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Abstract: In this paper, we investigated the optimal tracking control problem of flexible-joint
robotic manipulators in order to achieve trajectory tracking, and at the same time reduced the energy
consumption of the feedback controller. Technically, optimization strategies were well-integrated
into backstepping recursive design so that a series of optimized controllers for each subsystem could
be constructed to improve the closed-loop system performance, and, additionally, a reinforcement
learning method strategy based on neural network actor-critic architecture was adopted to approximate
unknown terms in control design, making that the Hamilton-Jacobi-Bellman equation solvable in the
sense of optimal control. With our scheme, the closed-loop stability, the convergence of output tracking
error can be proved rigorously. Besides theoretical analysis, the effectiveness of our scheme was also
illustrated by simulation results.
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1. Introduction

In recent decades, automation has flourished, leading to the widespread integration of robots
across various sectors, including industrial production [1], healthcare [2], defense [3], aerospace
engineering [4], and numerous other domains [5–7]. Robots used in industrial production are
typically made of rigid materials, which results in high manufacturing costs and limited degrees
of freedom. Furthermore, because of their relatively rigid structure, they are not well-suited for
complex environments and may struggle to efficiently complete tasks in situations that involve
interacting with unpredictable environments or objects. Therefore, the control problem of flexible-
joint robotic manipulators with high adaptability and an extensive range of degrees of freedom has
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received much attention, and various approaches have been developed(e.g., [8–12]), among which
the backstepping-based strategy would be the commonly used only due to the advantages in handling
nonlinearities [13–19].

The backstepping controller, which utilizes a sampled-data extended state observer (SD-ESO),
was proposed in [17] as a methodology to optimize the transient response of a flexible-joint robotic
manipulator. This methodology is devised to minimize estimation inaccuracies and other constraints,
thereby enhancing the overall performance of the robotic system. In [18], an explicit state feedback
controller has been designed to solve the problem of practical tracking control of a flexible-joint robotic
manipulator in the presence of actuator saturation by cleverly combining an inverse stepping scheme,
an adaptive technique and a method of constructing a command filter and an actuator saturation
assist system. In the study presented in [19], an adaptive control scheme is introduced to ensure the
convergence of tracking deviations in a flexible-joint robotic manipulator. The methodology employs
a backstepping control strategy to ensure that the deviation converges within a specified timeframe to
a predetermined range. While the tracking accuracy and convergence rate can be well improved with
the existing backstepping-based control schemes such as those mentioned above, they overlook the
energy consumption of the controller. Considering that flexible manipulators require more energy for
deformation and adjustment compared to rigid manipulators, optimizing energy consumption becomes
crucial to enhance system performance and reduce operational costs. Therefore, it is crucial to
implement control methods to optimize energy consumption.

Bellman in [20] and Pontryagin in [21] proposed the optimal control. This control approach aims to
find control strategies for dynamical systems and to optimize the structured cost metric, thus achieving
a harmonious balance between the available resources and required performance. However, since the
optimal control is typically determined by solving the Hamilton-Jacobi-Bellman (HJB) equation [22],
its inherent nonlinearity and complexity make it challenging to solve directly using analytical methods.
Fortunately, the adaptive dynamic programming (ADP) or reinforcement learning (RL) proposed by
Werbos et al. [23–25] provides an efficient technique for learning solutions to the HJB equation.
The fundamental concept underlying this methodology is to modify the action step-by-step through
feedback from the environment. This is generally achieved through the interactive learning of two
neural networks (NNs): the actor and the critic. The critic plays a pivotal role in evaluating the
actor’s actions and providing feedback that guides the actor’s policy optimization and subsequent action
execution. Therefore, the energy consumption problem of the flexible-joint robotic manipulator can
be managed by incorporating optimal control based on RL into the backstepping control. It should be
pointed out that, integrating optimized control into the backstepping control of a flexible-joint robotic
manipulator remains challenging due to the complexity of system control and convergence analysis.

In this paper, we propose a trajectory tracking control approach for flexible-joint robotic
manipulators. By integrating optimization techniques into the backstepping control framework, we
formulate each controller as an optimal solution tailored for its respective subsystem. This approach
enhances the overall control efficacy of the flexible-joint robotic manipulator system. Concurrently, we
employ RL grounded in the NN-based actor-critic architecture to tackle the intricate challenge posed
by the HJB equation. In summary, the contributions of this paper are as follows:

(1) By constructing the performance index function with an error term and controller input, the
controller is designed to minimize energy consumption and achieve the desired trajectory tracking
task of the flexible-joint robotic manipulator.
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(2) In the optimal backstepping control of a flexible-joint robotic manipulator, RL based on a NN
actor-critic architecture is utilized. In this setup, the critic evaluates performance and provides
feedback to the actor, which then executes the actor. This simplifies the design of the controller
for the higher-order nonlinear flexible-joint robotic manipulator model.

