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1. Introduction

Nonlinear partial differential equations (PDEs) impart multi-scale characteristics to the system,
thereby allowing for a more accurate prediction of the transmission process of soliton solutions. In
practical uses, nonlinear PDEs and soliton solutions are vital for characterizing various phenomena in
science and engineering such as biology, physics, ocean engineering, and many more [1–3]. Various
types of soliton solutions have been reported for integrable systems. For instance, horse-shoe like
soliton and lump chain solitons have been studied for the elliptic cylindrical Kadomtsev–Petviashvili
equation [4]. Yang et al. analyzed degenerating lump chains into anomalously scattered lumps for the
Mel’nikov equation [5]. In literature [6], a series of ripple waves with decay modes for the
(3+1)-dimensional Kadomtsev–Petviashvili equation have been reported. Rogue wave solutions to
the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation were studied via the
Hirota bilinear approach [7]. The propagation features and interactions of Rossby waves soliton of the
geophysical equation were studied [8]. Breather, lump, and its interaction solutions for the higher
dimensional evolution equation were studied [9]. Multisoliton solutions for the variable coefficient
Schrödinger equation has been explored in the literature [10]. Some other solitons solutions have
been reported for the regularized long-wave equation [11], the Sharma-Tasso-Olver-Burgers
equation [12], the modified Schrödinger’s equation [13], the complex Ginzburg–Landau
equation [14], the (2+1) dimensional Chaffee–Infante equation [15], and many more [16–18].

Stochastic differential equations (DEs) deal with phenomena having randomness or uncertainties.
Stochastic DEs can be used in various field of science and engineering [19–21]. Solving stochastic
nolinear PDEs is very challenging and hard due to randomness. Therefore, various methods have
been introduced and implemented to derive solutions of stochatics PDEs such as the modified tanh
method [22], the modified Kudrayshov technique [23], the Sardar subequation method [24], and many
more [25, 26].

Fractional operators (FOs) have been frequently used for modelling the physical phenomena in
various fields due to its memory process [27–29]. In literature, several FOs have been constructed
by researchers and scientists [30–32]. Most of them do not satisfy some properties such as the chain
and quotient rules. A few years ago, Atangana [33] defined a local FO called beta derivative, which
generalized the classical operator. The beta derivative (BD) is defined as follows:

Dβ
x Ψ (x) =

dβΨ
dxβ

= lim
h0→0

Ψ

(
x + h0

(
x + 1

Γ(β)

)1−β
− Ψ (x)

)
h0

, 0 < β ≤ 1.

Here, the BD has the following characteristics: For every real numbers, m and n:

(1) Dβ
x Ψ (x) =

(
x +

1
Γ(β)

)1−β dΨ

dx
.

(2) Dβ
x (mΨ + nΦ) = m

(
x +

1
Γ(β)

)1−β dΨ

dx
+ n

(
x +

1
Γ(β)

)1−β dΦ

dx
.

(3) Dβ
x (Ψ ◦ Φ (x)) =

(
x +

1
Γ(β)

)1−β dΨ

dx
Φ′ (x)

(
Ψ′ (x)

)
.

(4) Dβ
x Ψ (m) = 0.
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The BD has been used for the analysis of soliton solutions with the fractional behavior of nonlinear
PDEs [34–36]. This work modifies the Benjamin-Bona-Mahony equation (BBME) as follows:

Mt + 6MDβ
xM + Dβ

xxxM− ρD
β
xxMt = τ

(
M− ρDβ

xxM
) dP

dt
, (1.1)

where ρ is real parameter,M = M (x, t) is a real valued wave profile, τ is the intensity of sound, and
P = P (t) is a white noise having the following properties:
(i)P possesses constant trajectories.
(ii)P (0) = 0.
(iii)P

(
t j+1

)
− P

(
t j

)
has a normal standard distribution.

