
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 27471–27496.
DOI: 10.3934/math.20241334
Received: 30 July 2024
Revised: 02 September 2024
Accepted: 13 September 2024
Published: 23 September 2024

Research article

Efficient numerical approaches with accelerated graphics processing unit
(GPU) computations for Poisson problems and Cahn-Hilliard equations

Saulo Orizaga1,*, Maurice Fabien2 and Michael Millard1

1 Department of Mathematics, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA
2 Department of Mathematics, University of Wisconsin-Madison,Van Vleck Hall, 213, 480 Lincoln

Dr, Madison, WI 53706, USA

* Correspondence: Email: saulo.orizaga@nmt.edu.

Abstract: In this computational paper, we focused on the efficient numerical implementation of
semi-implicit methods for models in materials science. In particular, we were interested in a class
of nonlinear higher-order parabolic partial differential equations. The Cahn-Hilliard (CH) equation
was chosen as a benchmark problem for our proposed methods. We first considered the Cahn-Hilliard
equation with a convexity-splitting (CS) approach coupled with a backward Euler approximation of
the time derivative and tested the performance against the bi-harmonic-modified (BHM) approach in
terms of accuracy, order of convergence, and computation time. Higher-order time-stepping techniques
that allow for the methods to increase their accuracy and order of convergence were then introduced.
The proposed schemes in this paper were found to be very efficient for 2D computations. Computed
dynamics in 2D and 3D are presented to demonstrate the energy-decreasing property and overall
performance of the methods for longer simulation runs with a variety of initial conditions. In addition,
we also present a simple yet powerful way to accelerate the computations by using MATLAB built-in
commands to perform GPU implementations of the schemes. We show that it is possible to accelerate
computations for the CH equation in 3D by a factor of 80, provided the hardware is capable enough.

Keywords: phase-field models, Cahn-Hilliard equation, thin-film equation, efficient numerical
methods, GPU computation
Mathematics Subject Classification: 65M99, 65T50

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241334

27472

1. Introduction

Phase field models are a very important class of nonlinear partial differential equations that are used
to model a number of physical processes ranging from bio-medical applications to metallurgy. That
was the original application considered when the Cahn-Hilliard (CH) equation was first introduced in
1958 [1]. The Cahn-Hilliard equation is a fourth-order nonlinear partial differential equation (PDE)
for which explicit methods are not practical since they would require very small steps for numerical
stability (h ≤ Odx4), where h is the time step and dx is the grid spacing in one dimension. On the other
hand, fully implicit methods would ensure stability but can be computationally expensive for problems
in more than one dimension. For this reason, a number of research works have been devoted to the
efficient implementation and computation of the CH equation via semi-implicit methods. David Eyre
proposed a very elegant and simple approach to compute the CH equation in what is known as the
convexity-splitting (CS) approach [2]. The main idea of the method was to re-express the energy in
terms of convex and concave parts, leading to energy-stable solutions for the problem. Since then, a
number of extensions based on the CS approach have been implemented to solve the CH with improved
order of accuracy [3–6].

Another formulation that was proposed to solve the CH equation was presented by Andrea Bertozzi
[7]. The main idea is to re-express the CH equation with a bi-harmonic term that is to be computed
at the implicit level. This, in turn provides another efficient computational approach termed the bi-
harmonic-modified method (BHM). The BHM approach can also be understood as a splitting method
with an stabilizer parameter. Another more recent formulation for the CH equation is found in the
scalar auxiliary variable (SAV) approach, which requires a reformulation of the energy and the use of
stabilizer parameters to produce energy-stable results [8–10].

The CH equation is an important model for various physical processes in science and engineering
since it can be easily extended to the diblock copolymer (BCP) equation [11]. The BCP equation has
been used to understand self-assembly properties of block copolymers and their relevance to higher-
quality material production. Another extension of the CH equation is the phase-field crystal PFC
equation [12], which is used to study the crystal formation at the atomic level in a solidification process.
Several authors have worked in the efficient computation of the BCP and PFC equations [6,11,13–16].
In addition, other important applications of the CH equation are image inpainting [17] and bio-medical
applications, such as, tumor growth and drug-delivery [18, 19].

The purpose of this paper is to provide a numerical approach for materials science models based on
the BHM formulation that is efficient, accurate, and easy to implement for solving phase-field models.
In terms of ease of implementation, we believe the CS and BHM method are the best candidates so that
our methodology can be used among a broad range of researchers from different disciplines. Also, we
aim to propose a simple approach to speed up computations of the proposed schemes via a graphics
processing unit (GPU) implementation.

In this paper, we first compare the bi-harmonic-modified (BHM) approach against the more well-
known CS approach in terms of accuracy and CPU computation time. We then construct our schemes
using the BHM method and couple it, for increased accuracy, with an implicit-explict (IMEX) time
stepping formulation. In Section 2, we introduce the CH equation. In Section 3, we introduce the

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27473

CS, BHM, and IMEX approaches for solving the CH equation. In Section 4, we perform numerical
experiments in 2D to test the performance of the algorithms and to display numerical solutions over
time. In Section 5, we show how the algorithms can be adapted to 3D simulations and test their
performance. Finally, we also show how to speed up 3D simulations by performing graphics processing
unit (GPU) computations by using simple MATLAB commands. The main goal of this computational
paper is to contribute to the acceleration of methods for related Poisson problems and CH equations in
2D and 3D.

2. Mathematical formulation

The Cahn-Hilliard energy is given by [1]

E(u) =

∫
Ω

ε2

2
|∇u|2 + W(u) dx , (2.1)

where u(x, t) is the phase-field variable, which represents a volume fraction of one component, and
W(u) is a double-well potential given by

W(u) =
1
4

(u2 − 1)2, (2.2)

which gives that W ′(u) = u3 − u. W(u) has two minima at u = 1 and u = −1, which are associated with
the pure state of the materials in the binary mixture; ε defines the transition layer thickness separating
the two materials. Ω will be considered as a box, Ω = [0, L]d, in 2D or 3D (d = 2, 3).

The CH equation is the H−1 gradient flow of the energy E(u) that is given in terms of the chemical
potential µ = −ε2∆u + W ′(u). The CH equation reads

∂u
∂t

= −ε2∆2u + ∆(u3 − u). (2.3)

The solution u for the CH equation, at the continuous level, will evolve into configurations such that
the energy is always decreasing, that is

d
dt
E(u) = −

∫
Ω

|∇µ|2 ≤ 0.

For this reason, it is very important to design numerical methods that retain this property.

