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Abstract: A new hybrid conjugate gradient algorithm for solving the unconstrained optimization
problem was presented. The algorithm could be considered as a modification of the memoryless
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method. Based on a normalized gradient
difference, we introduced a new combining conjugate gradient direction close to the direction of
the memoryless BFGS quasi-Newton direction. It was shown that the search direction satisfied
the sufficient descent property independent of the line search. For general nonlinear functions, the
global convergence of the algorithm was proved under standard assumptions. Numerical experiments
indicated a potential performance of the new algorithm, especially for solving the large-scale problems.
In addition, the proposed method was used in practical application problems for image restoration and
machine learning.
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1. Introduction

In this work, we consider the following unconstrained optimization problem:

min f (x), x ∈ Rn, (1.1)

where f : Rn → R is continuously differentiable and bounded below. Conjugate gradient methods
are highly significant for solving large-scale optimization due to their lower storage requirements and
simple computation. They are widely applied in various fields, including information technology [1],
energy engineering [2, 3], material science [4, 5], and more. The conjugate gradient method for
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solving (1.1) generates an iterate sequence {xk} using the formula

xk+1 = xk + αkdk, k = 0, 1, 2...,

where the scalar αk > 0 is the step size and satisfies the Wolfe line search conditions

f (xk + αdk) − f (xk) ≤ ραgT
k dk, (1.2)

g(xk + αdk)T dk ≥ σgT
k dk, (1.3)

where gk = 5 f (xk), 0 < ρ ≤ σ ≤ 1. The search direction dk is generally given by

dk =

−gk, if k = 1,
−gk + βkdk−1, if k ≥ 2,

(1.4)

where βk ∈ R
n is the conjugate parameter.

Some of the famous conjugate gradient methods are the Fletcher-Reeves (FR) method [6], the
Polak-Ribiere-Polyak (PRP) method [7, 8], the Hestenes-Stiefel (HS) method [9], and the Dai-Yuan
(DY) method [10], the Liu–Storey (LS) method [11], and their parameters βk are, respectively,

βFR
k =

‖gk‖
2

‖gk−1‖
2 , β

PRP
k =

gT
k yk−1

‖gk−1‖
2 , β

HS
k =

gT
k yk−1

dT
k−1yk−1

, βDY
k =

‖gk‖
2

dT
k−1yk−1

, βLS
k =

gT
k yk−1

−gT
k−1dk−1

,

where yk−1 = gk − gk−1. ‖·‖ represents the Euclidean norm.
Different conjugate parameter choices lead to variants of the conjugate gradient method, each

with its own unique strengths and differences in theoretical convergence and numerical performance.
In recent years, the modified conjugate gradient method [12–15] and hybrid conjugate gradient
method [16,17] have received much attention. Their researches exhibited better convergence properties
and broader applications and illustrated the significance of our in-depth study of the conjugate
gradient method.

In 2006, Wei et al. [18] proposed a modification of the PRP conjugate gradient method, denoted as
the Wei-Yao-Liu (WYL) method by substituting yk−1 with y∗k−1 = gk −

‖gk‖

‖gk−1‖
gk−1 in βPRP

k , and introduced
the new conjugate parameter

βWYL
k =

gT
k y∗k−1

‖gk−1‖
2 . (1.5)

When the normalized gradient difference y∗k−1 tended to zero, leading that the scalar βWYL
k also

approached to zero, which in turn caused the search direction to be close to the steepest descent
direction, it implied that the WYL method possessed the automatic restart feature, similar to the PRP
method. Furthermore, when the gradients gk and gk−1 were significantly different, the smaller one
between gk and gk−1 was almost negligible in the computation of yk−1. The fact ‖ ‖gk‖

‖gk−1‖
gk−1‖ = ‖gk‖

guaranteed that the vector y∗k−1 could utilize the available information both of gk and gk−1 and enhanced
the numerical stability. More researches on y∗k−1 could be found in [12–14, 16, 19].

In recent years, the memoryless BFGS method has been commonly employed in constructing the
hybrid conjugate gradient method. In 2018, Li [15] rewrote the memeoryless BFGS update dBFGS

k
in [20] as

dBFGS
k := −gk +

(
βHS

k −
‖yk−1‖

2gT
k dk−1

(dT
k−1yk−1)2

)
dk−1 +

gT
k dk−1

dT
k−1yk−1

(yk−1 − sk−1), (1.6)
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and proposed a new conjugate direction by closing to the memoryless BFGS quasi-Newton method

dT HS
k := −gk +

(
βHS

k −
‖yk−1‖

2gT
k dk−1

(dT
k−1yk−1)2

)
dk−1 + tk

gT
k dk−1

dT
k−1yk−1

yk−1, (1.7)

where tk was established by minimizing the distance between (yk−1 − sk−1) and tkyk−1. Moreover, such
a constructed conjugate gradient method was considered as a three-term conjugate gradient method
determined by vectors gk, dk−1, and yk−1. The method retains the advantages of the HS method and
memoryless BFGS method, and it was also suitable for large-scale optimization problems.

In 2023, Kumam [17] presented a hybrid conjugate gradient method for solving (1.1). The
direction combines the three-term PRP, HS, and LS directions.

dHTTHSLS
k = −gk +

(
gT

k yk−1

wk
−
‖yk−1‖

2gT
k dk−1

w2
k

)
dk−1 + tk

gT
k dk−1

wk
yk−1, k ≥ 1, (1.8)

where

wk := max{µ‖dk−1‖‖yk−1‖, dT
k−1yk−1,−dT

k−1gk−1}, µ > 0,

and tk is as well as that of (1.7). Furthermore, the direction was close to the memoryless BFGS quasi-
Newton method and had the descent and trust region properties.

