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1. Introduction

Recent years have witnessed a fast growth of topological data analysis (TDA) in data science
and engineering [63]. The growth is driven by the great promise of topological approaches to real-
world data that are distinguished from any other statistical, mathematical, physical, and engineering
methods [11, 42]. Typically, TDA offers a multi-scale topological characterization of data, which
is the case with persistent homology [23, 70], a key method employed in TDA. A major feature of
persistent homology is its multi-scale analysis, which creates a family of topological spaces from the
original data to track the topological persistence, i.e., the lifespan of topological invariants across
scales [5, 27]. The other major feature of persistent homology is its topological description of a space
(like connected components, loops, and voids) in terms of topological invariants, such as Betti numbers.
As such, persistent homology-based TDA leads to much topological simplification of the geometric
information in the data [1, 20]. Consequently, TDA typically works extremely well for data with
intricate complexity [59,67]. Unfortunately, for data without geometric complexes, TDA may give rise
to an oversimplification of key geometric characteristics, leading to a less competitive approach.

For many years, persistent homology has been used in qualitative analysis, which is somewhat
counterintuitive and unproductive for nonexperts. The power of persistent homology was not
demonstrated until it was utilized in quantitative and predictive analysis via machine learning
algorithms [8, 39]. Topological deep learning (TDL), coined in 2017 [9], was introduced to deal with
large and intrinsically complex datasets using both persistent homology and deep neural networks.
More recently, simplicial neural networks and other topological neural techniques have been applied
in TDL to the design of neural network architecture. TDL has become an emerging paradigm in
data science and machine learning [49]. However, an increasing concern associated with this rising
popularity is whether TDL brings any practical benefit beyond its mathematical elegance. There
are many applications where TDL has demonstrated superiority to other competitive methods [44].
Perhaps some of the most compelling examples are TDL’s dominant wining of D3R Grand Challenges,
an annual worldwide competition series in computer-aided drug design [45, 46], its discovery of the
mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution [16,60], and
its successful forecast of emerging dominant SARS-CoV-2 variants BA.2 [17] and BA.4/BA.5 about
two months in advance [15].

It is interesting to understand why TDL (or TDA) was so successful in the aforementioned examples,
but was not competitive in many other situations in the literature [50]. First, biomolecular data,
which is intricately complex in their internal structures [67], was involved in the above compelling
examples. As such, topological simplification was a productive process, whereas TDL leads to the
severe loss of crucial geometric information in many other data that is relatively simple in their internal
structures. Additionally, it was element-specific persistent homology, rather than the plain persistent
homology, that was applied in the above examples. This approach captures physical and biological
interactions in the biomolecular data [9]. In fact, in the forecast of emerging dominant SARS-
CoV-2 variants BA.4/BA.5, persistent Laplacian, rather than persistent homology, was utilized. This
happens because persistent homology has many drawbacks or limitations [64]. First, the topological
invariant extracted from persistent homology is qualitative, rather than quantitative. For example,
the barcode from persistent homology does not distinguish a five-number from a six-number ring.
Additionally, persistent homology is incapable of dealing with different elements in a point cloud,
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which is ineffective with the physics and chemistry of (bio)molecular data. Moreover, persistent
homology cannot describe non-topological changes, i.e., homotopic shape evolution during the multi-
scale (or filtration) analysis. Further, persistent homology is incapable of handling directed networks
and digraphs, such as polarization, regulation, and control issues in applications. Finally, persistent
homology is unable to characterize structured data, e.g., hypergraphs, directed networks, etc. These
challenges call for innovative new topological methods.

To address these challenges, the persistent spectral graph, also known as persistent combinatorial
Laplacian or persistent Laplacian (PL), was introduced in 2019 [61]. The harmonic spectra of
PLs fully recover the topological invariants of persistent homology. However, the nonharmonic
spectra of PLs capture the homotopic shape evolution during the multi-scale analysis that cannot be
observed with persistent homology. Computational algorithms [22,62] and mathematical analysis [33,
40] of PLs have been reported. In the past few years, much effort has been given to extend
persistent Laplacian to further address other limitations of persistent homology [28], leading to
persistent sheaf Laplacians [65], persistent path Laplacians, persistent hypergraph and hyperdigraph
Laplacians [37], persistent directed flag Laplacians, persistent Mayer Laplacians, and persistent
interaction Laplacians [64]. PLs have been shown to outperform persistent homology in many
applications [15, 41].

However, defined on point cloud data, neither persistent homology nor PL can directly deal
with two other commonly occurring data formats, namely, data on manifolds [18], such as electron
density [68], cryogenic electron microscopy density, and computed tomography images [14], and
curves embedded in the three-dimensional Euclidean space, such as knots, links, and tangles, and
their generalizations [30, 48]. Multi-scale Gauss link integral [54] and evolutionary Khovanov
homology have been proposed to deal with embedded curve data [55]. Evolutionary Khovanov
homology integrates algebraic topology, geometric topology, and metric analysis for the first time.
However, effective computational algorithms are needed for this approach to be widely used in practical
applications.

To carry out manifold topological analysis of data on manifolds, the evolutionary de Rham-Hodge
method was introduced [18]. This approach creates a family of multi-scale manifolds with boundaries
from a given data and then builds evolutionary Hodge Laplacian operators on the multi-scale manifolds
with appropriate boundary conditions. While originated from sharply different topological spaces,
evolutionary Hodge Laplacian and PLs share the same algebraic structure and capture topological
invariants in their harmonic spectra [52]. Case studies have been given to demonstrate evolutionary
de Rham-Hodge theory-based manifold topological analysis of data on manifolds [18]. However, this
approach was based on discrete exterior calculus [19, 21] or finite element exterior calculus [3] in the
Lagrangian representation, which is not efficient for multi-scale analysis and machine learning studies.
Specifically, the regeneration of the evolving manifolds at different scales with different Lagrangian
meshes causes numerical inconsistencies and becomes expensive for practical applications in machine
learning studies. This challenge calls for new effective manifold topological analysis approaches for
data on manifolds.

The objective of this work is to develop a persistent de Rham-Hodge theory on the Euler
representation for manifold topological learning (MTL). To this end, we solve Hodge Laplacians on
a pre-designed structure-persevering Cartesian grid for all scales to avoid numerical inconsistency.
We construct a natural mapping of differential forms from a manifold with boundary embedded in
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R3 to a large manifold, use it to produce persistent cohomology mapping, and construct a persistent
Hodge Laplacian with built-in boundary conditions. Our new approach draws on differential geometry,
algebraic topology, partial differential equations, metric analysis, and numerical analysis. To give a
proof-of-principle demonstration, we pair the proposed persistent de Rham-Hodge Laplacians with
an effective machine learning algorithm to predict protein-ligand binding affinities. Based on two
benchmark datasets in the Protein Data Bank (PDB), PDBbind v2007 and PDBbind v2016, we show
that our MTL model gives rise to cutting-edge performance.

The rest of this paper is organized as follows: Section 2 offers a primer on the de Rham-Hodge
theory on manifolds with boundaries; Section 3 presents our discretization for evolutionary de Rham-
Hodge theory based on spectrum calculation of Laplacians associated with sublevel sets on Cartesian
grids; Section 4 presents our construction for persistent de Rham-Hodge Laplacians both in the
continuous setting and for given level set functions on Cartesian grids; Section 5 showcases preliminary
studies on the applications of MTL; and Section 6 concludes the paper.

2. De Rham-Hodge theory

The de Rham-Hodge theory is an advanced mathematical framework that merges ideas from
differential geometry, algebraic topology, analysis, and partial differential equations to study the
properties of differential forms on smooth manifolds. It plays a crucial role in understanding the
topology and geometry of manifolds through differential forms. The de Rham-Hodge theory consists
of de Rham cohomology and Hodge theory. The former concerns differential forms, exterior derivative,
and cohomology groups, while the latter deals with Riemannian manifolds, Hodge star operator, Hodge
Laplacian, and Hodge decomposition.

Let M be an m-dimensional smooth, orientable, compact Riemannian manifold with boundary.
Denote by Ωk(M) the space of all differential k-forms on M, i.e., the space of all smooth antisymmetric
covariant tensor fields on M of degree k. The differential d, also called exterior derivative, is the unique
R-linear mapping from the space of k-forms Ωk(M) to the space of (k+1)-forms Ωk+1(M) satisfying the
Leibniz rule with respect to the wedge product ∧ and the nilpotent property dd = 0. A key property
of differential forms is that they can be integrated over any orientable k-submanifolds of M. For any
oriented (k+1)-submanifold S ⊂ M with boundary ∂S , Stokes’ theorem, as a generalization of the
Newton-Leibniz rule, states that the integral of a differential k-form ω over ∂S is equal to the integral
of its differential over S , i.e., ∫

S
dω =

∫
∂S
ω. (2.1)

The differential d generalizes and unifies the classical operators in vector calculus, such as gradient ∇,
curl ∇×, and divergence ∇· in R2 and R3. For instance, in R3, 0-forms and 3-forms can be identified
with scalar fields, while 1-forms and 2-forms can be identified with vector fields. In this case, the
differential d corresponds to the gradient operator ∇ when applied to 0-forms, the curl operator ∇×
when applied to 1-forms, or the divergence operator ∇· when applied 2-forms. The nilpotent property
dd = 0 directly leads to the vector field analysis identities ∇ × ∇ = 0 and ∇ · ∇× = 0.

