
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 27418–27437.
DOI: 10.3934/math.20241332
Received: 15 July 2024
Revised: 05 September 2024
Accepted: 18 September 2024
Published: 23 September 2024

Research article

Gradient-enhanced fractional physics-informed neural networks for solving
forward and inverse problems of the multiterm time-fractional Burger-type
equation

Shanhao Yuan1, Yanqin Liu2,*, Yibin Xu1, Qiuping Li2, Chao Guo2 and Yanfeng Shen3

1 School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China

2 School of Mathematics and Big Data, Dezhou University, Dezhou 253023, China
3 Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information
Science, Neijiang Normal University, Neijiang 641100, China

* Correspondence: Email: yqliumath@163.com; Tel: +8613853467235.

Abstract: In this paper, we introduced the gradient-enhanced fractional physics-informed neural
networks (gfPINNs) for solving the forward and inverse problems of the multiterm time-fractional
Burger-type equation. The gfPINNs leverage gradient information derived from the residual of the
fractional partial differential equation and embed the gradient into the loss function. Since the standard
chain rule in integer calculus is invalid in fractional calculus, the automatic differentiation of neural
networks does not apply to fractional operators. The automatic differentiation for the integer order
operators and the finite difference discretization for the fractional operators were used to construct
the residual in the loss function. The numerical results demonstrate the effectiveness of gfPINNs in
solving the multiterm time-fractional Burger-type equation. By comparing the experimental results of
fractional physics-informed neural networks (fPINNs) and gfPINNs, it can be seen that the training
performance of gfPINNs is better than fPINNs.

Keywords: multiterm time-fractional Burger-type equation; fPINNs; gfPINNs; forward problem;
inverse problem
Mathematics Subject Classification: 26A33, 35R11, 65M22, 68T07

1. Introduction

In recent years, fractional partial differential equations (FPDEs) have been widely used in natural
science and engineering technology [1–4]. The advantage of FPDEs lies in their ability to better

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241332

27419

describe materials and processes that exhibit memory and genetic properties [5, 6]. However, the
solutions of FPDEs are much more complex. Many researchers have exploited diverse techniques for
the investigation of FPDEs such as the finite difference method (FDM) [7], finite element method [8],
spectral method [9], virtual element method [10], etc. The development of effective numerical methods
to approximate FPDEs has been the goal of some researchers.

In recent years, neural networks (NNs) have been successfully applied to solve problems in various
fields [11–13]. Due to the high expressiveness of NNs in functional approximation [14–16], using
NNs to solve differential and integral equations has become an active and important research field.
Physics-informed neural networks (PINNs) [17–20] are machine learning models that combine deep
learning with physical knowledge. PINNs embed PDEs into the loss function of the NNs, enabling the
NNs to learn solutions to PDEs. The PINNs algorithm is meshless and simple, and can be applied to
various types of PDEs, including integral differential equations, FPDEs, and random partial differential
equations. Moreover, PINNs solved the inverse problem of PDEs just as easily as they solved the
forward problem [17]. PINNs have been successfully applied to solve various problems in scientific
computing [21–23]. Pang et al. [24] used the FDM to approximate the fractional derivatives that cannot
be automatically differentiated, thus extending the PINNs to fPINNs for solving FPDEs.

Despite the success of deep learning in the past, solving a wide range of PDEs is theoretically and
practically challenging as complexity increases. Therefore, many aspects of PINNs need to be further
improved to achieve more accurate predictions, higher computational efficiency, and robustness of
training. Lu et al. [25] proposed DeepXDE, a deep learning library for solving PDEs, introduced
a new residual-based adaptive refinement method to improve the training efficiency of PINNs, and
new residual points were added at the position where the residuals of the PDEs were large, so that
the discontinuities of PDEs could be captured well. Zhang et al. [26] combined fPINNs with the
spectral method to solve the time-fractional phase field models. It had the characteristics of reducing
the approximate number of discrete fractional operators, thus improving the training efficiency and
obtaining higher error accuracy. Wu et al. [27] conducted a comprehensive study on two types of
sampling of PINNs, including non-adaptive uniform sampling and adaptive non-uniform sampling,
and the research results could also be used as a practical guide for selecting sampling methods.
Zhang et al. [28] removed the soft constraints of PDEs in the loss function, and used the Lie
symmetry group to generate the labeled data of PDEs to build a supervised learning model, thus
effectively predicting the large amplitude and high frequency solutions of the Klein-Gordon equation.
Zhang et al. [29] introduced the symmetry-enhanced physics-informed neural network (SPINN), which
incorporated the invariant surface conditions derived from Lie symmetries or non-classical symmetries
of PDEs into the loss function of PINNs, aiming to improve accuracy of PINNs. Lu et al. [30] and
Xie et al. [31] introduced gradient-enhanced physics-informed neural networks (gPINNs) to solve PDEs
and the idea of embedding the gradient information from the residuals of PDEs into the loss functions
has also proven to be effective in other methods such as Gaussian process regression [32].

In this paper, inspired by the above works, gfPINNs are applied to solve the forward and inverse
problems of the multiterm time-fractional Burger-type equation. The integer order derivatives are
handled using the automatic differentiation capability of the NNs, while the fractional derivatives
of the equation are approximated using finite difference discretization [33, 34]. Subsequently, the
residual information of the equation is then incorporated into the loss function of NNs and optimized
to yield optimal parameters. For the inverse problems of the multiterm time-fractional Burger-type

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27420

equation, their overall form are known but the coefficient and the orders of time-fractional derivatives
are unknown. The gfPINNs explicitly incorporate information from the equation by including the
differential operators of the equation directly into the optimization loss function. The parameters to be
identified appear in the differential operators, which are then optimized by minimizing the loss function
associated with those parameters. A numerical comparison between fPINNs and gfPINNs is conducted
using numerical examples. The numerical results demonstrate the effectiveness of gfPINNs in solving
the multiterm time-fractional Burger-type equation.

The structure of this paper is as follows. In Section 2, we define forward and inverse problems for the
multiterm time-fractional Burger-type equation. In Section 3, we introduce fPINNs and gfPINNs and
give the finite difference discretization to approximate the time-fractional derivatives. In Section 4, we
demonstrate the effectiveness of gfPINNs in solving the forward and inverse problems of the multiterm
time-fractional Burger-type equation by numerical examples, and compare the experimental results of
fPINNs and gfPINNs. Finally, we give the conclusions of this paper in Section 5.