In addition, conjugate gradient methods have been employed to deal with the image restoration
efficiently. In 2020, Luo et. al [21] proposed a conjugate gradient algorithm based on double parameter
scaled BFGS and applied it to solve image restoration problems. In 2023, Jiang et. al [22] proposed
a family of hybrid conjugate gradient methods with restart procedure for unconstrained optimizations
and image restorations. In 2024, Jiang et. al [23] put forward a family of spectral conjugate gradient
methods with strong convergence and its applications in image restoration and machine learning. More
related researches are detailed in the references [21, 24–27].

Inspired by the above works, we present a hybrid conjugate gradient method by constructing
new combined conjugate parameters for solving (1.1). The main contributions of this paper are stated
as follows.

• The new method can be viewed as a three-term conjugate gradient method in which the search
direction is a linear combination of gk, dk−1, y∗k−1. Their coefficients are defined as a combination of
PRP, HS, LS, and WYL conjugate paremeters. The new direction is close to the memoryless BFGS
quasi-Newton direction.

• The search directions generated by the proposed method satisfy the sufficient descent condition
independent of any line search. Under usual assumptions and the Wolfe line search, the global
convergence of our algorithm is proved.

• Numerical experiments of the proposed method are carried out for solving unconstrained
test problems, and we apply the new method in the image restoration problems and machine
learning problems.

The rest of this paper is organized as follows. In the next section, we put forward a new hybrid
three-term conjugate gradient method and provide a framework of the algorithm. The sufficient
descent property and global convergence are demonstrated in Section 2. In Section 3, some numerical
experiments are implemented for solving some unconstrained test problems. In Section 4, we use the
new algorithm to solve image restoration problems. In Section 5, a conclusion for this work is made.
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2. New algorithm and convergence analysis

In this work, motivated by the three-term conjugate gradient direction defined in (1.8) and taking
the advantage of the βWYL

k and y∗k−1 in [18], we define a new three-term hybrid conjugate gradient
method with the following search direction:

dHTTWYL
k := −gk + βkdk−1 + γky∗k−1, k ≥ 1, (2.1)

where

y∗k−1 = gk −
‖gk‖

‖gk−1‖
gk−1,

βk :=
gT

k y∗k−1

ηk
−
‖y∗k−1‖

2gT
k dk−1

η2
k

, γk := tk
gT

k dk−1

ηk
, (2.2)

and

ηk := max{µ‖dk−1‖‖yk−1‖, µ‖dk−1‖‖y∗k−1‖, d
T
k−1yk−1,−dT

k−1gk−1, ‖gk−1‖
2}, µ > 0.

When ηk = ‖gk−1‖
2, βk = βWYL

k −
‖y∗k−1‖

2gT
k dk−1

η2
k

could be regarded as a modification of βWYL
k .

To obtain the parameter tk, similar to the treatment of tk in (1.7), we require the solution of the
univariate minimal problem

min
t∈R
‖(yk−1 − sk−1) − t · y∗k−1‖

2.

Setting Mk = (yk−1 − sk−1) − t · y∗k−1,

MkMT
k = [(yk−1 − sk−1) − t · y∗k−1][(yk−1 − sk−1) − t · y∗k−1]T

= [(yk−1 − sk−1) − t · y∗k−1][(yk−1 − sk−1)T − t · y∗Tk−1]
= t2y∗k−1y∗Tk−1 − t[(yk−1 − sk−1)y∗Tk−1 + y∗k−1(yk−1 − sk−1)T ] + (yk−1 − sk−1)(yk−1 − sk−1)T .

Setting Ak = yk−1 − sk−1,

MkMT
k = t2y∗k−1y∗Tk−1 − t[Aky∗Tk−1 + y∗k−1AT

k ] + AkAT
k ,

and

tr(MkMT
k ) = t2‖y∗k−1‖

2 − t[tr(Aky∗Tk−1) + tr(y∗k−1AT
k )] + ‖Ak‖

2

= t2‖y∗k−1‖
2 − 2ty∗Tk−1Ak + ‖Ak‖

2.

Taking the derivative of the above equation and setting it equal to zero, we obtain

2t
∥∥∥y∗k−1

∥∥∥2
− 2y∗Tk−1Ak = 0,
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which implies

t =
y∗Tk−1(yk−1 − sk−1)
‖y∗k−1‖

2 . (2.3)

Therefore, we choose tk as

tk := min
{

t̄,max
{

0,
y∗Tk−1(yk−1 − sk−1)
‖y∗k−1‖

2

}}
, (2.4)

which implies 0 ≤ tk ≤ t̄ < 1. Note that the direction defined by (2.1) is close to the direction of the
memoryless BFGS method when tk is chosen by (2.3).

Based on the above analysis, the new algorithm can be presented as follows.
Algorithm 1 (HTTWYL)
Step 0: Input x0 ∈ R

n, parameters ε > 0, 0 < ρ < σ < 1. d1 = −g1, set k := 1;
Step 1: If ‖gk‖ ≤ ε , then stop.
Step 2: Determine a step-length αk by the Wolfe line search (1.2) and (1.3);
Step 3: Let xk+1 = xk + αkdk, calculate gk+1, f (xk+1);
Step 4: Determine tk, γk, and βk as in (2.4) and (2.2), respectively. Compute the search direction as
in (2.1).
Step 5: Set k := k + 1, and go to Step 1.

The following lemma shows that the dk produced by (2.1) satisfies the property of sufficient
descent without any line search.
Lemma 2.1. If {dk} is defined by (2.1), then we obtain

gT
k dk ≤ −c1‖gk‖

2,

where c1 =
(
1 − (1+t̄)2

4

)
.