A differential form ω ∈ Ωk(M) is called closed if dω = 0, or exact if there is a (k− 1)-form
ζ ∈ Ωk−1(M) such that ω = dζ. Due to the property dd = 0, every exact form is closed. Thus, the
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differential d links the sequence of the spaces of differential forms on M into a co-chain complex

0 −→ Ω0(M)
d
−→ Ω1(M)

d
−→ · · ·

d
−→ Ωm−1(M)

d
−→ Ωm(M) −→ 0. (2.2)

The k-th de Rham cohomology group, denoted by Hk
dR(M), is then defined to be the k-th homology of

this chain complex, i.e., the quotient space of closed k-forms modulo the space of exact k-forms, i.e.,

Hk
dR(M) =

ker(d : Ωk(M)→ Ωk+1(M))
im(d : Ωk−1(M)→ Ωk(M))

. (2.3)

The de Rham cohomology, by the de Rham theorem, is naturally isomorphic to the singular
cohomology, and thus depends only on the manifold topology.

Let g be a Riemannian metric on M and ⟨·, ·⟩g be the point-wise inner product induced by g on
Ωk(M). The Hodge star operator ⋆ provides an isomorphism from the space of differential k-forms
Ωk(M) to the space of (m−k)-forms Ωm−k(M), defined by the following formula:

ω ∧ ⋆η = ⟨ω, η⟩g µg, (2.4)

where µg is the volume form on M induced by g. The Hodge L2-inner product on the space of k-forms
Ωk(M) can then be obtained by taking the integral of the formula (2.4)

(ω, η) =
∫

M
ω ∧ ⋆η. (2.5)

The codifferential δ : Ωk(M)→ Ωk−1(M) is defined by

δ = (−1)m(k−1)+1 ⋆ d⋆, (2.6)

which also has the nilpotent property δδ = 0. We call a differential form ω ∈ Ωk(M) co-closed if
δω = 0, or co-exact if there is a (k + 1)-form η ∈ Ωk+1(M) such that ω = δη. The codifferential δ, as
the differential d, also extends the classical gradient, curl, and divergence in vector calculus. In R3, it
corresponds to −∇·, ∇×, and −∇ when applied to 1-forms, 2-forms, and 3-forms, respectively.

The Hodge Laplacian for differential forms is defined as ∆ = dδ + δd : Ωk(M) → Ωk(M). Its
kernel, consisting of all differential k-forms ω on M with ∆ω = 0, is called the space of harmonic
k-forms. We denote byH k

∆
(M) the space of harmonic k-forms and byH k(M) the space of k-forms that

are both closed and co-closed, i.e.,H k(M) = ker d∩ker δ. The latter spaceH k(M), known as the space
of harmonic k-fields, is in general only a subset of the space of harmonic forms H k(M) ⊂ H k

∆
(M),

and is infinite-dimensional [53]. However, in the case of closed manifolds where ∂M = ∅, the space
of harmonic forms H k

∆
(M) reduces to the space H k(M), as any harmonic form is both closed and

co-closed. The result follows directly from the following formula:

0 = (∆ω,ω) = ((dδ + δd)ω,ω) = (dω, dω) + (δω, δω), (2.7)

due to the L2-adjointness of the codifferential δ and the differential d on closed manifolds, i.e., (dω, η) =
(ω, δη).

The classical Hodge decomposition theorem for closed manifolds states that the space of differential
k-forms Ωk(M) can be decomposed as

Ωk(M) = dΩk−1(M) ⊕ δΩk+1(M) ⊕H k
∆(M). (2.8)
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These three subspaces are mutually orthogonal with respect to the inner product (2.5). Moreover,
Hodge theorem identifies the harmonic space H k

∆
(M) with the k-th de Rham cohomology group

Hk
dR(M), which states that each harmonic form corresponds to exactly one equivalence class in Hk

dR(M).
Therefore, the harmonic space H k

∆
(M) is fully determined by the manifold topology, and is finite-

dimensional with its dimension given by the Betti number dimH k
∆
(M) = βk.

2.1. Hodge decomposition for manifolds with boundary

In the presence of a nonempty boundary ∂M, the two operators d and δ are not L2-adjoint, as
integration by parts leads to [69]

(dω, η) = (ω, δη) +
∫
∂M
ω ∧ ⋆η, (2.9)

which contains a boundary term that may not vanish, and thus the decomposed subspaces in (2.8) are
not orthogonal. However, certain boundary conditions can be enforced, ensuring the adjointness of the
differential d and the codifferential δ, thereby inducing an orthogonal decomposition of the space of
differential forms.

The most common choices of boundary conditions ensuring the adjointness of d and δ are the
normal (Dirichlet) and tangential (Neumann) boundary conditions. A differential form ω ∈ Ωk(M) is
called normal (Dirichlet) if it gives zero when applied to tangent vectors of the boundary, or tangential
(Neumann) if the same holds for its dual ⋆ω instead. Denote by Ωk

n(M) the set of normal differential
k-forms and by Ωk

t (M) the set of tangential differential forms, i.e.,

Ωk
n(M) = {ω ∈ Ωk(M) | ω|∂M = 0}; (2.10)
Ωk

t (M) = {ω ∈ Ωk(M) | ⋆ ω|∂M = 0}. (2.11)

Following their definitions, the spaces Ωk
n(M) and Ωm−k

t (M) are isomorphic under the Hodge star
operator ⋆, also known as the Hodge duality. Moreover, the differential d preserves the normal
boundary conditions, while the codifferential δ preserves the tangential boundary conditions.

The Hodge-Morrey decomposition [43] states that there is a 3-component L2-orthogonal
decomposition

Ωk(M) = dΩk−1
n (M) ⊕ δΩk+1

t (M) ⊕H k(M), (2.12)

The orthogonality of the decomposition directly comes from the adjointness of δ and d when enforcing
the normal or tangential boundary conditions. For ω ∈ Ωk(M), there is a unique decomposition of ω
given as follows:

ω = dαn + δβt + η, (2.13)

where αn ∈ Ω
k+1
n (M), βt ∈ Ω

k+1
t (M), and η ∈ H k(M). Note that the potentials αn and βt are not uniquely

determined as all αn + dη and βt + δγ with any η ∈ Ωk−2
n (M) and γ ∈ Ωk+2

t (M) serve as potentials for
the same components. However, the issue can be addressed by enforcing gauge conditions, such as

δαn = 0, (2.14)
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⋆dβt = 0. (2.15)

The potentials αn and βt can then be uniquely determined by the following equations:∆αn = δω,

∆βt = dω,
(2.16)

by resolving the (finite) rank deficiencies of ∆ under these boundary conditions (Eqs (2.10),
(2.11), (2.14), and (2.15)).

Remark 1. In the case that M is a closed manifold, i.e., ∂M = ∅, both the spaces Ωk
n(M) and Ωk

t (M)
coincide with the space of differential forms Ωk(M), and the space of harmonic fields is identical to
the space of harmonic forms H k(M) = H k

∆
(M). The Hodge decomposition (2.12) then reduces to the

classical Hodge decomposition (2.8) for closed manifolds.

Remark 2. The Hodge-Morrey decomposition (2.12) in the low-dimensional Euclidean spaces R2 and
R3, often referred to as the Helmholtz-Hodge decomposition in vector calculus, states that any vector
field v defined on a compact domain can be orthogonality decomposed as

v = ∇ f + ∇ × u + h, (2.17)

where f is a scalar potential that vanishes on the boundary of the domain, u is a vector field orthogonal
to the boundary, and h is the harmonic vector field satisfying ∇ × h = 0 and ∇ · h = 0. The first
component ∇ f and the second component ∇×u are often called the curl-free and divergence-free parts
of the vector field v respectively. Note that in the presence of a boundary, the resulting scalar potential
f is also called satisfying the normal boundary of 0-forms, and the vector field u is called satisfying
the tangential boundary condition of 2-forms, which are direct counterparts of the potentials αn and βt

in (2.12). For a complete correspondence between scalar or vector fields, and differential forms under
the normal and tangential boundary conditions, see [69].

The space of harmonic fields H k, in general, is infinite-dimensional, and thus has no direct
correspondence with the cohomology of the manifold. However, as noted early [69], one can restrict
to the space of normal harmonic fields, namely,H k

n (M) = H k(M)∩Ωk
n(M), and the space of tangential

harmonic fields, H k
t (M) = H k(M) ∩ Ωk

t (M). As a consequence of the de Rham map, these two
subspacesH k

n (M) andH k
t (M) are fully determined by the topology of M: the space of normal harmonic

fields H k
n (M) is isomorphic to the relative de Rham cohomology Hk

dR(M, ∂M), while the space of
tangential harmonic fields H k

t (M) is isomorphic to the absolute de Rham cohomology Hk
dR(M) [25].