3. Numerical methods

3.1. Convexity-splitting method

An elegant and very efficient way to generate numerical solutions for the CH equation was proposed
by Eyre in 1998 [2]. The method consists of splitting the CH energy into convex and concave parts.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27474

The energy can be split in the following way

E(u) =

∫
Ω

ε2

2
|∇u|2 + W(u) dx =

∫
Ω

ε2

2
|∇u|2 +

au2

2
+

(
u4

4
− (1 + a)

u2

2

)
dx , (3.1)

which gives the form of the energy E(u) = E+(u) + E−(u) in terms of a convex and concave part,
provided that the splitting parameter a > 2. The convex part is to be computed implicitly while the
concave part is to be computed explicitly. The convexity-splitting applied to the CH equation gives

∂u
∂t

= (−ε2∆2 + a∆)u + ∆
[
u3 − (1 + a)u

]
. (3.2)

We denote time-discretized approximation of the solution as u(xi, tn) ≈ Un,i where the discrete
times will be expressed with respect to the local timestep, h, by tn+1 = tn +h. Using the backward Euler
difference for the time derivative, it gives

Un+1 − Un

h
= (−ε2∆2 + a∆)Un+1 + ∆

[
U3

n − (1 + a)Un

]
, (3.3)

which is called the convexity-splitting CS scheme. For clarity of presentation, we show the form of
the CS scheme in Fourier pseudo-spectral notation [20]. The approximation for U on [0, 2π] takes the
form (2D case)

U ≈
N∑

kx=1

N∑
ky=1

Û(kx, ky, t) exp
[
2πi

(
ω(kx)x + ω(ky)y

)]
,

where ω(kx), ω(ky) are the wave-numbers, k2 = ω(kx)2 + ω(ky)2, and Û is computed using the discrete
Fourier transform. Applying the Fourier transform to (3.3)

Ûn+1 − Ûn

h
= (−ε2k4 − ak2)Ûn+1 − k2

[
Û3

n − (1 + a)Ûn

]
, (3.4)

Using ∆̂2u = k4û, ∆̂u = −k2û, and solving for Ûn+1, one gets

Ûn+1 =
Ûn − hk2

[
Û3

n − (1 + a)Ûn

]
1 + h

(
ε2k4 + ak2) , (3.5)

where the inverse Fourier transform is applied to the above scheme to obtain Un+1. For more details in
the CS method and for an energy decreasing proof, the readers are referred to [6, 21].

3.2. Bi-harmonic-modified (BHM) method

Another important splitting leading to energy-decreasing property was proposed by Bertozzi for CH
equations with variable mobility [7]. We start with the CH equation written as

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27475

∂u
∂t

= ∇ · (M(u)∇[−ε2∆u + W ′(u)]), (3.6)

where M(u) is the variable mobility. We then distribute the divergence operator

∂u
∂t

= ∇ · (M(u)∇[−ε2∆u]) + ∇ · (M(u)∇W ′(u)), (3.7)

and introduce a splitting parameter M1 to re-express the first mobility function that appears in the above
equation with M(u) = M(u) − M1 + M1, which gives

∂u
∂t

= −M1ε
2∆2u + ε2∇ · [(M(u) − M1)∇∆u] + ∇ · [M(u)∇W ′(u)], (3.8)

which gives the original BHM approach applied to the CH equation with variable mobility. However,
if we consider the case where M(u) is a constant, then the splitting reduces to the following

∂u
∂t

= −M1ε
2∆2u − ε2 (M(u) − M1) ∆2u + M(u)∆W ′(u), (3.9)

where the bi-harmonic term is to be computed implicitly. We then approximate the time derivative to
arrive at the BHM scheme, which reads

Un+1 − Un

h
= −M1ε

2∆2Un+1 − ε
2 (M(u) − M1) ∆2Un + M(u)∆

(
U3

n − Un

)
, (3.10)

where we will always assume, for the rest of the paper, that M(u) = 1. We note that (3.10) is a scheme
that, to the best of our knowledge, has not been applied to the CH equation with constant mobility,
since this case of CH equation has traditionally been computed using the celebrated CS method. We
also remark that the BHM method was originally formulated for the case of variable mobility [7]. The
Fourier pseudo-spectral notation for the BHM scheme in (3.10) then reads

Ûn+1 =
Ûn − hε2 (M(u) − M1) k2Ûn − M(u)k2

[
Û3

n − Ûn

]
1 + hM1ε2k4 . (3.11)

For more details on the BHM method and related applications of phase-field models to fluid
dynamics, the readers are referred to the work of Bertozzi [7].

3.3. Stability of the schemes: BHM and CS

For a stability criteria of the BHM method given by (3.11), we will use the approach presented
in [22]. Equation (3.9) is of the form ut = G(u), where G(u) = Ψ(u) + Φ(u). Here, Ψ(u) = −M1ε

2∆2u
and Φ(u) = −ε2 (M(u) − M1) ∆2u + M(u)∆W ′(u). Using the expression Φ(Un)̂ = G(Un)̂ − Ψ(Un)̂ in
(3.11) gives the following

Ûn+1 = Ûn +
hĜ(Un)

1 + hM1ε2k4 . (3.12)

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27476

To analyze the conditions for linear stability, we consider the highest order terms in G(u) to arrive
at the approximation G(Un + en)̂ ≈ G(Un)̂ − Coε

2k4ên, which is then used in (3.12) to obtain the
amplification factor associated with the growth of the errors in Un. The amplification factor is given
by

σ = 1 −
hCoε

2k4

1 + hM1ε2k4 . (3.13)

The conditions to guarantee stability of the THM scheme, require that |σ| < 1, so one gets

−1 < 1 −
hCoε

2k4

1 + hM1ε2k4 < 1, −2 < −
hCoε

2k4

1 + hM1ε2k4 < 0.

Given the quantities considered in this formulation, the less than zero inequality is satisfied, so one
works with

−2(1 + hM1ε
2k4) < −hCoε

2k4,

which can be further reduced by re-arranging the terms to arrive at the following inequality

ε2hk4(Co − 2M1) < 2.

In order to guarantee stability (|σ| < 1), we satisfy the above inequality with the requirement that
(Co−2M1) < 0, which gives M1 > Co/2. In the context of a constant mobility case, we can set Co = M,
which gives a minimum value for the splitting parameter in the BHM method (3.11). We note that in the
analysis performed in [7] a criteria of M1 > M was obtained for the original BHM approach. Following
the approach in [22], we are able to get an improved criteria for this splitting parameter threshold. We
will use M1 > M/2 for all the simulations presented in this paper. Similarly, for the CS method,
we are able to obtain a stability criteria for the CS parameter a > 2 to guarantee energy decreasing
property for the scheme. With regards to further details on the CS method and the corresponding
energy decreasing property of the CS method, an elegant proof can be found in the work presented by
Shen [21]. In addition, a proof based on a functional formulation can be found in [6]. Furthermore, for
the two mentioned splitting approaches, it has been shown computationally that reducing the values of
the splitting parameters tends to improve accuracy at the expense of introducing numerical instability,
while increasing the splitting parameter increases error and provides numerical stability [6, 23].