Proof.

gT
k dk = −‖gk‖

2 +
gT

k y∗k−1

ηk
gT

k dk−1 −
‖y∗k−1‖

2

η2
k

(gT
k dk−1)2 + tk

gT
k y∗k−1

ηk
gT

k dk−1

= −‖gk‖
2 + (1 + tk)

gT
k y∗k−1

ηk
gT

k dk−1 −
‖y∗k−1‖

2

η2
k

(gT
k dk−1)2

= −‖gk‖
2 + 2

(
(1 + tk)

2
gT

k

)
y∗k−1

ηk
gT

k dk−1 −
‖y∗k−1‖

2

η2
k

(gT
k dk−1)2

≤ −‖gk‖
2 +

(1 + tk)2

4
‖gk‖

2 +
‖y∗k−1‖

2

η2
k

(gT
k dk−1)2 −

‖y∗k−1‖
2

η2
k

(gT
k dk−1)2

= −‖gk‖
2 +

(1 + tk)2

4
‖gk‖

2

≤ −

(
1 −

(1 + t̄)2

4

)
‖gk‖

2, (2.5)

so the proof is complete. �
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Next, we will attempt to establish the convergence of the standard Wolfe line search conditions.
We use the following assumptions.
Assumption 1. The level set D = {x ∈ Rn : f (x) ≤ f (x0)} is bounded. It means

‖x‖ ≤ B.

Assumption 2. The gradient function g (x) is Lipschitz continuous on the level set D, exists a constant
L, s.t.,

‖g(x) − g(y)‖ ≤ L ‖x − y‖ , x, y ∈ Rn.

Based on the above assumptions, it can be shown that there exists a constant Γ > 0 such that

‖g(x)‖ ≤ Γ, x ∈ D.

Theorem 2.1. Let the sequence {xk} be generated by Algorithm 1, and suppose the Assumptions 1
and 2 holds, If

∞∑
k=0

1
‖dk‖

2 = +∞, (2.6)

then

lim
k→∞

inf ‖gk‖ = 0. (2.7)

Proof. By paradoxically assuming that (2.7) does not hold, then there exists a nonnegative constant ζ
such that

‖gk‖ ≥ ζ. (2.8)

From (2.2), we have

|βk| =

∣∣∣∣∣∣gT
k y∗k−1

ηk
−
‖y∗k−1‖

2gT
k dk−1

η2
k

∣∣∣∣∣∣
≤
‖gk‖‖y∗k−1‖

µ‖dk−1‖‖y∗k−1‖
+
‖y∗k−1‖

2‖gk‖‖dk−1‖

(µ‖dk−1‖‖y∗k−1‖)
2

=

(
1
µ

+
1
µ2

)
‖gk‖

‖dk−1‖
. (2.9)

Also,

|γk| =

∣∣∣∣∣∣tk
gT

k dk−1

ηk

∣∣∣∣∣∣
≤ t̄
‖gk‖‖dk−1‖

ηk

≤ t̄
‖gk‖‖dk−1‖

µ‖dk−1‖‖y∗k−1‖
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=
t̄
µ

‖gk‖

‖y∗k−1‖
. (2.10)

Then, from formula (2.1), (2.9), and (2.10), we obtain

‖dk‖ = ‖ − gk + βkdk−1 + γky∗k−1‖

≤ ‖gk‖ + |βk|‖dk−1‖ + |γk|‖y∗k−1‖

≤ ‖gk‖ +

(
1
µ

+
1
µ2

)
‖gk‖

‖dk−1‖
‖dk−1‖ +

t̄
µ

‖gk‖

‖y∗k−1‖
‖y∗k−1‖

=

(
1 +

1 + t̄
µ

+
1
µ2

)
‖gk‖

=

(
1 +

1 + t̄
µ

+
1
µ2

)
Γ. (2.11)

Letting M1 =
(
1 + 1+t̄

µ
+ 1

µ2

)
Γ, we have

‖dk‖ ≤ M1.

From Lemma 2.1, the first Wolfe condition (1.2), and (2.8),

f (xk+1) ≤ f (xk) + ραkgT
k dk ≤ f (xk) − ραkc1‖gk‖

2 < f (xk) < f (xk−1) < · · · < f (x0).

Conjugating with Assumption 1, the sequence { f (xk)} is convergent.
From the second Wolfe condition (1.3) and Assumption 2, we obtain

−(1 − σ)gT
k dk ≤ (gk+1 − gk)T dk ≤ ‖gk+1 − gk‖‖dk‖ ≤ αkL‖dk‖

2.

Using the above inequality and (1.2), we derive

ρ(1 − σ)
L

(gT
k dk)2

‖dk‖
2 ≤ f (xk) − f (xk+1).

Summing both sides of the above equation for k = 0, 1, ...,K, we get

ρ(1 − σ)
L

K∑
k=0

(gT
k dk)2

‖dk‖
2 ≤

K∑
k=0

( f (xk) − f (xk+1)) = f (x0) − f (xK+1).

Let K → ∞, and the above implies that

∞∑
k=0

(gT
k dk)2

‖dk‖
2 < +∞. (2.12)

Now, combining (2.8) with (2.5), we get

gT
k dk ≤ −

(
1 −

(1 + t̄)2

4

)
‖gk‖

2
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≤ −

(
1 −

(1 + t̄)2

4

)
ζ2. (2.13)

Therefore, we have

∞∑
k=0

1
‖dk‖

2 < +∞,

this contradicts (2.6). Then, (2.7) holds. �

3. Numerical experiments

In this section, we compare the computational performance of HTTWYL with the method
proposed by Hager and Zhang [28] (HZ), the method proposed by MinLi [15] (NHS+), and the
method by Kumam [17] (HTTHSLS) under standard Wolfe line search. All codes are written on
Matlab R2022a and run on a PC with the 2200MHz central processing unit (CPU) processor, 16.00
GB RAM memory.

Most of the test functions were drawn from the Constrained and Unconstrained Testing
Environment, revisited (CUTEr) library [29], and some test functions were suggested by Andrei [30]
and Moré et al. [31]. Table 1 lists 49 test functions for 100 problems with dimensions from 10
to 1000000. The parameters for the four methods are selected in the following manner.

ε = 10−6, ρ = 0.1, σ = 0.01, t̄ = 0.3.
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Table 1. Test problems and dimensions.

