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Abstract: In this article, we establish a novel high-order energy-preserving numerical approximation
scheme to study the initial and periodic boundary problem of the generalized nonlinear Schrödinger
equation with wave operator, which is proposed by the finite difference method. The scheme is of
fourth-order accuracy in space and second-order one in time. The conservation property of energy as
well as a priori estimate are described. The convergence of the proposed scheme is discussed in detail
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1. Introduction

In [1], Matsunchi proposed the generalized nonlinear Schrödinger equation (NLSE) with wave
operator, which reads:

utt − uxx + γutx − iαut − iθux + λu + β|u|2u = 0, (1.1)

where γ, α, θ, λ, and β are real constants, i2 = −1, x ∈ R and 0 < t < T , which describes the
nonlinear interaction between two quasi-monochromatic waves. The nonlinear Schrödinger equation
has many important applications in different fields as a vital mathematics model, such as Langmuir
wave envelope approximation in plasma physics [2], water waves, and bimolecular dynamics [3, 4],
nonlinear topics [5, 6], and references therein.

To solve the Eq (1.1), we set it up in a compact subset [xl, xr] [7]. Then, the initial and periodic
boundary conditions are added as follows:

u(x, t)|t=0 = u0(x), ut(x, t)|t=0 = u1(x), x ∈ [xl, xr], (1.2)
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u(x, t) = u(x + (xr − xl), t), 0 ≤ t ≤ T. (1.3)

There is the energy-conserved property of (1.1)–(1.3) [8]:

E(t) = ||ut||
2
L2

+ ||ux||
2
L2

+ λ||u||2L2
+
β

2

∫ xr

xl

|u|4 dx + iθ
∫ xr

xl

uūx dx = E(0). (1.4)

In terms of numerical study, Wang and Kong et al. [8] considered the multi-symplectic preserving
integrator for the Schrödinger equation with wave operator. Moreover, in the paper, the authors
discussed mainly the conservative properties, without the necessary convergence analysis of the
scheme. In the case of θ = γ = λ = 0, Guo and Liang [9] developed a nonconservative
implicit difference scheme to solve the NLSE with a wave operator; Zhang [10] proposed an explicit
conservative difference scheme that was conditionally stable for it. In [11], several unconditionally
stable conservative schemes were shown. However, the above-mentioned schemes were all of second-
order accuracy in space. Furthermore, Li and Zhang [12] designed a conservative scheme of (1.1). But
the scheme is nonlinear implicit, so it is not suitable for parallel computation because it needs heavy
iterative calculations.

Recently, high-accuracy computational methods have been attracted by many researchers. In recent
works, the high-order accuracy approximation methods were proposed to study the Klein–Gordon
equation [13], the Schrödinger equation [14, 15], the Klein–Gordon–Schrödinger equation [16, 17],
nonlinear wave equations [18], respectively. In addition, for wide and interesting topics covered, the
numerical studies should also be recalled in the literatures. Hu [19] presented compact conservative
schemes for the coupled nonlinear Schrödinger system. Dehghan et al. [20, 21] studied the high-
order solution for Sine–Gordon equation, heat and advection–diffusion equations of one dimension,
respectively. Later, this team [22, 23] solved the NLSE with constant and variable coefficients, and
2D Rayleigh–Stokes problem by compact finite difference method. In [24], an efficient and compact
finite difference scheme is developed for the Klein–Gordon–Zakharov equation. In [25], the NLSE
was solved by Fourier pseudo-spectral method. Especially in [26–28], some efficient linearly implicit
and high-order energy-preserving schemes were proposed for Hamiltonian systems, and monotonicity-
preserving ones for wave equations. These useful methods inspire us to establish an efficient numerical
method for the generalized NLSE with wave operator. In this article, a novel energy-preserving
approximation scheme is designed to solve (1.1)–(1.3) with the following advantages: The scheme
is high accuracy, unconditionally stable, and convergent, whose theoretical accuracy is O(τ2 + h4); the
scheme preserves the physical conservative property of the original system; and the proposed method
is linearized, which significantly reduces the computational cost compared with the nonlinear one.