2. Multiterm time-fractional Burger-type equation

We consider the following multiterm time-fractional Burger-type equation defined on the bounded
domain Ω:

𝑐1
𝐶
0 𝐷𝛼

𝑡 𝑢(𝑥, 𝑡) + 𝑐2
𝐶
0 𝐷𝛾

𝑡 𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝜕𝑢(𝑥, 𝑡)
𝜕𝑥 = 𝑣𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2 + 𝑓(𝑥, 𝑡), (2.1)

where (𝑥, 𝑡) ∈ Ω × [0, 𝑇] and the initial and boundary conditions are given as

{
𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω,
𝑢(𝑥, 0) = 𝑔(𝑥), 𝑥 ∈ Ω, (2.2)

where 𝑢(𝑥, 𝑡) is the solution of the equation, 𝑓(𝑥, 𝑡) is the forcing term whose values are only known at
scattered spatio-temporal coordinates, 𝑣 is the kinematic viscosity of fluid, 𝑔(𝑥) is a sufficiently smooth
function, the fractional orders 𝛼 and 𝛾 have been restricted to (0, 1) and (1, 2), respectively, 𝐶

0 𝐷𝜃
𝑡 𝑢(𝑥, 𝑡)

is the Caputo time-fractional derivative of order 𝜃 (𝜃 > 0, 𝑛 − 1 ≤ 𝜃 < 𝑛) of 𝑢(𝑥, 𝑡) with respect
to 𝑡 [35, 36]:

𝐶
0 𝐷𝜃

𝑡 𝑢(𝑥, 𝑡) =
{

1
Γ(𝑛−𝜃) ∫𝑡

𝛼(𝑡 − 𝑠)𝑛−1−𝜃 𝜕𝑛𝑢(𝑥,𝑠)
𝜕𝑠𝑛 𝑑𝑠, 𝜃 ∉ z+,

𝜕𝜃𝑢(𝑥,𝑡)
𝜕𝑡𝜃 , 𝜃 ∈ z+,

(2.3)

where Γ(⋅) is the gamma function.
The forward and inverse problems of solving the multiterm time-fractional Burger-type equation are

described as follows. For the forward problem, under the given preconditions of the fractional orders 𝛼
and 𝛾 , the forcing term 𝑓 , and the initial and boundary conditions, the solution 𝑢(𝑥, 𝑡) is solved. For the
inverse problem, under the given preconditions of the initial and boundary conditions, the forcing term
𝑓 , and additional concentration measurements at the final time 𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), the fractional orders 𝛼
and 𝛾 , the flow velocity 𝑣, and the solution 𝑢(𝑥, 𝑡) are solved.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27421

3. Methodology

3.1. fPINNs

This subsection introduces the idea of fPINNs and we consider both the forward and inverse
problems, along with their corresponding NNs. We first consider the forward problem of the multiterm
time-fractional Burger-type equation in the following form:

⎧⎪
⎨
⎪⎩

ℒ{𝑢(𝑥, 𝑡)} = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω × [0, 𝑇],
𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω,
𝑢(𝑥, 0) = 𝑔(𝑥), 𝑥 ∈ Ω,

(3.1)

where ℒ{⋅} is a nonlinear operator and ℒ{𝑢(𝑥, 𝑡)} = 𝑐1
𝐶
0 𝐷𝛼

𝑡 𝑢(𝑥, 𝑡) + 𝑐2
𝐶
0 𝐷𝛾

𝑡 𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)
𝜕𝑥 −

𝑣𝜕2𝑢(𝑥,𝑡)
𝜕𝑥2 . We divide the nonlinear operator ℒ{⋅} into two parts, ℒ = ℒ𝐴𝐷 + ℒ𝑛𝑜𝑛𝐴𝐷. The first part

is an integer derivative operator, which can be automatically differentiated (AD) using the chain rule.
We have

ℒ𝐴𝐷{⋅} =
⎧
⎪
⎨
⎪
⎩

𝑢(𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)
𝜕𝑥 − 𝑣𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 , 𝛼 ∈ (0, 1), 𝛾 ∈ (1, 2),
𝑐2

𝜕2𝑢(𝑥,𝑡)
𝜕𝑡2 + 𝑢(𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)

𝜕𝑥 − 𝑣𝜕2𝑢(𝑥,𝑡)
𝜕𝑥2 , 𝛼 ∈ (0, 1), 𝛾 = 2,

𝑐1
𝜕𝑢(𝑥,𝑡)

𝜕𝑡 + 𝑢(𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)
𝜕𝑥 − 𝑣𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 , 𝛼 = 1, 𝛾 ∈ (1, 2),
(3.2)

and the second category consists of operators that lack automatic differentiation capabilities:

ℒ𝑛𝑜𝑛𝐴𝐷{⋅} =
⎧⎪
⎨
⎪⎩

𝑐1
𝐶
0 𝐷𝛼

𝑡 𝑢(𝑥, 𝑡) + 𝑐2
𝐶
0 𝐷𝛾

𝑡 𝑢(𝑥, 𝑡), 𝛼 ∈ (0, 1), 𝛾 ∈ (1, 2),
𝑐1

𝐶
0 𝐷𝛼

𝑡 𝑢(𝑥, 𝑡), 𝛼 ∈ (0, 1), 𝛾 = 2,
𝑐2

𝐶
0 𝐷𝛾

𝑡 𝑢(𝑥, 𝑡), 𝛼 = 1, 𝛾 ∈ (1, 2).
(3.3)

Forℒ𝑛𝑜𝑛𝐴𝐷, we can discretize it using FDM and denote byℒ𝐹 𝐷𝑀 the discretization version ofℒ𝑛𝑜𝑛𝐴𝐷.
During the NNs training process, our goal is to optimize its parameters in order to ensure that

the approximate solution of the equation closely satisfies the initial and boundary conditions. The
approximate solution is chosen as

̃𝑢(𝑥, 𝑡) = 𝑡𝜌(𝑥)𝑢𝑁𝑁 (𝑥, 𝑡) + 𝑔(𝑥), (3.4)

where 𝑢𝑁𝑁 represents the output of the NNs. The NNs acts as a surrogate model, approximating the
relationship between spatio-temporal coordinates and the solution of the equation. It is defined by
its weights and biases, forming the parameter vector 𝜇; see Figure 1 for a simple NN. This is fully
connected with a single hidden layer consisting of three neurons. In this network, 𝑥 and 𝑡 are two
inputs, which go through a linear transformation to obtain 𝑥1 = 𝑤1𝑥 + 𝑤4𝑡 + 𝑏1, 𝑥2 = 𝑤2𝑥 + 𝑤5𝑡 + 𝑏2,
and 𝑥3 = 𝑤3𝑥 + 𝑤6𝑡 + 𝑏3 in the hidden layer, and then, they go through a nonlinear transformation to
get 𝑌𝑖 = 𝑓(𝑥𝑖) for 𝑖 = 1, 2, 3. We choose the hyperbolic tangent function tanh(⋅). 𝑌𝑖 to go through a
linear transformation to obtain the output of the NNs, 𝑢𝑁𝑁 (𝑥, 𝑡; 𝜇) = 𝑤7𝑌1 + 𝑤8𝑌2 + 𝑤9𝑌3 + 𝑏4. The
vector of parameters 𝜇 is comprised of the weights 𝑤𝑖 and biases 𝑏𝑖. 𝜌(0) = 𝜌(1) = 0 and the auxiliary
function 𝜌(𝑥) is preselected. 𝑔(𝑥) is the initial condition function such that it satisfies the initial and
boundary conditions automatically.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27422

x

t

x1

x3

x2

Y1

Y3

Y2
uNN

Figure 1. A simple NN.

The loss function of fPINNs for the forward problem with the approximate solution is defined as
the mean-squared error of the equation residual

𝐿𝐹 𝑊 = 1
|𝑆𝐹 | ∑

(𝑥,𝑡)∈𝑆
[ℒ𝐹 𝐷𝑀{ ̃𝑢(𝑥, 𝑡)} + ℒ𝐴𝐷{ ̃𝑢(𝑥, 𝑡)} − 𝑓(𝑥, 𝑡)]

2 , (3.5)

where 𝑆𝐹 ⊂ Ω × [0, 𝑇] and |𝑆𝐹 | represents the number of training points. Then, we train the NNs to
optimize the loss function of the forward problem with respect to the NNs parameters 𝜇, thus obtaining
the optimal parameters 𝜇𝑏𝑒𝑠𝑡. Finally, we specify a set of arbitrary test points to test the trained NNs
and observe the training performance.