No. Problem Dim No. Problem Dim

1 Bdexp 10000 51 Diagonal3 30
2 Bdexp 50000 52 Diagonal8 5000
3 Bdexp 100000 53 Diagonal8 10000
4 Trid 1000 54 Hager 100
5 Trid 2500 55 Extended Beale 100
6 Trid 5000 56 Penalty-I 1000
7 Dqrtic 500 57 Himmelbg1 500
8 Dqrtic 1000 58 Himmelbg2 70000
9 Dqrtic 1200 59 Himmelbg2 200000

10 Ie 1000 60 Edensch 500
11 Ie 2000 61 Edensch 600
12 Raydan1 100 62 Dqdrtic 6000
13 Raydan1 150 63 Dqdrtic 10000
14 Raydan2 1000 64 Penalty 100
15 Raydan2 5000 65 Penalty 200
16 Raydan2 10000 66 Penalty 300
17 Chebyquad 10 67 Tridia 100
18 Chebyquad 20 68 Tridia 300
19 Broyden banded 10 69 Woods 1000
20 Broyden tridiagonal 1000 70 Woods 5000
21 Broyden tridiagonal 2000 71 Woods 10000
22 Broyden tridiagonal 7000 72 Woods 100000
23 Broyden tridiagonal 10000 73 Arwhead 10000
24 Separable cubic 1000 74 Arwhead 200000
25 Separable cubic 5000 75 Dimaana 6000
26 Separable cubic 10000 76 Dimaana 9000
27 Nearly separable 500 77 Dimaanb 30000
28 Nearly separable 1000 78 Dimaanb 600000
29 Nearly separable 1000 79 Dimaanc 6000
30 Rosex 300 80 Dimaanc 24000
31 Rosex 500 81 Dimaand 9000
32 Rosex 1000 82 Dimaand 12000
33 Schittkowski 20 83 Dimaane 3300
34 Schittkowski 30 84 Dimaane 6000
35 Quartic 1000 85 Dimaanf 12000
36 Quartic 2000 86 Dimaanf 15000
37 Quartic 10000 87 Dimaang 6000
38 Dicon3dq 50 88 Nonscomp 1000
39 Dicon3dq 70 89 Nonscomp 2000
40 Cube 1000 90 Generalized Rosebrock 100

Continued on next page
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No. Problem Dim No. Problem Dim

41 Cube 10000 91 Generalized Rosebrock 200
42 Extended Tridiagonal 1 5000 92 Biggsb1 100
43 Fletchcr 5000 93 Biggsb1 150
44 Fletchcr 10000 94 Sine 20
45 Generalized Quartic 500000 95 Extended Powell singular 1000
46 Generalized Quartic 1000000 96 Cosine 1000
47 Diagonal1 10 97 Cosine 2000
48 Diagonal1 20 98 Power1 50
49 Diagonal2 2000 99 Genquqrtic 200000
50 Diagonal2 6000 100 Genquqrtic 300000

All algorithms are terminated when it satisfies the condition ‖gk‖ ≤ ε or the number of iterations
exceeds 2000. Table 2 lists the numerical results of the four algorithms for 100 test problems. If the
Itr exceeds 2000 and the method never reaches the optimal value, the algorithm stops and we write it
as “F”. The detailed numerical results are listed in the form Itr, Nf, ‖g∗‖, and Tcpu, where it denotes
the number of iterations, function evaluations, the gradient value at the end of iteration, and the CPU
time, respectively.

We use the performance profile introduced by Dolan and More [32] to analyze the computational
performance of all methods. Let P be the collection of np test problems and S be the set of solvers
used in the comparison. The measure tp,s is defined as Itr, Nf, or Tcpu required by solver s for problem
p. The definition of the performance ratio is

rp,s =
tp,s

min
{
tp,s : s ∈ S and p ∈ P

} .
It is obvious that rp,s ≥ 1 for all p and s. The performance profiles for each solver s are defined by

P(τ) =
size{p ∈ P : rp,s ≤ τ}

np
,

where size{p ∈ P : rp,s ≤ τ} is the number of the elements in the set {p ∈ P : rp,s ≤ τ}, then P(τ) is the
probability for solver s ∈ S that a performance ratio rp,s is within a factor τ. The efficiency of a method
is represented on the horizontal axis by the percentage τ of test problems for which it is the fastest,
while the vertical axis indicates the success rate P(τ) of each method in solving the test problems.

Figure 1 illustrates the iteration performance profiles of the methods. It demonstrates that most of
the positions of the curves of our proposed algorithm lie above the curves of the other three methods,
and our algorithm can successfully solve about 99% of the test problems. The HZ method solves
about 90%, the NHS+ method solves about 87%, and the HTTHSLS method solves about 87% of
the test problems, respectively. Figure 2 shows the curve of the HTTWYL method is above those of
the other methods. This indicates the HTTWYL method wins the match in the function evaluations.
Similarly, Figure 3 shows the HTTWYL method wins the performance profiles on CPU time, and we
can see that the HTTWYL method outperforms the other three methods for the given test set. In brief,
by observing the overall trend in the performance graphs, the HTTWYL algorithm performs slightly
better than other algorithms. We believe that the HTTWYL algorithm is more competitive.