The rest of this paper is organized as follows. In Section 2, we formulate the control problem,
and give some fundamentals for design and analysis. In Section 3, a complete procedure is presented
to show how an optimized controller is constructed, and the closed-loop stability is established. In
Section 4, simulation results are collected to illustrate the effectiveness of our scheme. The whole
paper is concluded in Section 5.

2. Problem statement and preliminaries

2.1. Problem description

Disregarding the viscous damping effects, as referenced in [26], we obtain the dynamic equations
for the single-link flexible-joint robotic manipulator depicted in Figure 1.

Iq̈1 + Mgl sin(q1) + k(q1 − q2) = 0,

Jq̈2 + k(q2 − q1) = u, (2.1)

where q1 and q2 are the angular positions of the link and motor shaft, and u is the torque generated
by the driving motor. The inertia I and J, the link mass M, the gravity acceleration g, the position
of the link’s center of gravity l, and the coefficient of strength of the spring k can be obtained by the
identification system, so all of them are regarded as known parameters.

Figure 1. Schematic depiction of the single-link flexible manipulator’s structural design.

By selecting the state variables, x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, the dynamic equation of
system (2.1) becomes

ẋ1(t) = x2(t),

ẋ2(t) = −
Mgl

I
sin(x1(t)) −

k
I
(
x1(t) − x3(t)

)
,

ẋ3(t) = x4(t),
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ẋ4(t) =
k
J
(
x3(t) − x1(t)

)
+

1
J

u(t). (2.2)

System (2.2) is equivalent to the following nonlinear model

ẋ1(t) = x2(t),

ẋ2(t) = f2(x̄2(t)) + g2x3(t),

ẋ3(t) = x4(t),

ẋ4(t) = f4(x̄4(t)) + g4u(t),

y(t) = x1(t), (2.3)

where f2(x̄2(t)) = −Mgd
J1

sin(x1(t)) − k
I x1(t), g2 =

k
I , f4(x̄4(t)) = k

J

(
x3(t) − x1(t)

)
, g4 =

1
J . y(t) ∈ R is the

system output, u(t) ∈ R is the control input, f (x̄i(t)) ∈ R is a known and bounded continuous function,
and ẋi(t), i = 1, . . . , 4, are assumed to exhibit stabilizability properties within the subsets that include
the origin, and to satisfy the Lipschitz continuous.

Remark 2.1. The assumption that ẋi satisfies Lipschitz continuous is made here to ensure that
the system evolves smoothly over time, preventing sudden changes that could lead to instability or
suboptimal performance to facilitate optimal control. Moreover, the system’s seamless progression
is ensured to remain within a defined boundary, subject to the confinement imposed by the Lipschitz
continuity condition. In other words, the velocity of variation exhibited by the system’s state variables
is confined to a bounded region, dictated by a Lipschitz constant.

Definition 2.1. (Stable and ultimately uniformly bounded (SGUUB) [27]). For a nonlinear system
with the state vector x(t) ∈ Rn

ẋ(t) = f (x, t).

Its solution is said to be SGUUB if, for x(0) ∈ Ωx where Ωx ∈ Rn is a compact set, there exist two
constants σ and T (σ, x(0)), such that ∥x(t)∥ ≤ σ is held for all t > t0 + T (σ, x(0)).

The solution is characterized as SGUUB when, for any initial condition x(0) within the compact
subsetΩx ∈ Rn, there exist positive scalar constants σ and T (σ, x(0)) that satisfy the inequality ∥x(t)∥ ≤
σ for all time instants t exceeding the initial time t0 by a duration greater than T (σ, x(0)).

Lemma 2.1. Given G(t) ∈ R with G(0) bounded, if Ġ(t) ≤ −aG(t) + c for a, c > 0, then G(t) ≤
e−atG(0) + c

a (1 − e−at).
Control objectives: In developing a critic-actor RL-based optimal control strategy for the single-

link manipulator system (2.3), our objective is to ensure the following:

P1) Within the closed-loop control framework, all error signals, designated as zi(t) for i = 1, · · · , 4,
and the weight estimation errors, expressed as W̃ci(t) and W̃ai(t) for i = 1, · · · , 4, are assured to be
SGUUB in a predictable and desirable fashion;