The two subspacesH k
n (M) andH k

t (M) are thus finite-dimensional, with dimensions given by the Betti
numbers: dimH k

n (M) = βm−k and dimH k
t (M) = βk. Furthermore, the kernels of the Hodge Laplacian

∆, when restricted to the space of normal forms Ωk
n(M) and the space of tangential forms Ωk

t (M) with
gauge conditions on the boundary, can be identified to the space of normal harmonic fields and the
space of tangential harmonic fields, respectively. Denote by ∆n and ∆t the restrictions of the Hodge
Laplacian ∆ on the space of normal fields Ωk

n(M) satisfying Eq (2.14) and the space of tangential fields
Ωk

t (M) satisfying Eq (2.15), i.e., ∆n : Ωk
n(M) → Ωk(M) and ∆t : Ωk

t (M) → Ωk(M). Then, immediately
we have ker∆n = H

k(M) ∩ Ωk
n(M) = H k

n (M) and ker∆t = H
k(M) ∩ Ωk

t (M) = H k
t (M). The result

follows directly from Eq (2.7). These identifications finally enable us to study the topology of the
underlying manifold M through the Hodge Laplacians on normal and tangential forms.
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Remark 3. In fact, let H k
co = H

k(M) ∩ δΩk+1(M) and H k
ex = H

k(M) ∩ dΩk−1(M). The space of
harmonic fieldsH k(M) can be further orthogonally decomposed for smooth manifolds

H k(M) =H k
co(M) ⊕H k

n (M) (2.18)
=H k

ex(M) ⊕H k
t (M), (2.19)

which results in the Hodge-Morrey-Friedrichs decomposition given as follows:

Ωk(M) = dΩk−1
n (M) ⊕ δΩk+1

t (M) ⊕H k
co(M) ⊕H k

n (M) (2.20)
= dΩk−1

n (M) ⊕ δΩk+1
t (M) ⊕H k

ex(M) ⊕H k
t (M). (2.21)

In particular, if M is a compact domain in Euclidean spaces, then there is a unique orthogonal 5-
component decomposition

Ωk(M) = dΩk−1
n (M) ⊕ δΩk+1

t (M) ⊕H k
n (M) ⊕H k

t (M) ⊕ (dΩk−1(M) ∩ δΩk+1(M)), (2.22)

as the spaces H k
n (M) and H k

t (M) are L2-orthogonal, instead of just being transversal for compact
manifolds in general [56]. Due to the correspondence between differential forms and vector fields in the
low-dimensional Euclidean spaces, the implementation of this 5-component Hodge decomposition has
been applied and implemented to the study of vector fields for surface triangle meshes, for tetrahedral
meshes [69] and for regular Cartesian grids [58].

As we mainly focus on applications of compact domains in R3, to study the geometric and
topological information of the underlying manifolds, there are eight Laplacians to be considered, which
are defined on the spaces of differential k-forms with k = 0, 1, 2, 3 satisfying either the normal or the
tangential boundary conditions. However, thanks to the duality between the space of normal fields and
tangential fields, the study of the spectra of these eight Laplacians reduces to that of four Laplacians
on one of the two types of boundary conditions, and finally to the singular spectra of three differential
operators, applied to differential forms of degree k = 0, 1, 2, 3 [18]. Further details will be discussed in
the next section for the discretization of Laplacians.

3. Discretization and construction of Laplacians

In this section, we elaborate on the discretization of the Hodge Laplacian and introduce
the boundary-induced graph (BIG) Laplacian for compact domains in low-dimensional Euclidean
spaces [52]. Although the theory works for 2D compact domains, for the remainder of the paper we
focus only on compact domains in R3, as we target mainly 3D applications. We use discrete exterior
calculus (DEC) to discretize all differential operators and differential forms on regular Cartesian grids,
as it allows for efficient and accurate numerical algorithms relying on just matrix algebra, while
keeping the L2 orthogonality between different components in Hodge decomposition. In addition,
the constructed discrete differential operators and differential forms in DEC approximate their smooth
analogs. For the characterization of the underlying manifold, we choose the Eulerian formulation,
where the manifold is given as a sublevel set of a level set function defined on a regular Cartesian
grid. Another common way, called the Lagrangian formulation, discretizes the manifold as simplicial
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meshes, i.e., triangular or tetrahedral meshes in 2D or 3D. The spectrum analysis of the Hodge
Laplacians has been discussed in [69] for the Lagrangian formulation and in [58] for the Eulerian
formulation. Compared to the Lagrangian case, the Eulerian representation uses vertices, edges, faces,
and cells all fixed in a Cartesian grid, which significantly simplifies the data structures and algorithms.
The Hodge stars, in the latter case, are close to rescaled identity matrices. This fact simplifies the
study of Hodge Laplacians to that of BIG Laplacians with no Hodge stars involved, and thus leads to
algorithms with efficient computations.

3.1. Discretization on entire grid

Denote by Im a rectangular m-dimensional regular Cartesian grid with k-cells oriented according
to their alignments with the coordinate axes. The entire grid Im can be treated as a cell complex
tessellating a rectangular domain in Rm, where each k-cell is a k-dimensional hypercube with edge
length ℓ. A continuous differential k-form ω on Im, following the de Rham map, can be discretized
by its integral value over each oriented k-cell σi, given as W i =

∫
σi
ω [19]. The discrete differential

on discrete k-forms of the grid Im is then encoded by a sparse matrix DI
k, which stores the signed

incidence between (k+1)-cells and k-cells and is given as the transpose of the cell boundary operator
∂T

k+1 on (k+1)-cells following from Stokes’ theorem
∫
σ

dω =
∫
∂σ
ω. An illustration of the chain complex

formed by boundary operator ∂ for a simple grid complex with a single 2D cell can be seen in Figure 1,
which is a straightforward generalization of the chain complex on simplicial complexes. Note that
the boundary of the boundary of a cell always results in a 0 chain, i.e., ∂∂ = 0, whose transpose
immediately produces DI

k+1DI
k = 0, thus preserving the nilpotent property in the continuous setting.

Figure 1. The chain complex of a single-cell grid formed by the boundary operator: from
the face, to its edges, and to their vertices.

The discrete Hodge star establishes a one-to-one correspondence between discrete k-forms on the
primal grid Im and discrete (m−k)-forms on its dual grid, given as the translated grid with grid points
located at the m-cell centers of Im, based on the following formula:

1
|σk|

∫
σk

ω ≈
1

| ⋆ σk|

∫
⋆σk

⋆ω, (3.1)

where ⋆σk is the dual (m−k)-cell formed by the dual grid points located at the centers of the primal
m-cells incident to σk. See Figure 2 for an illustration of the correspondences between the primal
and dual cells in the Cartesian grid case. Following from the discretization of differential forms, this
correspondence leads to a diagonal matrix S I

k with diagonal entries given by the ratio between the
volumes of the dual (m−k)-cells and the primal k-cells, ℓm−k/ℓk = ℓm−2k. The associated discrete Hodge
L2-inner product (2.5) of two discrete k-forms Vk and Wk on grid Im is then given by

(Vk,Wk)I = VT
k S I

kWk. (3.2)
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The discrete codifferential, by definition of its smooth counterpart (2.6), can be assembled from the
discrete differential and Hodge star operators as δI

k = (S I
k−1)−1DI

k−1S I
k. Note that the discrete counterpart

of the Hodge Laplacian ∆ = dδ + δd by replacing the differential and codifferential operators results
in a nonsymmetric matrix. Instead, we consider the counterpart of ⋆∆ as the discrete Hodge Laplacian
given by

LI
k = (DI

k)
T S I

k+1DI
k + S I

kDI
k−1(S I

k−1)−1(DI
k−1)T S I

k, (3.3)

where the operators are considered to be null for k < 0 or k > m.

Figure 2. An example of the primal and dual grid cells for the 2D case. The top row
highlights the primal cells, and the bottom row presents their corresponding dual cells.

3.2. Discrete differential forms and operators on M

Compared to the case of simplicial or polygonal meshes, where the projection matrices to the
interior can be straightforward to implement with the boundary elements explicitly labeled, modeling
the manifold M as the volume bounded by a level set surface leads to delicate computation of the
projection matrices. Note that the boundary of M using grid representation typically intersects with
boundary k-cells instead of being its supersets. We restrict the computation to relevant cells by
implementing the two types of boundary conditions through the inclusion or exclusion of the entire
k-cells. We use the strategy as in [58] for the computation of projection matrices for each type of
boundary condition: for the normal boundary condition, we include all cells if at least one of its
vertices is inside or on the boundary of M, while for the tangential boundary condition, we include all
cells with at least one of the vertices of the corresponding dual cells is inside or on the boundary. We
refer to the former set of cells as the normal support and the latter as the tangential support. In contrast
to the mesh case, it is important to note that neither the normal nor the tangential support is necessarily
a superset of the other. See Figure 3 for one example showing the distinction of these two supports for
1-forms.
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Figure 3. Distinction of normal supports (left) and tangential supports (right) for primal 1-
forms in a 2D Cartesian grid.