AIMS Mathematics Volume 9, Issue 10, 27535–27556.
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Table 2. Numerical test report

HTTWYL HZ NHS+ HTTHSLS
No. Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu

1 2/5/1.1e-14/0 5/22/2.0e-07/0.1562 2/5/3.4e-07/0.0625 2/5/5.9e-08/0.1875
2 2/5/2.4e-14/0.0312 5/22/2.2e-11/0.0781 2/5/2.7e-15/0.0156 2/5/1.7e-13/0.0156
3 2/5/3.4e-14/0.0781 5/22/3.0e-11/0.0312 2/5/3.7e-15/0.0312 2/5/2.4e-13/0.0469
4 86/213/4.1e-07/0.6406 123/461/7.9e-07/1.0938 77/193/6.5e-07/0.4531 85/209/7.5e-07/0.7031
5 79/211/5.1e-07/1.75 88/255/9.6e-07/2.2656 88/229/3.3e-07/2.1719 100/278/5.6e-07/2.5156
6 70/168/9.9e-07/18.3438 88/298/7.2e-07/35.5 87/220/5.0e-07/24.5781 81/191/7.0e-07/26.75
7 27/222/3.3e-07/0.0312 35/155/1.0e-06/0.0156 37/199/7.4e-07/0.0469 26/125/4.2e-07/0.0469
8 30/239/2.2e-07/0.0469 36/238/8.9e-07/0.0781 31/211/5.4e-07/0.07813 22/140/1.8e-07/0.0469
9 28/310/7.9e-07/0.0625 34/253/5.6e-07/0.0469 F/F/F/F 35/312/3.0e-07/0.0469

10 6/13/1.6e-07/1.4688 7/15/9.3e-07/1.6719 7/15/3.2e-07/1.3125 6/13/6.0e-07/1.4375
11 6/13/2.3e-07/4.1719 8/17/2.2e-08/7.5312 7/15/4.5e-07/2.8438 6/13/8.5e-07/4.7188
12 68/132/7.0e-07/0 71/143/9.1e-07/0 70/131/7.9e-07/0.0469 63/122/9.7e-07/0.0156
13 72/140/9.0e-07/0 84/166/9.7e-07/0.0156 F/F/F/F F/F/F/F
14 6/20/3.1e-07/0 5/9/4.6e-08/0.0156 7/13/8.6e-13/0.0625 8/14/7.9e-07/0
15 6/20/6.9e-07/0.0156 5/9/8.7e-08/0.0156 7/13/1.9e-12/0.0156 F/F/F/F
16 6/20/9.7e-07/0.0312 5/9/7.5e-08/0.0312 7/13/2.7e-12/0.0156 F/F/F/F
17 134/340/6.7e-07/0.0156 157/501/8.7e-07/0.0625 114/335/9.4e-07/0.0156 131/354/7.0e-07/0.0469
18 230/774/7.7e-07/0.0781 317/1332/9.2e-07/0.0312 F/F/F/F 210/661/7.9e-07/0.0156
19 48/159/5.7e-07/0 46/218/8.4e-07/0.0312 45/376/8.4e-07/0.0156 51/381/6.5e-07/0.0312
20 70/161/5.4e-07/0 103/347/6.8e-07/0.0156 84/209/9.3e-07/0.0469 78/188/9.0e-07/0
21 81/210/7.4e-07/0.0156 88/267/6.8e-07/0.0625 71/164/6.7e-07/0 85/198/7.3e-07/0.0312
22 71/188/6.4e-07/0.0625 125/461/8.2e-07/0.1094 74/272/9.1e-07/0.0938 77/188/7.7e-07/0.0469
23 77/230/4.8e-07/0.0938 97/357/8.5e-07/0.0781 84/228/6.8e-07/0.0938 83/241/8.6e-07/0.0938
24 18/29/3.4e-07/0.0781 F/F/F/F F/F/F/F 19/55/7.3e-07/0.0625
25 18/27/6.3e-07/0.3438 16/124/6.3e-08/1.7656 18/124/5.3e-07/1.0469 20/106/6.2e-07/1.0312
26 19/28/2.5e-07/0.5 13/96/1.5e-07/5.3906 20/104/6.6e-07/2.0625 23/84/5.0e-07/2.2656
27 234/1396/8.3e-07/0.4375 214/1396/8.4e-07/0.3281 212/1420/7.3e-07/0.3281 166/855/7.8e-07/0.2188
28 F/F/F/F 330/2698/8.0e-07/1.3594 157/1260/7.2e-07/0.5156 133/831/9.3e-07/0.5156
29 180/1235/7.2e-07/1.5 322/2615/8.3e-07/5.3281 191/2332/8.3e-07/2.906 200/1578/3.2e-07/2.5156
30 64/356/9.4e-07/0.1875 111/946/8.8e-07/0.5625 40/215/9.7e-07/0.0938 25/145/8.8e-07/0.1094
31 68/353/7.4e-07/1.5625 41/308/7.7e-07/1.5 52/305/6.8e-07/0.7969 55/341/3.7e-07/1.5469
32 90/517/4.6e-07/1.2344 77/678/8.1e-07/1.7344 68/407/7.8e-07/1.2031 20/104/7.3e-07/0.2656
33 75/541/9.8e-07/0.0156 91/923/9.3e-07/0.0156 15/90/2.0e-07/0 21/161/7.2e-07/0.0469
34 83/883/9.3e-07/0 22/299/9.7e-07/0.0156 50/619/6.9e-07/0.0938 21/260/6.1e-07/0
35 4/17/1.6e-07/0 3/13/1.2e-07/0 3/16/5.2e-08/0.0156 5/19/4.1e-07/0.0156
36 4/17/2.3e-07/0.0156 3/13/1.7e-07/0.0156 3/16/7.4e-08/0.0625 5/19/5.8e-07/0.0156
37 4/17/5.1e-07/0.0156 3/13/3.8e-07/0.0469 3/16/1.6e-07/0.0469 6/30/9.3e-11/0.0469
38 476/881/5.8e-07/0.0625 526/998/8.7e-07/0.0312 554/1078/9.4e-07/0.0156 548/1077/8.8e-07/0.0156
39 710/1329/6.7e-07/0.0312 728/1424/9.3e-07/0.0469 751/1459/9.5e-07/0.0312 782/1522/9.0e-07/0.0469
40 80/517/9.9e-07/0.0156 50/408/7.2e-07/0 46/434/9.5e-07/0.0156 64/545/8.5e-07/0.01

