution.

We use Maple 17 for obtaining numerical results and the fsolve command to solve the nonlinear
system of equations. We test three cases, obtain the numerical results in each case, and show the
problem behavior in all cases with a diagram. Also, the convergence order of the proposed method is
calculated using the following formula:

Order =
log(Enew) − log(Eold)

log(ϕ(hnew)) − log(ϕ(hold))
, (5.1)

where Enew and Eold are the maximum absolute errors corresponding to the new mesh size (hnew) and old
mesh size (hold), respectively. Also, we report the central processing unit (CPU) time for our numerical
results.

5.1. Case of M = ∞

In this section, the upper and lower numerical solutions of the nonlinear System (3.7) for λ =
−1, 0.0001, 0.001, 0.01, 0.1, 1, 2, 3, 3.51 and N = 5, 11, 21, 41, 81, 161, 321 are compared with the exact
solution of the problem and the maximum error is obtained. The results are shown in Tables 1–9. The
bifurcated nature of the computed solution for different values of λ has been plotted in Figure 1. In
Table 10, we compare the upper solutions of the CFD method with the NSCFD method for λ = 1 and
N = 11, 21, 41, 81, 161. Also, in Table 11, we compare the lower solutions of the CFD method with
the NSCFD method for λ = 2 and N = 11, 21, 41, 81, 161.

5.2. Case of M = 1

In this part, we consider Example (2.3) in Section 2 and obtain numerical results using System (3.7).
Figure 2 shows the numerical solutions for λ = −1, λ = 1, and λ = 4π2 in this case.

5.3. Case of M = 2

In this part, we consider Example (2.10) in Section 2 and obtain numerical results using
System (3.7). Figure 3 shows the upper and lower solutions for λ = 1 in this case. The bifurcation
behavior of the upper and lower solutions for the positive λ is shown in Figure 4.
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Table 1. CPU time, maximum error, and computational convergence order of upper and
lower solutions for λ = 1 and M = ∞.

N Lower solution CPU time (s) Order Upper solution CPU time (s) Order
5 5.362 × 10−4 2.031250 - 1.257 × 10−1 2.109375 -

11 1.086 × 10−4 2.0468750 0.9933 2.491 × 10−3 2.093750 2.4949
21 2.999 × 10−5 2.031250 0.9944 6.504 × 10−4 2.093750 1.0391
41 7.886 × 10−6 2.500000 0.9984 1.600 × 10−4 2.562500 1.0482
81 2.021 × 10−6 5.656250 0.9995 4.043 × 10−5 5.484375 1.0102
161 5.117 × 10−7 29.203125 0.9913 1.019 × 10−5 29.109375 0.9941
321 1.287 × 10−7 216.203125 1.0086 2.563 × 10−6 214.906250 1.0091

Table 2. CPU time, maximum error, and computational convergence order of upper and
lower solutions for λ = 2 and M = ∞.

N Lower solution CPU time (s) Order Upper solution CPU time (s) Order
5 3.283 × 10−3 2.140625 - 1.091 × 10−1 1.953125 -

11 6.155 × 10−4 1.906250 1.0651 1.776 × 10−3 2.031250 2.6200
21 1.706 × 10−4 2.062500 0.9929 7.389 × 10−4 2.093750 0.6786
41 4.492 × 10−5 2.531250 0.9974 1.924 × 10−4 2.640625 1.0058
81 1.151 × 10−5 5.437500 0.9999 4.922 × 10−5 7.093750 1.0011
161 2.916 × 10−6 29.531250 0.9904 1.245 × 10−5 41.968750 0.9915
321 7.336 × 10−7 209.484375 1.0089 3.133 × 10−6 314.890625 1.0087

Table 3. CPU time, maximum error, and computational convergence order of upper and
lower solutions for λ = 3 and M = ∞.

N Lower solution CPU time (s) Order Upper solution CPU time (s) Order
5 1.319 × 10−2 1.953125 - 1.029 × 10−1 1.968750 -

11 1.831 × 10−3 1.968750 1.2563 2.780 × 10−3 1.875000 2.2977
21 5.170 × 10−4 2.093750 0.9785 1.077 × 10−3 2.093750 0.7338
41 1.365 × 10−4 2.453125 0.9954 2.868 × 10−4 2.625000 0.9890
81 3.504 × 10−5 5.890625 0.9986 7.366 × 10−5 7.765625 0.9982
161 8.874 × 10−6 32.640625 0.9906 1.865 × 10−5 45.921875 0.9908
321 2.232 × 10−6 245.281250 1.0001 4.693 × 10−6 347.578125 1.0087
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Table 4. CPU time, maximum error, and computational convergence order of upper and
lower solutions for λ = 3.51 and M = ∞.