P2) The single-link manipulator joint angular position q1(t) exhibits the capability to follow the
desired trajectory yr in a predictable and desirable manner.
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2.2. Basic knowledge of optimal control

To describe the optimal control strategy, consider the following nonlinear continuous-time dynamic
system:

ẋ(t) = f (x) + g(x)u(x), (2.4)

where x(t) ∈ Rn represents the state variable, f (x) ∈ Rn denotes a continuous function, u(x) ∈ Rm

signifies the input signal, and the term g(x) ∈ Rn×m is the continuous gain function. Assuming that the
derivative x(t) exhibits Lipschitz continuity within the set Ω encompassing the origin, it ensures the
uniqueness of the solution for the nonlinear system (2.4) with bounded initial values. Furthermore, the
stabilizability of the system (2.4) implies the availability of a continuous control function u that can
asymptotically stabilize the system, as referenced in [28].

Define the performance index of the dynamic system (2.4) as follows

V(x) =
∫ ∞

t
r
(
x(τ), u(x(τ))

)
dτ,

where r(x, u) = xT P1x + uT P2u is the cost function, P1 = PT
1 ∈ Rn×n and P2 = PT

2 ∈ Rm×m are two
positive semi-definite matrices, and P2 signifies the impact of control efforts on the total cost.

Definition 2.2. The control strategy u(x) is considered acceptable on Ω, denoted as u(x) ∈ Ψ(Ω), if
u(x) is continuous, u(0) = 0, u is stable on Ω, and V(x) is finite.

When addressing the optimization of control strategies related to system (2.4), the primary objective
is to determine a suitable control strategy, denoted as u(x) and belonging to the set Ψ(Ω), that enables
the minimization of the value function V(x). Define the HJB function for system (2.4) as follows

H(x, u,Vx) = r(x, u) + VT
x (x)ẋ(t)

= xT P1x + uT P2u + VT
x (x)

(
f (x) + g(x)u(x)

)
,

where Vx(x) = ∂V(x)/∂x is the partial differentiation of the performance index function V(x) with
respect to the variable x.

To obtain optimal control, define the optimal function V∗(x) for the dynamic system (2.4) mentioned
above with the optimal input u∗(x) as follows:

V∗(x) = min
u∈Ψ(Ω)

( ∫ ∞

t
r(x(τ), u(x(τ))dτ

)
=

∫ ∞

t
r
(
x(τ), u∗(x(τ)

)
dτ.

The HJB function is then obtained as follows:

H
(
x, u∗,V∗x

)
= r(x, u∗) + V∗Tx (x)ẋ(t)

= xT P1x + u∗T P2u∗ + V∗Tx (x)
(
f (x) + g(x)u∗

)
= 0, (2.5)
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where V∗x (x) = ∂V∗(x)/∂x denotes the partial derivative of the optimal performance index function
V∗(x) with respect to x.

Assuming that (2.5) has, and only has, a unique solution, by solving the equation
∂H(x, u∗,V∗x )/∂u∗ = 0, the expression of u∗(x) is derived as

u∗(x) = −
1
2

P−1
2 gT (x)V∗x (x). (2.6)

Substituting (2.6) into (2.5) gives the following result as

H
(
x, u∗,V∗x

)
= xT P1x + V∗Tx f (x) −

1
4

V∗Tx (x)g(x)P−1
2 gT (x)V∗x (x)

= 0. (2.7)

The optimal control policy u∗(x) in (2.5) is unknown because the term V∗x (x) is unknown, but it
can be obtained by solving (2.7) to find the gradient term V∗x (x), and then substituting V∗x (x) into (2.6).
However solving (2.7) is difficult or even impossible, especially for some high-order systems. To tackle
such a problem, the prevalent approach in the extant literature involves employing the technique of RL
with an actor-critic architecture: see in [29].

2.3. Neural networks and function approximation

Multiple use cases have formalized the strong function approximation and adaptive learning
capabilities of NNs. Distinctly, for any given nonlinear and continuous function F(z) : Rn → Rm

that is defined over a compact domain Ω, NNs of a specific configuration can serve as a proximate
representation

FNN(z) = WTΓ(z),

where W ∈ Rp×m is the weight of the NN, Γ(z) = [γ1(z), γ2(z), . . . , γp(z)]T ∈ Rp represents the Gaussian
basis function vector, and p signifies the total number of neurons. Specifically, the expression for γi

where i = 1, . . . , p is given as follows:

γi = exp[
−(x − vi)T (x − vi)

φ2
i

],

where vi = [vi1, vi2, . . . , vin] are centers of the respective field, and φi is the width of the Gaussian
function.