When we consider τ = 0 and β = 1, we get the BBME as follows:

Mt + 6MMx +Mxxx − ρMxxt = 0. (1.2)

Benjamin, Bona, and Mahony examined equation (1.2) as an adjustment to the KdV equation. The
BBME has been used to analyze the prorogation of long surface gravity pulses with small amplitudes.
There are several studies on the BBME. For instance, BBME was studied by using the variational
method [37], the deep learning method [38], the generalized exp-function method [39], and many
more [40, 41]. In [42], the authors have used the F-expansion method to study the solitary waves
BBME under BD with white noise. In this paper, we use two advanced analytical methods to deduce
more solitary waves solutions and to study the influence of the BD and the white noise.

2. The general procedure of the proposed approaches

This section provides the general procedure of the suggested approaches that one can use to find
solitary and other waves solutions.

2.1. G′

G′+G+A
-expansion method

Here, we present the general procedure of the G′

G′+G+A
-expansion technique. Consider a PDE under

space BD as follows

A1

(
M, ∂βxM, ∂tM, ∂βx∂

β
xM, ∂βx∂tM, ∂t∂tM, · · ·

)
= 0, (2.1)

where A1 is a polynomial inM = M (x, t) and its partial derivatives. To use the proposed procedure,
one should abide by the following:

Step 1. First using the wave transformation, one can obtain ODE as follows:

M (x, t) =M (ω1) eτP(t)− 1
2 τ

2t, (2.2)

where ω1 =
ξ1
β

(
x + 1

Γ(β)

)β
+ ξ2t. Additionally, ξ1 and ξ2 are referred to as the wave speed and the wave

number, respectively. By inserting Eq (2.2) in Eq (2.1), the following will be obtained:

A1
(
M,M′,M′′,M′′′ )

= 0, (2.3)

where the ordinary derivatives of different orders are indicated by primes.
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Step 2. According to the proposed strategy, we examine the following form for the solution to
Eq (2.3):

M (ω1) =

ℵ∑
i=0

Fi

(
G′ (ω1)

G′ (ω1) + G (ω1) +A

)i

, (2.4)

where Fi is the function of the polynomial’s coefficients
(

G′

G′+G+A

)i
, i = 0, 1, 2, . . . ,ℵ. Assume that

G (ω1) is a function that fulfills the subsequent relation:

G′′ +AG′ + BG + BA = 0. (2.5)

The value of ℵ can be determined using the homogeneous balance rule (HBR) between the highest
nonlinear term and the highest order derivative in Eq (2.3).

Step 3. In this step, the result obtained from the substitution of Eq (2.4) into Eq (2.3) and the
coefficients of various powers of

(
G′

G′+G+A

)
should be compared in terms of A,B, ξ1, ξ2, and

i = 0, 1, 2, . . . ,ℵ. Using Mathematica or any other mathematical package, one can determine the
solution’s values G in the term

(
G′

G′+G+A

)
, and ultimately for the principles of

(
G′

G′+G+A

)
, Fi and ω1. In

doing so, the solution of Eq (2.2) can be obtained.

2.2. The modified G′

G2 -expansion approach

Here, we present the general procedure of applying the modified G′

G2 -expansion approach to obtain
the wave solutions of a nonlinear PDE. This approach contains the following expansion:

M (ω1) = F0 +

ℵ∑
i=1

Fi

(
G′ (ω1)
G (ω1)2

)i

+ Si

(
G′ (ω1)
G (ω1)2

)−i , (2.6)

where G (ω1) satisfies the following the equation:

G′′ (ω1) =
ΨG′ (ω1)2

G (ω1)2 + ψG′ (ω1) +
2G′ (ω1)2

G (ω1)
+$G (ω1)2 , (2.7)

where Ψ, ψ, and $ are the arbitrary constants. Next, one should find the value of ℵ as previously
mentioned. Then, substituting Eq (2.6) and using Eq (2.7) into Eq (2.3), one can obtain a differential
equation in G(ω1). Then, collecting those terms which contain

