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Abstract: This paper deals with some identities on Banach ∗-algebras that are equipped with linear
generalized derivations. As an application of one of our results, we describe the structure of the
underlying algebras. Precisely, we prove that for a linear generalized derivation F on a Banach ∗-
algebra A, either we obtain the existence of a central idempotent element e ∈ Q, for which F = 0 on eQ
and (1− e)Q satisfies s4, or the set of elements u ∈ A such that the identity [F(u)n, F(u∗)nF(u)n] ∈ Z(A)
holds for no positive integer n turns out to be dense. In addition to this we consider an identity satisfied
by a semisimple Banach ∗-algebra and look for its commutativity. Moreover, some related results are
also established.
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1. Introduction

Let A be a Banach algebra equipped with an involution ∗, defined over the field of complex numbers
C. A map δ on A, is said to form a linear derivation on A if δ is linear, i.e., δ(u + v) = δ(u) + δ(v)
and δ(au) = aδ(u) and δ(uv) = δ(u)v + uδ(v). The Leibniz rule is satisfied for all u, v ∈ A and a ∈ C.
In a similar way, a linear generalized derivation F associated with a linear derivation δ is defined as a
linear map satisfying F(uv) = F(u)v + uδ(v). A derivation δ of A is said to be X-inner if there exists
some a ∈ Q such that δ(u) = [a, u], for all u ∈ A, where Q is the symmetric Martindale quotient ring
(algebra) (see [3] for more details). The center of Q is known as the extended centroid and is denoted
by C. The derivations that are not X-inner are called X-outer. Also, a generalized derivation is called
X-inner if its associated derivation is X-inner; otherwise it is called X-outer. A map f : S → A is said
to be centralizing on a subset S of A if [ f (u), u] ∈ Z(A), and is commuting on S if this commutator
turns out to be zero. Extensive study of centralizing and commuting maps was started in 1957 with
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Posner’s [17] remarkable results pertaining to prime rings. Then onwards there was no looking back;
various algebraists ventured into this area (viz.; [1, 5, 7, 10, 18–20] and various references therein). By
a prime algebra, we mean an algebra A such that whenever uAv = 0, then either u = 0 or v = 0, and
in a semiprime algebra, whenever uAu = 0, it implies u = 0. In an analogous manner we define prime
(semiprime) rings, i.e., whenever a ring T satisfies uTv = 0 (uTu = 0), it implies either u = 0 or v = 0
(u = 0). We recall that, for a given subset S of Banach algebra A, the right annihilator rA(S ) of a set S
in A is a totality of all x ∈ A such that S x = 0. Accordingly, the left annihilator lA(S ) is a set of all x ∈ A
such that xS = 0. The intersection annA(S ) = rA(S )∩ lA(S ) is called an annihilator of S in A. A special
type of semiprime algebra is that of the semisimple algebra, which, in addition to being semiprime is
Artinian as well. In the free product Q∗CC{X1, X2, . . .} of the C-algebras Q and the free C-algebra in the
noncommutative indeterminates X1, X2, . . ., an element φ(x1, . . . , xn) is called a generalized polynomial
identity (GPI) on A if φ(u1, . . . , un) = 0 for all u1, . . . , un ∈ A (see [3] for more details). The standard
polynomial s4 is given by s4(u1, u2, u3, u4) =

∑
(−1)σuσ(1)uσ(2)uσ(3)uσ(4), where the map σ runs over the

permutations of symmetric group S 4, and (−1)σ stands for the sign of σ. An element u ∈ A is said
to be quasi-normal if it commutes with u∗u, i.e., [u, u∗u] = 0. This concept was given by Brown [6]
way back in 1953, where he gave structure theorems for operators on a Hilbert space satisfying the
quasi-normality relation. Yood in [21] worked with the idea of quasi-normality for semisimple Banach
∗-algebras and was able to show the commutativity of the algebra and the denseness of certain subsets.
Later in [22], he studied quasi-normality for L(H), the set of all bounded linear operators on a Hilbert
space H. Precisely, he established that for an algebra having a regular involution ∗ either the algebra
is commutative or the set for which [un, (u∗)nun] ∈ Z(A) for no positive integer n is dense in A. In [1],
Alhazmi and Khan, while working with the concept of linear derivations studied the denseness of some
subsets subject to certain identities. Motivated by these results, we venture in this direction to see the
behavior of a semisimple Banach ∗-algebra equipped with linear generalized derivations. The next
section will provide us with the necessary impetus and some preliminary results, followed by the main
results.