In accordance with theoretical principles, there ought to exist an optimal weight matrix, denoted as
W∗, which enables the accurate representation of F(z) as follows

F(z) = W∗TΓ(z) + ε(z),

where ε(z) ∈ Rm denotes the approximation error that when the number of neurons p is large enough
to satisfy ∥ε(z)∥ ≤ δ, δ is an extremely small positive constant, and W∗ is the ideal weight used only for
making stability analysis, denoted as

W∗ ≜ arg min
W∈Rp×m

{
sup
z∈Ωz

∥∥∥F(z) −WTΓ(z)
∥∥∥} .
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3. Optimized backstepping design and stability analysis

Step 1: In this step, the tracking deviation vector is defined as z1(t) = x1(t) − yr(t). From (2.3), it
can be deduced that its derivative is

ż1(t) = x2(t) − ẏr(t). (3.1)

The optimal virtual control for the first step is denoted by α∗1(z1), with the optimal value function
being defined accordingly,

V∗1(z1) = min
α1∈Ψ(Ωz1 )

( ∫ ∞

t
r1

(
z1(τ), α1(z1(τ))

)
dτ

)
=

∫ ∞

t
r1

(
z1(τ), α∗1(z1(τ))

)
dτ, (3.2)

where α1(z1) is the virtual control, Ωz1 is the admissible set of α∗1, and r1 = z2
1(t) + α2

1(z1) is the
cost function in the first step. The optimal performance index function V∗1(z1) is divided into two
components as shown below to facilitate the construction of optimal tracking control,

V∗1(z1) = β1z2
1(t) + Vo

1 (z1), (3.3)

where β1 > 0 is a designable constant, and Vo
1 (z1) = −β1z2

1(t)+ V∗1(z1). By viewing x2(t) as α∗1, the HJB
function can be obtained from tracking error (3.1) and the optimal function (3.3) as follows

H1

(
z1, α

∗
1,
∂V∗1
∂z1

)
= r1 +

∂V∗1(z1)
∂z1

ż1(t)

= z2
1(t) + α∗21 (z1) +

(
2β1z1(t) +

∂Vo
1 (z1)
∂z1

) (
α∗1(z1) − ẏr(t)

)
= 0. (3.4)

The optimal virtual control α∗1 can be derived by solving ∂H1/∂α
∗
1 = 0 as

α∗1(z1) = −β1z1(t) −
1
2
∂Vo

1 (z1)
∂z1

. (3.5)

Because solving ∂Vo
1 (z1)/∂z1 is complex, but the term is continuous for Ωz1 , it can be approximated

with an NN as

∂Vo
1 (z1)
∂z1

= W∗T
1 Γ1(z1) + ε1(z1), (3.6)

where W∗T
1 ∈ Rm1 represents the ideal weight in the NN, and the item Γ1(z1) ∈ Rm1 signifies the basis

function in the NN, and ε1(z1) ∈ R is the bounded approximation error.

Remark 3.1. Note that both NNs and FLSs can be used to approximate uncertain functions:
see [30–32] for examples. Nevertheless, compared with FLS, the NN approximator could have the
following advantages: 1) NNs eliminate the need to formulate a rule base, as they can automatically
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learn the input-output mapping relationship through training, making the process less complex, and
2) NNs can effectively handle anomalous samples through an adaptive mechanism.

With the aid of (3.6), it can be derived from (3.3) and (3.5) that

∂V∗1(z1)
∂z1

= 2β1z1(t) +W∗T
1 Γ1(z1) + ε1(z1), (3.7)

α∗1(z1) = −β1z1(t) −
1
2
(
W∗T

1 Γ1(z1) + ε1(z1)
)
. (3.8)

Substituting (3.6) and (3.8) into (3.4), we can get the following expression:

H1
(
z1, α

∗
1,W

∗
1
)
= −

(
β2

1 − 1
)
z2

1(t) − 2β1ẏr(t)z1(t) +W∗T
1 Γ1(z1)

(
− ẏr(t) − β1z1(t)

)
−

1
4

W∗T
1 Γ1(z1)ΓT

1 (z1)W∗
1 + ϵ1(t) = 0, (3.9)

where ϵ1(t) = ε1(z1)
(
− ẏr(t) + α∗1

)
+ (1/4)ε2

1(z1) is bounded.
Due to the uncertainty surrounding the ideal weight W∗

1 , the optimal virtual control in (3.8) remains
undetermined. Therefore, to achieve the desired tracking control, we employ an RL algorithm based
on an actor-critic framework. In this framework, we use the critic module to assess the effectiveness of
the control, while the actor component formulates the virtual control signal

∂V̂∗1(z1)
∂z1

= 2β1z1(t) + ŴT
c1(t)Γ1(z1), (3.10)

α̂1(z1) = −β1z1(t) −
1
2

ŴT
a1(t)Γ1(z1), (3.11)

where V̂∗1 is the estimation of V∗1 , Ŵc1 ∈ Rm1 represents the weight of critic NN, and Ŵa1 ∈ Rm1 is the
actor NN weight.