(
G′

G2

)i
, (i = 0, 1, 2, . . . , n) , and setting

all the coefficients of
(
G′

G2

)i
equal to zero, one can acquire a system of algebraic equations. Solving the

obtained system can possibly result in the following families.
Family 1. If Ψ$ > 0 and ψ = 0, the we have the following:

G′

G2 =

√
Ψ$

(
p1cos

(
ω1
√
Ψ$

)
+ p2sin

(
ω1
√
Ψ$

))
$

(
p2cos

(
ω1
√
Ψ$

)
− p1sin

(
ω1
√
Ψ$

)) , (2.8)

where p1, p2, Ψ , and $ are arbitrary constants.
Family 2. If Ψ$ < 0 and ψ = 0, then we have the following:

G′

G2 = −

√
Ψ$

(
p1sinh

(
2ω1
√
Ψ$

)
+ p1cosh

(
2ω1
√
Ψ$

)
+ p2

)
$

(
p1sinh

(
2ω1
√
Ψ$

)
+ p1cosh

(
2ω1
√
Ψ$

)
+ p2

) . (2.9)
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3. Traveling wave solutions of considered equation

Here, we explore the wave solutions for the proposed stochastic BBME under BD as given in
Eq (1.1) with the following procedure:

M (x, t) =M (ω1) eτP(t)− 1
2 τ

2t. (3.1)

Furthermore, we have the following:

Mt =

(
ξ2M

′ + τMPt +
1
2
τ2M−

1
2
τ2M

)
eτP(t)− 1

2 τ
2t, (3.2)

and

Dβ
xxMt =

(
ξ2

1ξ2M
′′′ + τPtξ

2
1M

′′
)

eτP(t)− 1
2 τ

2t, (3.3)

Dβ
xM =

(
ξ1M

′) eτP(t)− 1
2 τ

2t, Dβ
xxxM =

(
ξ3

1M
′′′
)

eτP(t)− 1
2 τ

2t.

Inserting Eq (3.1) into Eq (1.1) and using Eqs (3.2) and (3.3), we obtain the following:

ξ2M
′ +

(
ξ3

1 − ρξ
2
1ξ2

)
M′′′ + 6ξ1MM

′e−
1
2 τ

2tEeτP(t) = 0. (3.4)

By considering P (t), the Gaussian process, and EeτP(t) = e
1
2 τ

2t, then, Eq (3.4) becomes:

ξ2M
′ +

(
ξ3

1 − ρξ
2
1ξ2

)
M′′′ + 6ξ1MM

′ = 0. (3.5)

Integrating Eq (3.5) one time while considering the integration constant to be zero, we obtain the
following:

ζM +M′′ + ηM2 = 0, (3.6)

where
ζ =

ξ2

ξ3
1 − ρξ

2
1ξ2

, η =
3

ξ2
1 − ρξ1ξ2

.

In Eq (3.6), by using the homogeneous balance principle, we obtain ℵ = 2. Now, we have Eq (2.4)
in the following form:

M1 (ω1) = F0 + F1

(
G′

G′ + G +A

)
+ F2

(
G′

G′ + G +A

)2

. (3.7)

Inserting the solution of Eq (3.7) with Eq (2.5) into Eq (3.6), the polynomial of the left side will
be in

(
G′

G′+G+A

)i
, i = 0, 1, 2 · · · ℵ. By further equating the coefficients of various powers of

(
G′

G′+G+A

)
to

zero, we obtain a system of algebraic equations. Using Mathematica to solve the system of equations,
we obtain the following sets:

F0 =
ξ1ξ2(A2−12AB+4B(3B+2))−ξ2

√
ξ2

1(A2−4B)2

6ξ1

√
ξ2

1(A2−4B)2
,

F1 = ∓
2ξ2(A−2B)(A−B−1)√

ξ2
1(A2−4B)2

,F2 =
2ξ2(−A+B+1)2√
ξ2

1(A2−4B)2
,

ρ =

ξ21√
ξ21(A2−4B)2

+
ξ41
ξ2

ξ3
1

.