The codes for solving the forward and inverse problems of the equation using NNs is similar. We
only need to incorporate the parameters to be identified in the inverse problem into the loss function
to be optimized in the forward problem, and no other changes are necessary. Next, we consider the
following form of the inverse problem:

⎧
⎪
⎨
⎪
⎩

ℒ 𝜉={𝛼,𝛾,𝑣}{𝑢(𝑥, 𝑡)} = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω × [0, 𝑇],
𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω,
𝑢(𝑥, 0) = 𝑔(𝑥), 𝑥 ∈ Ω,
𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω × [0, 𝑇],

(3.6)

where 𝜉 is the parameter of the equation, so the loss function 𝐿𝐼𝑉 for the inverse problem under
consideration is

𝐿𝐼𝑉 {𝜇, 𝜉 = {𝛼, 𝛾, 𝑣}} =𝑊𝐼1
1

|𝑆𝐼1|
∑

(𝑥,𝑡)∈𝑆𝐼1

[ℒ {𝛼,𝛾}
𝐹 𝐷𝑀 { ̃𝑢(𝑥, 𝑡)} + ℒ 𝑣

𝐴𝐷{ ̃𝑢(𝑥, 𝑡)} − 𝑓(𝑥, 𝑡)]2

+ 𝑊𝐼2
1

|𝑆𝐼2|
∑

(𝑥,𝑡)∈𝑆𝐼2

[̃𝑢(𝑥, 𝑡) − ℎ(𝑥, 𝑡)]2,
(3.7)

where 𝛼 ∈ (0, 1) and 𝛾 ∈ (1, 2), 𝑆𝐼1 ⊂ Ω × [0, 𝑇] and 𝑆𝐼2 ⊂ Ω × [0, 𝑇] are two sets of different training
points, and 𝑊𝐼1 and 𝑊𝐼2 are preselected weight coefficients. We train the NNs to minimize the loss
function, thereby obtaining 𝛼𝑏𝑒𝑠𝑡 and 𝛾𝑏𝑒𝑠𝑡, the flow velocity 𝑣𝑏𝑒𝑠𝑡, and the optimal parameters 𝜇𝑏𝑒𝑠𝑡 of
the NNs.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27423

3.2. gfPINNs

We incorporate the residual information of the equation into the loss function of NNs and train the
NNs to minimize this loss function, thus obtaining the optimal parameters of NNs. If the residuals in
the PDEs are zero, then the gradient of the residuals in the PDEs should also be zero. Therefore, adding
gradient information to the loss function is a necessary condition for training NNs. One motivation
behind gfPINNs is that the residual in the loss function often fluctuates near zero. Penalizing the slope
of the residual can reduce these fluctuations, making the residual closer to zero. In this section, we
continue to consider the formulation of the forward and inverse problems of the equation discussed in
the previous section.

We first consider the forward problem in the form of (3.1) and provide the loss function of gfPINNs
for this form:

𝐿𝑔𝐹 𝑊 = 𝑊𝐹 𝐿𝐹 𝑊 + 𝑊𝑔1𝐹 𝐿𝑔1𝐹 𝑊 + 𝑊𝑔2𝐹 𝐿𝑔2𝐹 𝑊 , (3.8)

where

𝐿𝑔1𝐹 𝑊 = 1

|𝑆𝑔1𝐹 |
∑

(𝑥,𝑡)∈𝑆𝑔1𝐹
[

𝜕ℒ𝐹 𝐷𝑀 { ̃𝑢(𝑥, 𝑡)}
𝜕𝑥 + 𝜕ℒ𝐴𝐷{ ̃𝑢(𝑥, 𝑡)}

𝜕𝑥 − 𝜕𝑓(𝑥, 𝑡)
𝜕𝑥]

2
, (3.9)

𝐿𝑔2𝐹 𝑊 = 1

|𝑆𝑔2𝐹 |
∑

(𝑥,𝑡)∈𝑆𝑔2𝐹
[

𝜕ℒ𝐹 𝐷𝑀 { ̃𝑢(𝑥, 𝑡)}
𝜕𝑡 + 𝜕ℒ𝐴𝐷{ ̃𝑢(𝑥, 𝑡)}

𝜕𝑡 − 𝜕𝑓(𝑥, 𝑡)
𝜕𝑡]

2
, (3.10)

and the approximate solution of the equation is the same as Eq (3.4): ̃𝑢(𝑥, 𝑡) = 𝜌(𝑥)𝑢𝑁𝑁 (𝑥, 𝑡) + 𝑔(𝑥).
The expression 𝐿𝐹 𝑊 as shown in Eq (3.5), where 𝑊𝐹 , 𝑊𝑔1𝐹 , and 𝑊𝑔2𝐹 are preselected weighting
coefficients, 𝑆𝑔1𝐹 ⊂ Ω × [0, 𝑇] and 𝑆𝑔2𝐹 ⊂ Ω × [0, 𝑇] are two sets of different training points.

Next, we consider the inverse problem in the form of (3.6) and provide the loss function of gfPINNs
for this form. The approach for the inverse problem of gfPINNs is similar to that of fPINNs. We provide
the loss function for the inverse problem of gfPINNs.

𝐿𝑔𝐼𝑉 = 𝑊𝐼𝐿𝐼𝑉 {𝜇, 𝜉 = {𝛼, 𝛾, 𝑣}} + 𝑊𝑔1𝐼𝐿𝑔1𝐼𝑉 + 𝑊𝑔2𝐼𝐿𝑔2𝐼𝑉 , (3.11)

where

𝐿𝑔1𝐼𝑉 =𝑊𝑔1𝐼1
1

|𝑆𝑔1𝐼1|
∑

(𝑥,𝑡)∈𝑆𝑔1𝐼1
[

𝜕ℒ {𝛼,𝛾}
𝐹 𝐷𝑀 { ̃𝑢(𝑥, 𝑡)}

𝜕𝑥 +
𝜕ℒ 𝑣

𝐴𝐷{ ̃𝑢(𝑥, 𝑡)}
𝜕𝑥 − 𝜕𝑓(𝑥, 𝑡)

𝜕𝑥]

2

+ 𝑊𝑔1𝐼2
1

|𝑆𝑔1𝐼2|
∑

(𝑥,𝑡)∈𝑆𝑔1𝐼2
[

𝜕 ̃𝑢(𝑥, 𝑡)
𝜕𝑥 − 𝜕ℎ(𝑥, 𝑡)

𝜕𝑥]
2

,
(3.12)

𝐿𝑔2𝐼𝑉 =𝑊𝑔2𝐼1
1

|𝑆𝑔2𝐼1|
∑

(𝑥,𝑡)∈𝑆𝑔2𝐼1
[

𝜕ℒ {𝛼,𝛾}
𝐹 𝐷𝑀 { ̃𝑢(𝑥, 𝑡)}

𝜕𝑡 +
𝜕ℒ 𝑣

𝐴𝐷{ ̃𝑢(𝑥, 𝑡)}
𝜕𝑡 − 𝜕𝑓(𝑥, 𝑡)

𝜕𝑡]

2

+ 𝑊𝑔2𝐼2
1

|𝑆𝑔2𝐼2|
∑

(𝑥,𝑡)∈𝑆𝑔2𝐼2
[

𝜕 ̃𝑢(𝑥, 𝑡)
𝜕𝑡 − 𝜕ℎ(𝑥, 𝑡)

𝜕𝑡]
2

,
(3.13)

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27424

and the expression 𝐿𝐼𝑉 {𝜇, 𝜉 = {𝛼, 𝛾, 𝑣}} as shown in Eq (3.7), where 𝑊𝐼 , 𝑊𝑔1𝐼 , 𝑊𝑔2𝐼 , 𝑊𝑔1𝐼1 , 𝑊𝑔1𝐼2 ,
𝑊𝑔2𝐼1 , and 𝑊𝑔2𝐼2 are preselected weighting coefficients, 𝑆𝑔1𝐼1 , 𝑆𝑔2𝐼1 ⊂ Ω × [0, 𝑇], 𝑆𝑔1𝐼2 , 𝑎𝑛𝑑𝑆𝑔2𝐼2 ⊂
Ω × [0, 𝑇] are four sets of different training points.