Remark 3.2. It’s worth noting that unlike the single NN approach for approximating unknown
functions discussed in [31] and other works, this paper employs RL based on actor-critic NNs. In
this framework, the critic evaluates performance and provides feedback to the participants, who then
execute the suggested actions. Since the critic offers direct feedback on the policy, the actor can focus
on optimizing the policy, resulting in a more stable and effective update. In contrast, a single NN
typically updates its strategy based on direct returns to adjust the policy, which can result in greater
variance and negatively impact the efficiency and stability of the learning process.

By incorporating Eqs (3.10) and (3.11) into the framework of (3.4), the HJB equation is derived as

H1

(
z1, α̂1, Ŵc1

)
= z2

1(t) +
(
−β1z1(t) −

1
2

ŴT
a1(t)Γ1(z1)

)2

+
(
2β1z1(t) + ŴT

c1(t)Γ1(z1)
)(
− β1z1(t) −

1
2

ŴT
a1(t)Γ1(z1) − ẏr(t)

)
. (3.12)

Bellman residual error e1(t) can be derived from (3.9) and (3.12) as

e1(t) = H1
(
z1, α̂1, Ŵc1

)
− H1

(
z1, α

∗
1,W

∗
1
)

= H1
(
z1, α̂1, Ŵc1

)
. (3.13)
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Define the positive definite function of the Bellman residual error (3.13) as

E1(t) =
1
2

e2
1(t). (3.14)

To achieve the minimization of E1(t), the update law for the critic NN is derived by employing the
method of gradient descent,

˙̂Wc1(t) = −
µc1

∥ω1∥
2 + 1

∂E1(t)
∂Ŵc1

= −
µc1

∥ω1∥
2 + 1

ω1(t)
(
ωT

1 (t)Ŵc1(t) −
(
β2

1 − 1
)
z2

1(t) + 2β1z1
(
− ẏr

)
+

1
4

ŴT
a1Γ1(z1)ΓT

1 (z1)Ŵa1

)
, (3.15)

where µc1 > 0 is the learning rate of critic NN and ω1 = Γ1(z1)
(
− β1z1(t) − (1/2)ŴT

a1Γ1(z1) − ẏr
)
∈ Rm1 .

Remark 3.3. The matrix ωi(t) needs to satisfy the following equation for every t within the interval
[t, t + t̄i]:

ΛiImi ≤ ωi(t)ωT
i (t) ≤ ηiImi , i = 1, · · · , 4, (3.16)

where Λi, ηi, and t̄i are all positive values, and Imi ∈ Rmi×mi is the identity matrix. Satisfying
the aforementioned incentive persistence conditions enhances the robustness and adaptability of the
system, which further ensures the stability and performance of the flexible-joint robotic manipulator
system.

The actor NN weight is updated by the following law

˙̂Wa1(t) =
1
2
Γ1(z1)z1(t) − µa1Γ1(z1)ΓT

1 (z1)Ŵa1(t)

+
µc1

4
(
∥ω1∥

2 + 1
)Γ1(z1)ΓT

1 (z1)Ŵa1(t)ωT
1 (t)Ŵc1(t), (3.17)

where µa1 > 0 is the actor learning rate.
Designate the tracking discrepancy for the second step as z2(t) = x2(t) − α̂1(z1). Replace x2(t) with

z2(t) + α̂1(z1), then we can yield (3.1) as follows:

ż1(t) = z2(t) + α̂1(z1) − ẏr(t). (3.18)

Taking into account the scalar quadratic Lyapunov function pertaining to the first step, its
formulation is presented as follows:

L1(t) =
1
2

z2
1(t) +

1
2

W̃T
c1(t)W̃c1(t) +

1
2

W̃T
a1(t)W̃a1(t), (3.19)

where W̃c1(t) = Ŵc1(t) −W∗
1 is the critic NN weight error, and W̃a1(t) = Ŵa1(t) −W∗

1 is the NN weight
error of the actor. The derivative of (3.19) is

L̇1(t) = z1(t)ż1(t) + W̃T
c1(t) ˙̂Wc1(t) + W̃T

a1(t) ˙̂Wa1(t). (3.20)
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Then, recalling the tracking error (3.18), the updating law (3.15) (3.17), and the virtual control (3.11),
we have