In the computation of the discrete Hodge star operators, it is essential to consider and incorporate
the boundary conditions. Following the procedure in [58], we keep the dual cell volumes and adjust
the primal cell volumes for normal boundary conditions, and do conversely for tangential boundary
conditions with the primal cell volumes kept and the dual cell volumes changed. To be specific, when
dealing with normal (resp., tangential) boundary conditions, we only compute the volume of the region
of the primal (resp., dual) k-cells within the boundary ∂M for the denominator (resp., numerator)
of the ratio in the discrete Hodge star matrix, and leave the dual (resp., primal) cell volumes in the
numerator (resp., denominator) unchanged. Each unaltered k-cell has a k-volume of ℓk. In addition,
for numerical stability, we do not alter the volume of outside primal k-cells, and perturb the level set
function evaluated at primal/dual grid points to have an absolute value above ϵ = 10−5ℓ, which ensures
well-behaved fractional k-volumes. We denote by S I

k,n and S I
k,t the diagonal Hodge star matrices defined

on the entire grid Im corresponding to the normal and tangential boundary conditions, respectively.
The projection matrix to the corresponding support, for each type of boundary condition, can be

constructed from the identity matrices by eliminating the rows corresponding to k-cells outside the
support. Denote by Pk,n the projection matrix for k-cells onto the normal support and by Pk,t the one
onto the tangential support. We then obtain a new set of differential and Hodge star operators for M:

Dk,n = Pk+1,nDkPT
k,n, S k,n = Pk,nS I

k,nPT
k,n. (3.4)

Dk,t = Pk+1,tDkPT
k,t, S k,t = Pk,tS I

k,tP
T
k,t. (3.5)

The nilpotent property Dk+1,nDk,n = 0 and Dk+1,tDk,t = 0 still holds for both boundary conditions due to
DI

k+1DI
k = 0 and the following observations:

PT
k+1,nPk+1,nDI

kPT
k,n = DI

kPT
k,n, Pk+1,tDI

kPT
k,tPk,t = Pk+1,tDI

k. (3.6)

The discrete Hodge L2-inner products of the two types of discrete k-forms on the manifold M for these
two boundary conditions are then given by

(ξk, ζk)n = (ξk)T S k,nζ
k, (3.7)

(ξk, ζk)t = (ξk)T S k,tζ
k, (3.8)
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whose domains are the discrete Ωk
n(M) and the discrete Ωk

t (M), respectively. Finally, we assemble the
two types of discrete Hodge Laplacians as in the mesh case:

Lk,n = DT
k,nS k+1,nDk,n + S k,nDk−1,nS −1

k−1,nDT
k−1,nS k,n, (3.9)

Lk,t = DT
k,tS k+1,tDk,t + S k,tDk−1,tS −1

k−1,tD
T
k−1,tS k,t. (3.10)

The null spaces of these discrete Hodge Laplacians, as in the continuous case, are fully determined by
the topology of the underlying manifold M, since they only depend on the differential and projection
matrices. The dimension of the kernel of Lk,n is given by the Betti number βm−k, while the dimension of
the kernel of Lk,t is given by βk. Here, the Betti number βk presents directly the number of k-dimensional
holes on the manifold M. For instance, β0 gives the number of connected components, β1 gives the
number of tunnels, and β2 provides the number of closed cavities, respectively. The spectra of these
Laplacians, in addition, could be used to study the geometric information of the manifold. It is known
that the nonzero eigenvalues of the Laplacians provide rich insights into the shape of a manifold. For
instance, the Fiedler value, defined as the smallest nonzero eigenvalue of a graph Laplacian, describes
connectivity. As another example, the multiplicity of eigenvalues can reveal certain symmetries of the
shape.

Remark 4. The two types of discrete Hodge Laplacians (3.9) not only provide rich geometrical and
topological information of the underlying manifold, but also play a central role in the computation
of the discrete Hodge decomposition (2.22) of differential forms for compact domains in 2D and 3D
Euclidean spaces. In particular, they can be utilized, by resolving the rank deficiencies, to compute the
potentials of the decomposed components in Hodge decomposition on normal or tangential support
satisfying the corresponding boundary conditions. In addition, as the kernel sizes of Laplacians are
finite, their eigenvectors corresponding to 0 eigenvalues, for each k, form a basis for the space of
normal or tangential harmonic fields.

Note that the discrete Hodge stars in the Eulerian setting are almost identical to rescaled identity
matrices. Therefore, the computations of the Hodge Laplacian can be further simplified by replacing
the Hodge stars with identity matrices, leading to the definition of the BIG Laplacians as follows:

LB
k,n = DT

k,nDk,n + Dk−1,nDT
k−1,n, (3.11)

LB
k,t = DT

k,tDk,t + Dk−1,tDT
k−1,t. (3.12)

The BIG Laplacians were introduced in [52] for bounded domains to facilitate the comparison
and contrast of the Hodge Laplacians and the combinatorial Laplacians. They preserve the
Hodge Laplacian’s capability to perform differential calculus but also retain the discrete nature of
combinatorial Laplacians. The convergence of the spectra of the BIG Laplacians to Hodge Laplacians
has been discussed in [52], showing that the spectra of (3.11) converge to those of Hodge Laplacians
up to a scaling value ℓ−2 when enforcing the boundary conditions. This scaling value ℓ−2 is exactly
the ratio between the missing scaling factor ℓm−2(k+1) in Lk and the missing factor ℓm−2k of S k. As the
BIG Laplacians produce results similar to those obtained from the discrete Hodge Laplacians with
less computation, they can also be used to study the geometric and topological information of the
underlying manifolds.

Note that the dual grid is also a Cartesian grid staggered with the primal grid by a replacement
of ℓ/2 in all three axial directions of the Cartesian coordinates. For the study of the spectra of these
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Laplacians, one only needs to implement one type of boundary condition, for instance, the normal
boundary condition, as Lk,n defined on the primal grid with normal boundary conditions is equivalent
to Lm−k,t defined on its dual grid with tangential boundary conditions.

3.3. Topology-preserving construction of Laplacians

Preserving the topological structure is a major characteristic of the present work. However,
preserving topological structure in various Laplacian operators is a nontrivial job. In this section,
we present the detailed construction of topology-preserving Laplacians.

Note that, on the grid, the Hodge Laplacians and the BIG Laplacians are of the same sparsity
patterns. For simplicity in exposition when discussing the spectrum analysis of the Laplacians, we let
Lk be a generic Laplacian matrix of the form

Lk = DT
k S k+1Dk + S kDk−1S −1

k−1DT
k−1S k. (3.13)

Here, the Laplacian Lk can be interpreted, under choices of boundary conditions and Hodge star
accuracy, as either a Hodge Laplacian or BIG Laplacian (with S k set to identity) under tangential
or normal boundary condition. The eigenvalues and eigenvectors of Lk can be solved by considering
the generalized eigenvalue problem

LkW = λS kW, (3.14)

where λ is an eigenvalue and W is the associated eigenvector. To analyze the results, we perform the
following transformation in the space of discrete forms: D̄k = S 1/2

k+1DkS
−1/2
k , L̄k = S −1/2

k LkS
−1/2
k , and

W̄ = S 1/2
k W. Rewriting the formulas above yields a simplified form of the Laplacian

L̄k = D̄T
k D̄k + D̄k−1D̄T

k−1, (3.15)

and a regular eigenvalue problem:

L̄kW̄ = λW̄. (3.16)

Note that the property D̄kD̄k−1 = 0 is preserved. As the nonzero eigenvalues of D̄T
k D̄k and D̄kD̄T

k for
each k are the same, given by the squared nonzero singular values of the discrete differential D̄k, and
each Laplacian L̄k is just the combination of D̄T

k D̄k and D̄k−1DT
k−1, the entire spectrum of the Laplacians

can thus be studied through the singular values of discrete differentials. Let

D̄k = Uk+1ΣkVT
k (3.17)

be the singular value decomposition of D̄k, where Uk+1 and Vk are orthogonal matrices and Σk is
a rectangular diagonal matrix with diagonal values given by the singular values of D̄k. It follows
immediately from D̄kD̄k−1 = 0 that

ΣkVT
k UkΣk−1 = 0. (3.18)

Therefore, the columns of Vk corresponding to nonzero singular values of D̄k are orthogonal to columns
of Uk associated with nonzero singular values of D̄k−1. In addition, it follows from

Lk = VkΣ
2
kVT

k + UkΣ
2
k−1UT

k (3.19)

AIMS Mathematics Volume 9, Issue 10, 27438–27470.



27451

that the spectrum of L̄k is given by the union of squared nonzero singular values of D̄k, D̄k−1, and 0,
with the multiplicity of 0 given by the k-th Betti numbers. The columns of Uk and Vk corresponding to
nonzero singular values, together with the set of harmonic forms, span the entire space of differential
k-forms.

In the case that dim(M) = 3, for each type of boundary condition, we have four Laplacians of
different degrees in total k = 0, 1, 2, 3:

L̄0 = D̄T
0 D̄0, (3.20)

L̄1 = D̄T
1 D̄1 + D̄0D̄T

0 , (3.21)
L̄2 = D̄T

2 D̄2 + D̄1D̄T
1 , (3.22)

L̄3 = D̄2D̄T
2 . (3.23)

Due to the aforementioned discussion on the spectrum of Laplacians and the duality of the
normal and tangential boundary conditions, the spectral analysis of all Laplacians can be reduced
to the singular spectra analysis of the three discrete differentials D̄0, D̄1, and D̄2 with one type of
boundary condition. Note that the numerical evaluation of the singular values of these differentials,
in the simplicial mesh case, may differ for the two types of boundary conditions, as the degrees of
freedom (DoF) for normal k-forms and tangent m − k forms are different. However, in the Cartesian
representation, they are strictly equivalent to each other by shifting the grid in all directions of the axis
by ℓ/2, so long as M is at least one grid spacing away from the boundary of the grid.