N Lower solution CPU time (s) Order Upper solution CPU time (s) Order
5 1.393 × 10−1 1.984375 - 2.206 × 10−1 1.937500 -

11 2.422 × 10−2 1.968750 1.1131 2.523 × 10−2 2.031250 1.3796
21 8.419 × 10−3 2.171875 0.8177 8.978 × 10−3 2.171875 0.7995
41 2.365 × 10−3 2.796875 0.9490 2.516 × 10−3 3.171875 0.9508
81 6.175 × 10−4 8.046875 0.9861 6.565 × 10−4 9.875000 0.9866
161 1.570 × 10−4 49.937500 0.9967 1.669 × 10−4 63.640625 0.9968
321 3.956 × 10−5 387.000000 0.9988 4.205 × 10−5 491.171875 0.9988

Table 5. CPU time, maximum error, and computational convergence order of upper and
lower solutions for λ = 0.1 and M = ∞.

N Lower solution CPU time (s) Order Upper solution CPU time (s) Order
5 8.084 × 10−5 1.984375 - 2.297 × 10−1 1.984375 -

11 1.740 × 10−5 1.937500 0.9773 8.254 × 10−3 1.984375 2.1162
21 4.810 × 10−6 2.000000 0.9949 8.191 × 10−4 1.984375 1.7877
41 1.264 × 10−6 2.515625 0.9989 1.543 × 10−4 2.390625 1.2477
81 3.242 × 10−7 4.750000 0.9992 3.471 × 10−5 5.453125 1.0956
161 8.208 × 10−8 24.062500 0.9998 8.459 × 10−6 28.250000 1.0275
321 2.064 × 10−8 176.406250 1.0002 2.106 × 10−6 211.125000 1.0074

Table 6. CPU time, maximum error, and computational convergence of upper and lower
solutions for λ = 0.01 and M = ∞.

N Lower solution CPU time (s) Order Upper solution CPU time (s) Order
5 7.932 × 10−6 2.015625 - 4.404 × 10−1 2.000000 -

11 1.707 × 10−6 2.046875 0.9774 1.118 × 10−2 1.906250 2.3369
21 4.720 × 10−7 2.125000 0.9947 1.341 × 10−3 2.062500 1.6410
41 1.240 × 10−7 2.218750 0.9991 2.033 × 10−4 2.484375 1.4101
81 3.181 × 10−8 4.281250 0.9991 3.655 × 10−5 5.421875 1.2602
161 8.053 × 10−9 19.796875 0.9998 8.152 × 10−6 28.484375 1.0920
321 2.026 × 10−9 142.578125 0.9998 1.979 × 10−6 211.328125 1.0257
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Table 7. CPU time, maximum error, and computational convergence order of upper and
lower solutions for λ = 0.001 and M = ∞.

N Lower solution CPU time (s) Order Upper solution CPU time (s) Order
5 7.917 × 10−7 1.968750 - 7.264 × 10−1 1.937500 -

11 1.704 × 10−7 2.015625 0.9773 2.963 × 10−2 1.984375 2.0356
21 4.71 × 10−8 2.031250 0.9950 2.619 × 10−3 2.031250 1.8773
41 1.238 × 10−8 2.328125 0.9987 3.083 × 10−4 2.281250 1.5992
81 3.175 × 10−9 4.375000 0.9993 4.352 × 10−5 4.687500 1.4378
161 8.038 × 10−10 21.484375 0.9998 8.392 × 10−6 23.718750 1.1979
321 2.022 × 10−10 143.531250 0.9999 1.938 × 10−6 175.093750 1.0619

Table 8. CPU time, maximum error, and computational convergence order of upper and
lower solutions for λ = 0.0001 and M = ∞.

N Lower solution CPU time (s) Order Upper solution CPU time (s) Order
5 7.915 × 10−8 1.875000 - 1.059 1.968750 -

11 1.703 × 10−8 1.968750 0.9775 8.924 × 10−2 1.921875 1.5739
21 4.710 × 10−9 1.968750 0.9946 4.568 × 10−3 2.031250 2.3000
41 1.238 × 10−9 2.296875 0.9987 4.799 × 10−4 2.312500 1.6842
81 3.174 × 10−10 4.093750 0.9995 5.663 × 10−5 4.703125 1.5694
161 8.037 × 10−11 19.281250 0.9997 9.132 × 10−6 23.640625 1.3281
321 2.021 × 10−11 139.953125 1.0002 1.951 × 10−6 174.062500 1.1183

Table 9. CPU time, maximum error, and computational convergence order of solutions for
λ = −1 and M = ∞.