The outline of this article is as follows: In Section 2, a linearized high-accuracy energy-preserving
scheme for (1.1) is described. The simulation of conservative property and error estimates of the
scheme are shown in Section 3. In Section 4, we prove the convergence of the scheme. In Section 5,
several useful numerical examples are given to test the theoretical results.

2. High-accuracy numerical scheme

In this section, we define the solution domain Ω̄ = {(x, t)|x ∈ [xl, xr], t ∈ [0,T ]}, which is covered
by the uniform grid Ω̄h×τ = {(x j, tn)|x j = xl + jh, tn = nτ, 0 ≤ j ≤ M, 0 ≤ n ≤ N}, where h = xr−xl

M is
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spatial step, τ = T
N is temporal step. Denote Un

j ≈ u(x j, tn). Denote discrete grid function ω = {ωn
j ; j =

0, 1, 2, · · · ,M, n = 0, 1, 2, · · · ,N} on Ω̄h×τ. Define:

δtω
n
j =

ωn+1
j − ωn

j

τ
, δt̄ω

n
j =

ωn
j − ω

n−1
j

τ
, δt̂ω

n
j =

ωn+1
j − ωn−1

j

2τ
, δxω

n
j =

ωn
j+1 − ω

n
j

h
,

δx̂ω
n
j =

ωn
j+1 − ω

n
j−1

2h
, δx̄ω

n
j =

ωn
j − ω

n
j−1

h
, δẍω

n
j =

ωn
j+2 − ω

n
j−2

4h
.

In the article, the constant C is general positive and independent of mesh parameters h and τ at
different circumstances.

According to the operators above, the high-accuracy linearized energy-preserving scheme for (1.1)–
(1.3) is derived:

δtδt̄Un
j −

1
2

[
4
3
δxδx̄(Un+1

j + Un−1
j ) −

1
3
δx̂δx̂(Un+1

j + Un−1
j )] + γ(

4
3
δx̂δt̂Un

j −
1
3
δẍδt̂Un

j ) − iαδt̂Un
j

− i
θ

2
[
4
3
δx̂(U

n+ 1
2

j + Un− 1
2

j ) −
1
3
δẍ(U

n+ 1
2

j + Un− 1
2

j )] +
1
2
λ(Un+1

j + Un−1
j ) +

1
2
β|Un

j |
2(Un+1

j + Un−1
j )

= 0, (2.1)
U0

j = u0(x j), δt̂U0
j = u1(x j), (2.2)

Un
j = Un

j+M, (2.3)

where vn+ 1
2

j =
vn+1

j +vn
j

2 .
Assume that n = 0 is valid for (2.1). Applying (2.2), we have

2
τ2 (U1

j − u0 − τu1) − [
4
3
δxδx̄(U1

j − τu1) −
1
3
δx̂δx̂(U1

j − τu1)] + γ(
4
3
δx̂u1 −

1
3
δẍu1) − iαu1

−i
θ

2
[
4
3
δx̂(U1

j + u0 − τu1)−
1
3
δẍ(U1

j + u0 − τu1)]+λ(U1
j − τu1)+β|u0|

2(U1
j − τu1) = 0. (2.4)

3. Conservative property and error estimate

Let Z0
h = {V|V = (Vn

0 ,V
n
1 , · · · ,V

n
M−1)T ,Vn

0 = Vn
M,V

n
−1 = vn

M−1,V
n
−2 = Vn

M−2}. For ∀φ, ϕ ∈ Z0
h , define:

(φ, ϕ) = h
M−1∑
j=0

φn
jϕ

n
j , (δxφ, δxϕ)l = h

M−1∑
j=0

δxφ
n
jδxϕ

n
j , ||φ||2 = (φ, φ),

||δxφ|| =
√

(δxφ, δxφ)l, ||φ||∞ = max
0≤ j≤M−1

|φn
j |, ||δẍφ|| =

√
(δẍφn, δẍφn)l.