For the computation of the spectra of the Laplacians, we choose the normal boundary condition.
The spectra of all Laplacians L̄k,n for compact domains in R3 can be finally decomposed into three
distinct parts: the squared singular values of the gradient of tangential scalar fields, denoted by T , the
squared singular values of the gradient of normal scalar fields, denoted by N, and the squared singular
values of the curl of tangential curl fields, denoted by C.

4. Persistent de Rham-Hodge Laplacians

In this section, we present the construction of the persistent de Rham-Hodge Laplacian on
differentiable manifolds, which is based on the filtration of manifolds induced by varying a single
parameter (the filtration parameter). The spectra of Laplacians carry rich topological and geometric
information of a manifold. Essentially, a single manifold does not provide enough information in
practical applications like feature extraction for machine learning analysis. As such, instead of studying
just a single manifold, one could examine the spectra of a family of manifolds by adjusting the filtration
parameter. The spectra of the Laplacians from this family of manifolds could provide much more
information than by considering just one, as the topology and geometry could change for different
parameters. This single-parameter family of manifolds, called the evolution of manifolds, was first
introduced in [18] based on tetrahedral meshes. We briefly recap the background.

The formal definition of the evolving manifold is given by a one-parameter family of immersions
Fc = F(·, c) with F : B × [a, b] → N being a smooth map, where B is called the base manifold, N
is the ambient manifold, and c ∈ [a, b] is a real parameter within the interval. In practice, the most
common way to define the evolution of manifolds without specifying B is through a level set function
by adjusting the isovalues. Given a function f : N → [a, b], then in our case, we consider the sublevel
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sets M = {x ∈ N | f (x) ≤ c} with the boundary given as ∂M = {x ∈ N | f (x) = c} for c ∈ [a, b]. A
sequence of manifolds can then be obtained by considering evenly distributed isovalues of the function
f with the inclusion map

M0 ↪−→ M1 ↪−→ M2 ↪−→ · · · ↪−→ Ms−1 ↪−→ Ms, (4.1)

where each Ml is given as the sublevel set corresponding to cl with a ≤ c0 < c1 < · · · < cs ≤ b.
To ensure that Ml is a manifold, we assume that the function f is a Morse function on N, and none
of the cl’s corresponds to a critical value of the function f , i.e., f −1(cl) does not contain any critical
points. This is always possible as the set of Morse functions on a compact manifold is dense in the
space of smooth functions, and their critical points are isolated, nondegenerate, and finite for compact
manifolds. Thus we can always perturb any input function slightly to avoid critical isovalues in {cl, l =
0, 1, · · · s}. In addition, we assume that for each l, Ml,l+1 = Ml+1\Ml = {x ∈ N| f (x) ∈ [cl, cl+1]} contains
at most one critical point, which can be realized by refining the parameter sequence. Note that both Ml

and Ml,l+1 are compact. By Morse theory, if Ml,l+1 contains no critical points, Ml is diffeomorphic to
Ml+1. The retraction from Ml+1 to Ml can be easily constructed by considering a flow along the gradient
of the function. As Ml+1 is homotopic to Ml in this case, there is no topological change happening
between (cl, cl+1). For the other case when there is exactly one critical point in Ml,l+1, the manifold
Ml+1 is homotopic to Ml with a k-cell attached, where k is the index of the critical point, defined to
be the dimension of the largest subspace on which the Hessian Hess( f )(x) is negative definite. The
topological change of the sublevel sets occurs precisely at the critical values of the level set function.
Depending on the type of the critical points, i.e., local minimum, saddle points, and local maximum,
the topology changes in different ways. In general, a local maximum has the full index m, a local
minimum has index 0, while saddle points have indices strictly between 0 and m. In the case of R3,
the occurrences of minima and maxima correspond to the birth of the 0-th generators and the death of
the 2nd homology generators, respectively, while the occurrences of 1-saddle points correspond to the
birth of 1st homology generators or the death of the 0-th homology generators, and those of 2-saddle
points correspond to the birth of 2nd homology generators or the death of 1st homology generators.

4.1. Persistent harmonic forms

As the de Rham complex depends on the topology, it can also be extended to the filtration of
manifolds. Due to the duality of the normal and tangential boundary conditions, without loss of
generality, one may focus on the space of normal differential forms. Given Ml ↪−→ Ml+1, we then
need to construct a map from the space of normal k-forms Ωk

n(Ml) to the space of normal k-forms
Ωk

n(Ml+1), which extends each normal k-form on Ml to a normal k-form on Ml+1. Let ω ∈ Ωk
n(Ml).

The idea is to utilize the boundary condition of ω on Ml and extend the forms ω|∂Ml to exact normal
forms on the domain Ml,l+1 with certain boundary conditions on ∂Ml,l+1 = ∂Ml ∪ ∂Ml+1. Then, the
combination ω defines a normal k-form on the manifold Ml+1. Note however that δω is only 0 in Ml,

so the extension of ω ∈ ker δ may no longer be in ker δ on Ml+1.

To be specific, we consider the biharmonic equation ∆2ζ = ∆(∆ζ) = 0 on Ml,l+1 with both Dirichlet
and Neumann boundary conditions to ensure the smoothness of dζ with ω through ∂Ml. Note that dζ
satisfies the normal boundary condition on Ml,l+1. Let ω be the extension of ω on Ml+1 with ω = ω on
Ml and ω = dζ on Ml,l+1. It follows that ω ∈ Ωk

n(Ml+1) as it satisfies the normal boundary condition
ω|∂Ml+1 = ζ |∂Ml+1 = 0.
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While the biharmonic equation produces a smooth extension, in practice, it is more efficient to
consider the harmonic extension with the boundary condition ∆ζ = 0 with the boundary condition of
⋆dζ = ⋆ω on ∂Ml and the typical normal form boundary condition on ∂Ml+1. The solution, by [53,
Theorem 3.4.10], is unique. The resulting ω̄ is continuous but non-smooth as δω̄ may lead to a Dirac
distribution on ∂Ml when Ml,l+1 induces a topological change. For instance, for a harmonic normal
1-form ω on a spherical shell Ml with Ml+1 turning into a solid ball, the biharmonic extension would
create a uniform divergence δω̄ in Ml,l+1,whereas the harmonic extension creates a thin layer of nonzero
divergence δω̄ near the part of ∂Ml around the cavity in the middle. Thus, the harmonic extension
serves the same purpose in reducing the kernel of δ.

Denote by Il,1 the map from Ωk
n(Ml) to Ωk

n(Ml+1) sending ω to ω. Note that (d ◦ Il,1)(ω) is 0
on Ml,l+1 and thus the same as the extension of the differential of a normal form dω on Ml,l+1, i.e.,
d ◦ Il,1 = Il,1 ◦ d. It follows that there is a commutative diagram

Ω0
n(M0) Ω1

n(M0) Ω2
n(M0) Ω3

n(M0)

Ω0
n(M1) Ω1

n(M1) Ω2
n(M1) Ω3

n(M1)

Ω0
n(M2) Ω1

n(M2) Ω2
n(M2) Ω3

n(M2)

· · · · · · · · · · · ·

d

I0
0,1

d

I1
0,1

d

I2
0,1 I3

0,1

d

I0
1,1

d

I1
1,1

d

I2
1,1 I3

1,1

d

I0
2,1

d

I1
2,1

d

I2
2,1 I3

2,1

where the horizontal direction gives the de Rham complex and the vertical direction shows the
filtration-induced extensions.

Next, we introduce the p-persistent Hodge Laplacian. Let Il,p = Il+p−1,1 ◦ ...◦Il,1, which then gives
an extension map from the space of normal forms on Ml to the space of normal forms on Ml+p. We
have the following commutative diagram:

Ωk
n(Ml) Ωk+1

n (Ml)

Ωk−1
n (Ml+p) Ωk

n(Ml+p)
dk−1

l+p

Rl,p

δkl+p

dk
l

δ̃kl,p
Il,p

δk+1
ld̃k−1

l,p

Here dl, δl denotes the differential and codifferential on Ωk(Ml), dl+p, δl+p denotes the differential
and codifferential on Ωk(Ml+p), respectively, and Rl,p is the projection of differential forms in Ωk

n(Ml+p)
to the space spanned by the harmonic extensions followed by the restriction to Ml. Let δ̃l,p = δl+p ◦Il,p

and d̃l,p = Rl,p ◦ dl+p. By the construction of the extension, we have (δ̃l,pω, η) = (ω, d̃l,pη), i.e., δ̃l,p are
adjoint to d̃l,p. We then define the p-persistent Hodge Laplacian operator ∆p

n,l : Ωk
n(Ml) → Ωk

n(Ml) as
follows:

∆
p
n,l = d̃l,pδ̃l,p + δldl. (4.2)
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It is easy to see that when p = 0, the p-persistent Hodge Laplacian gives exactly the usual Hodge
Laplacian ∆n,l : Ωk

n(Ml) → Ωk
n(Ml) restricted to the space of normal forms. We then define the p-

persistent normal harmonic fields as the kernel of the p-persistent Hodge Laplacian H k,p
n = ker∆p

n,l,
which can be identified with the space ker δ̃l,p ∩ ker dl. Note that by the extension construction and
Rl,p ◦ Il,p = Id, one can see that ker δ̃l,p ⊂ ker δ gets smaller as p increases, which confirms that fewer
cohomology generators persist longer.