3.4. IMEX methods

IMEX methods can be understood as time-stepping techniques that are useful after a splitting has
taken place in a given model equation. IMEX schemes are known to preserve the energy decreasing
property of original formulations (CS and BHM splittings) while increasing the temporal accuracy
[23, 24]. Our schemes given by (3.3) and (3.10) can be represented in the following form

ut = Ψ(Un+1) + Φ(Un), (3.14)

which are then suitable for an implicit-explicit (IMEX) Runge-Kutta (RK) time-stepping technique
[25,26]. The main idea of the IMEX formulation is to treat Ψ implicitly and the stiff term Φ explicitly.
The IMEX schemes read

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27477

U (1) = Un + h
(
αΨ(U (1)) + αΦ(Un)

)
, (3.15)

Un+1 = Un + h
(
αΨ(U(n+1) + βΨ(U (1)) + γΦ(U (1)) + ωΦ(U(n))

)
, (3.16)

where α = (2 −
√

2)/2, β =
√

2/2, γ = 1/(2 −
√

2) and ω = (1 −
√

2)/(2 −
√

2). This scheme is a
stage 2 scheme and is of second-order accuracy. Several authors have implemented IMEX methods for
solving phase-field models in the past. Song [5] proposed an IMEX time-stepping approach for the CH
equation. Ceniceros [27] proposed an IMEX time-stepping approach for a CH equation with variable
mobility. The IMEX schemes for the BHM approach are different than all the mentioned ones since
those authors did not rely on the BHM approach as a basis for their splitting.

4. Numerical experiments I

The CS method was originally developed for the CH equation with constant mobility, M(u) = 1, and
the method, which is an order-one scheme, has seen a number of improvements in terms of accuracy.
For example, the authors in [6] proposed several schemes that improved the accuracy of the CS method
with the use of several extrapolation techniques, iterations, and different time stepping techniques based
on backward differentiation formulas (BDF) [28]. In this section, we will perform a direct comparison
between the basic form of the CS and BHM method in terms of accuracy. All numerical experiments
will be performed on a box subject to periodic boundary conditions, Ω = [0, 2π]d, d = 2, 3 for 2D or
3D space dimensions.

4.1. CS and BHM errors

We compare the performance of the CS and BHM scheme by solving the CH equation (2.3) with
d = 2 on Ω = [0, 2π]2 subject to periodic boundary conditions using the initial condition

u(x, y, 0) = 0.1 + 0.01rand(x, y), (4.1)

which is a suitable benchmark problem for capturing the phase separation of two materials. The
random initial condition was evolved for one second to exhibit a well-defined separation process and
this solution state was used as the actual initial condition. The simulation using the BHM scheme
(3.10) with ε = 0.05,M = 1,M1 = 5, and t f = 1.0 is presented in Figure 1. The solution of the pure
state u ≈ 1 is represented in yellow and u ≈ −1 is represented in blue.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27478

Figure 1. Numerical solution to the CH equation in 2D with random initial conditions using
BHM method with parameters ε = 0.05, N = 256, h = 0.01 M = 1, M1 = 5, Ω = [0, 2π]2.

Left figure at t = 0 and right figure at t f = 1.0.

An accurate reference solution Ure f (x, y, t) was constructed by using the BHM scheme with a small
timestep size of h = 10−6 and a final configuration of t f = 1.0. We then compute the numerical solution
using CS and BHM scheme with difference choices of h and compare against the reference solution at
t f = 1.0. Computing the error with the formula:

Error(h) =

∫
Ω

|U(x, y, t f ; h) − Ure f (x, y, t f)| dx. (4.2)

The computed errors are presented in Figure 2. The error plot demonstrates that both schemes are
able to produce errors that follow the expected order-one convergence, and the errors produced by the
BHM scheme are found to be smaller than those obtained by the CS scheme. In summary, we found
that the BHM is not only reliable to solve the CH with constant mobility but is also an improvement
over the CS method. The BHM-IMEX scheme is used to showcase the ability for the BHM scheme to
achieve smaller errors while reaching second-order accuracy (see blue error plot in Figure 2).

10
-5

10
-4

10
-3

10
-2

h

10
-4

10
-3

10
-2

10
-1

10
0

10
1

L
1
 e

rr
o
r

CS-BE

BHM-BE

BHM-IMEX

Figure 2. Computed errors for the CH equation in 2D using CS and BHM method and
BHM-IMEX with parameters ε = 0.05, N = 256, M = 1, M1 = 5, Ω = [0, 2π]2.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27479

4.2. CS and BHM computation time

We also include another benchmark problem for the CH equation (2.3) in 2D by simulating the
coalescence of two drops in Ω = [0, 2π]2. The initial condition is given by

u(x, y, t = 0) =

1, (L/9)2 < (x − L/2.8)2 + (y − L/2)2,

1, (L/9)2 < (x − b/1.7)2 + (y − L/2)2,

−1, otherwise,

(4.3)

where L = 2π. The simulation results using the BHM approach are presented in Figure 3. The
corresponding energy evolution is presented in Figure 4. The merging of the drops starts around t = 1.
Then, by the action of mass combination, the drops exhibit an elliptical shape around t = 10, which is
then followed by formation of a circular drop around time t = 20. We test for the computation time for
the CS and BHM methods to solve the drop collision problem with a final time of t f = 50. Results are
presented in Table 1. The results indicate that the BHM method can be slightly more computationally
expensive than the CS method, but this comes with benefits of added accuracy. The IMEX formulation
is not much more expensive than BHM for the case of N = 1024, which allows for errors to reach
second-order accuracy. We also note that the methods presented in this paper, namely CS, BHM, and
BHM-IMEX (coupled with a backward Euler approximation), are semi-implicit methods, which are
very efficient for 2D problems and can run on a modest laptop [6, 23].

Figure 3. Numerical solution to the CH equation (2.3) in 2D illustrating the collision of two
drops using the BHM method with parameters ε = 0.05, N = 256, h = 0.01 M = 1, M1 = 5,
Ω = [0, 2π]2.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27480

Table 1. CPU Intel-Core i9 computation time in seconds for the different cases of N for
solving the CH equation problem simulating drop collision using h = 0.01 and t f = 50.

N CS BHM IMEX

256 13.76 13.62 18.51
512 18.18 23.94 36.45
1024 59.17 120.74 149.13

10-2 10-1 100 101 102

time

-10

-9.5

-9

-8.5

-8

-7.5

F
re

e
 E

n
e

rg
y

Figure 4. Energy evolution corresponding to the simulation presented in Figure 3.

5. Numerical experiments II

Now that the schemes have been shown to produce accurate results in 2D, we demonstrate the
capability of the schemes for working in full 3D space variables. In addition, this section also aims to
present the efficient computation and simulation of our schemes via GPU implementation.

5.1. Poisson problem

The first experiment we present for timing of computations is the Poisson problem in 2D subject to
periodic boundary conditions. This numerical experiment is relevant since the Poisson problem is often
encountered as one solves more complicated materials science models, very useful as a benchmark
problem [13].