(3.8)
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Now, inserting the parameter values presented in Eq (3.8) into Eq (3.7), we get the exact solutions
of Eq (3.6) in the following two cases:

Set 1. ForD = A2 − 4B > 0, we have the following:

M (ω1) =

(ξ1ξ2

(
A2 − 12AB +

(
12B2 + 8B

))
− ξ2

√
ξ2

1
(
A2 − 4B

)2

6ξ1

√
ξ2

1
(
A2 − 4B

)2
(3.9)

−
(2ξ2(A− 2B)(A− B − 1))

(
ν2e

√
Dω1

(
A−

√
D

)
+ ν1

(√
D +A

))
√
ξ2

1
(
A2 − 4B

)2
(
ν2e

√
Dω1

(
−
√
D +A− 2

)
+ ν1

(√
D +A− 2

))
(
2ξ2(−A + B + 1)2

) (
ν2e

√
Dω1(A−

√
D)+ν1(

√
D+A)

ν2e
√
Dω1(−

√
D+A−2)+ν1(

√
D+A−2)

)2

√
ξ2

1
(
A2 − 4B

)2

)
eτP(t)− 1

2 τ
2t,

where ν1 and ν2 remain constants.
Set 2. ForD = A2 − 4B < 0, we have the following:

M (ω1) =

(ξ1ξ2

(
A2 − 12AB +

(
12B2 + 8B

))
− ξ2

√
ξ2

1
(
A2 − 4B

)2

6ξ1

√
ξ2

1
(
A2 − 4B

)2
(3.10)

−
(2ξ2(A− 2B)(A− B − 1))√

ξ2
1
(
A2 − 4B

)2(
Aν2 + ν1

√
−D

)
sin

( √
−D

2

)
+

(
Aν1 − ν2

√
−D

)
cos

( √
−D

2

)
(
(A− 2) ν2 + ν1

√
−D

)
sin

( √
−D

2

)
+

(
(A− 2) ν1 − ν2

√
−D

)
cos

( √
−D

2

)(
2ξ2(−A + B + 1)2

)
√
ξ2

1
(
A2 − 4B

)2
(
Aν2 + ν1

√
−D

)
sin

( √
−D

2

)
+

(
Aν1 − ν2

√
−D

)
cos

( √
−D

2

)
(
(A− 2) ν2 + ν1

√
−D

)
sin

( √
−D

2

)
+

(
(A− 2) ν1 − ν2

√
−D

)
cos

( √
−D

2

)


2)
eτP(t)− 1

2 τ
2t.

4. Application of modified G′

G2 -expansion approach

Since the highest-order nonlinear term and the highest-order derivative term are balanced according
to the homogenous balance principle in Eq (3.6), we know that the balance number is ℵ = 2. Therefore,
we have the following:

M (ω1) = F0 + F1
G′

G2 + F2

(
G′

G2

)2

+
S1
G′

G2

+
S2(
G′

G2

)2 . (4.1)
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Inserting Eq (4.1) with aid of Eq (2.7) into Eq (3.6), and following the same procedure as earlier,
we obtain the following:

F1 = −
2Ψξ2

1ψ

4ρΨξ2
1$ + ρξ2

1
(
−ψ2) + 1

,F2 = −
2Ψ 2ξ2

1

4ρΨξ2
1$ + ρξ2

1
(
−ψ2) + 1

, (4.2)

S1 = 0,S2 = 0, ξ2 =
ξ3

1

(
4Ψ$ − ψ2

)
4ρΨξ2

1$ + ρξ2
1
(
−ψ2) + 1

,F0 = −
2Ψξ2

1$

ρξ2
1
(
4$Ψ − ψ2) + 1

.

Putting the values of the parameters presented in Eq (4.1) into Eq (3.6) and making use of Eqs (2.8)
and (2.9), we obtain the following exact solutions.