This defines the loss function of gfPINNs, which is exactly the same as discussed above for fPINNs.
We train the NNs to obtain the optimal parameters of the NNs.

3.3. Finite difference discretization for time-fractional derivatives

In the 𝑥 direction [0, 𝑀], we take the mesh points 𝑥𝑝 = 𝑖ℎ𝑥, 𝑖 = 0, 1, 2, ..., 𝑀1, and in the 𝑡 direction
[0, 𝑇], we take the mesh points 𝑡𝑛 = 𝑛𝜏, 𝑛 = 0, 1, ..., 𝑁 , where ℎ𝑥 = 𝑀

𝑀1
and 𝜏 = 𝑇

𝑁 are the uniform
spatial step size and temporal step size, respectively. DenoteΩℎ ≡ {0 ≤ 𝑖 ≤ 𝑀1}, Ω𝜏 ≡ {0 ≤ 𝑛 ≤ 𝑁}.
Suppose 𝑢𝑛

𝑖 = 𝑢(𝑥𝑖, 𝑡𝑛) is a grid function on Ωℎ × Ω𝜏 .
We approximate the fractional derivatives of the equation using the finite difference

discretization [33, 34].
For 𝛼 ∈ (0, 1), we have 𝐶

0 𝐷𝛼
𝑡 𝑢(𝑥, 𝑡) ∣(𝑥𝑖,𝑡𝑛)= 𝐷𝛼

𝜏 ̃𝑢𝑛
𝑖 + 𝑅1(̃𝑢𝑛

𝑖),

𝐷𝛼
𝜏 ̃𝑢𝑛

𝑖 ∶= 𝜏−𝛼

Γ(2 − 𝛼)[𝑎𝛼
0 ̃𝑢𝑛

𝑖 +
𝑛−1

∑
𝑘=1

(𝑎𝛼
𝑛−𝑘 − 𝑎𝛼

𝑛−𝑘−1) ̃𝑢𝑘
𝑖 − 𝑎𝛼

𝑛−1 ̃𝑢0
𝑖], (3.14)

where ̃𝑢𝑛
𝑖 = ̃𝑢(𝑥𝑖, 𝑡𝑛), 𝑅1 ≤ 𝐶(𝜏2−𝛼), and 𝑎𝛼

𝑘 = (𝑘 + 1)1−𝛼 − 𝑘1−𝛼.

Lemma 3.1. [33] 𝛼 ∈ (0, 1), 𝑎𝛼
𝑙 = (𝑙 + 1)1−𝛼 − 𝑙1−𝛼, 𝑙 = 0, 1, 2, … ,

(1) 1 = 𝑎𝛼
0 > 𝑎𝛼

1 > 𝑎𝛼
2 > ⋯ > 𝑎𝛼

𝑙 > 0, lim𝑙→∞ 𝑎𝛼
𝑙 → 0,

(2) (1 − 𝛼)𝑙−𝛼 < 𝑎(𝛼)
𝑙−1 < (1 − 𝛼)(𝑙 − 1)−𝛼, 𝑙 ≥ 1.

For 𝛾 ∈ (1, 2), 𝐶
0 𝐷𝛾

𝑡 𝑢(𝑥, 𝑡) ∣(𝑥𝑖,𝑡𝑛)= 𝐷𝛾
𝜏 ̃𝑢𝑛

𝑖 + 𝑅2(̃𝑢𝑛
𝑖),

𝐷𝛾
𝜏 ̃𝑢𝑛

𝑖 ∶= 𝜏1−𝛾

Γ(3 − 𝛾)[𝑏𝛾
0𝛿𝑡 ̃𝑢𝑛

𝑖 +
𝑛−1

∑
𝑘=1

(𝑏𝛾
𝑛−𝑘 − 𝑏𝛾

𝑛−𝑘−1)𝛿𝑡 ̃𝑢𝑘
𝑖 − 𝑏𝛾

𝑛−1𝛿𝑡 ̃𝑢0
𝑖], (3.15)

where 𝛿𝑡𝑢(𝑥, 𝑡) = 𝜕𝑢(𝑥,𝑡)
𝜕𝑡 , 𝑅2 ≤ 𝐶(𝜏3−𝛾), and 𝑏𝛾

𝑘 = (𝑘 + 1)2−𝛾 − 𝑘2−𝛾 .
Given the spatial position 𝑥, it can be seen from the finite difference discretization that the time-

fractional derivative of ̃𝑢(𝑥, 𝑡) evaluated at time 𝑡 depends on the value of ̃𝑢(𝑥, 𝑡) calculated at all previous
times 0, 𝜏, 2𝜏, ⋯, 𝑡. We call the current time and the previous time the training points and the auxiliary
points, respectively.

4. Numerical examples

In this section, we demonstrate the effectiveness of gfPINNs in solving forward and inverse problems
of the multiterm time-fractional Burger-type equation and we compared fPINNs with gfPINNs. We
solve the forward problems of the equation and present the experimental results in Section 4.1. We
solve the inverse problems and present the experimental results in Section 4.2.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27425

We give a fabricated solution to the problem 𝑢(𝑥, 𝑡) = 𝑡𝑝 sin(𝜋𝑥). In the given approximate
solution (3.4), the auxiliary function 𝜌(⋅) is defined as 𝜌(⋅) = 1 − ‖𝑥‖

2
2. We use the following form

of 𝐿2 relative error:

{∑𝑘[𝑢(𝑥𝑡𝑒𝑠𝑡,𝑘, 𝑡𝑡𝑒𝑠𝑡,𝑘) − ̃𝑢(𝑥𝑡𝑒𝑠𝑡,𝑘, 𝑡𝑡𝑒𝑠𝑡,𝑘)]2}
1
2

{∑𝑘[𝑢(𝑥𝑡𝑒𝑠𝑡,𝑘, 𝑡𝑡𝑒𝑠𝑡,𝑘)]2}
1
2

(4.1)

to measure the performance of the NNs, where ̃𝑢 denotes the approximated solution, 𝑢 is the exact
solution, and (𝑥𝑘, 𝑡𝑘) denotes the 𝑘-th test point.

We wrote the code in Python and took advantage of the automatic differentiation capability of
TensorFlow [37]. The stochastic gradient descent Adam algorithm [38] was used to optimize the loss
function. We initialized the NNs parameters using normalized Glorot initialization [39]. Otherwise,
when training a neural network, we set the learning rate, the number of neurons, the number of hidden
layers, and the activation function as 1 × 10−3, 20, 4, and tanh(𝑥), respectively.