L̇1(t) = z1(t)
(
z2(t) + â1(z1) − ẏr(t)

)
−

µc1

∥ω1∥
2 + 1

W̃T
c1(t)ω1

(
ωT

1 Ŵc1(t) −
(
β2

1 − 1
)
z2

1(t) − 2β1z1(t)ẏr(t)

+
1
4

ŴT
a1(t)Γ1(z1)ΓT

1 (z1)Ŵa1(t)
)

+W̃T
a1(t)

(1
2
Γ1(z1)z1(t) − µa1Γ1(z1)ΓT

1 (z1)Ŵa1(t)

+
µc1

4(∥ω1∥
2 + 1)

Γ1(z1)ΓT
1 (z1)Ŵa1(t)ωT

1 (t)Ŵc1(t)
)
. (3.21)

By collating Eq (3.21), the following expression can be obtained:

L̇1(t) = z1(t)z2(t) − β1z2
1(t) − z1(t)ẏr −

1
2

z1(t)ŴT
a1(t)Γ1(z1)

+
1
2

W̃T
a1(t)Γ1(z1)z1(t) − µa1W̃T

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)

+
µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)ωT

1 Ŵc1(t)

−
µc1

∥ω1∥
2 + 1

W̃T
c1(t)ω1

(
ωT

1 Ŵc1(t) −
(
β2

1 − 1
)
z2

1(t) + 2β1z1(t)
(
− ẏr

)
+

1
4

ŴT
a1(t)Γ1(z1)ΓT

1 (z1) × Ŵa1(t)
)
. (3.22)

The following results can be deduced because of the equation W̃a1(t) = Ŵa1(t) −W∗
1 :

W̃T
a1(t)Γ1(z1)z1 − z1ŴT

a1(t)Γ1(z1) = −z1(t)W∗T
1 Γ1(z1), (3.23)

µa1W̃T
a1(t)Γ1(z1)ΓT

1 (z1)Ŵa1(t) =
µa1

2
W̃T

a1(t)Γ1(z1)ΓT
1 (z1)W̃a1(t)

+
µa1

2
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)

−
µa1

2
W∗T

1 Γ1(z1)ΓT
1 (z1)W∗

1 . (3.24)

By inserting (3.23) and (3.24) into (3.22), L̇1(t) is rewritten as

L̇1(t) = z1(t)z2(t) − β1z2
1(t) − z1(t)ẏr −

1
2

z1(t)W∗T
1 Γ1(z1)

−
µa1

2
W̃T

a1(t)Γ1(z1)ΓT
1 (z1)W̃a1(t) −

µa1

2
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)

+
µa1

2
W∗T

1 Γ1(z1)ΓT
1 (z1)W∗

1 +
µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)ωT

1 Ŵc1(t)

−
µc1

∥ω1∥
2 + 1

W̃T
c1(t)ω1

(
ωT

1 Ŵc1(t) −
(
β2

1 − 1
)
z2

1(t) + 2β1z1(t)
(
− ẏr

)
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+
1
4

ŴT
a1Γ1(z1)ΓT

1 (z1)Ŵa1

)
. (3.25)

Utilizing Young’s inequality ab ≤ (a2/2) + (b2/2), the following results are derived

−z1(t)ẏr(t) ≤
1
2

z2
1(t) +

1
2

ẏ2
r (t), (3.26)

z1(t)z2(t) ≤ z2
1(t) + z2

2(t), (3.27)

−
1
2

z1(t)W∗T
1 Γ1(z1) ≤

1
2

z2
1(t) +

1
2
(
W∗T

1 Γ1(z1)
)2
. (3.28)

By substituting (3.26), (3.27), and (3.28) into (3.25), we can get the following derivation:

L̇1(t) ≤ z2
2(t) − (β1 − 2)z2

1(t) +
1
2

ẏ2
r +
µa1 + 1

2
(
W∗T

1 Γ1(z1)
)2

−
µa1

2
W̃T

a1(t)Γ1(z1)ΓT
1 (z1)W̃a1(t) −

µa1

2
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)

+
µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)ωT

1 Ŵc1(t)

−
µc1

∥ω1∥
2 + 1

W̃T
c1(t)ω1

(
ωT

1 Ŵc1(t) −
(
β2

1 − 1
)
z2

1(t) + 2β1z1
(
− ẏr

)
+

1
4

ŴT
a1(t)Γ1(z1)ΓT

1 (z1)Ŵa1(t)
)
. (3.29)