∆u = f (x, y). (5.1)

For the above problem, we follow the method of manufactured solutions [29–31]. The problem is
solved on Ω = [0, 2π]2 . The Fourier spectral scheme [20] for Eq (5.1) is then formulated as

∆̂u = f̂ . (5.2)

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27481

Using ∆̂u = −k2û, where k represents the vector containing the wave numbers for the x and y
direction, the following equation is given

k2û = − f̂ . (5.3)

The equation given by (5.3) can be solved as û = − f̂ /k2; then, use the inverse fast Fourier transform
(IFFT) to obtain the solution u for (5.1). We note, however, that the zero Fourier mode will generate
an issue during the inversion process. It is possible to simply consider the minimization of the quantity
(∆u− f) since f is provided and u was manufactured; we can approximate ∆u ≈ IFFT (−k2û). Another
option that would allow to complete the inversion step in the scheme is to solve a modified or perturbed
Poisson problem

∆u + εu = f (x, y), (5.4)

where ε = 0.1, the exact solution is u = cos(2x) sin(2y) and f (x, y) = −7.9 cos(2x) sin(2y). The
corresponding formula for û is given by

û =
f̂

−k2 + ε
, (5.5)

which is now able to be fully inverted via IFFT. The surface plots for u and f are presented in Figure 5
and the computation times for various values of N are given in Table 2.

Figure 5. Surface plots for u(x, y) and f (x, y) corresponding to Eq (5.1) with N = 256.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27482

Figure 6. Surface error plot corresponding to Eq (5.1).

Table 2. CPU Intel-Core i9 computation time in seconds for the different cases of N using
the pseudo-spectral approach for solving the Poisson problem in 2D.

N CPU

128 0.0019
256 0.0032
1024 0.026
2048 0.11
4096 0.43
8192 1.91

The computations for the 2D Poisson problem are very efficient and our CPU is able to handle high
resolution grids, N = 8192, in just under 2 seconds. This is a considerable task since for this value of
N, our 2D array has N2 entries. The efficiency in computation is attributed to the fast Fourier transform
(FFT), which is highly optimized in MATLAB. Regarding the spectral error for our test problem, as we
varied N for larger sizes, decreasing h, the errors remained under a 10−15 threshold. A representative
error plot is given in Figure 6 with N = 256.

5.2. Poisson problem in 3D

We now extend the formulation for the Poisson problem in full 3D space variables. We solve the
same problem given by Eq (5.1) on Ω = [0, 2π]3 with the corresponding exact solution
u = cos(2x) sin(2y) cos(2z) and f = −11.9 cos(2x) sin(2y) cos(2z) as for simplicity, we have adopted
similar form for u as we move from the 2D to 3D problem. Corresponding 3D plots for u and f are
given in Figure 7. We solve the Poisson equation in 3D by using the spectral scheme given by Eq
(5.5). To declare variables on the GPU, the simple MATLAB command can be used

U=cos(2*X).*sin(2*Y).*cos(2*Z);U=gpuArray(U);

F=-11.9*cos(2*X).*sin(2*Y).*cos(2*Z);F=gpuArray(F);

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27483

which then loads up the solution u and forcing term f into the GPU so that computations can be
performed using the multiple cores provided by GPU architecture. For more details of the actual code
used, please see the Appendix. Computation time for both CPU and GPU are presented in Table 3.

Figure 7. 3D plots for u(x, y, z) and f (x, y, z) corresponding to Eq (5.1) with N = 256.

Table 3. CPU Intel-Core i9 and GPU computation time in seconds for the different cases of
N using the pseudo-spectral approach for solving the Poisson problem in 3D.

N CPU 2060 Max-Q A6000

32 0.0018 0.0016 0.0007
64 0.0051 0.0021 0.0017

128 0.037 0.0024 0.0026
256 0.35 0.0069 0.0058
512 2.79 2.47 0.089

From Table 3, we learn that it is possible to speed up computations by a factor of about 2X using
the GPU. We also note that for a single execution, CPU and GPU computations could be comparable;
in fact, the CPU can be very competitive to the GPU in terms of computation time for the case of
N = 512. This is attributed to the fact that the GPU memory for the 2060 at N = 512 is reaching its
maximum capacity of about 8 GB and the CPU has 64 GB of on-board memory. The slowing down
in computation at N = 512 is not observed when using a more capable GPU with higher memory,
as shown in the third column of Table 3. These computation times are for the A6000 (a higher-end
GPU with 48 GB of memory). GPU computations allow to speed up computations by several factors,
as shown in the recent work from Liu et al. related to CH problems [32]. Other GPU accelerations
were reported in the work of Lam et al. for the thin-film TF equation from lubrication theory [33].
In the next section, we will show how this is possible by using the BHM method along with simple
commands that will allow GPU computations.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27484

5.3. Cahn-Hilliard equation 3D

We consider the CH equation in full 3D space variables using the BHM scheme (3.10) subject to
periodic boundary conditions. We consider the CH equation (2.3) with an initial condition representing
a mixed state of materials with u ≈ 0.5 given by

u(x, y, z, 0) = 0.5 + 0.01rand(x, y, z), (5.6)

with ε = 0.05,M1 = 5 on Ω = [0, 2π]3 using N = 256. The simulation dynamics with a final
computation time of t f = 100 are presented in Figure 8. The simulation illustrates the
phase-separation process of a binary mixture in full 3D space dimensions with uneven volume
fraction of materials. The circular phase, which is traditionally expected in 2D simulations, has
translated into spheres in full 3D computations.

Figure 8. Numerical solution to the CH equation in 3D using BHM method with parameters
N = 256, ε = 0.05, h = 0.01 M = 1, M1 = 5, t f = 100, and Ω = [0, 2π]3.

In addition to showcasing the schemes in 3D, we are also interested in speeding up the computations
to counter act the more expensive computations associated with the larger arrays that result from the
additional dimension. It is also relevant to explore ways that are efficient, yet easy to implement, for
speeding up the computations for the case of large-scale dynamics or long-term behavior of solutions
[33–36]. We concentrate on the computation presented in Figure 8 for t f = 100. This computation, with
the given time step and 10,000 iterations, presents a good opportunity to benchmark the computational
performance of the GPU implementation. Our reference point will be the computation time required

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27485

by our CPU alone, which is an Intel-Core i9 with Windows 10 and 64 GB of ram. We will then use
four Nvidia GPUs, two of which are consumer grade: the 2060 MaxQ and the 2070S, both with 8 GB
of memory. The other two GPUs, the A6000 with 48 GB of memory and the A100 with 80 GB of
memory, are enterprise. We solve the CH using the BHM method with a final time of t f = 100 using
the CPU and the four GPUs and summarize our results in Table 4. The results show that it is possible to
speed up 3D phase-field model computations by a factor of 8x to 15x if we simply consider the modest
GPUs 2060 and 2070. We note that these speed ups are already substantial and that these GPUs are
entry level with very easy access from a commercial point of view. On the other hand, if one has access
to the more advanced enterprise GPUs like the A6000 and A100, then speeds ups ranging from 25x to
80x are certainly possible. We note that the last row in Table 4 contains approximated values obtained
via extrapolation for CPU, 2060 and 2070S GPUs based on N = 256. For those three devices, the
computations took longer than one day due to hardware reaching maximum capacity (N = 512).