Family 1. If Ψ$ > 0 and ψ = 0, then we have the following:

M (ω1) =

−
(
2Ψ 2ξ2

1

) ( √
Ψ$(p1cos(ω1

√
Ψ$)+p2 sin(ω1

√
Ψ$))

$(p2cos(ω1
√
Ψ$)−p1 sin(ω1

√
Ψ$))2

)2

4Ψξ2
1$ρ + 1

−
2Ψξ2

1$

4Ψξ2
1$ρ + 1

 eτP(t)− 1
2 τ

2t. (4.3)

Family 2. If Ψ$ < 0 and ψ = 0, then we have the following:

M (ω1) =

−
(
2Ψ 2ξ2

1

) (
−

√
Ψ$(p1 sinh(2ω1

√
Ψ$)+p1cosh(2ω1

√
Ψ$)+p2)

($(p1 sinh(2ω1
√
Ψ$)+p1cosh(2ω1

√
Ψ$)+p2))2

)2

4Ψξ2
1$ρ + 1

−
2Ψξ2

1$

4Ψξ2
1$ρ + 1

 eτP(t)− 1
2 τ

2t.

5. Graphical analysis

This portion of the present work graphically visualize the obtained solutions and presents some
physical interpretations and discussions on the obtained results. In Figure 1, solution (3.9) with
particular values (i.e, ν1 = 5, ν2 = −.5, ξ1 = −.2, ξ2 = −1, A = 3, B = 2.6, τ = 0, P = 0) is
visualized. In Figure1, the value of β is varied while the noise intensity τ is considered as zero. The β
is used as 1, 0.9, and 0.8 for subfigures (1a,1d), (1b,1e), and (1c,1f), respectively. Here, we observed
the dark soliton wave, where we see that as the fractional order decreases when the wave separation is
increased.

Furthermore, Figure 2 shows the dynamics of the exact solution (2.2) by varying the noise intensity
while keeping the β = 0.95. Other parameters are used for the simulation of Figure 1. The τ is used as
0.1, 0.4, and 0.9 for subfigures (2a,2d), which is (2b,2e), and (2c,2f), respectively. In Figure 2, one can
observe the affects of noise on the dynamics of the solution, which is simulated here. Furthermore, the
dynamics of the exact solution (3.10) are visualized in Figures 3 and 4 by varying β and τ, respectively.
In the simulation of these figures, the parameters are selected in the form ν1 = .5, ν2 = 1, ξ1 = −.7, ξ2 =

.5, p1 = 2, p2 = 1,A = −4,B = 0, τ = 0,P = 0; alternatively in Figure 3, the τ is considered as zero.
and in Figure 4. the β is fixed as 0.95. The β is used as 1, 0.9, and 0.8 for subfigures (3a,3d), (3b,3e),
and (3c,3f), respectively. Similarly, τ is used as 0.2, 0.5, and 0.8 for subfigures (4a,4d), (4b,4e), and
(4c,4f), respectively. Here, we observed the interaction of the bright wave with a kink wave, where

AIMS Mathematics Volume 9, Issue 10, 27403–27417.
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the amplitude of the bright wave decreases as the β decreases in the negative region of the spatial
coordinate.

(a) (b) (c)
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Figure 1. The visualization of exact solution (2.2) with ν1 = .5, ν2 = 1, ξ1 = −.7, ξ2 =

.5, p1 = 2, p2 = 1,A = −3,B = 0, τ = 0,P = 0, τ = 0 and varying β.

(a) (b) (c)
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Figure 2. The visualization of exact solution (2.2) with ν1 = .5, ν2 = 1, ξ1 = −.7, ξ2 =

.5, p1 = 2, p2 = 1,A = −3,B = 0,P = 0.5, β = 0.95. and varying τ.
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Figure 3. The visualization of solution ν1 = .5, ν2 = 1, ξ1 = −.7, ξ2 = .5, p1 = 2, p2 = 1,A =

−4,B = 0,P = 0, τ = 0 and different values of β.
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Figure 4. The visualization of solution ν1 = .5, ν2 = 1, ξ1 = −.7, ξ2 = .5, p1 = 2, p2 = 1,A =

−4,B = 0,P = 0, β = 0.95 and different values of τ.