Next, we discuss the conservative property and error estimate of (2.1)–(2.4).
Lemma 3.1. [29] ∀ V,W ∈ Z0

h , we obtain

(δxW,V) = −(W, δx̄V), (δx̂W,V) = −(W, δx̂V), (δẍW,V) = −(W, δẍV).

Then one has

(δx̂W,W) = 0, (δẍW,W) = 0, (δxδx̄W,W) = −||δxW ||2,
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(δx̂δx̂W,W) = −||δx̂W ||2, (δẍδẍW,W) = −||δẍW ||2.

Lemma 3.2. [30] For any grid function V ∈ Z0
h , there is

||δẍV ||2 ≤ ||δx̂V ||2 ≤ ||δxV ||2.

Lemma 3.3. [31] For ∀ V ∈ Z0
h , we obtain

||V ||∞ ≤
√

xr − xl

2
||δxV ||.

Theorem 3.1. The difference scheme (2.1) inherits the property of energy conservation of the original
system (1.1)–(1.3):

En = ||δtUn||2 +
2
3

(||δxUn+1||2 + ||δxUn||2) −
1
6

(||δx̂Un+1||2 + ||δx̂Un||2)

+
2
3
θIm[

M−1∑
j=0

(Un+ 1
2

j+1 Un+ 1
2

j − Un+ 1
2

j+1 Un+ 1
2

j )] −
1

12
θIm[

M−1∑
j=0

(Un+ 1
2

j+2 Un+ 1
2

j ) − Un+ 1
2

j+2 Un+ 1
2

j ]

+
1
2
λ(||Un+1||2 + ||Un||2) +

1
2
β||Un||2||Un+1||2 = En−1 = · · · = E0. (3.1)

Proof. By Lemma 3.1, do the inner product of (2.1) with δtUn + δtUn−1. Then take the real part:

1
τ

(||δtUn||2 − ||δtUn−1||2) +
2
3τ

(||δxUn+1||2 − ||δxUn−1||2) −
1
6τ

(||δx̂Un+1||2 − ||δx̂Un−1||2)

− Re(iαδt̂Un, δtUn + δtUn−1) + θIm(
2
3
δx̂(Un+ 1

2 + Un− 1
2 ), δtUn + δtUn−1)

− θIm(
1
6
δẍ(Un+ 1

2 + Un− 1
2 ), δtUn + δtUn−1) +

1
2τ
λ(||Un+1||2 − ||Un−1||2)

+
1
2τ
β||Un||2(||Un+1||2 − ||Un−1||2) = 0. (3.2)

Noting that

Re(iαδt̂Un, δtUn + δtUn−1) = −
α

2
Im(δtUn + δtUn−1, δtUn + δtUn−1) = 0. (3.3)

By using (2.3), we obtain

Im[(
2
3
δx̂(Un+ 1

2 + Un− 1
2 ), δtUn + δtUn−1)]

= Im[
2
3

h
1

2hτ

M−1∑
j=0

(Un+ 1
2

j+1 − Un+ 1
2

j−1 + Un− 1
2

j+1 − Un− 1
2

j−1 )Un+1
j − Un−1

j ]

=
1
3τ

Im[
M−1∑
j=0

(Un+ 1
2

j+1 − Un+ 1
2

j−1 + Un− 1
2

j+1 − Un− 1
2

j−1 )(Un+1
j − Un−1

j )]

=
2
3τ

Im{
M−1∑
j=0

[(Un+ 1
2

j+1 + Un− 1
2

j+1 ) − (Un+ 1
2

j−1 + Un− 1
2

j−1 )](Un+ 1
2

j − Un− 1
2

j )}
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=
2
3τ

Im{
M−1∑
j=0

[(Un+ 1
2

j+1 Un+ 1
2

j − Un+ 1
2

j+1 Un+ 1
2

j ) + (Un− 1
2

j+1 Un− 1
2

j − Un− 1
2

j+1 Un− 1
2

j )