2. The results

Throughout, A will denote a complex Banach ∗-algebra with ∗ as the involution map and Z(A), the
center of A. Q denotes the symmetric Martindale quotient algebra of A and C its center, called the
extended centroid of A. S ym(A) denotes the collection of all elements of u ∈ A satisfying u∗ = u.
We say that ∗ forms a regular involution on A if whenever ρ(u) = 0 and u∗ = u then u = 0, where
ρ(u) = lim ‖un‖1/n (see [9], p. 420). The following facts will come handy while proving the main
results:

Fact 1. [4, p. 91] If u, v ∈ A and [u, [u, v]] = 0, then ρ([u, v]) = 0.

Fact 2. [4, Theorem 2] If A is semisimple, then the involution map ∗ is continuous.

Fact 3. [4] Let A be a real or complex Banach algebra and p(t) =
∑m

k=0 cktk a polynomial in the real
variable t with coefficients in A. If for an infinite set of real values of t, p(t) ∈ N, where N is a closed
linear subspace of A, then each ck lies in N.

Fact 4. [15, Theorem 4] Let R be a semiprime ring. Then, every generalized derivation g on a dense
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right ideal of R can be uniquely extended to U and assumes the form g(x) = ax + d(x) for some a ∈ U
and a derivation d on U. Moreover, a and d are uniquely determined by the generalized derivation g.

Fact 5. [14] Let R be a semiprime ring with extended centroid C. The set B of idempotents of C forms
a Boolean algebra with respect to the operations, e◦ f = e+ f −e f and e · f = e f . Let M be a maximal
ideal of B. Then, M is a prime ideal of Q and is invariant under all derivations of Q.

Lemma 2.1. Let g : A → A be any linear map, and n be any fixed positive integer. Suppose that
(g(h))n ∈ ζ, for all h = h∗, where ζ ⊆ A is any closed linear subspace. Then (g(u))n ∈ ζ, for all u ∈ A.

Proof. We are given that (g(h))n ∈ ζ for all h = h∗, where ζ ⊆ A. For any t ∈ R, we obtain

(g(h + tk))n =

n∑
m=0

Ψmtm ∈ ζ,

for all h, k ∈ S ym(A). Here, Ψm denotes the sum of the terms in (g(h + tk))n for which the sum of
exponents of (g(k))i equals m, as can be seen, Ψ0 = (g(h))n, Ψ1 =

∑n−1
l=0 (g(h))l(g(k))(g(h))n−1−l and so

on. Fact 3 guarantees that each Ψm ∈ ζ.

Each element u ∈ A can be written in the form u = h+ ik, for some h, k ∈ S ym(A), i.e., each element
of this complex Banach ∗-algebra can be written as the sum of two symmetric elements h, k, where h
corresponds to the symmetric part and ik corresponds to the skew symmetric part of u.

Thus, (g(u))n = (g(h + ik))n =
∑n

m=0 Ψmim for all u ∈ A. Each Ψm ∈ ζ and ζ being a subspace will
contain all the linear combinations of elements from A and scalars from C. Therefore,

∑n
m=0 Ψmim ∈ ζ

and hence (g(u))n ∈ ζ for all u ∈ A. �

Now, we state and prove the first key result of this paper.

Theorem 2.2. Let F : A → A be a non-zero linear generalized derivation defined on a non-
commutative prime Banach algebra. If [F(u)n, F(v)] = 0 for all u, v ∈ A, for a fixed positive integer n.
Then dimCAC = 4.

Proof. We have,
[F(u)n, F(v)] = 0 for all u, v ∈ A. (2.1)

Using the Fact 4, we can write, F(u) = au + d(u) for some a ∈ Q. Hence, we obtain

[(au + d(u))n, av + d(v)] = 0, (2.2)

for all u, v ∈ A. Let’s first focus on a. If a = 0, then (2.2) becomes

[d(u)n, d(v)] = 0, (2.3)

for all u, v ∈ A. The result follows from [1, Theorem 2.2] and we obtain dimCAC = 4. From now
on, let us assume a , 0. Shifting our focus to the derivation d and supposing d is X-outer. Then
from [13, Theorem 2], we have