In Figure 5, the solution (3.9) with particular values (i.e, ν1 = 5, ν2 = −.5, ξ1 = −.2, ξ2 = −1, A =

3, B = 2.6, τ = 0, and P = 0) is visualized. In Figure 5, the various values for β are considered,
while the noise intensity τ is supposed to be zero. The β is considered as 1, 0.95, and 0.9 for subfigures
(5a,5d), (5b,5e), and (5c,5f), respectively. Here, we observed the hybrid bright-dark soliton wave,
where we see that as the fractional order decreases when then amplitude of the dark solitons increases
and the bright soliton is decreases.
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Figure 5. The visualization of solution with ρ = 1, $ = −.1, ξ1 = 1, Ψ = 1, p1 = 1, p2 =

1,P = 0, τ = 0, and varying β.

Moreover, Figure 6 shows the dynamics of the exact solution (3.9) by varying the noise intensity
while keeping the β = 0.95. Other parameters are used for the simulation of Figure 5. The τ is used as
0.5, 0.6, and 0.9 for subfigures (6a,6d), (6b,6e), and (6c,6f), respectively. In Figure 6, one can observe
the affects of noise on the dynamics of the solution, which is simulated here; it can be seen that the
highest and lowest amplitude areas become more random as τ increases.
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Figure 6. The visualization of solution with ρ = 1, $ = −.1, ξ1 = 1, Ψ = 1, p1 = 1, p2 =

1,P = 0, β = 0.95 and varying τ.

Furthermore, the dynamics of the exact solution (3.10) are visualized in Figures 7 and 8 by varying
β and τ, respectively. In the simulation of these figures, the parameters are selected in the form ρ =

1, $ = −.1, ξ1 = 1, Ψ = 1, p1 = 1, p2 = 1,P = 0, and τ = 0; alternatively, in Figure 7, the τ
is considered as zero, and in Figure 8, the β is fixed as 0.95. The β is used as 1, 0.9, and 0.8 for
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subfigures (7a,7d), (7b,7e), and (7c,7f), respectively. Similarly, τ is used as 0.05, 0.3, and 0.6 for
subfigures (8a,8d), (8b,8e), and (8c,4f), respectively. Here, we observed the periodic wave solution,
where the amplitude of the periodic waves decreases as the β decreases in the negative region of the
spatial coordinate. Furthermore, we see that the wave profile behaves more randomly in areas where
the amplitude is either low or high. Thus, from these analyses, it can be noticed that the obtained results
are more generalized than the solutions reported in previous papers. Indeed, when the BD operators
equals one, the solution converges to the stochastic integer order solutions. If the intensity of the white
noise is zero, then the solutions converge to a deterministic case. When β = 1 and τ = 0, the obtained
solutions converge to the determinsitic case.
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Figure 7. The visualization of solution with ρ = 1, $ = −.1, ξ1 = 1, Ψ = 1, p1 = 1, p2 =

1,P = 0, τ = 0 and varying β.
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Figure 8. The visualization of solution with ρ = 1, $ = −.1, ξ1 = 1, Ψ = 1, p1 = 1, p2 =

1,P = 0, β = 0.95 and varying τ.
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6. Conclusions

This study has explored the stochastic BBME with the BD, thereby incorporating multiplicative
noise in the Itô sense. We have derived various analytical soliton solutions for these equations by
utilizing two distinct expansion methods, both within the framework of beta derivatives. A fractional
multistep transformation was employed to convert the equations into nonlinear forms with respect to
an independent variable. After performing algebraic manipulations, the solutions were found to be
trigonometric and hyperbolic trigonometric functions. Our analysis demonstrated that the wave
behavior was influenced by the fractional-order derivative in the proposed equations, thus providing
deeper insights into the wave composition as the fractional order increases or decreases. Additionally,
we examined the effect of white noise on the propagation of wave solutions. This study has
underscored the computational robustness and adaptability of the proposed approach to investigate
various phenomena in the physical sciences and engineering.
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