4.2. Discretization of p-persistent de Rham cohomology

The regular Cartesian grid allows one to define persistent graph Laplacian on manifolds in the
same way as persistent graph Laplacian [61]. It also allows defining persistent Hodge Laplacian in a
consistent way, with the inclusion of nontrivial Hodge stars.

Recall that the discrete differential k-forms can be seen as a k-co-chain, i.e., a linear mapping from
the chain space Ck to R that sends a k-chain ck =

∑
i aiσi to

∫
ck
ω =

∑
i aiWi, where Wi =

∫
σi
ω is the

integral of a smooth k-form ω over the k-cell σi.
By varying the isovalue of the level set function f , we can get a sequence of cell complexes given

as nested sequences of sub-cell complexes of K satisfying the normal boundary conditions.

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Ks−1 ⊂ Ks = K. (4.3)

See Figure 4 for an example of such a nested sequence of sub-cell complexes in a 2D Cartesian
grid. Denote by Ck(Kl) the space of discrete k-forms on sub-complex Kl with 0 ≤ l ≤ s. Note that
Kl ⊂ Kl+1. A discrete k-form on Kl can be easily extended to Kl+1 by solving the discrete Laplace
equation with the above boundary conditions for values on every k-cells in Kl,l+1 = Cl(Kl+1\Kl), the
closure of the difference complex. We denote this extension map as Il,1 : Ck(Kl) → Ck(Kl+1) and
by Il,p = Il+p−1,1 ◦ Il+p−2,1 ◦ · · · ◦ Il,1 : Ck(Kl) → Ck(Kl+p) the extension mapping from the space of
discrete k-forms on Kl to the space of discrete k-forms on Kl+p, which may also be constructed directly
by solving the Laplace equation on Kl,l+p = Cl(Kl+p\Kl). With this extension mapping, the space of
discrete k-forms on Kl can be seen as a subspace of discrete k-forms on Kl+p.

Figure 4. An example of a nested sequence of sub-cell complexes in a 2D Cartesian grid
under the normal boundary condition, illustrating the inclusion of normal supports for 0,
1, and 2 discrete differential forms for an evolution of manifolds. Here the manifolds are
represented by the bounded regions of the blue isocurves of a level set function.
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A sequence of the discrete de Rham co-chain complexes can be defined as follows:

C0(K0) C1(K0) · · · Ck(K0) Ck+1(K0) · · ·

C0(K1) C1(K1) · · · Ck(K1) Ck+1(K1) · · ·

C1(K2) C1(K2) · · · Ck(K2) Ck+1(K2) · · ·

· · · · · · · · · · · ·

D0
0

I0,1

δ10

D1
0

I0,1

δ20

Dk−1
0

δk0

Dk
0

I0,1

δk+1
0

Dk+1
0

I0,1

δk+2
0

D0
1

I1,1

δ11

D1
1

I1,1

δ21

Dk−1
1

δk1

Dk
1

I1,1

δk+1
1

Dk+1
1

I1,1

δk+2
1

D0
2

I2,1

δ12

D1
2

I2,1

δ22

Dk−1
2

δk2

Dk
2

I2,1

δk+1
2

Dk+1
2

I2,1

δk+2
2

where Dk
l : Ck+1(Kl) → Ck(Kl) denotes the discrete differential operator, and δk

l : Ck(Kl) → Ck−1(Kl)
denotes the discrete codifferential operator on Kl.

To define the persistent discrete Hodge Laplacian, we construct the discrete counterparts of d̃l,p and
δ̃l,p in the previous section.

Denote by δk+1,n
l,p : Ck+1(Kl) → Ck

l,p the operator given as δk,n
l,p = δ

k
l+pIk,n

l,p , where δk,n
l+p is the previously

defined discrete operator for Kl+p and Ik,n
l,p is the discrete harmonic extension operator defined next.

Assuming Kl,l+p contains few k-cells, the harmonic extension is then constructed by the linear system
Lk−1,n

Kl,l+p
ζ = 0, and shifting all ⋆dζ values in the overlap of supports of Kl and Kl,l+p to the righthand

side and replacing them with a rescaling of ⋆ω based on the k-volume within each support. More
specifically, the resulting system is L̃k−1,n

Kl,l+p
ζ̃ = −S k−1,nδk

∂Kl
ω, where L̃k−1,n

Kl,l+p
is the Laplace operator applied

to a form ζ̃ defined on Kl,l+p\∂Kl, and δk
∂Kl

is the boundary codifferential operator that uses the values
of ω on ∂Kl to evaluate the neighboring (k−1)-cells in Kl,l+p\∂Kl.

The resulting extension operator

Il,p =

(
IdKl

−Dk
Kl,l+p

(L̃k,n
Kl,l+p

)−1S k,nδk
∂Kl

)
,

where IdKl is the identity matrix in Kl up to a rescaling in the boundary, provides the combination of
ω in Kl and dζ̃ in Kl,l+p\∂Kl, when applied to ω. The matrix corresponding to Il,p is dense for rows
corresponding to cells in Kl,l+p but diagonal for rows corresponding to cells in Kl. Note that δ∂Kl is not
necessarily 0 for co-closed ω, but is 0 for co-exact ω.

The adjoint operator of δk+1,n
l,p defines Dk

l,p. In the following, we drop most of the subscripts for
clarity. Recall that (ω, d̃η) = (δ̃ω, η) can be discretized as

[W]T S [D̃E] = [S −1DT S Il,pW]T S [E]

with W and E as discrete versions of ω and η. Thus, D̃ = S −1IT
l,pS D, from which we may recognize

the restriction operator as R = S −1IT
l,pS . This restriction operator can be seen as the L2-projection onto

the space formed by all harmonic extensions from ΩK
n (Ml).

Note that in this case, immediately δk
l,pδ

k+1
l = 0 since the extension operator will generate ζ̃ = 0

for any co-exact form ω = δβ on Kl as the righthand side of the associated linear system essentially
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corresponds to δδβ = 0. From the adjoint version, we have Dk
l Dk−1

l,p = 0, and thus the following
commutative diagram

Ck(Kl) Ck+1(Kl)

Ck−1(Kl+p) Ck(Kl+p)
Dk−1

l+p

Rl,p

δkl+p

Dk
l

δkl,p
Il,p

δk+1
lDk−1

l,p

The discrete p-persistent Hodge Laplacian is then given as follows:

Lk
l,p = Dk−1

l,p δ
k
l,p + δ

k+1
l Dk

l , (4.4)

and the discrete p-persistent BIG Laplacian is

Lk
l,p = Dk−1

l,p (Dk−1
l,p )T + (Dk

l )
T Dk

l . (4.5)

We now present some examples of evolving manifolds and show results for the spectral analysis
of their persistent Laplacians. In particular, we focus on the changes of Betti numbers β0, β1, and β2

and the first nonzero eigenvalues λT
1 , λ

C
1 and λN

1 of the 0-persistent BIG Laplacians in the set T, C,
and N, respectively, as introduced in Section 3.3. Four models are considered, including the Bimba
model, the kitten model, a genus-3 model, and a four-ball model. For each model, we show on the
top row snapshots of evolving manifolds at five evenly spaced isovalues in a chosen interval, and on
the bottom row the changes in Betti numbers and the first nonzero eigenvalues λT

1 , λ
C
1 , and λN

1 . All
the evolving manifolds are generated using isovalues of the signed distance function (SDF) from the
original surface model, given as the 0-isosurface of the SDF. As we show below, these values from
the evolution of manifolds provide rich information rather than considering just a single manifold.
The discontinuity of these variables indicates the topological changes occurring during the evolution
process, and the monotonicity of these nonzero eigenvalues reveals the geometric changes.

The results for the Bimba model are presented in Figure 5 with an isovalue interval [0, 0.2]. As there
is no topological change happening in the evolution process, all Betti numbers β0, β1, and β2 remain
constant, and λT

1 , λ
C
1 , and λN

1 are continuous throughout the whole process. Both λC
1 and λN

1 decrease as
the isovalue increases.
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Figure 5. First row: Snapshots of evolving manifolds for the Bimba model. Second row:
Changes in Betti numbers β0, β1, β2 and the first nonzero eigenvalues in T, C, N along 20
evenly spaced isovalues from 0 to 0.2. Here, the first shape in the top first row corresponds
to isovalue 0 and the last shape in the first row corresponds to isovalue 0.2. λT

1 , λC
1 , and λN

1
are the first nonzero eigenvalues in the set T, C, N, respectively. The signed distance function
generated from the original Bimba model is used as the level set function.