Table 4. CPU Intel-Core i9 and GPU computation time in minutes for the different cases of
N using the BHM approach for solving the CH equation in 3D with random initial condition.

N CPU 2060 Max-Q 2070S A6000 A100

64 6.27 0.81 0.63 0.45 0.17
128 56.67 6.68 4.45 2.26 0.72
256 444.42 52.84 34.74 17.03 5.33
512 3517.21 417.82 277.85 123.39 41.86

5.4. Computed dynamics

We also include a simulation in which we solve the CH equation and consider even volume fractions
with the use of the following initial condition

u(x, y, z, 0) = 0.1 + 0.01rand(x, y, z). (5.7)

Using the same parameters as the previous 3D problem, we compute the numerical solution using
the BHM method (3.10), and the results are presented in Figure 9.

It can be seen that the expected dynamics for a binary mixture with near equal volume fractions,
u ≈ 0.1, will undergo full separation without sphere formation. But, before reaching a steady-state, a
meta-stable structure that resembles stripes in higher dimensions [11,37] at around t = 100 is obtained.
The BHM method retains the energy-decreasing property during the entire simulation run, as shown in
Figure 10.

The dynamics of the solution to the CH equation should reach a full separation for long enough
simulation runs, since it is modeling the separation of two materials [1]. In order to fully understand
the evolution of the CH equation in 3D and to get the correct representation of the plots presented
in Figure 9, we have added slices to those results and extended the simulations to better illustrate the
separation process. Figure 11 represents the solution for t = 10, 100, 200, 300, 400, 500. Full separation
of materials is observed at t = 500, where slices have been placed at x = 0, y = 0 and z = 2π. We note

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27486

that for other phase-field models, full separation of materials may be prevented by material architecture
and other modeling conditions [11–13].

Figure 9. Numerical solution to the CH equation in 3D using BHM method with parameters
N = 256, ε = 0.05, h = 0.01 M = 1, M1 = 5, t f = 100, Ω = [0, 2π]3.

0 20 40 60 80 100

time

-60

-50

-40

-30

-20

-10

0

F
re

e
 E

n
e

rg
y

10-2 10-1 100 101 102

time

-60

-50

-40

-30

-20

-10

0

F
re

e
 E

n
e

rg
y

Figure 10. Energy evolution corresponding to simulation in Figure 9. Left and right figures
are presented in regular and semilog scales to illustrate the energy-decreasing property.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27487

Figure 11. Extended numerical solution corresponding to Figure 9 using slices of the
computational domain to capture the full separation process for the CH equation in 3D.

For the final simulation example, we extend the drop coalescence in 3D space dimensions and test
the performance of the proposed second-order method BHM-IMEX on Ω = [0, 2π]3. Initial condition
is given by

u(x, y, t = 0) =

1, (L/9)2 < (x − L/2.8)2 + (y − L/2)2 + (z − L/2)2,

1, (L/9)2 < (x − b/1.7)2 + (y − L/2)2 + (z − L/2)2,

−1, otherwise,

(5.8)

where L = 2π. The simulation results are presented in Figure 12 with snapshots taken at t = 0, 2, 5, 10.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27488

An energy-stable solution is obtained while capturing the correct dynamics in full 3D space
dimensions. Similar benchmark problems in 3D can be found in the work of Liu et al. [32].

Figure 12. Numerical solution to the CH equation (2.3) in 3D illustrating the collision of two
drops using the BHM-IMEX method with parameters ε = 0.05, N = 256, h = 0.01 M = 1,
M1 = 5, Ω = [0, 2π]3. Snapshots taken at t = 0, 2, 5, 10 (left to right and top to bottom).

5.5. GPU remark

We tested several strategies for accessing the GPU in the most efficient way. One option to
perform a GPU computation and generate a plot was to save the end result of the GPU computation as
a data file, then follow up with the CPU loading up that file, and generating a plot. The basic idea is
summarized with the following sample code

save('U_numerical','U'); %end of GPU computation

load('U_numerical','U'); %CPU loading

isosurface(U); %CPU plotting

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27489

10-2 10-1 100 101 102

time

114

116

118

120

122

124

F
re

e
 E

n
e

rg
y

Figure 13. Numerical solution to CH equation with logarithmic potential. Parameters used
Ω = [0, 2π]3 with N = 256, M = 1, M1 = 5 and ε = 0.05.

5.6. CH equations with logarithmic potential

To further explore the main benefits of using the BHM methods as our main basis for the proposed
approach to accelerate computations, we also include a more complicated case of the CH equation.
That is, we consider the logarithmic case of the potential as done by Dai [38]. We consider the type of
potential for the CH equation that has singularities at u = ±1.

Wlog(u) =
θ

2
[(1 + u) ln(1 + u) + (1 − u) ln(1 − u)] +

1
2

(1 − u2),

where we choose θ = 3/4 to attain inflection points at u = ±1/2. The above potential has been
proposed since the early developments of the CH equation, but this form of potential is not as popular
as the polynomial type (W(u) = 1/4u4 − 1/2u2). This potential has a local maximum on u = 0 and
minimum values approaching u = ±1. Hence, mixtures near the spinodal region will evolve into the
pure phases but, due to the singular nature of the potential, overshoots or undershoots are prevented
on [−1, 1]. Hence, for this type of potential, one expects for the solution u to be in-fact bounded
on [−1, 1]. We tested the adaptability of our schemes by solving the Cahn-Hilliard equation with a
singular potential. The nonlinear contribution to the CH equation with logarithmic potential becomes

W ′
log(u) = ϕ(u) =

3
8

ln(
1 + u
1 − u

) − u.

Applying the BHM formulation to the CH equation with logarithmic potential then gives the

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27490

following scheme

Ûn+1 =
Ûn − hε2 (M(u) − M1) k2Ûn − M(u)k2

[
ϕ̂(Un)

]
1 + hM1ε2k4 . (5.9)

We consider the CH equation with logarithmic potential on Ω = [0, 2π]3 with N = 256, M = 1,
M1 = 5, and ε = 0.05 using the initial condition from (5.7). Simulation snapshots are presented in
Figure 13. The simulation undergoes phase separation in full 3D and this is done while preserving a
bound on the solution u on [−1, 1] due to the structure of the logarithmic potential. Solution
boundedness under singular potentials is beyond the scope of this paper, but we can refer the readers
to studies using a free boundary formulation for the CH equation under the case of different mobilities
and different potentials [34, 38].