[(au + r)n, av + s] = 0,

for all u, v, r, s ∈ A. Replacing r by r − au and s by s − av in the last relation, we obtain [rn, s] = 0
for all r, s ∈ A, that is, rn ∈ Z(A) for all r ∈ A. Thus, we obtain A must be commutative (see [12,
Theorem 3.22]), contradicting the non-commutativity of A.
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Now, suppose d is X-inner, i.e., there exists b ∈ Q such that d(u) = bu − ub for all u ∈ A. So, we
have

[(au + [b, u])n, av + [b, v]] = 0, (2.4)

for all u, v ∈ A. If possible, suppose d is zero. Then Eq (2.2) becomes

[(au)n, av] = 0, (2.5)

for all u, v ∈ A. Replacing v by vr in (2.5), we obtain

av[(au)n, r] = 0, (2.6)

as v ∈ A, we can write

aA[(au)n, r] = {0}, (2.7)

for all u, r ∈ A. Since A is prime and a , 0, this implies [(au)n, r] = 0, giving us (au)n ∈ Z(A) for all
u ∈ A. Applying [12, Theorem 3.22] we obtain, either A must be commutative or A should possess a
non-zero nil ideal. But A is non-commutative and prime, therefore, by [12, Lemma 2.1.1] we arrive at
a contradiction.

As d , 0, it implies b < C, Eq (2.4) tells us that the GPI

[(aX + [b, X])n, (ay + [b,Y])], (2.8)

is satisfied by Q and is a non-trivial one. We know that Q forms a centrally closed prime C-algebra
and Q satisfies a GPI; this implies Q contains a minimal right ideal eQ (making Q primitive), and eQe
becomes a finite dimensional division algebra over C (see [16, Theorem 3]). So Q forms a primitive
ring with a minimal idempotent of Q, say e(, 1), so that Ce = eQe. Suppose S = eQ. Therefore,
Q embeds in End(S C), and also Q acts densely on S C. As b < C, there is some s ∈ S so that s and
bs are independent over C. Let us take S = T ⊕ Cs ⊕ Cbs, where T ⊆ CS , a subspace. If T = {0},
then dimCS = 2 making dimCQ = 4. As Q is centrally closed, so Q = AC and then dimCAC = 4, as
required. Having T = {0}, will lead us to the desired result. Now we will show that T = {0}. To the
contrary, let us suppose T , {0}.

Suppose, we have a t ∈ T such that t, bt, s, bs are independent over C. As Q acts densely on S C,

there exist q1, q2 ∈ Q such that

q1t = 0, q1bt = t, q1s = 0, q1bs = 0,

q2t = 0, q2bt = −t − s.

With these equations, consider

(aq1 + [b, q1])t = (aq1 + bq1 − q1b)t
= a(q1t) + b(q1t) − (q1b)t
= 0 + 0 − t = −t.
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Repeating the above steps, we obtain

(aq1 + [b, q1])nt = (−1)nt.

Similarly, observe that

(aq2 + [b, q2])t = (aq2 + bq2 − q2b)t
= aq2t + bq2t − q2bt = 0 + 0 − (−t − s) = t + s.

By the last relation, we conclude that

(aq2 + [b, q2])t = t + s, (2.9)

also

(aq1 + [b, q1])ns = 0. (2.10)

Now, consider the Eq (2.4),

[(aq1 + [b, q1])n, (aq2 + [b, q2])] = 0, (2.11)

for all q1, q2 ∈ A, we obtain

(aq1 + [b, q1])n(aq2 + [b, q2]) − (aq2 + [b, q2])(aq1 + [b, q1])n = 0.

Right multiplication in the above relation by t yields,

(aq1 + [b, q1])n(aq2 + [b, q2])t − (aq2 + [b, q2])(aq1 + [b, q1])nt = 0.

This implies that
(aq1 + [b, q1])n(t + s) − (aq2 + [b, q2])(−1)nt = 0,

which gives,
(aq1 + [b, q1])nt + ((aq1 + [b, q1])n)s + (−1)n+1(aq2 + [b, q2])t = 0.