4.1. Forward problems

In this section, we consider the the multiterm time-fractional Burger-type equation of the form (2.1)
with initial and boundary conditions (2.2). We let 𝑣 = 1, (𝑥, 𝑡) ∈ [0, 1]×[0, 1], and 𝑔(𝑥) = 0, considering
the smooth fabricated solution 𝑢(𝑥, 𝑡) = 𝑡𝑝 sin(𝜋𝑥) and the forcing term

𝑓(𝑥, 𝑡) = Γ(𝑝 + 1)
Γ(𝑝 + 1 − 𝛼)𝑡(𝑝−𝛼)(𝑝 − 𝛼) sin(𝜋𝑥) + Γ(𝑝 + 1)

Γ(𝑝 + 1 − 𝛾)𝑡(𝑝−𝛾)(𝑝 − 𝛾) sin(𝜋𝑥)

+ 𝑡2𝑝 sin(𝜋𝑥) cos(𝜋𝑥) + 𝜋2𝑡𝑝 sin(𝜋𝑥).
(4.2)

Case 1: We choose 𝑐1 = 1, 𝑐2 = 0, and 𝛼 = 0.5, considering the smooth fabricated solution 𝑢(𝑥, 𝑡) =
𝑡4 sin(𝜋𝑥) and the forcing term 𝑓(𝑥, 𝑡) = 3.5 Γ(5)

Γ(4.5) 𝑡
3.5 sin(𝜋𝑥) + 𝑡8 sin(𝜋𝑥) cos(𝜋𝑥) + 𝜋2𝑡4 sin(𝜋𝑥). We

consider 𝑀1 − 1 training points of the spatial domain: 𝑥𝑖 = 𝑖ℎ𝑥 for 𝑖 = 1, 2, ⋯ , 𝑀1 − 1 and 𝑁 training
points of the time domain: 𝑡𝑛 = 𝑛𝜏 for 𝑛 = 1, 2, ⋯ , 𝑁 . We do not need to place training points on the
initial and boundary since the approximate solution ̃𝑢(𝑥, 𝑡) = 𝑡𝑥(1 − 𝑥)𝑢𝑁𝑁 (𝑥, 𝑡; 𝜇) satisfies the initial
and boundary conditions automatically. For fPINNs, the loss function can be written as

𝐿𝐹 𝑊 = 1
(𝑀1 − 1)𝑁

𝑀−1

∑
𝑖=1

𝑁

∑
𝑛=1

⎧⎪
⎨
⎪⎩

𝜏−0.5

Γ(1.5)
⎡⎢⎢⎣
𝑎0.5

0 ̃𝑢(𝑥𝑖, 𝑡𝑛) +
𝑛−1

∑
𝑘=1

(𝑎0.5
𝑛−𝑘 − 𝑎0.5

𝑛−𝑘−1) ̃𝑢(𝑥𝑖, 𝑡𝑘)
⎤⎥⎥⎦

+ ̃𝑢(𝑥𝑖, 𝑡𝑛)𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖

− 𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥2

𝑖
− 𝑓(𝑥𝑖, 𝑡𝑛)

}

2

.

(4.3)

The loss function of gfPINNs can be given as

𝐿𝑔2𝐹 𝑊 = 1
(𝑀1 − 1)𝑁

𝑀−1

∑
𝑖=1

𝑁

∑
𝑛=1

⎧⎪
⎨
⎪⎩

𝜏−0.5

Γ(1.5)
⎡⎢⎢⎣
𝑎0.5

0
𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)

𝜕𝑥𝑖
+

𝑛−1

∑
𝑘=1

(𝑎0.5
𝑛−𝑘 − 𝑎0.5

𝑛−𝑘−1)𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑘)
𝜕𝑥𝑖

⎤⎥⎥⎦

+ ̃𝑢(𝑥𝑖, 𝑡𝑛)𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥2

𝑖
+ (

𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖)

2
− 𝜕3 ̃𝑢(𝑥𝑖, 𝑡𝑛)

𝜕𝑥3
𝑖

− 𝜕𝑓(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖 }

2

,

(4.4)

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27426

𝐿𝑔2𝐹 𝑊 = 1
(𝑀1 − 1)𝑁

𝑀−1

∑
𝑖=1

𝑁

∑
𝑛=1

⎧⎪
⎨
⎪⎩

𝜏−0.5

Γ(1.5)
⎡⎢⎢⎣
𝑎0.5

0
𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)

𝜕𝑡𝑛
+

𝑛−1

∑
𝑘=1

(𝑎0.5
𝑛−𝑘 − 𝑎0.5

𝑛−𝑘−1)𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑘)
𝜕𝑡𝑘

⎤⎥⎥⎦

+ ̃𝑢(𝑥𝑖, 𝑡𝑛)𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖𝜕𝑡𝑛

+ 𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖

𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑡𝑛

− 𝜕3 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥2

𝑖 𝜕𝑡𝑛
− 𝜕𝑓(𝑥𝑖, 𝑡𝑛)

𝜕𝑡𝑛 }

2

.

(4.5)

By substituting Eqs (4.3)–(4.5) into Eq (3.8), we get the gfPINNs loss function 𝐿𝑔𝐹 𝑊 with 𝑊𝐹 = 1,
𝑊𝑔1𝐹 = 1, and 𝑊𝑔2𝐹 = 1. Next, we selected 2000 training points to train fPINNs and gfPINNs and
other parameters of the NNs are set to those described at the beginning of this section. Figures 2–4
present a comparison between the predicted solutions from the fPINNs and gfPINNs models and the
exact solution of the equation, demonstrating that gfPINNs can effectively solve the equation. Figure 5
shows the absolute errors between the exact solution and the solutions predicted by fPINNs and
gfPINNs, and it can be seen that the prediction performance of gfPINNs is better than that of fPINNs.
Figure 6 illustrates the𝐿2 relative errors of both fPINNs and gfPINNsmodels for a single experiment as
the iteration count varies, showing that while both can achieve errors as low as 10−4, gfPINNs exhibits
comparatively lower error and reduced oscillation.

Figure 2. The exact solution and predicted solutions of the equation.

Figure 3. The exact solution and numerical solutions’ profiles of velocity 𝑢(𝑥, 𝑡)with 𝛼 = 0.5.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27427

Figure 4. Predicted cross-sectional views of the equation using fPINNs and gfPINNs.

(a) Absolute error for fPINNs (b) Absolute error for gfPINNs

Figure 5. The absolute errors for solutions predicted by fPINNs and gfPINNs.

Figure 6. The 𝐿2 relative error of the problem with the number of iterations.

Case 2: We choose 𝑐1 = 0, 𝑐2 = 1, and 𝛾 = 1.5, considering the smooth fabricated solution 𝑢(𝑥, 𝑡) =
𝑡4 sin(𝜋𝑥) and the forcing term 𝑓(𝑥, 𝑡) = 2.5 Γ(5)

Γ(3.5) 𝑡
2.5 sin(𝜋𝑥) + 𝑡8 sin(𝜋𝑥) cos(𝜋𝑥) + 𝜋2𝑡4 sin(𝜋𝑥).