6. Concluding remarks

We presented numerical approaches for phase-field models that are efficient, accurate, and easy to
implement. The methods retain the energy-decreasing property and provide small errors. The BHM
method is very efficient and shares the ease of implementation as the CS method. A second-order
method based on the BHM was introduced using an IMEX formulation. The methods were tested
with a variety of benchmark problems in 2D and 3D for short, and long-term simulations
demonstrating their good performance. In addition to the classic CH equation with polynomial
potential, we also demonstrated how the BHM easily applies to the case of a logarithmic potential.
One of the main advantages for the BHM method is that the nonlinearities associated with a more
complicated potential are easily handled at the current time level (explicitly). This is a drawback for
the CS method, since separating the energy into convex and concave parts may be not possible. With
our proposed work, users can choose a lower-accuracy method with the choice of a smaller h if
accuracy requirements are modest. On the other hand, users can choose the higher-order schemes
(with slightly higher computation cost) if accuracy demands are higher. We note that all schemes
presented here are very efficient and can run in a modest laptop. The presented methods can be used
as a powerful tool to study a large class of phase-field models. For speeding up the computations, we
found that with modest GPU equipment, 8x and 15x speed ups are possible with the use of a few
simple commands in MATLAB to access the GPU. Using higher-end equipment, it is possible to
reach 25x or even 80x speed ups. We believe that the CPU and GPU implementation examples, with
actual code that the users can use openly, could serve as a powerful tool for a broad range of
researchers interested in efficient computational aspects of phase-field models. While the main
phase-field model studied in this paper was the CH equation, a large class of phase field-models,
including the BCP equation, phase field crystal (PFC) equation, the functionalized Cahn-Hilliard
(FCH) equation, and the thin-film (TF) equation [11, 13, 39–43], can be approximated with the BHM
approach. Many useful studies could benefit from the work presented here; in particular, large-scale
computation of complex phase-field models and complicated simulations in full 3D space dimensions.
Future work will include the rigorous analysis for the schemes with regards to energy-decreasing
property and convergence analysis of the scheme, as well as the applicability of the methods to GPU
accelerations in systems of CH equations [44] and systems of aggregation equations [45].

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27491

Author contributions

Saulo Orizaga: Project administration, Supervision, Formal analysis, Methodology,
Writing-review & editing; Maurice Fabien: Supervision, Resources, Validation, Writing - original
draft; Michael Millard: Investigation, Software, Visualization. All authors have read and agreed to the
published version of the manuscript.

Acknowledgments

SO was supported by an Institutional Development Award (IDeA) from the National Institute of
General Medical Sciences of the National Institutes of Health under grant number P20GM103451. MF
acknowledges support for this research to the Office of the Vice Chancellor for Research and Graduate
Education at the University of Wisconsin–Madison with funding from the Wisconsin Alumni Research
Foundation.

Conflict of interest

All authors declare no conflicts of interest in this paper.

Appendix

The following MATLAB codes are used to simulate the Poisson problem in 3D and the phase-
separation process with random initial state for CH equation in 2D and 3D using the BHM scheme.
After minor modifications, the codes can be easily extended for other simulations in this paper. The
codes used for these experiments are available on the freely accessible GitHub repository https:
//github.com/sauloorizaga.

Detecting GPU

%To get info on GPU installed

gpuDevice

Poisson equation in 3D

%This code solves the Poisson problem in 3D with GPU

M=2;a=0;b=M*pi;N=128;h=(b-a)/N;n=N;

%xgrid formation (a b] and eventually (a b]ˆ2

x=(a:h:b-h);[X,Y,Z] = meshgrid(x,x,x);

k=[[0:N/2] [-N/2+1:-1]]./((M)/2);

[k1x k1y,k1z]=meshgrid(k.ˆ1,k.ˆ1,k.ˆ1);

[kx ky kz]=meshgrid(k.ˆ2,k.ˆ2,k.ˆ2); k2=kx+ky+kz;k4=k2.ˆ2;

U=cos(2*X).*sin(2*Y).*cos(2*Z); U=gpuArray(U);%GPU

F=-11.9*cos(2*X).*sin(2*Y).*cos(2*Z);F=gpuArray(F);%GPU

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

https://github.com/sauloorizaga
https://github.com/sauloorizaga

27492

uhat=(fftn(F))./(-1.*k2+.1);Usol=real(ifftn(uhat));

figure(1); isosurface(X,Y,Z,U); isosurface(X,Y,Z,U,.5);

isosurface(X,Y,Z,U,-.5); ax = gca; ax.FontSize = 14; figure(2);

isosurface(X,Y,Z,F); isosurface(X,Y,Z,F,.5);

isosurface(X,Y,Z,F,-.5); ax = gca;ax.FontSize = 14;

CH 2D with GPU

%This code solves the CH equation in 2D using the BHM method

dt=0.01; M1=2; iter=1; tfinal=5; N=256; a=0; L=2; b=L*pi;

%number of grid points N uniform mesh thickness

h=(b-a)/N; n=N;

%xgrid formation (a b] and eventually (a b]ˆ2

x=(a:h:b-h);x=gpuArray(x); [X,Y]=meshgrid(x,x);

k=[[0:N/2] [-N/2+1:-1]]./((L)/2);k=gpuArray(k);

[k1x k1y]=meshgrid(k.ˆ1,k.ˆ1); [kx ky]=meshgrid(k.ˆ2,k.ˆ2);

k2=kx+ky; k4=k2.ˆ2;

%Initial Condition ----------------------

U=0.01*rand(N,N)+.5*0;U=gpuArray(U);

figure(1); pcolor(X,Y,U),shading interp,axis('off'),axis('equal');

%parameters

epsilon=.05; eps2=epsilonˆ2;lhs=1+dt*M1*k4*eps2; % CH lhs

hat_U=fft2(U); it=0; j=0; nn=0; t=0.0; M=1;

while (t < tfinal) U1=U;

RHS=eps2*(M1-M)*ifft2(k4.*fft2(U1))+ifft2(-1*k2.*fft2(U1.ˆ3-U1));

hat_rhs=hat_U + dt.*fft2(RHS);

hat_U1=hat_rhs./lhs; U1=real(ifft2(hat_U1));

U=real(U1); hat_U=hat_U1; it=it+1; t=t+dt; %update

end %main loop

figure(2);ax = gca; ax.FontSize = 14;

pcolor(X,Y,U),shading interp,axis('off'),axis('equal');

title(['BHM method = ' num2str(t),' dt = ' num2str(dt)], ...