So, we have
(−1)nt + (−1)n+1(t + s) = 0,

which implies
(−1)n−1s = 0,

from the last relation, we conclude
s = 0,

a contradiction. Therefore, no such t ∈ T exists such that t, bt, s, bs are C-independent. Next, consider
for any t ∈ T , t, bt, s, bs dependent over C. Choose t ∈ T\Cs⊕Cbs. As t, s, bs are C-independent, there
exist a1, a2, a3 ∈ C such that bt = a1t+a2s+a3bs. Thus (b−a1)t = a2s+a3bs = (a2+a1a3)s+a3(b−a1)s,
where s and (b− a1)s are C-independent. Observe that ad(b− a1) = ad(b). Taking b as b− a1 from the
beginning, we can assume that bt = a2s + a3bs. Let p = a−1

2 (t − a3s) if a2 , 0 and let t − a3s = 0 if
a2 = 0. Thus s, bs, p are C-independent, and, moreover, either bp = s or bp = 0.
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Case I: First assume bp = s. Since Q acts densely on S C, there exist q1, q2 ∈ Q such that q1s =

0, q1(bs) = −s, q1 p = 0, q2s = 0, q2(bs) = −s − p, q2 p = 0. Then, we have (aq2 + [b, q2])s = −q2bs =

s + p and (aq1 + [b, q1])s = −q1bs = s, which leads to

(aq1 + [b, q1])ns = s. (2.12)

Furthermore, we have (aq1 + [b, q1])p = −q1bp = −q1 p = 0, giving

(aq1 + [b, q1])n p = 0. (2.13)

Now, by right multiplication of Eq (2.4) by s and using (2.12) and (2.13) in (2.4), we obtain

0 = (aq1 + [b, q1])n(aq2 + [b, q2])s − (aq2 + [b, q2])(aq1 + [b, q1])ns

= (aq1 + [b, q1])n(s + p) − (aq2 + [b, q2])s = (aq1 + [b, q1])n(s + p) − (aq2 + [b, q2])s

= (aq1 + [b, q1])ns + (aq1 + [b, q1])n p − (aq2 + [b, q2])s = s + 0 − (p + s) = −p , 0,

a contradiction.
Case II: Now, suppose bp = 0, and q1s = 0, q1(bs) = −s, q1 p = 0, q2s = 0, q2(bs) = s − p, q2 p = 0,
then from these identities, we obtain, (aq1 + [b, q1])s = −q1bs = s and (aq1 + [b, q1])p = 0, which leads
to

(aq1 + [b, q1])n p = 0, (2.14)

therefore,

(aq1 + [b, q1])ns = s, (2.15)

and

(aq2 + [b, q2])s = −q2bp = p − s. (2.16)

Left multiplying (2.4) by s and using (2.14)–(2.16), we obtain

0 = (aq1 + [b, q1])n(aq2 + [b, q2])s − (aq2 + [b, q2])(aq1 + [b, q1])ns

= (aq1 + [b, q1])n(p − s) − (aq2 + [b, q2])s

= (aq1 + [b, q1])n p − (aq2 + [b, q2])s = 0 − s − (p − s) = −s − p + s = −p , 0,

a contradiction. Therefore, we conclude that T = {0}. Hence, the result follows. �

Corollary 2.3. [1, Theorem 2.2] Let d : A → A be a non-zero linear derivation defined on a non-
commutative prime Banach algebra. If [d(u)n, d(v)] = 0 for all u, v ∈ A, for a fixed positive integer n.
Then dimCAC = 4.

Theorem 2.4. Let F : A → A be a linear generalized derivation defined on a semiprime Banach
algebra. If [F(u)n, F(v)] = 0 for all u, v ∈ A, for a fixed positive integer n. Then there is a central
idempotent e ∈ Q such that F = 0 on eQ and the polynomial identity s4 is satisfied by (1 − e)Q.
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Proof. We know that F, a generalized derivation on A can be uniquely extended to a generalized
derivation F of Q (see [15, Theorem 4]). The application of [15, Theorem 3] tells us that Q and A
satisfy

[F(u)n, F(v)] = 0, (2.17)

for all u, v ∈ Q. Let M be a maximal ideal of B, where B denotes the set of idempotents of C.
Define, Q = Q/MQ. Since F(u) = au + d(u) for some a ∈ Q and MQ is an ideal, then we can write,
F(MQ) = a(MQ) + d(MQ). From Fact 5, d is invariant on MQ, i.e., d(MQ) ⊆ MQ, which implies
F(MQ) ⊆ MQ, therefore MQ is F invariant as well.