− [(Un+ 1
2

j+1 Un− 1
2

j + Un+ 1
2

j+1 Un− 1
2

j ) + (Un+ 1
2

j Un− 1
2

j+1 + Un+ 1
2

j Un− 1
2

j+1 )]}

=
2
3τ
{Im[

M−1∑
j=0

(Un+ 1
2

j+1 Un+ 1
2

j − Un+ 1
2

j+1 Un+ 1
2

j )] − Im[
M−1∑
j=0

(Un− 1
2

j+1 Un− 1
2

j − Un− 1
2

j+1 Un− 1
2

j )]}. (3.4)

Similarly, we obtain

Im[(
1
6
δẍ(Un+ 1

2 + Un− 1
2 ), δtUn + δtUn−1)] =

1
12τ
{Im[

M−1∑
j=0

(Un+ 1
2

j+2 Un+ 1
2

j − Un+ 1
2

j+2 Un+ 1
2

j )]

− Im[
M−1∑
j=0

(Un− 1
2

j+2 Un− 1
2

j − Un− 1
2

j+2 Un− 1
2

j )]}. (3.5)

Substituting (3.3)–(3.5) into (3.2). Let

En = ||δtUn||2 +
2
3

(||δxUn+1||2 + ||δxUn||2) −
1
6

(||δx̂Un+1||2 + ||δx̂Un||2)

+
2
3
θIm[

M−1∑
j=0

(Un+ 1
2

j+1 Un+ 1
2

j − Un+ 1
2

j+1 Un+ 1
2

j )] −
1

12
θIm[

M−1∑
j=0

(Un+ 1
2

j+2 Un+ 1
2

j ) − Un+ 1
2

j+2 Un+ 1
2

j ]

+
1
2
λ(||Un+1||2 + ||Un||2) +

1
2
β||Un||2||Un+1||2,

which implies (3.1).
Lemma 3.4. Assume that u0 ∈ H1

per[xl, xr], then the solution of (1.1)–(1.3) is estimated:

||ut||L2 ≤ C, ||u||L2 ≤ C, ||ux||L2 ≤ C, ||u||L∞ ≤ C.

Proof. It follows from (1.4) that

||ut||
2
L2

+ ||ux||
2
L2

+ λ||u||2L2
≤ C + |iθ

∫ xr

xl

uūx dx| ≤ C +
1
2
|θ|(||u||2L2

+ ||ux||
2
L2

). (3.6)

For the parameters λ and θ that satisfy 1 − 1
2 |θ| > 0 and λ − 1

2 |θ| > 0, we obtain

||ut||L2 ≤ C, ||u||L2 ≤ C, ||ux||L2 ≤ C. (3.7)

Thus, ||u||L∞ ≤ C follows by Sobolev inequality.
Theorem 3.2. For the scheme of (2.1), its solution satisfies the following estimation: ||δtUn|| ≤

C, ||Un|| ≤ C, ||δxUn|| ≤ C, ||Un||∞ ≤ C.
Proof. From (3.1), we obtain

||δtUn||2 + 2
3 (||δxUn+1||2 + ||δxUn

x ||
2) − 1

6 (||δx̂Un+1||2 + ||δx̂Un
x ||

2) + 1
2λ(||Un+1||2 + ||Un||2) ≤ C

+2
3 |θIm[

∑M−1
j=0 (Un+ 1

2
j+1 Un+ 1

2
j − Un+ 1

2
j+1 Un+ 1

2
j )]| + 1

12 |θIm[
∑M−1

j=0 (Un+ 1
2

j+2 Un+ 1
2

j − Un+ 1
2

j+2 Un+ 1
2

j )]|. (3.8)
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For Un ∈ Z0
h , we have