Figure 6 illustrates the results for the kitten mode with one tunnel formed by its tail. The isovalue
interval [0, 8] is considered. One can see all variables are continuous during the evolution process
except that β1 and λC

1 both drop at the same isovalue, where β1 changes from 1 to 0. This happens due
to the disappearance of the tunnel. In addition, λT

1 increases at the beginning, and then slows down its
rate of increase at the isovalue after the tunnel disappears, and λC

1 and λN
1 decrease during the evolution

process.
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Figure 6. First row: Snapshots of evolving manifolds for the kitten model. Second row:
Changes in Betti numbers β0, β1, β2, and the first nonzero eigenvalues in T, C, N along 20
evenly spaced isovalues from 0 to 8. Here, the first shape in the top first row corresponds to
isovalue 0 and the last shape in the first row corresponds to isovalue 8. λT

1 , λC
1 , and λN

1 are
the first nonzero eigenvalues in the set T, C, N, respectively. The signed distance function
generated from the original Kitten model is used as the level set function.

Note that there are also tunnels in the evolving manifolds for the genes-3 model, as we expected, and
a similar phenomenon can also be observed in Figure 7 for the change of the Betti numbers and the first
nonzero eigenvalues. The isovalue interval [0.1, 4] is considered for this model. The disappearance of
the three tunnels leads to a drop of β1 from 3 to 0 and also a drop of λC

1 . λT
1 initially increases, and then

changes its behavior to decrease after the tunnels vanish. The evolution process results in a decrease in
λC

1 and λN
1 , just as in the previous two models.

The evolving process of the four-ball model with isovalue interval [2, 3.84] (see Figure 8) leads to
discontinuities in all Betti numbers and the first nonzero eigenvalues. As the four separate components
merge in the evolution, β0 changes from 4 to 1, along with a drop in λT

1 at the same isovalue. In
addition, β1 increases from 0 to 3 due to the appearance of three tunnels when the merge happens and
then decreases to 0 after the disappearance of all tunnels. The nonzero eigenvalue λC

1 has a drop that
occurs when the tunnel vanishes, however, it is continuous when the tunnels are formed. This suggests
that the continuity of λC

1 is only related to the death but not the birth of tunnels. One can also observe
a slowdown in the rate of change of λT

1 following the disappearance of all tunnels. As the isolate
increases further, a cavity occurs in the manifold, resulting in an increase of β2 from 0 to 1 and finally
a decrease from 1 to 0 after the cavity disappears. This topological change can also be observed in λN

1 ,
where λN

1 becomes non-differentiable.

AIMS Mathematics Volume 9, Issue 10, 27438–27470.



27459

Figure 7. First row: Snapshots of evolving manifolds for a genus 3 model. Second row:
Changes in Betti numbers β0, β1, β2 and the first nonzero eigenvalues in T, C, N along 20
evenly spaced isovalues from 0.1 to 4. Here, the first shape in the top first row corresponds
to isovalue 0.1 and the last shape in the first row corresponds to isovalue 4. λT

1 , λC
1 , and λN

1
are the first nonzero eigenvalues in the set T, C, N, respectively. The signed distance function
generated from a genus 3 shape is used as the level set function.

Figure 8. First row: Snapshots of evolving manifolds for a four-ball model. Second row:
Changes in Betti numbers β0, β1, β2 and the first nonzero eigenvalues in T, C, N along 20
evenly spaced isovalues from 2 to 3.84. Here, the first shape in the top first row corresponds
to isovalue 2 and the last shape in the first row corresponds to isovalue 3.84. λT

1 , λC
1 , and λN

1
are the first nonzero eigenvalues in the set T, C, N, respectively. The signed distance function
generated from four separate balls centered at the vertices of a tetrahedron is used as the level
set function.
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As illustrated by these models, changes in Betti numbers β0, β1, and β2 and the first nonzero
eigenvalues λT

1 , λ
C
1 , and λN

1 not only reflect the changes in topology, but also characterizes the changes
in geometry for the evolution of manifolds. The rich information revealed by these variables leads to
potential applications in various topological data analysis tasks.

5. Proof-of-principle experimentation

In this section, we carry out a proof-of-principle experimental demonstration of the proposed
persistent de Rham-Hodge theory-based MTL. In this approach, the problem is defined on manifolds
with boundaries. Appropriate boundary conditions are implemented to match actual topological
dimensions. The resulting persistent Hodge Laplacians are solved to deliver the corresponding series of
eigenvectors and eigenvalues at various scales. In this approach, we use these eigenvalues for machine
learning predictions of protein-ligand binding affinity. The binding affinity describes the strength of
protein-ligand interactions for each protein-ligand complex and has been a popular subject in machine
learning studies [6,66]. The feature extraction algorithm, i.e., the algorithm for computing eigenvalues
of Laplacians, is implemented in MATLAB, while the machine learning model is employed using a
gradient boosting regressor (GBR) module from Scikit-learn.

We consider two benchmark datasets, PDBbind-v2007 and PDBbind-v2016 [38,51], to demonstrate
the effectiveness of our framework in capturing the topological features of protein-ligand complexes.
The datasets can be downloaded from http://pdbbind.org.cn/. These two PDBbind datasets provide
collections of biomolecular complexes in PDB with experimentally a measured binding affinity for
each protein-ligand complex, and are commonly used in various studies such as drug-discovery or
molecular recognition, etc [10, 38]. We aim to build a machine learning model, by utilizing the
topological and geometric features of the protein-ligand complexes generated using our persistent
Hodge Laplacian (PHL) framework as inputs, for predicting the protein-ligand binding affinities.

The biomolecular complexes in each PDBbind dataset are organized into three sets, including a
general set, a refined set and a core set, with each set being a superset of the next [7, 24, 36, 41, 57]. In
our experiments, for each dataset, we use the refined set, excluding the core set, to train the predictive
model for the binding affinities of the protein-ligand complexes in the core set. The PDBbind-v2007
dataset contains a total of 1,300 complexes with 1,090 in the refined set and 195 in the core set, while
the PDBbind-v2016 dataset has a total of 4,057 complexes with 3,767 in the refined set and 290 in the
PDBbind core set.

5.1. Element specific discrete to continuum mapping

The original datasets contain atomic names and coordinates, which are the so-called point cloud
data. To generate manifold representations, we carry out the discrete to continuum mapping using
the flexibility and rigidity index [47]. To compute the topological feature of each protein-ligand
complex for the machine learning model, we use the element-specific approach [9]. Specifically, we
consider the pairwise interactions between element types that are commonly found in proteins and
ligands, including Hydrogen (H), Carbon (C), Nitrogen (N), Oxygen (O), and Sulfur (S) in proteins,
and Hydrogen (H), Carbon (C), Nitrogen (N), Oxygen (O), Sulfur (S), Phosphorus (P), Fluorine (F),
Chlorine (Cl), Bromine (Br), and Iodine (I) in ligands. These interactions result in a total of 50 pairs
of atom types for each protein-ligand complex [9]. However, due to the absence of H in most proteins,
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we reduce the number of atom pairs to 40 in practice, ignoring the element H in all proteins. These 40
atom pairs, formed by atom types {C, N, O, S} in proteins, and atom types {H, C, N, O, S, P, F, Cl, Br,
I} in ligands, along with their xyz coordinates, are used to generate the topological features for each
protein-ligand complex. In this paper, all atom-pair complexes are determined by a cutoff distance 12Å
from the ligand.

Let {xαi , i = 1, · · · , s} be the location coordinates of all s atoms in an atom pair, where α denotes
the atom type of the atom either in the protein or in the ligand. For this atom pair, a level set function
can then be obtained by considering the negative sum of Gaussian density functions defined at the xyz
coordinates of all atoms, given as

ρ(x, τ) = −
s∑

i=1

exp
− (
||x − xαi ||
τrαi

)2 , (5.1)

where ||x−xαi || is the Euclidean distance from position x to the location xαi of the i-th atom, τ is a scalar
value, and rαi is the van der Waals radius of the i-th atom, determined by the atom type α. Given an
isovalue c, the sublevel set

M = {x | ρ(x, τ) ≤ c} (5.2)

defines a compact manifold in R3 with its boundary given by the isosurface ∂M = {x | ρ(x, τ) = c}.
A filtration of a manifold for the atom pair can then be obtained by choosing a list of evenly spaced
isovalues of this level set function (5.1). Let c1 < c2 < · · · < cs be such isovalues. We have their
corresponding sublevel sets given as follows:

M1 ⊂ M2 ⊂ · · · ⊂ Ms, (5.3)

where Mi is the compact manifold associated to isovalue ci. In Figure 9, we present one example
of the resulting filtration of manifolds at 3 different isovalues for atom pair OH in protein-ligand
complex 4tmn. Note that the function (5.1) is a special case of the flexibility rigidity index (FRI)
density function [47], which has been shown computationally stable in converting discrete point cloud
representations to continuous embeddings, and been used for generating protein boundary surfaces [18]
and interactive manifolds [47]. Therefore, one can also make other reasonable choices of FRI density
functions to generate the filtration of manifolds.