Since F(MQ) ⊆ MQ, let F denote the generalized derivation on Q induced canonically by F.
From (2.17), we have

[F(u)n, F(v)] = 0, (2.18)

for all u, v ∈ Q. The application of Theorem 2.2 yields, either F = 0 or dimC ≤ 4. If dimC ≤ 4 then
Q satisfies the identity s4. Therefore, F(Q)Qs4(q1, q2, q3, q4) ⊆ MQ for all qi ∈ Q and for all maximal
ideals M of B. Using Fact (5), we conclude that

F(Q)Qs4(q1, q2, q3, q4) = {0}, (2.19)

for all qi ∈ Q. Let W = AF(A)A. Define π : W ⊕ AnnA(W) → A as π(u + v) = v for all u ∈ W
and v ∈ AnnA(W), where AnnA(W) is the annihilator set of W in the algebra A. π so defined forms an
(A, A)-bimodule map. Hence, π can be realized as an element of Q that is central (say) e, i.e., the map
becomes π(z) = ez for all z ∈ W ⊕ AnnA(W). Therefore, we have eW = {0} and (1 − e)AnnA(W) = {0},
which implies (e − e2)(W ⊕ AnnA(W)) = {0}. But W ⊕ AnnA(W) by definition forms an essential ideal
of A. Thus e − e2 = 0, implying e ∈ M. The application of [15, Theorem 3], tells us that A and Q
satisfy the same type of differential identities; therefore, eF(Q) = {0}, so F(eQ) = {0}. On the other
hand, it follows from Eq (2.19) that s4(q1, q2, q3, q4) ∈ AnnA(W) for all qi ∈ A and hence for all qi ∈ Q
(see [3, Theorem 6.4.1]). That is, (1 − e)Q satisfies s4(q1, q2, q3, q4). Thus, the proof is complete. �

3. Applications

This section provides us with an application of Theorem 2.4 for the case of semisimple Banach
algebras. The idea behind the following theorem comes from the study of quasi-normal elements
established in [6]. The focus lies in the behavior of algebras when they possess such types of elements.
In a subsequent work, documented in [22], the examination of quasi-normality was studied for the
realm of L(H), the set that encompasses all bounded linear operators on a Hilbert space H. Specifically,
it was established that within this algebraic context, either the algebra assumes a commutative nature or
a particular set, characterized by the condition [un, ((u)∗)nun] ∈ Z(A) for no positive integer n, emerges
as dense in the algebra A. Building upon this foundation, the research presented by Alhazmi and
Khan in [1] studied the concept of linear derivations, probing the denseness of specific subsets based
on certain functional identities. Motivated by these significant contributions, our exploration takes
a directed course into the study of the behavior of semisimple Banach ∗-algebras, enriched with the
presence of a linear generalized derivation.
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Theorem 3.1. Let F : A → A be a linear generalized derivation defined on a semisimple Banach
∗-algebra over C with a regular involution ∗ such that F(u)∗ = F(u∗) for all u ∈ A. Then, a central
idempotent e ∈ Q exists so that F = 0 on eQ and (1 − e)Q satisfies s4, or the set of u ∈ A such that
[F(u)n, F(u∗)nF(u)n] ∈ Z(A) for no positive integer n is dense in A.

Proof. To the contrary, suppose that the collection of all u ∈ A such that [F(u)n, F(u∗)nF(u)n] ∈ Z(A)
is not dense in A. Then we can obtain an open set G1 so that for all u ∈ G1, there is a positive integer
n = n(u) with [F(u)n(u), F(u∗)n(u)F(u)n(u)] ∈ Z(A). Now, for each positive integer k, define

Hk = {u ∈ A : [F(u)k, F(u∗)kF(u)k] < Z(A)}.

As the algebra is semisimple we can see that the involution ∗ is regular; therefore, Hk forms an open
set (see [4, p. 191]). We show that every Hk cannot be dense. If possible, suppose every Hk is
dense, then by the Baire Category theorem their intersection is also dense. But this contradicts our
hypothesis. So, there exists a positive l such that we acquire a non-empty set G2 in Hc

l , such that
[F(u)l, F(u∗)lF(u)l] ∈ Z(A) for all u ∈ G2. Therefore, for some u0 ∈ G2, v ∈ A, and for a sufficiently
small value of real t, we have (u0 + tv) ∈ G2. Thus,

[F(u0 + tv)l, F(u∗0 + tv∗)lF(u0 + tv)l] ∈ Z(A).