M−1∑
j=0

(−Un+ 1
2

j−1 Un+ 1
2

j + Un+ 1
2

j+1 Un+ 1
2

j ) = 0,
M−1∑
j=0

(−Un+ 1
2

j−2 Un+ 1
2

j + Un+ 1
2

j+2 Un+ 1
2

j ) = 0. (3.9)

Thus

2
3
|θIm[

M−1∑
j=0

(Un+ 1
2

j+1 Un+ 1
2

j − Un+ 1
2

j+1 Un+ 1
2

j )]|

=
2

3h
|θIm[h

M−1∑
j=0

(Un+ 1
2

j+1 Un+ 1
2

j − Un+ 1
2

j−1 Un+ 1
2

j + Un+ 1
2

j−1 Un+ 1
2

j − Un+ 1
2

j+1 Un+ 1
2

j )]|

=
4
3
|θIm[h

M−1∑
j=0

Un+ 1
2

j δx̂U
n+ 1

2
j ]|

≤
|θ|

3
(‖Un+1‖2 + ‖Un‖2 + ‖δx̂Un+1‖2 + ‖δx̂Un‖2). (3.10)

Similarly, we obtain

1
12
|θIm[

M−1∑
j=0

(Un+ 1
2

j+2 Un+ 1
2

j −Un+ 1
2

j+2 Un+ 1
2

j )]| ≤
|θ|

12
(‖Un+1‖2+‖Un‖2+‖δẍUn+1‖2+‖δẍUn‖2). (3.11)

This, together with (3.10), (3.8), and Lemma 3.2, gives the following:

||δtUn||2 + (
1
2
−

5
12
|θ|)(||δxUn+1||2 + ||δxUn

x ||
2) + (

1
2
λ −

5
12
|θ|)(||Un+1||2 + ||Un||2) ≤ C. (3.12)

For λ and θ that satisfy 1
2 −

5
12 |θ| > 0 and 1

2λ −
5

12 |θ| > 0, we have

||δtUn|| ≤ C, ||δxUn|| ≤ C, ||Un|| ≤ C. (3.13)

It follows from Lemma 3.3 that

||Un||∞ ≤ C. (3.14)

4. Convergence

Let ωn
j = u(x j, tn). Together with (2.4), the truncation error of (2.1)–(2.3) is defined:

rn
j = δtδt̄ω

n
j−

1
2

[
4
3
δxδx̄(ωn+1

j + ωn−1
j )−

1
3
δx̂δx̂(ωn+1

j + ωn−1
j )]+γ(

4
3
δx̂δt̂ω

n
j −

1
3
δẍδt̂ω

n
j)−iαδt̂ω

n
j

− i
θ

2
[
4
3
δx̂(ω

n+ 1
2

j + ω
n− 1

2
j ) −

1
3
δẍ(ω

n+ 1
2

j + ω
n− 1

2
j )] +

1
2
λ(ωn+1

j + ωn−1
j ) +

1
2
β|ωn

j |
2(ωn+1

j + ωn−1
j ), (4.1)

σ0
j =

2
τ2 (ω1

j − u0 − τu1) − [
4
3
δxδx̄(ω1

j − τu1) −
1
3
δx̂δx̂(ω1

j − τu1)] + γ(
4
3
δx̂u1 −

1
3
δẍu1) − iαu1
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− i
θ

2
[
4
3
δx̂(ω1

j + u0 − τu1) −
1
3
δẍ(ω1

j + u0 − τu1)] + λ(ω1
j − τu1) + β|u0|

2(ω1
j − τu1), (4.2)

ω0
j = u0(x j), (4.3)

ωn
j = ωn

j+M. (4.4)

Applying Taylor expansion, there is |rn| + |σ0| = O(τ2 + h4).
Next, we shall carry out the convergence analysis of the present scheme.

Lemma 4.1. [32] Suppose that the mesh function {vn, n = 1, 2, · · · ,N; Nτ = T } satisfies the inequality

vn − vn−1 ≤ Bτvn + Cτvn−1 + Anτ,

the constants B, C, and An are nonnegative. Thus

||vn||∞ ≤ (v0 + τ

N∑
k=1

Ak)e2(B+C)T ,

where, τ small enough stafies (B + C)τ ≤ N−1
2N (N > 1).