Figure 9. Left: atoms in the atom pair of type OH in protein-ligand complex 4mnt, with O
shown in red and H in blue. Right: a filtration of manifold for this atom pair complex at 3
different isovalues with level set function Eq (5.1).
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5.2. Machine learning feature extraction

In the computation of the Laplacians, one can ideally choose a common Cartesian grid such that it
contains all manifolds of interest for all protein-ligand complexes, which ensures that all Laplacians
are computed consistently, making their spectra comparable for different complexes. However, as
atoms are spread out in the space for different atom pairs, we need to use a sufficiently large grid with a
fine resolution for accurate computation of Laplacians, which significantly increases the computational
load. Instead, we consider, for each type of atom pairs, a fixed Cartesian grid, regardless of the types
of protein-ligand complexes. This approach also ensures that the topological features are comparable
for different protein-ligand complexes, as all spectra are computed in the same grid for all atom pairs
of the same type. For simplicity, we choose a fixed grid spacing for all Cartesian grids across different
atom pairs, and in our experiments, the grid spacing is fixed to be 0.549Å for both PDBbind datasets.

We consider 9 evenly spaced isovalues in the interval [−0.5,−0.001] for all level set functions,
which provide 9 compact manifolds for each atom pair. Note that the level set function (5.1) is always
less than 0 and approaches 0 as the norm of x increases. This interval is chosen as isovalues greater than
−0.001 result in no change on the 0-th Betti number β0 of manifolds for most atom pairs, and isovalues
smaller than −0.5 leads to high computational cost, as finer grids are necessary to resolve those
isosurfaces. To ensure that the computation of Laplacians is accurate and no topological information
is missing due to numerical errors caused by low resolution, we require that at least 8 grid cells of
the Cartesian grid are contained in each connected component of a manifold. We compute, for each
manifold, the BIG Laplacian L3,n under the normal boundary condition, for which the number of its 0
eigenvalues gives the 0-th Betti number β0. We then use the 0-th Betti number β0 and the first k nonzero
eigenvalues of L3,n, as the topological feature for the manifold. These k + 1 features for each of the 9
compact manifolds for each atom pair, amount to (k + 1)×9×40 topological features for each protein-
ligand complex. While we only used 9 isovalues within this interval for generating the manifolds in
our experiments, more isovalues can be considered, which gives a filtration of more manifolds for each
atom pair, and finally leads to more topological features for each protein-ligand complex.

The spectra of the 0-th Laplacian, which in our case corresponds to L3,n under the normal boundary
condition, have proven effective and successful in many machine learning tasks [10, 38, 41, 61]. While
the Laplacians of other orders could also be used for generating more topological features, we utilize, in
this preliminary test, only the spectra of L3,n as features for the protein-ligand complexes in the machine
learning model due to the computation efficiency. The results, as shown in Section 5.4, indicate that
these features are sufficient to validate our framework in the machine learning task for predicting the
protein-ligand binding affinities.

5.3. Machine learning algorithm

As a subset of artificial intelligence (AI), machine learning focuses on developing algorithms
and models that allow computers to learn from and make decisions based on data. Instead of
being explicitly programmed to perform a task, machine learning models identify patterns in data,
enabling them to improve their performance over time. New algorithms have been constantly
proposed [34, 35], including the topology-enabled transformer [12]. The machine learning models
for predicting protein-ligand binding affinities often fall into two categories depending on the type of
input data: complex-based or sequence-based models. The complex-based methods are trained using
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features obtained from the 3D protein-ligand complexes, while the sequence-based models learn from
the one-dimensional protein sequences and the ligand-simplified molecular-input line-entry system
(SMILES) strings. In our experiments, besides the topological features from the 3D protein-ligand
complexes, we incorporate protein-ligand features obtained from sequence-based models to build
consensus models. To be specific, we make use of the recent pretrained transformer protein language
model Evolutionary Scale Modeling-2 (ESM-2) [32], and the pretrained Transformer-CPZ model [13]
for generating the protein and ligand features, respectively, and use their concatenation as inputs for the
binding affinity prediction. Here CPZ represents the union of three data setscontains ChEMBL [26],
PubChem [31], and ZINC [29]. The residue embeddings from the last layer of the pretrained ESM-2
model esm.pretrained.esm2 t33 650M UR50D are used as the protein features, while the embeddings
from the last layer of the pretrained Transformer-CPZ model chembl27 pubchem zinc 512 are used as
the ligand features.

With the topological features and the embedding features obtained from ESM-2 and Transformer-
CPZ, we employ the GBR module from Scikit-learn 1.4.2 for predicting the protein-ligand binding
affinities. We then use the consensus prediction from these models as the final results. The GBR
parameters used in our experiments are: n estimators=10,000, max depth=5, min samples split=5,
learning rate=0.005, loss=squared error, subsample=0.5, and max features=sqrt. Changing these
parameters does not result in significant differences. To address the randomness from the machine
learning algorithm, we repeat each modeling process 20 times with different random seeds, and use
the average of predictive results. The Pearson correlation coefficients (PCC) are used as the evaluation
metric to assess the performance of our proposed models.

5.4. Experimental results

The number of topological features for each protein-ligand complex, as in Section 5.2, is given by
(1 + k)×9×40, where k denotes the number of the first k nonzero eigenvalues of the Laplacians. To
find the optimal parameter k leading to the best performance of predictive modules, we carry out the
five-fold cross-validation on the training set of each PDBbind dataset with varying values of k based
on the average of PCC values. The results indicate that the optimal PCC values for the PDBbind-
v2007 and PDBbind-v2016 training sets can be achieved when k = 5 and k = 10, respectively. For
the PDBbind-v2007 training set, the PCC value is 0.709 and the root mean squared error (RMSE)
value is 2.049, while for the PDBbind-v2016 training set, the PCC value is 0.748 and the RMSE
value of 1.812. These choices of k result in a total of 2,160 topological features for each protein-ligand
complex in the PDBbind-v2007 dataset and 3,960 topological features for each protein-ligand complex
in the PDBbind-v2016 dataset. These topological features, along with the concatenated protein-ligand
features from ESM-2 and Transformer-CPZ, are then used as inputs of the gradient-boosting regressor
for binding affinity prediction.

In Table 1, we report the average PCC values and the average RMSE of our models on the test
set for each PDBbind dataset using only the topological features from PHL, the model using only
the transformer features (TF), and the consensus module using both types of features. With the
incorporation of topological features, one can see a significant improvement in PCC values when using
the proposed consensus model for each dataset, compared to the model using only TF features. The best
performance is achieved when using the consensus model, yielding a PCC value of 0.826 with RMSE
given as 1.954 for PDBbind-v2007 and 0.849 with RMSE 1.728 for PDBbind-v2016. In addition, we
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present the Pearson correlation coefficients obtained from our model and those in the previous studies,
with results from [7, 10, 36, 41, 57]. As illustrated in Figure 10, our model outperforms all the other
models for the two PDBbind datasets. These results demonstrate the utility and effectiveness of our
method in capturing the topological features.

Table 1. Model performance on PDBbind-v2007 and PDBbind-v2016 benchmarks.

Method PCC RMSE (kcal/mol)

PDBbind-v2007
PHL 0.794 2.066
TF 0.795 2.006
Consensus 0.826 1.954

PDBbind-v2016
PHL 0.808 1.863
TF 0.836 1.716
Consensus 0.849 1.728

Abbreviations: PCC, Pearson correlation coefficient; RMSE, root mean squared error.

Figure 10. Performance comparison of the proposed model with other machine learning
models for the two PDBbind datasets. The results of the proposed model (PHLL) are in red.
The results of other methods are adapted from Refs. [7, 10, 36, 38, 41, 57].

6. Conclusions

Although there has been tremendous success of topological data analysis TDA [44,45], particularly,
topological deep learning TDL on point cloud data [9, 49], there are few methods for the topological
analysis of data on manifolds or manifold topological analysis [19]. To fill this gap, we presented a
new method, persistent Hodge Laplacian PHL in the Eulerian representation, for manifold topological
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learning MTL of real-world data on manifolds. PHL differs from existing state-of-the-art TDA
methods on point clouds in the sense that the proposed PHL is defined on manifolds, for which the
traditional TDA methods do not work. Additionally, PHL extends our earlier evolutionary de Rham-
Hodge theory constructed on the Lagrangian representation [18] to the Eulerian representation, which
avoids numerical inconsistency over multi-scale manifolds. We offer two discrete Hodge stars that
mimic the continuous operator and developed both a continuous theory for mapping of normal forms
across manifolds in a filtration to enable persistent cohomology analysis and the associated topology-
persevering discrete construction on Cartesian grids. A proof-of-principle test on two benchmark
datasets validates our MTL model, highlighting its simplicity and promise for the predictions of data
on manifolds.

The popularity of TDA is facilitated by effective software packages, such as JavaPlex [2],
Perseus [42], Ripser [4], etc. The further development of efficient PHL software is an important task.
The computational efficiency has not been studied in this work. Algorithm acceleration and parallel
and graphics processing unit (GPU) architecture are to be explored. Further experimental validations
of manifold topological learning are also needed.
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