Taking the coefficient of the highest power of t, we obtain

[F(v)l, F(v∗)lF(v)l] ∈ Z(A),

for all v ∈ A. Next, we can write for any v ∈ A, h + itk where h, k ∈ S ym(A), then the expression

F(v)l = F(h)l + iYt + · · · ,

where Y =
∑l−1

i=0 F(h)iF(k)F(h)l−1−i. Put w = (F(v)l + F(v∗)l)/2, observe that [w, F(v∗)lF(v)l] ∈ Z(A),
for all v ∈ A. Thus we have

[F(h)l − Y ′0t2 + · · · , (F(h)l + iYt + · · · )(F(h)l − iYt + · · · )] ∈ Z(A), (3.1)

for all h ∈ S ym(A), where Y ′ =
∑l−1

i=0 F(h)iF(k)2F(h)l−1−i.

Equation (3.1) can be written as,

[F(h)l − Y ′0t2 + · · · , F(h)2l + it[Y, F(h)l] + · · · ] ∈ Z(A) (3.2)

for all h ∈ H. Focusing on the coefficient of t, we obtain

[F(h)l, [Y, F(h)l]] ∈ Z(A), (3.3)

implies

[F(h), [F(h)l, [Y, F(h)l]]] = 0 (3.4)

for all h ∈ S ym(A), or we can write it as

[F(h)l, [F(h)l, [F(h),Y]]] = 0, (3.5)
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for all h ∈ S ym(A). Therefore,

[F(h)l, [F(h)l, [F(h)l, F(k)]]] = 0, (3.6)

for all h, k ∈ S ym(A). By invoking Fact 1, we deduce

ρ([F(h)l, [F(h)l, F(k)]]) = 0.

As the element [F(h)l, [F(h)l, F(k)]] ∈ S ym(A). Thus, from the regularity of the involution map,
we have [F(h)l, [F(h)l, F(k)]] = 0, for all h, k ∈ S ym(A). Applying Fact 1 again, we obtain
ρ([F(h)l, F(k)]) = 0 for all h, k ∈ S ym(A), also [F(h)l, F(k)] ∈ S ym(A). Similarly, we conclude
[F(h)l, F(k)] = 0 for all h, k ∈ S ym(A). By Lemma 2.1, we can write [F(u)l, F(v)] = 0, for all u, v ∈ A.
In view of Theorem 2.4, there is a central idempotent e, so that d on eQ is zero and (1 − e)Q satisfies
the polynomial identity s4. This completes the proof. �

As an immediate consequence of this theorem, we obtain the result of [1] by considering a linear
derivation instead of a linear generalized derivation.

Corollary 3.2. [1, Theorem 1.1] Let d : A → A be a linear derivation defined on a semisimple
Banach ∗-algebra over C with a regular involution ∗ such that d(u)∗ = d(u∗) for all u ∈ A. Then a
central idempotent e ∈ Q exists so that d = 0 on eQ and (1 − e)Q satisfies s4, or the set of u ∈ A such
that [d(u)n, d(u∗)nd(u)n] ∈ Z(A) for no positive integer n is dense in A.

The next result is motivated by the work of Ashraf and Wani [2], where they characterized the
structure of unital prime Banach algebras with continuous generalized derivations that satisfy certain
functional identities. What we try to establish is the ∗ version of this particular result. This result is
independent of the previous results but is an interesting deduction of linear generalized derivations.

Theorem 3.3. Let A be a unital, semisimple complex Banach ∗-algebra, F be a nonzero linear
generalized derivation with respect to the derivation d such that d(Z(A)) , 0. Suppose there exist
non-empty open subsets G1 and G2 of A such that either

F((u∗v)m) − (u∗)mvm ∈ Z(A)

or
F((u∗v)m) − vm(u∗)m ∈ Z(A),

for all u∗ ∈ G1, v ∈ G2, m = m(u∗, v) > 1. Then A is commutative.

Proof. Step 1: We will show that for a fixed u∗ ∈ G1, we have either

F((u∗w) j) − (u∗) jw j ∈ Z(A),

or
F((u∗w) j) − w j(u∗) j ∈ Z(A),

for all w ∈ G2, j = j(u∗,w) > 1. Let us define a set

Dn = {v ∈ A : F((u∗v)n) − (u∗)nvn < Z(A) and F((u∗v)n) − vn(u∗)n < Z(A)}.
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Dn so defined forms an open subset of A. To see this, consider a sequence {zk}
∞
k=0 ∈ Dc

n such that
limk→∞ zk = z. As {zk}

∞
k=0 ∈ Dc

n, it implies either

F((u∗zk)n) − (u∗)n(zk)n ∈ Z(A),

or
F((u∗zk)n) − (zk)n(u∗)n ∈ Z(A),

for infinitely many values of k. Taking limit k → ∞ and observing that the function F is continuous
and u∗ is independent of variable k, we have either

F((u∗z)n) − (u∗)n(z)n ∈ Z(A),

or
F((u∗z)n) − (z)n(u∗)n ∈ Z(A).