Continued on next page
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HTTWYL HZ NHS+ HTTHSLS
No. Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu

41 80/517/9.9e-07/0 50/408/7.2e-07/0.0156 46/434/9.5e-07/0.0156 64/545/8.5e-07/0.0312
42 29/70/4.8e-08/0.0938 6/23/1.3e-07/0.0469 21/80/1.4e-07/0.1094 21/56/2.5e-07/0.0469
43 38/210/5.9e-07/0 47/403/2.7e-07/0.0625 F/F/F/F 46/239/7.1e-07/0.0156
44 69/358/1.0e-06/0.0781 59/602/9.9e-07/0.1094 79/497/1.8e-07/0.1719 50/273/2.6e-07/0.125
45 5/11/5.6e-07/0.3281 11/27/2.2e-07/0.25 8/17/1.9e-08/0.2656 9/19/6.6e-07/0.3125
46 5/11/5.3e-07/0.2188 9/23/3.5e-08/0.1562 7/15/9.4e-07/0.3438 10/21/1.9e-07/1.5
47 24/52/8.0e-07/0 21/48/8.4e-07/0 24/50/6.7e-07/0.0156 24/52/5.8e-07/0.0156
48 35/74/5.8e-07/0.0156 35/69/7.2e-07/0.0156 34/73/5.1e-07/0 33/92/4.0e-07/0.0781
49 289/833/5.0e-07/0.2031 F/F/F/F 330/1181/9.2e-07/0.125 F/F/F/F
50 492/1565/8.8e-07/0.4375 568/1835/9.1e-07/0.4062 F/F/F/F F/F/F/F
51 47/113/8.1e-07/0.0312 48/130/6.8e-07/0.0156 47/85/9.8e-07/0 48/97/9.1e-07/0.0469
52 5/10/1.1e-07/0.046875 6/12/6.8e-07/0.0156 5/10/4.3e-08/0.0156 5/10/7.9e-07/0.0156
53 5/10/3.3e-07/0.0156 F/F/F/F 5/10/3.3e-07/0.0938 F/F/F/F
54 24/56/5.2e-07/0.0156 25/83/7.2e-07/0.0156 24/56/7.1e-07/0.0312 23/59/6.6e-07/0.015625
55 26/143/7.3e-07/0.0156 23/77/9.9e-12/0 15/61/3.4e-07/0 19/169/7.1e-08/0.0312
56 129/568/1.5e-07/0 50/266/8.7e-07/0 31/272/1.1e-07/0.0156 60/565/4.7e-07/0.0156
57 7/18/1.8e-07/0.0156 7/22/3.3e-07/0 6/16/2.3e-07/0.0156 6/16/1.3e-07/0.0156
58 9/21/3.1e-07/0.0781 7/17/3.2e-07/0.0312 6/15/2.6e-07/0.0625 7/17/7.4e-12/0.0156
59 9/21/5.2e-07/0.3594 7/17/5.4e-07/0.1562 6/15/4.4e-07/0.0938 7/17/1.2e-11/0.2969
60 24/71/4.9e-07/0.0156 F/F/F/F 24/66/7.3e-07/0.0156 F/F/F/F
61 24/50/7.1e-07/0.0312 25/74/5.2e-07/0.0312 F/F/F/F F/F/F/F
62 77/287/7.2e-07/0.0312 47/255/9.3e-07/0.0625 35/157/5.2e-07/0.0156 60/224/9.3e-07/0.0312
63 61/215/9.2e-07/0.0781 71/395/8.1e-07/0.1719 39/158/7.1e-07/0.0469 50/184/7.6e-07/0.0469
64 11/13/8.8e-07/0.0469 7/108/9.1e-10/0.0156 5/10/1.2e-10/0.0156 11/13/4.4e-07/0.0312
65 12/18/1.9e-07/0.0312 6/15/1.1e-10/0.03125 7/18/1.8e-08/0.0469 14/19/6.7e-07/0.0312
66 13/22/3.2e-07/0.0312 5/35/9.2e-10/0.01 8/21/6.2e-10/0.0156 F/F/F/F
67 331/1447/9.7e-07/0.0156 420/2750/8.8e-07/0.0469 408/2028/5.0e-07/0.0156 403/1809/9.9e-07/0.0156
68 723/4053/7.5e-07/0.0156 711/7762/8.0e-07/0.0469 774/4983/9.3e-07/0.0312 753/3856/9.3e-07/0.0469
69 134/611/9.5e-07/0.0156 F/F/F/F 126/827/7.5e-07/0.0312 147/720/8.7e-07/0.0156
70 144/748/7.6e-07/0.0625 F/F/F/F 177/906/8.0e-07/0.1094 163/788/6.7e-07/0.0781
71 179/799/6.7e-07/0.1094 F/F/F/F 226/1543/7.2e-07/0.0938 201/890/6.9e-07/0.0938
72 195/1020/6.0e-07/1.8281 F/F/F/F F/F/F/F 158/829/6.0e-07/2
73 7/24/4.9e-07/0.09375 F/F/F/F 7/24/2.9e-08/0.0156 F/F/F/F
74 7/24/2.8e-07/0.1406 F/F/F/F 7/24/1.3e-07/0.1562 F/F/F/F
75 10/20/2.4e-07/0.0938 10/20/1.2e-07/0.0312 9/19/2.0e-08/0.1719 21/26/5.4e-07/0.0156
76 10/20/2.9e-07/0.1719 10/20/1.5e-07/0.0625 9/19/2.4e-08/0.0156 21/26/6.6e-07/0.0156
77 22/28/4.4e-07/0.1406 9/20/9.7e-07/0.0938 9/25/5.4e-07/0.2969 30/33/7.8e-07/0.1094
78 23/29/8.1e-07/3.1406 11/23/4.4e-08/2.7344 12/29/2.9e-07/2.9844 32/35/8.3e-07/4.7812