N Max Error CPU time (s) Order
5 6.713 × 10−4 2.000000 -

11 1.417 × 10−4 1.984375 0.9897
21 3.914 × 10−5 1.968750 0.9955
41 1.029 × 10−5 2.046875 0.9986
81 2.638 × 10−6 2.046875 0.9996

161 6.678 × 10−7 2.359375 0.9999
321 1.680 × 10−7 2.812500 0.9999
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Table 10. Comparison between upper solutions of SFD and NSFD for λ = 1 and M = ∞.

N CFD (3.3) SFD [23] N NSCFD (4.5) NSFD [23]
11 2.342 × 10−2 2.798 × 10−2 11 2.491 × 10−3 2.623 × 10−2

21 6.175 × 10−3 6.840 × 10−3 21 6.504 × 10−4 6.470 × 10−3

41 1.622 × 10−3 1.700 × 10−3 41 1.600 × 10−4 1.600 × 10−3

81 4.144 × 10−4 4.251 × 10−4 81 4.043 × 10−5 4.009 × 10−4

161 1.049 × 10−4 1.062 × 10−4 161 1.019 × 10−5 1.001 × 10−4

Table 11. Comparison between lower solutions of SFD and NSFD for λ = 1 and M = ∞.

N CFD (3.3) SFD [23] N NSCFD (3.7) NSFD [23]
11 1.168 × 10−4 1.427 × 10−4 11 1.086 × 10−4 1.223 × 10−4

21 3.221 × 10−5 3.560 × 10−5 21 2.999 × 10−5 3.071 × 10−5

41 8.461 × 10−6 8.898 × 10−6 41 7.886 × 10−6 7.683 × 10−6

81 2.168 × 10−6 2.226 × 10−6 81 2.0216 × 10−6 1.919 × 10−6

161 5.489 × 10−7 5.591 × 10−7 161 5.117 × 10−7 4.773 × 10−7
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Figure 1. The bifurcated nature of the computed solution to Bratu’s problem for λ ∈ (0, 4)
and M = ∞.
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Figure 2. The numerical solutions for λ = −1 and M = 1 (upper left frame), the numerical
solutions for λ = 1 and M = 1 (upper right frame), and the numerical solutions for λ = 4π2

and M = 1 (lower frame).
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Figure 3. The upper and lower solutions for λ = 1 and M = 2.
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Figure 4. The bifurcation behavior solutions for λ ∈ (0, 4) and M = 2.

5.4. Cases of M = 3 and M = 5

In this section, we consider Examples (2.11) and (2.12) in Section 2 and obtain numerical results
using System (3.7). In this case, there are an infinite number of solutions. Figure 5 shows five semi-
periodic solutions for M = 3 and λ = 1. Figure 6 shows numerical solutions for M = 3 and λ = −1.
Figure 7 shows the convergence behavior of the solutions using the NSCFD method for M = 3 and
M = 5. Figure 8 shows seven periodic solutions for M = 5 and λ = 1. Finally, Figure 9 shows
numerical solutions for M = 5 and λ = −1.
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Figure 5. Five semi-periodic solutions for M = 3 and λ = 1.
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Figure 6. The numerical solutions for M = 3 and λ = −1.
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Figure 7. (a): Convergence behavior of the solutions using the NSCFD method for the
first periodic solution for M = 3, (b): a close-up view near the maximum for M = 3, (c):
convergence behavior for the first semi-periodic solution for M = 5, and (d): a close-up view
near the minimum for M = 5.
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Figure 8. Seven periodic solutions for M = 5 and λ = 1.
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Figure 9. The numerical solutions for M = 5 and λ = −1.

6. Conclusions

In this paper, we obtained numerical solutions for the truncated Bratu−Picard model using the
nonstandard compact finite difference method. The solutions are presented for different values of λ
and M, and the graph of each case is plotted. Numerical results showed the existence of two, one, and
zero solutions for λ > 0 and M ∈ N2, which is similar to the M = ∞ case. In Figures 4 and 6, we
showed that there are infinite numbers of solutions for the M = 3 and M = 5 cases. These solutions are
either periodic or semi-periodic. Finally, we presented the bifurcating nature of Model (1.1) for each
case. Previous articles considered only positive solutions but we obtained all smooth solutions using
our proposed method, where some of them are periodic and others are semi-periodic. We also show
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theoretically and numerically that there exists a unique solution for λ ≤ 0. We observe that NSFD
has a similar simplicity as an SFD approximation but it is slightly more accurate, in most cases. In
addition, the NSFD method preserves some qualitative features of the continuous-time model such as
boundedness and positivity.

The most important weakness of the used method is that there is no specific method to find the
best denominator function in the nonstandard finite difference method. Also, the most important
disadvantage of the compact finite difference formulation is that compact schemes are implicit and
require solving a matrix system for the evaluation of solutions or derivatives at the grid points. But, we
accept this limitation of the compact finite difference approach due to its excellent stability properties.
We intend to use the proposed method for solving the fractional order version of Model (1.1) in the
future.
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