Therefore z ∈ Dc
n. If each Dn is dense then by the Baire Category theorem, their intersection is also

dense. But that would contradict to the non-emptiness of the set G2. So, there should exist an integer
j, such that either

F((u∗(a + tb)) j) − (u∗) j(a + tb) j ∈ Z(A), (3.7)

or
F((u∗(a + tb)) j) − (a + tb) j(u∗) j ∈ Z(A),

for some b ∈ A and sufficiently small real t, a ∈ G3, where G3 is an open subset of Dc
j. The

expression (3.7) can be rewritten as

F(G j,0(u∗, a, b)) − (u∗) jH j,0(a, b) + {F(G j−1,1(u∗, a, b)) − (u∗) jH j−1,1(a, b)}t + · · ·

+{F(G1, j−1(u∗, a, b)) − (u∗) jH1, j−1(a, b)}t j−1 + {F(G0, j(u∗, a, b)) − (u∗) jH0, j(a, b)}t j,

where G j,k(u∗, a, b) and H j,k(a, b) denotes the summation of all the terms in which u∗a appears j times
and u∗b appears k times while expanding F((u∗(a+tb)) j) and the summation of terms in which a appears
j times and b appears k times in the expansion of (a + tb) j respectively. The above polynomial lies in
the center Z(A) using Fact 3, we deduce that each coefficient is in Z(A). Therefore, the coefficient of t j

is in Z(A), i.e., either
F((u∗b) j) − (u∗) jb j ∈ Z(A),

or
F((u∗b) j) − b j(u∗) j ∈ Z(A).

The element b was chosen arbitrarily from A, so we obtain either

F((u∗w) j) − (u∗) jw j ∈ Z(A),

or
F((u∗w) j) − w j(u∗) j ∈ Z(A),

for any w ∈ A.
Step 2: Now, let us fix v ∈ A and show that either

F((r∗v)k) − (r∗)kvk ∈ Z(A),
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or
F((r∗v)k) − vk(r∗)k ∈ Z(A),

for all r ∈ A, k = k(r∗, v). For each integer n, define En = {r ∈ A : F((r∗v)n) − (r∗)nvn <

Z(A) and F((r∗v)n) − vn(r∗)n < Z(A)}. Since F is continuous and ∗ is also, by invoking Fact 2, we
obtain that the sets En are open. Following similar arguments as above, we come up with a nonempty
open subset G4 ⊆ Ec

k, such that for any a ∈ G4 and b ∈ A, with a sufficiently small real t, we have,
either

F(((a + tb)∗v)k) − ((a + tb)∗)kvk ∈ Z(A),

or
F(((a + tb)∗v)k) − vk((a + tb)∗)k ∈ Z(A).

Compairing the coefficient of tk in the above polynomial expressions, we obtain either

F((b∗v)k) − (b∗)kvk ∈ Z(A),

or
F((b∗v)k) − vk(b∗)k ∈ Z(A),

for any b ∈ A.
Now, define a set Kn for each integer n > 1. Let Kn be the collection of all those v ∈ A such that either

F(w∗v)n − vn(w∗)n ∈ Z(A),

or
F(w∗v)n − (w∗)nvn ∈ Z(A),

for each w ∈ A. Observe that the union of Kn for k > 1 is A, and each Kn forms a closed set. Therefore,
by the Baire Category theorem, for each p > 1, the set Kp must contain a nonempty open subset (say)
G5 such that, for any b ∈ A, a ∈ G5 and sufficiently small real t, we get either

F(w∗(a + tb))p − (w∗)p(a + tb)p ∈ Z(A),

or
F(w∗(a + tb))p − (a + tb)p(w∗)p ∈ Z(A).

By similar arguments as above, we obtain for any w, b ∈ A either

F(w∗b)p − (w∗)pbp ∈ Z(A),

or
F(w∗b)p − bp(w∗)p ∈ Z(A).