There is the following fact:

−
(
β2

1 − 1
)
z2

1 + 2β1z1
(
− ẏr

)
= −W∗T

1 Γ1(z1)
(
− ẏr(t) − β1z1(t)

)
+

1
4

W∗T
1 Γ1(z1)ΓT

1 (z1)W∗
1 − ϵ1(t)

= −ωT
1 W∗

1 −
1
2

ŴT
a1(t)Γ1(z1)ΓT

1 (z1)W∗
1 +

1
4

W∗T
1 Γ1(z1)ΓT

1 (z1)W∗
1 − ϵ1(t), (3.30)

then we can rewrite the inequality (3.29) as

L̇1(t) ≤ z2
2(t) −

(
β1 − 2

)
z2

1(t) +
µa1 + 1

2
(
W∗T

1 Γ1(z1)
)2
+

1
2

ẏ2
r

−
µa1

2
W̃T

a1(t)Γ1(z1)ΓT
1 (z1)W̃a1(t) −

µa1

2
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)

+
µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)ωT

1 Ŵc1(t)

−
µc1

∥ω1∥
2 + 1

W̃T
c1(t)ω1

(
ωT

1 (t)W̃c1(t) −
1
2

ŴT
a1(t)Γ1(z1)ΓT

1 (z1)W∗
1

+
1
4

W∗T
1 Γ1(z1)ΓT

1 (z1)W∗
1

+
1
4

ŴT
a1(t)Γ1(z1)ΓT

1 (z1)Ŵa1(t) − ϵ1(t)
)
. (3.31)
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Given the equation W̃a1(t) = Ŵa1(t) −W∗
1 , it leads to the following equations:

−
1
2

ŴT
a1(t)Γ1(z1)ΓT

1 (z1)W∗
1 +

1
4

W∗T
1 Γ1(z1)ΓT

1 (z1)W∗
1 +

1
4

ŴT
a1(t)Γ1(z1)ΓT

1 (z1)Ŵa1(t)

=
1
4

W̃T
a1(t)Γ1(z1)ΓT

1 (z1)Ŵa1(t) −
1
4

W∗T
1 Γ1(z1)ΓT

1 (z1)W̃a1(t). (3.32)

Pursuant to Young’s inequality, the subsequent consequence can be deduced

µc1

∥ω1∥
2 + 1

W̃T
c1(t)ω1(t)ϵ1(t) ≤

µc1

2
(
∥ω1∥

2 + 1
)W̃T

c1(t)ω1(t)ωT
1 (t)W̃c1(t) +

µc1

2
ϵ21 (t). (3.33)

Adding (3.32) and (3.33) into (3.31) yields

L̇1(t) ≤ z2
2(t) −

(
β1 − 2

)
z2

1(t) + +
µa1 + 1

2
(
W∗T

1 Γ1(z1)
)2
+

1
2

ẏ2
r

−
µa1

2
W̃T

a1(t)Γ1(z1)ΓT
1 (z1)W̃a1(t) −

µa1

2
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)

−
µc1

2
(
∥ω1∥

2 + 1
)W̃T

c1(t)ω1ω
T
1 W̃c1(t) +

µc1

2
ϵ21 (t)

+
µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)ωT

1 Ŵc1(t)

−
µc1

4
(
∥ω1∥

2 + 1
)W̃T

c1(t)ω1W̃T
a1(t)Γ1(z1)ΓT

1 (z1)Ŵa1(t)

+
µc1

4
(
∥ω1∥

2 + 1
)W̃T

c1(t)ω1W∗T
1 Γ1(z1)ΓT

1 (z1)W̃a1. (3.34)

Substituting the following equation

µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)ωT

1 Ŵc1(t)

−
µc1

4
(
∥ω1∥

2 + 1
)W̃T

c1(t)ω1W̃T
a1(t)Γ1(z1)ΓT

1 (z1)Ŵa1(t)

=
µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)W∗T
1 ω1Γ

T
1 (z1)Ŵa1(t), (3.35)

into (3.34), we have

L̇1(t) ≤ z2
2(t) − (β1 − 2)z2

1(t) +
µa1 + 1

2
(
W∗T

1 Γ1(z1)
)2
+

1
2

ẏ2
r

−
µa1

2
W̃T

a1(t)Γ1(z1)ΓT
1 (z1)W̃a1(t) −

µa1

2
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t)

−
µc1

2
(
∥ω1∥

2 + 1
)W̃T

c1(t)ω1ω
T
1 W̃c1(t) +

µc1

2
ϵ21 (t)