Theorem 4.1. Suppose that u(x, t) ∈ C6,3
x,t . The numerical solution Un of the finite difference

scheme (2.1)–(2.3) is convergent to the solution of (1.1)–(1.3) in the || · ||∞ norm with the convergent
rate O(τ2 + h4).
Proof. Let en

j = ωn
j − Un

j . From (4.1)–(4.4) and (2.1)–(2.4), we have

rn
j = δtδt̄en

j −
1
2

[
4
3
δxδx̄(en+1

j + en−1
j ) −

1
3
δx̂δx̂(en+1

j + en−1
j )] + γ(

4
3
δx̂δt̂en

j −
1
3
δẍδt̂en

j) − iαδt̂en
j

− i
θ

2
[
4
3
δx̂(e

n+ 1
2

j + en− 1
2

j ) −
1
3
δẍ(e

n+ 1
2

j + en− 1
2

j )] +
1
2
λ(en+1

j + en−1
j ) +

1
2
β|ωn

j |
2(ωn+1

j + ωn−1
j )

−
1
2
β|Un

j |
2(Un+1

j + Un−1
j ), (4.5)

σ0
j =

2
τ2 e1

j − (
4
3
δxδx̄e1

j −
1
3
δx̂δx̂e1

j) − i
θ

2
(
4
3
δx̂e1

j −
1
3
δẍe1

j) + λe1
j + β|u0|

2e1
j , (4.6)

e0
j = 0, (4.7)

en
j = en

j+M. (4.8)

Multiply both sides of (4.5) with δten + δt̄en. Take the real parts:

(rn, δten + δt̄en) =
1
τ

(||δten||2 − ||δten−1||2) +
2
3τ

(||δxen+1||2 − ||δxen−1||2)

−
1
6τ

(||δx̂en+1||2 − ||δx̂en−1||2) − Re(iαδt̂en, δten + δt̄en)

+ θIm(
2
3
δx̂(en+ 1

2 + en− 1
2 ), δten + δt̄en) − θIm(

1
6
δẍ(en+ 1

2 + en− 1
2 ), δten + δt̄en)

+
1
2τ
λ(||en+1||2 − ||en−1||2) + Re(P, δten + δt̄en), (4.9)

where

P =
1
2
β|ωn|2(ωn+1 + ωn−1) −

1
2
β|Un|2(Un+1 + Un−1).
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Computing the fifth, sixth, and last terms on the right-hand side of (4.9), we have

Im(
2
3
δx̂(en+ 1

2 + en− 1
2 ), δten + δt̄en) ≤ C(||δx̂en+1||2 + ||δx̂en||2 + ||δx̂en−1||2

+ ||δten||2 + ||δten−1||2), (4.10)

Im[(
1
6
δẍ(en+ 1

2 + en− 1
2 ), δten + δt̄en)] ≤ C(||δẍen+1||2 + ||δẍen||2 + ||δẍen−1||2

+ ||δten||2 + ||δten−1||2), (4.11)

Re(P, δten + δt̄en) = (
1
2
β|ωn|2(en+1

j + en−1) +
1
2
β(|ωn|2 − |Un|2)(Un+1 + Un−1), δten + δt̄en)

=
1
2
β(|ωn|2(en+1 + en−1), δten + δt̄en) +

1
2
β((|ωn|2 − |Un|2)(Un+1 + Un−1), δten + δt̄en). (4.12)

In addition, we have

(
1
2
β(|ωn|2(en+1 + en−1), δten + δt̄en) ≤ C(||en||2 + ||en+1||2 + ||δten−1||2 + ||δten||2), (4.13)

(
1
2
β(|ωn|2−|Un|2)(Un+1+Un−1), δten+δt̄en) =

β

2
((ωnen+enUn)(Un+1+Un−1), δten+δt̄en)