Let the unity of A be denoted by e. Then, we have either

F(((e + tu)∗v)p) − ((e + tu)∗)pvp ∈ Z(A),

or
F(((e + tu)∗v)p) − vp((e + tu)∗)p ∈ Z(A),
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for all u, v ∈ A. Considering the coefficient of t in the above expressions, either

F(u∗vp +

p−1∑
k=1

vku∗vp−k) − pu∗vp ∈ Z(A), (3.8)

or

F(u∗vp +

p−1∑
k=1

vku∗vp−k) − pvpu∗ ∈ Z(A), (3.9)

for all u, v ∈ A. On similar lines, we get either

F((v∗(e + tu))p) − (v∗)p(e + tu)p ∈ Z(A),

or
F((v∗(e + tu))p) − (e + tu)p(v∗)p ∈ Z(A),

for all u, v ∈ A. On replacing v by v∗ and u by u∗, we obtain either

F(vpu∗ +

p−1∑
k=1

vku∗vp−k) − pvpu∗ ∈ Z(A), (3.10)

or

F(vpu∗ +

p−1∑
k=1

vku∗vp−k) − pu∗vp ∈ Z(A), (3.11)

for all u, v ∈ A. So one of the combinations should hold, i.e., either (3.8) and (3.10) or (3.8) and (3.11)
or (3.9) and (3.10) or (3.9) and (3.11). For instance, (3.8) and (3.10) hold together; therefore, their
subtraction yields,

F[u∗, vp] − p[u∗, vp] ∈ Z(A),

for all u, v ∈ A. Replacing v by e + tv and then considering the coefficient of t, we obtain

F[u∗, v] − p[u∗, v] ∈ Z(A), (3.12)

for all u, v ∈ A. Similarly, if (3.8) and (3.11) hold, then

F[u∗, vp] ∈ Z(A),

and again replacing v by e + tv, we obtain

F[u∗, v] ∈ Z(A). (3.13)

As the involution map ∗ is onto, we can rewrite the expressions (3.12) and (3.13) as

F[u∗, v] − p[u∗, v] ∈ Z(A), (3.14)

and
F[u, v] ∈ Z(A).

Since d(Z(A)) , 0, there exists an 0 , α ∈ Z(A), such that d(α) = 0. Now, replacing v by vα in (3.14),
we obtain

[u, v]d(α) ∈ Z(A).

Hence [u, v] ∈ Z(A) for all u, v ∈ Z(A), making A commutative. Similarly, for F[u, v] ∈ Z(A), replace v
by vα to get to the desired conclusion. For the other combinations, one can easily verify using similar
arguments that A is commutative. �
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4. Conclusions and discussions

In this paper, we focused on certain identities on Banach ∗-algebras possessing maps, called the
linear generalized derivations. Precisely, we characterized Banach ∗-algebras via linear generalized
derivations. Moreover, there are various interesting open problems related to our study of linear
generalized derivations on Banach ∗-algebras. Below, we proposed a couple of open problems that help
to further understand the behavior of Banach ∗-algebras equipped with linear generalized derivations.
Open Questions. Suppose A is a normed algebra equipped with an involution ∗. Let F1 and F2 : A→ A
be linear generalized derivations associated with the derivations d1 and d2, respectively. In this scenario,
what can be said about the structure of the algebra A and the functions F1 and F2, whenever:

(1) There exists no positive integer n such that the set of u ∈ A for which [F1(u)n, F2(u∗)nF2(u)n] ∈ Z(A)
be dense.

(2) There exists no positive integer n such that the set of u ∈ A for which [F1(u)n, d2(u∗)nd2(u)n] ∈ Z(A)
be dense.

(3) There exist non-empty open subsets G1 and G2 of A such that either

F1((u∗v)m) − (u∗)mvm ∈ Z(A)

or
F1((u∗v)m) − vm(u∗)m ∈ Z(A),

for all u∗ ∈ G1, v ∈ G2, m = m(u∗, v) > 1.

(4) There exist non-empty open subsets G1 and G2 of A such that either

F1((u∗v)m) − F1(u∗)mF1(vm) ∈ Z(A)

or
F1((u∗v)m) − F1(vm)F1(u∗)m ∈ Z(A),

for all u∗ ∈ G1, v ∈ G2, m = m(u∗, v) > 1.

(5) There exist non-empty open subsets G1 and G2 of A such that either

F1((u∗v)m) − F2(u∗)mF2(vm) ∈ Z(A)

or
F1((u∗v)m) − F2(vm)F2(u∗)m ∈ Z(A),

for all u∗ ∈ G1, v ∈ G2, m = m(u∗, v) > 1.
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