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27428

Similarly, we give the loss function of fPINNs as

𝐿𝐹 𝑊 = 1
(𝑀1 − 1)𝑁

𝑀−1

∑
𝑖=1

𝑁

∑
𝑛=1

⎧⎪
⎨
⎪⎩

𝜏−0.5

Γ(1.5)
⎡⎢⎢⎣
𝑏1.5

0
𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)

𝜕𝑡𝑛
+

𝑛−1

∑
𝑘=1

(𝑏1.5
𝑛−𝑘 − 𝑏1.5

𝑛−𝑘−1)𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑡𝑘

⎤⎥⎥⎦

+ ̃𝑢(𝑥𝑖, 𝑡𝑛)𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖

− 𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥2

𝑖
− 𝑓(𝑥𝑖, 𝑡𝑛)

}

2

.

(4.6)

For gfPINNs, the loss function can be written as

𝐿𝑔1𝐹 𝑊 = 1
(𝑀1 − 1)𝑁

𝑀−1

∑
𝑖=1

𝑁

∑
𝑛=1

⎧⎪
⎨
⎪⎩

𝜏−0.5

Γ(1.5)
⎡⎢⎢⎣
𝑏1.5

0
𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑛)

𝜕𝑡𝑛𝜕𝑥𝑖
+

𝑛−1

∑
𝑘=1

(𝑏1.5
𝑛−𝑘 − 𝑏1.5

𝑛−𝑘−1)𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑘)
𝜕𝑡𝑘𝜕𝑥𝑖

⎤⎥⎥⎦

+ ̃𝑢(𝑥𝑖, 𝑡𝑛)𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥2

𝑖
+ (

𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖)

2
− 𝜕3 ̃𝑢(𝑥𝑖, 𝑡𝑛)

𝜕𝑥3
𝑖

− 𝜕𝑓(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖 }

2

,

(4.7)

𝐿𝑔2𝐹 𝑊 = 1
(𝑀1 − 1)𝑁

𝑀−1

∑
𝑖=1

𝑁

∑
𝑛=1 {

𝜏−0.5

Γ(1.5) [
𝑏1.5

0
𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑛)

𝜕𝑡2
𝑛

+
𝑛−1

∑
𝑘=1

(𝑏1.5
𝑛−𝑘 − 𝑏1.5

𝑛−𝑘−1)𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑘)
𝜕𝑡2

𝑘

⎤⎥⎥⎦

+ ̃𝑢(𝑥𝑖, 𝑡𝑛)𝜕2 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖𝜕𝑡𝑛

+𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥𝑖

𝜕 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑡𝑛

− 𝜕3 ̃𝑢(𝑥𝑖, 𝑡𝑛)
𝜕𝑥2

𝑖 𝜕𝑡𝑛
− 𝜕𝑓(𝑥𝑖, 𝑡𝑛)

𝜕𝑡𝑛 }

2

.

(4.8)

By substituting Eqs (4.6)–(4.8) into Eq (3.8), we get the gfPINNs loss function 𝐿𝑔𝐹 𝑊 with 𝑊𝐹 = 1,
𝑊𝑔1𝐹 = 0.16, and 𝑊𝑔2𝐹 = 0.16. Next, we selected 2000 training points to train fPINNs and gfPINNs
and other parameters of the NNs are set to those described at the beginning of this section. Figures 7–9
present a comparison between the predicted solutions from the fPINNs and gfPINNs models and the
exact solution of the equation, demonstrating that gfPINNs can effectively solve the equation. Figure 10
illustrates the absolute errors between the exact solution and the solutions predicted by both fPINNs
and gfPINNs, revealing that the gfPINNs exhibit a relatively smaller absolute error. Figure 11 presents
the iteration convergence curves for both the fPINNs and gfPINNs models for a single experiment,
revealing that while both can achieve𝐿2 relative errors of 10−4 with increasing iterations, the prediction
errors of gfPINNs are relatively low and more stable, resulting in superior prediction performance
compared to fPINNs.

Figure 7. The exact solution and predicted solutions of the equation.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27429

Figure 8. The exact solution and numerical solutions’ profiles of velocity 𝑢(𝑥, 𝑡)with 𝛾 = 1.5.

Figure 9. Predicted cross-sectional views of the equation using fPINNs and gfPINNs.

(a) Absolute error for fPINNs (b) Absolute error for gfPINNs

Figure 10. The absolute errors for solutions predicted by fPINNs and gfPINNs.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27430

Figure 11. The 𝐿2 relative error of the problem with the number of iterations.

4.2. Inverse problems

We use the code that solves the forward problem to solve the inverse problem. We simply add
the parameters to be identified in the inverse problem to the list of parameters to be optimized in the
forward problem, without changing anything else. In this section, gfPINNs are applied to solve the
inverse problems of the multiterm time-fractional Burger-type equation of the form (3.6). We let 𝑣 = 1,
(𝑥, 𝑡) ∈ [0, 1] × [0, 1], 𝑔(𝑥) = 0, and considering additional concentration measurements at the final
time 𝑢(𝑥, 1) = ℎ(𝑥, 1). Here, we still consider the smooth fabricated solution 𝑢(𝑥, 𝑡) = 𝑡𝑝 sin(𝜋𝑥) and
the forcing term of formula (4.2).

Case 1: We choose 𝑐1 = 1 and 𝑐2 = 0. Similarly, we get the gfPINNs loss function𝐿𝑔𝐹 𝑊 with𝑊𝐼 = 1,
𝑊𝑔1𝐼 = 0.25, and 𝑊𝑔2𝐼 = 0.25. We set the fractional derivative to be 0.6. We selected 470 training
points to train fPINNs and gfPINNs and other parameters of the NNs are set to those described at the
beginning of this section. Figures 12–14 display a comparison between the predicted solutions from the
fPINNs and gfPINNs models and the exact solution of the equation, demonstrating that gfPINNs can
effectively solve the problem. Figure 15 illustrates the absolute errors between the exact solution and the
solutions predicted by both fPINNs and gfPINNs, revealing that the gfPINNs exhibit a relatively smaller
andmore stable absolute error. Figure 16 illustrates the iteration convergence curves for the fPINNs and
gfPINNs for a single experiment, indicating that although gfPINNs incur a higher computational cost for
solving the inverse problem due to an additional loss term, both models can achieve 𝐿2 relative errors
of 10−4 as iterations progress, with gfPINNs showing a lower and more stable error curve compared to
fPINNs.

Figure 12. The exact solution and predicted solutions of the equation.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27431

Figure 13. The exact solution and numerical solutions’ profiles of velocity 𝑢(𝑥, 𝑡).

Figure 14. Predicted cross-sectional views of the equation using fPINNs and gfPINNs.

(a) Absolute error for fPINNs (b) Absolute error for gfPINNs

Figure 15. The absolute errors for solutions predicted by fPINNs and gfPINNs.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27432

Figure 16. The 𝐿2 relative error of the problem with the number of iterations.

Case 2: We choose 𝑐1 = 0 and 𝑐2 = 1. Similarly, we get the gfPINNs loss function 𝐿𝑔𝐹 𝑊 with
𝑊𝐼 = 1, 𝑊𝑔1𝐼 = 0.16, and 𝑊𝑔2𝐼 = 0.0001. We set the fractional derivative to be 1.6. We selected 400
training points to train fPINNs and gfPINNs and other parameters of the NNs are set to those described
at the beginning of this section. For fPINNs and gfPINNs, we get the similar conclusion as Case 1 by
training the NNs and observing the experimental results. Figures 17–19 display a comparison between
the predicted solutions from the fPINNs and gfPINNs models and the exact solution of the equation,
demonstrating that gfPINNs can effectively solve the problem. Figure 20 illustrates the absolute errors
between the exact solution and the solutions predicted by both fPINNs and gfPINNs, revealing that
the gfPINNs exhibit a relatively smaller absolute error. Figure 21 compares the 𝐿2 relative errors of
fPINNs and gfPINNs for a single experiment as iterations progress, revealing that while gfPINNs incurs
a higher computational cost due to an additional loss term, both models can achieve an𝐿2 relative error
of 10−3, with gfPINNs demonstrating a lower and more stable error curve than fPINNs.