Continued on next page
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HTTWYL HZ NHS+ HTTHSLS
No. Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu Itr/Nf/‖g∗‖/Tcpu

79 18/64/7.4e-07/0.0312 11/26/7.7e-07/0.0156 15/30/6.0e-08/0.1094 19/34/4.7e-07/0.0469
80 23/149/1.3e-07/0.6094 13/29/1.2e-08/0.1875 17/29/9.7e-07/0.2969 25/36/5.6e-07/0.4219
81 30/93/9.6e-07/0.1562 12/30/4.7e-07/0.0781 14/37/8.4e-09/0.2188 45/99/7.7e-07/0.25
82 21/62/7.4e-07/0.1406 12/30/5.6e-07/0.0469 13/31/9.7e-07/0.0781 31/69/6.5e-07/0.1562
83 277/823/9.9e-07/0.0312 266/799/9.9e-07/0.25 286/846/9.4e-07/0.4219 292/866/9.6e-07/0.2969
84 366/1090/9.7e-07/1.25 351/1054/9.8e-07/0.8438 377/1119/9.7e-07/0.6875 385/1145/9.7e-07/1
85 434/1294/9.8e-07/2.0312 399/1194/9.9e-07/1.625 424/1258/9.9e-07/1.5625 442/1316/9.9e-07/1.4375
86 477/1423/9.9e-07/2.2812 440/1317/9.9e-07/3.3906 466/1386/9.9e-07/6.0156 487/1451/9.9e-07/3.6562
87 588/2224/9.5e-07/1.3125 259/790/9.7e-07/0.375 299/924/9.7e-07/0.5 480/1534/9.2e-07/0.4531
88 45/147/9.4e-07/0.0156 45/151/3.7e-07/0 48/236/8.5e-07/0.0156 61/165/3.4e-07/0
89 65/303/4.0e-07/0 74/357/6.2e-07/0.0156 69/283/9.3e-07/0 239/630/4.0e-07/0.0156
90 576/2328/8.6e-07/0.0312 732/4581/9.3e-07/0.0469 F/F/F/F 450/1661/7.7e-07/0
91 970/3649/8.2e-07/0.0312 1025/3968/9.6e-07/0.0312 F/F/F/F F/F/F/F
92 602/1097/9.7e-07/0.0469 649/1272/7.8e-07/0.0312 684/1317/8.0e-07/0.0156 772/1489/9.7e-07/0.0156
93 682/1340/9.4e-07/0.0312 730/1429/8.0e-07/0.0469 1017/1977/9.4e-07/0.0312 986/1929/8.7e-07/0.0156
94 20/69/3.3e-07/0 16/68/5.5e-07/0.0625 F/F/F/F 13/62/4.2e-07/0
95 206/679/7.5e-07/0.0625 329/1349/9.9e-07/0.1875 237/770/9.0e-07/0.0781 113/337/8.5e-07/0.0781
96 9/20/8.0e-07/0 11/24/5.3e-07/0 F/F/F/F F/F/F/F
97 9/20/9.9e-07/0.0156 11/28/7.9e-07/0.0156 F/F/F/F 9/20/9.3e-07/0.0156
98 509/2480/6.1e-07/0.0469 625/5133/8.6e-07/0.0156 541/2903/7.3e-07/0.0312 712/4746/7.9e-07/0.0312
99 17/104/5.1e-08/0.5938 13/37/7.4e-07/0.1406 20/109/1.9e-07/0.2656 25/76/3.8e-07/0.7188

100 21/95/1.9e-07/0.2344 12/35/2.0e-07/0.4219 22/96/3.4e-07/0.2812 22/119/5.9e-08/0.5

Figure 1. Performance profiles on Itr.
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Figure 2. Performance profiles on Nf.

Figure 3. Performance profiles on Tcpu.

4. Application in image restoration

In this section, we use the HTTWYL algorithm to solve image restoration problems. Cai et al. [33]
used the two-phase scheme to clean salt-and-pepper noise. The first phase is to detect noisy pixels by
using the adaptive median filter [34]. The second phase involves clearing noisy pixels by solving the
following smoothing minimization problem.

min
u

Fχ(u) :=
∑

(i, j)∈N

2 ∑
(m,n)∈Vi, j\N

ϕχ(ui, j − ym,n) +
∑

(m,n)∈Vi, j∩N

ϕχ(ui, j − um,n)

 . (4.1)
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Here, ϕχ(t) =
√

t2 + χ is an edge-preserving function with parameter α > 0. N ⊂ A is the index set
of noise pixels detected in the first phase, A = {1, . . . ,M} × {1, . . . ,N} is the pixel pointer set of the
original image of size M×N, u = [ui, j](i, j)∈N is a column vector of length |N| ordered lexicographically,
i.e., the number of elements in N , and yi, j is the pixel value of the image at the point (i, j).

Now, our attention shifts to employing the two-phase strategy to eliminate salt-and-pepper noise,
which is a specific instance of impulse noise. In the first phase, we employ an adaptive median
filter [34] to identify noisy pixels. Obviously, the higher the noise ratio, the larger the scale of (4.1).
Cai [33] discovered that the contaminated images can be restored efficiently by using the conjugate
gradient methods to solve the above problem (4.1). Thus, in the second phase, we utilize the HTTWYL
method to solve (4.1) and continue to compare it with the HZ, NHS+, and HTTHSLS methods. These
methods all use the Wolfe line search (1.2) and (1.3) to compute the step-length αk. Moreover, the
related parameters for these methods are set as follows: ρ = 0.1, σ = 0.01, t̄ = 0.3.

The test images are Peppers(512 × 512), Hill(512 × 512), Man(512 × 512), and Boat(512 × 512).
The stopping criterion for the involved methods is

Itr > 300 or

∣∣∣Fχ (uk) − Fχ (uk−1)
∣∣∣

Fχ (uk)
≤ 10−4. (4.2)

In order to evaluate the restoration performance clearly, we use the peak signal to noise ratio
(PSNR; see [35]) defined by

PSNR = 10 log10
2552

1
MN

∑
i, j

(
xr

i, j − x∗i, j
)2 , (4.3)

where xr
i, j and x∗i, j represent the pixel values of the restored image and the original one, respectively.