'FontSize',12);

CH 3D with GPU

%This code solves the CH equation in 3D using the BHM method

dt=0.01; M1=2; iter=1; tfinal=5; N=256;

a=0; L=2; b=L*pi;

%number of grid points N uniform mesh thickness

h=(b-a)/N; n=N;

%xgrid formation (a b] and eventually (a b]ˆ2

x=(a:h:b-h); x=gpuArray(x); [X,Y,Z]=meshgrid(x,x,x);

k=[[0:N/2] [-N/2+1:-1]]./((L)/2); k=gpuArray(k);

[k1x k1y k1z]=meshgrid(k.ˆ1,k.ˆ1,k.ˆ1);

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

27493

[kx ky kz]=meshgrid(k.ˆ2,k.ˆ2,k.ˆ2);

k2=kx+ky+kz; k4=k2.ˆ2;

%Initial Condition ----------------------

U=0.01*rand(N,N,N)+.5*0; U=gpuArray(U);

%plots IC

figure(1); isosurface(X,Y,Z,U); isosurface(X,Y,Z,U,-.5);

isosurface(X,Y,Z,U,.5)

%parameters

epsilon=.05; eps2=epsilonˆ2;

lhs=1+dt*M1*k4*eps2; % CH lhs

hat_U=fftn(U); it=0; j=0; nn=0; t=0.0;

M=1;

while (t < tfinal)

U1 = U;

RHS=eps2*(M1-M)*ifftn(k4.*fftn(U1))+ifftn(-1*k2.*fftn(U1.ˆ3-U1));

hat_rhs=hat_U + dt.*fftn(RHS);

hat_U1=hat_rhs./lhs;

U1=real(ifftn(hat_U1));

U=real(U1); hat_U=hat_U1; it=it+1; t=t+dt; %update

end %main loop

figure(2); isosurface(X,Y,Z,U); isosurface(X,Y,Z,U,-.5);

isosurface(X,Y,Z,U,.5);ax=gca;ax.FontSize=14;

Remark: The presented codes with use of GPU can run in non-GPU devices by simply commenting
out the associated GPU declaration commands X=gpuArray(X), where X is the array in question. We
also note that the codes have been given in the Appendix for maximum reproducibility of the results
presented in this paper. The BHM approach can be easily adapted to more complicated phase-field
models (BCP, PFC, and TF equations) as explained in the main body of the manuscript. For users
running extensive simulations, we recommend the GPU strategy presented in Section 5.5. The authors
welcome conversations or questions about accelerated computations for phase-field models.

References

1. J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J.f Chem.
Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102

2. D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS
Online Proc. Libr., 529 (1998), 39–46. https://doi.org/10.1557/PROC-529-39

3. J. M. Church, Z. Guo, P. K. Jimack, A. Madzvamuse, K. Promislow, B. Wetton, et al., High
accuracy benchmark problems for allen-cahn and cahn-hilliard dynamics, Commun. Comput.
Phys., 26 (2019), 947–972. https://doi.org/10.4208/cicp.OA-2019-0006

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

https://dx.doi.org/https://doi.org/10.1063/1.1744102
https://dx.doi.org/https://doi.org/10.1557/PROC-529-39
https://dx.doi.org/https://doi.org/10.4208/cicp.OA-2019-0006

27494

4. Y. Yan, W. Chen, C. Wang, S. M. Wise, A second-order energy stable BDF numerical
scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23 (2018), 572–602.
https://doi.org/10.4208/cicp.OA-2016-0197

5. H. Song, Energy SSP-IMEX Runge-Kutta methods for the Cahn-Hilliard equation, J. Comput.
Appl. Math., 292 (2016), 576–590. https://doi.org/10.1016/j.cam.2015.07.030

6. K. Glasner, S. Orizaga, Improving the accuracy of convexity splitting methods for gradient flow
equations, J. Comput. Phys., 315 (2016), 52–64. https://doi.org/10.1016/j.jcp.2016.03.042

7. A. L. Bertozzi, N. Ju, H.-W. Lu, A biharmonic-modified forward time stepping method for
fourth order nonlinear diffusion equations, Discrete Contin. Dyn. Syst., 29 (2011), 1367–1391.
https://doi.org/10.3934/dcds.2011.29.1367

8. J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (sav) approach for gradient flows, J. Comput.
Phys., 353 (2018), 407–416. https://doi.org/10.1016/j.jcp.2017.10.021

9. J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient
flows, SIAM Rev., 61 (2019), 474–506. https://doi.org/10.1137/17M1150153

10. G. Akrivis, B. Li, D. Li, Energy-decaying extrapolated rk–sav methods for the Allen–
Cahn and Cahn–Hilliard equations, SIAM J. Sci. Comput., 41 (2019), A3703–A3727.
https://doi.org/10.1137/19M1264412

11. S. Orizaga, K. Glasner, Instability and reorientation of block copolymer
microstructure by imposed electric fields, Phys. Rev. E, 93 (2016), 052504.
https://doi.org/10.1103/PhysRevE.93.052504

12. K. R. Elder, M. Grant, Modeling elastic and plastic deformations in nonequilibrium
processing using phase field crystals, Phys. Rev. E, 70 (2004), 051605.
https://doi.org/10.1103/PhysRevE.70.051605

13. H. Gomez, X. Nogueira, An unconditionally energy-stable method for the phase
field crystal equation, Comput. Methods Appl. Mech. Eng., 249–252 (2012), 52–61.
https://doi.org/10.1016/j.cma.2012.03.002

14. P. Vignal, L. Dalcin, D. L. Brown, N. Collier, V. M. Calo, An energy-stable convex
splitting for the phase-field crystal equation, Comput. Struct., 158 (2015), 355–368.
https://doi.org/10.1016/j.compstruc.2015.05.029

15. Z. Hu, S. M. Wise, C. Wang, J. S. Lowengrub, Stable and efficient finite-difference nonlinear-
multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228 (2009), 5323–5339.
https://doi.org/10.1016/j.jcp.2009.04.020

16. S. M. Wise, C. Wang, J. S. Lowengrub, An energy-stable and convergent finite-difference
scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), 2269–2288.
https://doi.org/10.1137/080738143

17. H. Garcke, K. F. Lam, V. Styles, Cahn–hilliard inpainting with the double obstacle potential,
SIAM J. Imaging Sci., 11 (2018), 2064–2089. https://doi.org/10.1137/18M1165633

18. S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini, Three-dimensional multispecies
nonlinear tumor growth—I: Model and numerical method, J. Theor. Biol., 253 (2008), 524–543.

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

https://dx.doi.org/https://doi.org/10.4208/cicp.OA-2016-0197
https://dx.doi.org/https://doi.org/10.1016/j.cam.2015.07.030
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.03.042
https://dx.doi.org/https://doi.org/10.3934/dcds.2011.29.1367
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2017.10.021
https://dx.doi.org/https://doi.org/10.1137/17M1150153
https://dx.doi.org/https://doi.org/10.1137/19M1264412
https://dx.doi.org/https://doi.org/10.1103/PhysRevE.93.052504
https://dx.doi.org/https://doi.org/10.1103/PhysRevE.70.051605
https://dx.doi.org/https://doi.org/10.1016/j.cma.2012.03.002
https://dx.doi.org/https://doi.org/10.1016/j.compstruc.2015.05.029
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2009.04.020
https://dx.doi.org/https://doi.org/10.1137/080738143
https://dx.doi.org/https://doi.org/10.1137/18M1165633

27495

19. V. Cristini, X. Li, J. Lowengrub, S. G. Wise, Nonlinear simulations of solid tumor growth
using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723–763.
https://doi.org/10.1007/s00285-008-0215-x

20. L. N. Trefethen, Spectral methods in MatLab, Philadelphia: Society for Industrial and Applied
Mathematics, 2000.

21. J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete
Contin. Dyn. Syst., 28 (2010), 1669–1691. https://doi.org/10.3934/dcds.2010.28.1669