Figure 17. The exact solution and predicted solutions of the equation.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27433

Figure 18. The exact solution and numerical solutions’ profiles of velocity 𝑢(𝑥, 𝑡).

Figure 19. Predicted cross-sectional views of the equation using fPINNs and gfPINNs.

(a) Absolute error for fPINNs (b) Absolute error for gfPINNs

Figure 20. The absolute errors for solutions predicted by fPINNs and gfPINNs.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27434

Figure 21. The 𝐿2 relative error of the problem with the number of iterations.

5. Conclusions

In this paper, the effectiveness of gfPINNs in solving the forward and inverse problems of the
multiterm time-fractional Burger-type equation is verified through numerical examples. The𝐿2 relative
errors for solutions predicted by both fPINNs and gfPINNs can achieve 10−4 for forward problems and
10−3 or even 10−4 for inverse problems. The experimental results indicate that gfPINNs demonstrate
relatively lower and more stable errors with the increase of training iterations, thereby enhancing
prediction performance. Nonetheless, the inclusion of an additional loss term in gfPINNs may result in
a higher computational cost, such as when solving inverse problems, fPINNs exhibit faster convergence
compared to gfPINNs.

Author contributions

Shanhao Yuan, Yanqin Liu, Qiuping Li and Chao Guo: Conceptualization, Methodology; Yibin
Xu, Shanhao Yuan and Yanfeng Shen: Software, Visualization, Validation; Shanhao Yuan: Writing–
Original draft preparation; Yanqin Liu: Writing–Reviewing & editing. All authors have read and
approved the final version of the manuscript for publication.

Acknowledgments

We appreciated the support by the Natural Science Foundation of Shandong Province
(ZR2023MA062), the National Science Foundation of China (62103079), the Belt and Road Special
Foundation of The National Key Laboratory of Water Disaster Prevention (2023491911), and the Open
Research Fund Program of the Data Recovery Key Laboratory of Sichuan Province (DRN19020).

Conflict of interest

The authors declare that they have no conflicts of interest.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

27435

References

1. L. Cristofaro, R. Garra, E. Scalas, I. Spassiani, A fractional approach to study the pure-temporal
epidemic type aftershock sequence (ETAS) process for earthquakes modeling, Fract. Calc. Appl.
Anal., 26 (2023), 461–479. https://doi.org/10.1007/s13540-023-00144-5

2. Y. Zhang, H. G. Sun, H. H. Stowell, M. Zayernouri, S. E. Hansen, A review of applications
of fractional calculus in earth system dynamics, Chaos Solitons Fract., 102 (2017), 29–46.
https://doi.org/10.1016/j.chaos.2017.03.051

3. M. I. Molina, Fractional electrical impurity, New J. Phys., 26 (2024), 013020.
https://doi.org/10.1088/1367-2630/ad19f8

4. Y. Q. Yang, Q. W. Qi, J. Y. Hu, J. S. Dai, C. D. Yang, Adaptive fault-tolerant control for consensus
of nonlinear fractional-order multi-agent systems with diffusion, Fractal Fract., 7 (2023), 1–20.
https://doi.org/10.3390/fractalfract7100760

5. P. Baliarsingh, L. Nayak, Fractional derivatives with variable memory, Iran. J. Sci. Technol. Trans.
A Sci., 46 (2022), 849–857. https://doi.org/10.1007/s40995-022-01296-4

6. J. B. Hu, Studying the memory property and event-triggered control of fractional systems, Inform.
Sci., 662 (2024), 120218. https://doi.org/10.1016/j.ins.2024.120218

7. J. Guo, D. Xu, W. L. Qiu, A finite difference scheme for the nonlinear time‐fractional
partial integro‐differential equation, Math. Methods Appl. Sci., 43 (2020), 3392–3412.
https://doi.org/10.1002/mma.6128

8. H. Z. Hu, Y. P. Chen, J. W. Zhou, Two-grid finite element method for time-fractional nonlinear
schrodinger equation, J. Comp. Math., 42 (2024), 1124–1144. https://doi.org/10.4208/jcm.2302-
m2022-0033

9. W. Zhang, C. X. Wu, Z. S. Ruan, S. F. Qiu, A Jacobi spectral method for calculating
fractional derivative based on mollification regularization, Asymptot. Anal., 136 (2024), 61–77.
https://doi.org/10.3233/ASY-231869

10. Q. L. Gu, Y. P. Chen, J. W. Zhou, J. Huang, A fast linearized virtual element method
on graded meshes for nonlinear time-fractional diffusion equations, Numer. Algorithms, 2024.
https://doi.org/10.1007/s11075-023-01744-1

11. S. S. Yu, M. Guo, X. Y. Chen, J. L. Qiu, J. Q. Sun, Personalized movie recommendations based
on a multi-feature attention mechanism with neural networks, Mathematics, 11 (2023), 1–22.
https://doi.org/10.3390/math11061355

12. X. Y. Ding, J. Q. Lu, X. Y. Chen, Lyapunov-based stability of time-triggered
impulsive logical dynamic networks, Nonlinear Analy. Hybrid Syst., 51 (2024), 101417.
https://doi.org/10.1016/j.nahs.2023.101417

13. T. G. Yang, G. C. Li, T. Y. Wang, S. Y. Yuan, X. Y. Yang, X. G. Yu, et al., A novel 1D-convolutional
spatial-time fusion strategy for data-driven fault diagnosis of aero-hydraulic pipeline systems,
Mathematics, 11 (2023), 1–21. https://doi.org/10.3390/math11143113

14. L. Lu, Y. H. Su, G. E. Karniadakis, Collapse of deep and narrow neural nets, 2018, arXiv:
1808.04947.

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

https://dx.doi.org/https://doi.org/10.1007/s13540-023-00144-5
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2017.03.051
https://dx.doi.org/https://doi.org/10.1088/1367-2630/ad19f8
https://dx.doi.org/https://doi.org/10.3390/fractalfract7100760
https://dx.doi.org/https://doi.org/10.1007/s40995-022-01296-4
https://dx.doi.org/https://doi.org/10.1016/j.ins.2024.120218
https://dx.doi.org/https://doi.org/10.1002/mma.6128
https://dx.doi.org/https://doi.org/10.4208/jcm.2302-m2022-0033
https://dx.doi.org/https://doi.org/10.4208/jcm.2302-m2022-0033
https://dx.doi.org/https://doi.org/10.3233/ASY-231869
https://dx.doi.org/https://doi.org/10.1007/s11075-023-01744-1
https://dx.doi.org/https://doi.org/10.3390/math11061355
https://dx.doi.org/https://doi.org/10.1016/j.nahs.2023.101417
https://dx.doi.org/https://doi.org/10.3390/math11143113