≤ C(||en||2 + ||δten||2 + ||δten−1||2), (4.14)

and

Re(iαδt̂en, δten + δt̄en) = 0, (4.15)

(rn, δten + δt̄en) ≤ ||rn||2 +
1
2

(||δten||2 + ||δten−1||2). (4.16)

It follows from (4.9)–(4.16) that

1
τ

(||δten||2 − ||δten−1||2) +
2
3τ

(||δxen+1||2 − ||δxen−1||2) −
1
6τ

(||δx̂en+1||2 − ||δx̂en−1||2)

+
1
2τ
λ(||en+1||2 − ||en−1||2) ≤ ||rn||2 + C(||δx̂en+1||2 + ||δx̂en||2 + ||δx̂en−1||2 + ||δẍen+1||2

+ ||δẍen||2 + ||δẍen−1||2 + ||en+1||2 + ||en||2 + ||δten||2 + ||δten−1||2) (4.17)

Let Φn = ||δten||2 + 1
2 (||δxen+1||2 + ||δxen||2) + λ

2 (||en+1||2 + ||en||2). By Lemma 3.3, (4.17) can be rewritten
as follows:

Φn − Φn−1 ≤ τ||rn||2 + Cτ(Φn + Φn−1). (4.18)

Using Lemma 4.1 yields

Φn ≤ (Φ0 + T sup
1≤n≤N

||rn||2)eCT . (4.19)
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In (4.6), multiplying e1 yields

(σ0, e1) =
2
τ2 ||e

1||2 +
4
3
||δxe1||2 −

1
3
||δx̂e1||2 + λ||e1||2 + β|u0|

2||e1||2. (4.20)

According to Lemma 3.2, (4.20) together with |σ0| = O(τ2 + h4), (σ0, e1) ≤ 1
2 (||σ0||2 + ||e1||2), and τ

small enough gives

||e1|| ≤ O(τ2 + h4), ||δxe1|| ≤ O(τ2 + h4). (4.21)

Consequently

Φ0 = [O(τ2 + h4)]2. (4.22)

It follows from (4.19) that

Φn ≤ [O(τ2 + h4)]2. (4.23)

Thus

||en|| ≤ O(τ2 + h4), ||δxen|| ≤ O(τ2 + h4). (4.24)

From Lemma 3.3, we obtain

||en||∞ ≤ O(τ2 + h4). (4.25)

5. Numerical experiments

In this section, numerical tests are given to verify the theoretical analysis of the different solutions.
To test the space accuracy of the scheme, we denote

Ern = ||ωn − Un||∞, Order = log[Ern(
h
2
,
τ

4
)/Ern(h, τ)]/ log 2.

5.1. Plane wave solution

Consider the initial and periodic boundary problems:

utt − uxx + utx + i(ut + ux) + 3u = 0, (5.1)
u(x, 0) = u0(x), ut(x, 0) = u1(x), (5.2)
u(x, t) = u(x + (xr − xl), t). (5.3)

The exact periodic solution of (5.1)–(5.3) is known as:

u(x, t) = exp[i(x − 3t)]. (5.4)

In computations, we take xl = 0, xr = 2π, and T = 10. Setting t = 0, u0(x) and u1(x) are derived
from (5.4). Wang and Kong proposed a second-order accuracy MI scheme to study (5.1)–(5.3) [8].
The MI scheme and the presented scheme are denoted as Schemes I and II, respectively. In view of
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all the schemes having 2-order accuracy in time, we mainly consider the accuracy in space in the tests.
The comparison between Scheme I and II is provided in Table 1 and Figure 1. Table 1 includes the
errors, convergence order, and CPU time of both schemes. From Table 1 and Figure 1, it is clear that
our method is much better than the other in [8]. Table 1 also demonstrates the present scheme (2.1)–
(2.4) is fourth-accuracy in space. In view that the discrete energy is complex, the imaginary and real
parts of the conservative property of En for Scheme II have been shown in Figure 2 under the temporal
τ = 1

640 and the spatial h =
pi
40 , respectively. Figure 2 shows that the scheme (2.1) inherits the energy-

conservative property very well, which the original problem possesses.