22. L. Duchemin, J. Eggers, The explicit–implicit–null method: Removing the numerical instability
of PDEs, J. Comput. Phys., 263 (2014), 37–52. https://doi.org/10.1016/j.jcp.2014.01.013

23. S. Orizaga, T. Witelski, Imex methods for thin-film equations and cahn–hilliard
equations with variable mobility, Comput. Mater. Sci., 243 (2024), 113145.
https://doi.org/10.1016/j.commatsci.2024.113145

24. R. R. Rosales, B. Seibold, D. Shirokoff, D. Zhou, Unconditional stability for
multistep imex schemes: Theory, SIAM J. Numer. Anal., 55 (2017), 2336–2360.
https://doi.org/10.1137/16M1094324

25. J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Aust. Math. Soc.,
3 (1963), 185–201. https://doi.org/10.1017/S1446788700027932

26. U. M. Ascher, S. J. Ruuth, B. T. R. Wetton, Implicit-explicit methods for time-
dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797–823.
https://doi.org/10.1137/0732037

27. H. D. Ceniceros, C. J. Garcı́a-Cervera, A new approach for the numerical solution of
diffusion equations with variable and degenerate mobility, J. Comput. Phys., 246 (2013), 1–10.
https://doi.org/10.1016/j.jcp.2013.03.036

28. R. J. LeVeque, Finite difference methods for ordinary and partial differential equations: Steady-
state and time-dependent problems, Philadelphia: SIAM, 2007.

29. P. J. Roache, The method of manufactured solutions for code verification, In: Computer
Simulation Validation. Simulation Foundations, Methods and Applications, Cham: Springer,
2019. https://doi.org/10.1007/978-3-319-70766-2 12

30. M. S. Fabien, M. G. Knepley, B. M. Rivière, A hybridizable discontinuous galerkin method for
two-phase flow in heterogeneous porous media, Int. J. Numer. Methods Eng., 116 (2018), 161–
177. https://doi.org/10.1002/nme.5919

31. M. S. Fabien, M. G. Knepley, B. M. Riviere, A high order hybridizable discontinuous galerkin
method for incompressible miscible displacement in heterogeneous media, Results Appl. Math.,
8 (2020), 100089. https://doi.org/10.1016/j.rinam.2019.100089

32. X. Liu, J. Shen, X. Zhang, A simple gpu implementation of spectral-element methods
for solving 3d poisson type equations on rectangular domains and its applications, 2024.
https://doi.org/10.48550/arXiv.2310.00226

33. M. A. Y.-H. Lam, L. J. Cummings, L. Kondic, Computing dynamics of thin films
via large scale gpu-based simulations, J. Comput. Phys.: X, 2 (2019), 100001.
https://doi.org/10.1016/j.jcpx.2018.100001

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

https://dx.doi.org/https://doi.org/10.1007/s00285-008-0215-x
https://dx.doi.org/https://doi.org/10.3934/dcds.2010.28.1669
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2014.01.013
https://dx.doi.org/https://doi.org/10.1016/j.commatsci.2024.113145
https://dx.doi.org/https://doi.org/10.1137/16M1094324
https://dx.doi.org/https://doi.org/10.1017/S1446788700027932
https://dx.doi.org/https://doi.org/10.1137/0732037
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2013.03.036
https://dx.doi.org/https://doi.org/10.1007/978-3-319-70766-2_12
https://dx.doi.org/https://doi.org/10.1002/nme.5919
https://dx.doi.org/https://doi.org/10.1016/j.rinam.2019.100089
https://dx.doi.org/https://doi.org/10.48550/arXiv.2310.00226
https://dx.doi.org/https://doi.org/10.1016/j.jcpx.2018.100001

27496

34. S. Dai, Q. Du, Computational studies of coarsening rates for the Cahn-Hilliard
equation with phase-dependent diffusion mobility, J. Comput. Phys., 310 (2016), 85–108.
https://doi.org/10.1016/j.jcp.2016.01.018

35. M. B. Gratton, T. P. Witelski, Coarsening of unstable thin films subject to gravity, Phys. Rev. E,
77 (2008), 016301.

36. K. B. Glasner, T. P. Witelski, Coarsening dynamics of dewetting films, Phys. Rev. E, 67
(2003),016302.

37. L. Q. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32 (2002),
113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041

38. S. Dai, Q. Du, Coarsening mechanism for systems governed by the Cahn–Hilliard equation
with degenerate diffusion mobility, Multiscale Model. Simul., 12 (2014), 1870–1889.
https://doi.org/10.1137/140952387

39. C. Zhang, J. Ouyang, C. Wang, S. M. Wise, Numerical comparison of modified-energy stable
SAV-type schemes and classical BDF methods on benchmark problems for the functionalized
cahn-hilliard equation, J. Comput. Phys., 423 (2020), 109772.

40. N. Gavish, J. Jones, Z. Xu, A. Christlieb, K. Promislow, Variational models of network formation
and ion transport: Applications to perfluorosulfonate ionomer membranes, Polymers, 4 (2012),
630–655. https://doi.org/10.3390/polym4010630

41. A. Oron, S. H. Davis, S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys.,
69 (1997), 931–980.

42. T. P. Witelski, A. J. Bernoff, Stability of self-similar solutions for van der Waals driven thin film
rupture, Phys. Fluids, 11 (1999), 2443–2445. https://doi.org/10.1063/1.870138

43. S. Orizaga, O. Ifeacho, S. Owusu, On an efficient numerical procedure for the
Functionalized Cahn-Hilliard equation, AIMS Mathematics, 9 (2024), 20773–20792.
https://doi.org/10.3934/math.20241010

44. M. W. Noble, M. R. Tonks, S. P. Fitzgerald, Turing instability in the solid state: Void lattices in
irradiated metals, Phys. Rev. Lett., 124 (2020), 167401.

45. K. Glasner, Segregation and domain formation in non-local multi-species aggregation equations,
Phys. D: Nonlinear Phenom., 456 (2023), 133936. https://doi.org/10.1016/j.physd.2023.133936

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 27471–27496.

https://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.01.018
https://dx.doi.org/https://doi.org/10.1146/annurev.matsci.32.112001.132041
https://dx.doi.org/https://doi.org/10.1137/140952387
https://dx.doi.org/https://doi.org/10.3390/polym4010630
https://dx.doi.org/https://doi.org/10.1063/1.870138
https://dx.doi.org/https://doi.org/10.3934/math.20241010
https://dx.doi.org/https://doi.org/10.1016/j.physd.2023.133936
https://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical formulation
	Numerical methods
	Convexity-splitting method
	Bi-harmonic-modified (BHM) method
	Stability of the schemes: BHM and CS
	IMEX methods

	Numerical experiments I
	CS and BHM errors
	CS and BHM computation time

	Numerical experiments II
	Poisson problem
	Poisson problem in 3D
	Cahn-Hilliard equation 3D
	Computed dynamics
	GPU remark
	CH equations with logarithmic potential

	Concluding remarks