27436

15. Y. Q. Liu, T. Mao, D. X. Zhou, Approximation of functions from Korobov spaces by shallow neural
networks, Inform. Sci., 670 (2024), 120573. https://doi.org/10.1016/j.ins.2024.120573

16. G. A. Anastassiou, D. Kouloumpou, Neural network approximation for time splitting random
functions,Mathematics, 11 (2023), 1–25. https://doi.org/10.3390/math11092183

17. M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

18. Q. Z. Hou, Y. X. Li, V. P. Singh, Z. W. Sun, Physics-informed neural network for diffusive wave
model, J. Hydrology, 637 (2024), 131261. https://doi.org/10.1016/j.jhydrol.2024.131261

19. S. M. Sivalingam, P. Kumar, V. Govindaraj, A neural networks-based numerical method for the
generalized Caputo-type fractional differential equations,Math. Comput. Simul., 213 (2023), 302–
323. https://doi.org/10.1016/j.matcom.2023.06.012

20. Q. Z. Hou, Y. X. Li, V. P. Singh, Z. W. Sun, J. G. Wei, Physics-informed neural network for
solution of forward and inverse kinematic wave problems, J. Hydrology, 633 (2024), 130934.
https://doi.org/10.1016/j.jhydrol.2024.130934

21. H. Bararnia, M. Esmaeilpour, On the application of physics informed neural networks (PINN)
to solve boundary layer thermal-fluid problems, Int. Commun. Heat Mass Transfer, 132 (2022),
105890. https://doi.org/10.1016/j.icheatmasstransfer.2022.105890

22. X. P. Zhang, Y. Zhu, J. Wang, L. L. Ju, Y. Z. Qian, M. Ye, et al., GW-PINN: a deep learning
algorithm for solving groundwater flow equations, Adv. Water Resour., 165 (2022), 104243.
https://doi.org/10.1016/j.advwatres.2022.104243

23. S. P. Zheng, Y. Y. Lin, J. H. Feng, F. Jin, Viscous regularization PINN algorithm for shallow water
equations (Chinese), Chinese J. Comput. Phys., 40 (2023), 314–324.

24. G. F. Pang, L. Lu, G. E. Karniadakis, fPINNs: fractional physics-informed neural networks, SIAM
J. Sci. Comput, 41 (2019), A2603–A2626. https://doi.org/10.1137/18M1229845

25. L. Lu, X. H. Meng, Z. P. Mao, G. E. Karniadakis, DeepXDE: a deep learning library for solving
differential equations, SIAM Rev., 63 (2021), 208–228. https://doi.org/10.1137/19M1274067

26. S. P. Wang, H. Zhang, X. Y. Jiang, Fractional physics-informed neural networks for time-fractional
phase field models, Nonlinear Dyn., 110 (2022), 2715–2739. https://doi.org/10.1007/s11071-022-
07746-3

27. C. X. Wu, M. Zhu, Q. Y. Tan, Y. Kartha, L. Lu, A comprehensive study of non-adaptive and
residual-based adaptive sampling for physics-informed neural networks, Comput. Methods Appl.
Mech. Eng., 403 (2023), 115671. https://doi.org/10.1016/j.cma.2022.115671

28. Z. Y. Zhang, S. J. Cai, H. Zhang, A symmetry group based supervised learning method for
solving partial differential equations, Comput. Methods Appl. Mech. Eng., 414 (2023), 116181.
https://doi.org/10.1016/j.cma.2023.116181

29. Z. Y. Zhang, H. Zhang, L. S. Zhang, L. L. Guo, Enforcing continuous symmetries in physics-
informed neural network for solving forward and inverse problems of partial differential equations,
J. Comput. Phys., 492 (2023), 112415. https://doi.org/10.1016/j.jcp.2023.112415

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

https://dx.doi.org/https://doi.org/10.1016/j.ins.2024.120573
https://dx.doi.org/https://doi.org/10.3390/math11092183
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2024.131261
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2023.06.012
https://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2024.130934
https://dx.doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2022.105890
https://dx.doi.org/https://doi.org/10.1016/j.advwatres.2022.104243
https://dx.doi.org/https://doi.org/10.1137/18M1229845
https://dx.doi.org/https://doi.org/10.1137/19M1274067
https://dx.doi.org/https://doi.org/10.1007/s11071-022-07746-3
https://dx.doi.org/https://doi.org/10.1007/s11071-022-07746-3
https://dx.doi.org/https://doi.org/10.1016/j.cma.2022.115671
https://dx.doi.org/https://doi.org/10.1016/j.cma.2023.116181
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2023.112415

27437

30. J. Yu, L. Lu, X. H. Meng, G. E. Karniadakis, Gradient-enhanced physics-informed neural networks
for forward and inverse PDE problems, Comput. Methods Appl. Mech. Eng., 393 (2022), 114823.
https://doi.org/10.1016/j.cma.2022.114823

31. G. Z. Xie, B. B. Fu, H. Li, W. L. Du, Y. D. Zhong, L. W.Wang, et al., A gradient-enhanced physics-
informed neural networks method for the wave equation, Eng. Anal. Bound. Elem., 166 (2024),
105802. https://doi.org/10.1016/j.enganabound.2024.105802

32. Y. X. Deng, G. Lin, X. Yang, Multifidelity data fusion via gradient-enhanced Gaussian process
regression, Commun. Comput. Phys., 28 (2020), 1812–1837. https://doi.org/10.4208/cicp.OA-
2020-0151

33. Z. Z. Sun, X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer.
Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003

34. B. T. Jin, R. Lazarovl, Z. Zhou, An analysis of the L1 scheme for the subdiffusion
equation with nonsmooth data, IMA J. Numer. Anal., 36 (2016), 197–221.
https://doi.org/10.1093/imanum/dru063

35. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Amsterdam: Elsevier, 2006.

36. I. Podlubny, Fractional differential equations, Academic Press, 1999.
37. M. Ramchandani, H. Khandare, P. Singh, P. Rajak, N. Suryawanshi, A. S. Jangde, et al.,

Survey: Tensorflow in machine learning, J. Phys. Conf. Ser., 2273 (2022), 012008.
https://doi.org/10.1088/1742-6596/2273/1/012008

38. D. P. Kingma, J. Ba, Adam: a method for stochastic optimization, In: Proceedings of the 3rd
International Conference on Learning Representations (ICLR), San Diego, 2015.

39. M.V. Narkhede, P. P. Bartakke, M. S. Sutaone, A review onweight initialization strategies for neural
networks, Artif. Intell. Rev., 55 (2022), 291–322. https://doi.org/10.1007/s10462-021-10033-z

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 27418–27437.

https://dx.doi.org/https://doi.org/10.1016/j.cma.2022.114823
https://dx.doi.org/https://doi.org/10.1016/j.enganabound.2024.105802
https://dx.doi.org/https://doi.org/10.4208/cicp.OA-2020-0151
https://dx.doi.org/https://doi.org/10.4208/cicp.OA-2020-0151
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2005.03.003
https://dx.doi.org/https://doi.org/10.1093/imanum/dru063
https://dx.doi.org/https://doi.org/10.1088/1742-6596/2273/1/012008
https://dx.doi.org/https://doi.org/10.1007/s10462-021-10033-z
https://creativecommons.org/licenses/by/4.0

	Introduction
	Multiterm time-fractional Burger-type equation
	Methodology
	fPINNs
	gfPINNs
	Finite difference discretization for time-fractional derivatives

	Numerical examples
	Forward problems
	Inverse problems

	Conclusions