Table 1. The comparison of ‖ · ‖∞ errors, convergence order of Un, and CPU time at t = 10
for I and II under different h and τ.

(h, τ) ( pi
10 ,

1
40 ) ( pi

20 ,
1

160 ) ( pi
40 ,

1
640 ) ( pi

80 ,
1

2560 ) ( pi
160 ,

1
10240 )

Ern-I 6.76685e-2 1.93801e-2 4.99825e-3 1.25930e-3 3.19763e-4
Order-I - 1.86860 1.96911 1.99225 1.98450
CPU time-I 0.20 s 0.75 s 6.04 s 70.72 s 1238.64 s
Ern-II 3.27958e-2 2.05709e-3 1.28647e-4 8.04211e-6 4.83896e-7
Order-II - 3.99285 3.99877 3.99958 4.07670
CPU time-II 0.19 s 0.69 s 5.26 s 64.60 s 1008.52 s
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Figure 1. The comparison of maximum errors for Scheme I and II under mesh step h =
π
20 , τ = 1

160 for (I) and (II), respectively.
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Figure 2. Discrete energy En of the scheme (2.1) for Case 5.1: imaginary parts (a) and real
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5.2. Solitary wave solution

The initial value problem of (1.1)–(1.3):

utt − uxx + iut − 2|u|2u = 0, (5.5)
u(x, 0) = g0(x), ut(x, 0) = g1(x). (5.6)

In experiments, g0(x) = A sech(Kx), g1(x) = ivA sech(Kx) are chosen with the parameters A = |K|,
and v = 1

2 (−1 ±
√

1 − 4K2) [33]. We take K = 1
3 , v = 1

2 (−1 −
√

1 − 4K2). The comparisons of
convergence order, CPU time, and the errors in the ‖ · ‖∞ norm are shown in Table 2 under different
spatial h and temporal τ. The values of En are shown in Table 3. Both Tables 2 and 3 all demonstrate
the accuracy and effectiveness of the present scheme in this article.

Table 2. Comparison of ‖ · ‖∞ errors, spatial convergent order of Un, and CPU time at t = 10
for I and II.

(h, τ) ( 2
5 ,

1
5 ) (1

5 ,
1

20 ) ( 1
10 ,

1
80 ) ( 1

20 ,
1

320 )
Ern-I 1.04175e-1 4.34497e-2 1.27546e-2 3.33003e-3
Order-I - 1.54875 1.84570 1.95709
CPU time-I 1.29 s 5.01 s 32.70 s 335.08 s
Ern-II 1.17183e-2 7.39682e-4 4.63126e-5 2.89571e-6
Order-II - 3.98024 3.99643 3.99919
CPU time-II 1.24 s 4.30 s 30.29 s 314.94 s
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Table 3. The values En of the present scheme (2.1) at various times t under (h, τ) =

(0.05, 0.003125).

t En t En

1 0.48301878398221 2 0.48301878401443
3 0.48301878402789 4 0.48301878402025
5 0.48301878399478 6 0.48301878395885
7 0.48301878392179 8 0.48301878389250
9 0.48301878387798 10 0.48301878388164

6. Conclusions

In this paper, an attempt was made to design a novel energy-conserved numerical scheme to solve
the initial and periodic boundary problem of the generalized nonlinear Schrödinger equation with a
wave operator. The proposed scheme possesses the following merits: Coupling with the Richardson
extrapolation, the scheme is linear, of high accuracy O(h4 + τ2), and without any restrictions of mesh
steps; the presented scheme is energy-conserved and inherits the conservative property that the original
system possesses. The convergence analysis of the scheme is discussed in detail. Numerical tests
further illustrate the effectiveness of the scheme.
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