We plot the original, noisy, and restored images for three algorithms when the salt-and-pepper
noise ratio is 70% and 90%. For the corresponding results, see Figures 4 and 5. In Table 3, we report
the number of iterations (Itr), the CPU time (Tcpu), and the PSNR values. From Table 3, we can
intuitively perceive that the HTTWYL method usually has higher PSNR among the three methods
under the same noise ratio, and it takes fewer iterations and CPU time than the other three methods in
most cases. Thus, our algorithm seems to be capable to reconstruct the noisy pictures with more quality.
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Table 3. Numerical results for image restoration problems.

HTTWYL HZ NHS+ HTTHSLS
Image Noise ratio Itr/PSNR/Tcpu Itr/PSNR/Tcpu Itr/PSNR/Tcpu Itr/PSNR/Tcpu

Peppers 30% 17/33.06/0.82 18/32.80/0.74 18/33.04/0.75 18/33.06/0.81
Peppers 50% 20/30.35/1.39 25/30.34/1.49 22/30.36/1.78 18/30.36/1.47
Peppers 70% 23/27.28/1.78 23/26.98/1.88 23/27.28/1.85 16/27.16/1.56
Peppers 90% 34/22.61/2.57 26/20.65/2.25 33/22.60/2.59 32/22.51/2.59

Hill 30% 17/34.97/3.12 16/34.95/4.38 15.34.94/7.01 14/34.94/6.93
Hill 50% 18/32.62/6.00 20/32.58/6.05 19/32.62/5.96 16/32.59/6.01
Hill 70% 18/29.64/7.62 29/29.77/20.68 20/29.72/16.72 19/29.67/16.15
Hill 90% 30/25.58/15.52 36/25.33/29.73 33/25.63/25.13 24/25.28/25.13
Man 30% 17/31.53/3.03 17/31.47/3.84 11/31.52/6.29 16/31.53/7.26
Man 50% 13/29.09/4.85 27/29.07/13.25 16/29.08/11.77 18/29.10/12.64
Man 70% 19/26.21/8.56 32/26.25/23.80 23/26.27/18.50 22/26.25/17.87
Man 90% 36/22.52/16.14 44/22.42/17.65 37/22.54/13.49 28/22.43/22.36
Boat 30% 16/33.67/3.09 17/33.62/4.43 16/33.67/7.20 13/33.61/6.80
Boat 50% 17/31.10/5.60 22/31.10/7.84 16/31.09/12.06 18/31.09/12.22
Boat 70% 22/28.24/8.74 26/28.26/13.16 22/28.24/7.84 21/28.23/10.33
Boat 90% 31/24.12/16.70 27/23.57/24.79 33/24.13/29.47 33/24.13/18.26

5. Application in machine learning problem

In this section, we test the numerical performance of the HTTWYL in solving the machine
learning problem. We embed the HTTWYL algorithm into the stochastic recursive gradient algorithm
(SARAH) [36] (denote as HTTWYL RAH). We use the Wolfe line search criterion to calculate the
learning rate (step size). In addition, we compare the HTTWYL RAH method with the stochastic
variance reduced gradient (SVRG) [37], SARAH, and stochastic gradient descent (SGD) [38] methods.
All the experiments tested the following learning model:

Ridge regression (ridge)

min
w

1
n

n∑
i=1

(
yi − xT

i w
)2

+ λ‖w‖22, (5.1)

where yi ∈ {−1,+1} is the target value of the ith sample and xi ∈ Rd is a feature vector of the ith
sample. λ > 0 is a regularization parameter. The related parameters for these methods are set as
follows: ρ = 0.1, σ = 0.01, t̄ = 0.3. All algorithms are executed on four large-scale datasets, including
a8a, a9a, ijcnn1, and w8a. These datasets come from the LIBSVM Data website * , and the specific
details of the datasets are provided in Table 4.

*All datasets are available at https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.
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Figure 4. The original images (first row), the noisy images with 70% salt-and-paper noise
(second row) and the restored images by HTTWYL (third row), HZ (fourth row), NHS+

(fifth row), and HTTHSLS (last row).
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Figure 5. The original images (first row), the noisy images with 90% salt-and-paper noise
(second row) and the restored images by HTTWYL (third row), HZ (fourth row), NHS+

(fifth row), and HTTHSLS (last row).

AIMS Mathematics Volume 9, Issue 10, 27535–27556.



27553

Table 4. Description of datasets.

Data set Sample size(n) Dimension

a8a 9865 122
a9a 16281 122
ijcnn1 91701 22
w8a 49749 301

The vertical axis represents the function value of the loss value and the horizontal axis represents
the number of internal iterations. The parameters in SARAH, SVRG, SGD are the same as their
original papers. In this experiment, the maximum number of inner iterations is 30. Figure 6 represents
the convergence of the loss function (λ = 10−2) for six algorithms on four datasets.

Figure 6. Comparison of the HTTWYL RAH with other stochastic methods on four datasets.

In general, a lower curve of the algorithm indicates better convergence behavior. As can be seen
in Figure 6, the HTTWYL RAH method has the fastest convergence in most cases.

6. Conclusions

We present a hybrid three-term conjugate gradient method HTTWYL for solving unconstrained
optimization problems, which combines features from WYL and other classical conjugate gradient
methods. The global convergence of the method is established under certain conditions. We use it
to deal with the unconstrained optimization test problems and apply it to solving image restoration
problems and ridge regression in machine learning problems. The numerical results indicate that
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compared to other methods, our proposed method is more effective and promising. Finally, we hope
that the contributions in this paper will continue to be explored for applications in other areas.
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