+
µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)W∗T
1 ω1Γ

T
1 (z1)Ŵa1(t)

+
µc1

4
(
∥ω1∥

2 + 1
)W̃T

c1(t)ω1W∗T
1 Γ1(z1)ΓT

1 (z1)W̃a1(t). (3.36)
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Employing the principles of Young’s inequality in conjunction with Cauchy’s inequality, a series of
inequalities can be formulated as follows:

µc1

4
(
∥ω1∥

2 + 1
)W̃T

a1(t)Γ1(z1)W∗T
1 ω1(t)ΓT

1 (z1)Ŵa1(t)

≤
1
32

W̃T
a1(t)Γ1(z1)W∗T

1 ω1ω
T
1 W∗

1Γ
T
1 (z1)W̃a1(t)

+
µ2

c1

2
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t), (3.37)

µ2
c1

4
(
∥ω1∥

2 + 1
)W̃T

c1(t)ω1(t)W∗T
1 Γ1(z1)ΓT

1 (z1)W̃a1(t)

≤
1

32
(
∥ω1∥

2 + 1
)W̃T

c1(t)Γ1(z1)W∗T
1 ω1ω

T
1 W∗

1Γ
T
1 (z1)W̃c1(t)

+
µ2

c1

2
W̃T

a1(t)Γ1(z1)ΓT
1 (z1)W̃a1(t). (3.38)

By incorporating the aforementioned inequalities into (3.36), we have made the necessary substitution,

L̇1(t) ≤ z2
2(t) − (β1 − 2)z2

1(t)

−

(
µa1

2
−
µ2

c1

2
−

1
32

W∗T
1 ω1ω

T
1 W∗

1

)
W̃T

a1(t)Γ1(z1)ΓT
1 (z1)W̃a1(t)

−
1

∥ω1∥
2 + 1

(
µc1

2
−

1
32

W∗T
1 Γ1(z1)ΓT

1 (z1)W∗
1

)
W̃T

c1(t)ω1ω
T
1 W̃c1(t)

−

(
µa1

2
−
µ2

c1

2

)
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t) +

1
2

ẏ2
r (t) +

µa1 + 1
2

(
W∗T

1 Γ1(z1)
)2
+
µc1

2
ϵ21 (t).(3.39)

Rewrite (3.39) as follows:

L̇1(t) ≤ −ξT
1 (t)A1(t)ξ1(t) +C1(t) + z2

2(t)

−

(
µa1

2
−
µ2

c1

2

)
ŴT

a1(t)Γ1(z1)ΓT
1 (z1)Ŵa1(t), (3.40)

where ξ1(t) = [z1(t), W̃T
a1(t), W̃T

c1(t)]T , C1(t) = 1
2 ẏ2

r (t) + µa1+1
2

(
W∗T

1 Γ1(z1)
)2
+
µc1
2 ϵ

2
1 (t).

In accordance with the persistence of excitation (PE) assumption, the positivity of the definite matrix
A1(t) can be ensured through the deliberate design of the parameters β1, µc1 and µa1 in such a way that
they satisfy the specified set of inequalities

β1 > 2, µc1 >
1
16
λ1, µa1 > µ

2
c1 +
η1

16
W∗T

1 W∗
1 , (3.41)

where λ1 is the maximal eigenvalue of Λ1 = W∗T
1 Γ1(z1)ΓT

1 (z1)W∗
1 . Then, (3.40) becomes

L̇1(t) < z2
2(t) − a1∥ξ1(t)∥2 + c1, (3.42)

where a1 is the lower bound on the minimum eigenvalue of A1(t) and c1 is the maximum value of C1(t).
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Step 2: According to the tracking error z2(t) = x2(t) − α̂1(z1) in the second step, it yields that

ż2(t) = f2(x̄2) + g2x3(t) − ˙̂α1(z1). (3.43)

The optimal value function V∗2(z2) in second step can be defined with the dynamic error z2(t) and
the optimal virtual control α∗2 as

V∗2(z2) = min
α2∈Ψ(Ωz2 )

( ∫ ∞

t
r2(z2(τ), α2(z2(τ))dτ

)
=

∫ ∞

t
r2
(
z2(τ), α∗2(z2(τ))

)
dτ, (3.44)

where r2 = z2
2(t)+α2

2(z2) is the cost function, and α2(z2) represents the virtual control. Ψ(Ωz2) is the set
of admissible control policies over Ωz2 , where Ωz2 denotes a compact set that includes the origin of the
system. To minimize the tracking error z2(t), we can rewrite the optimal value function V∗2 as

V∗2(z2) = β2z2
2(t) + Vo

2 (z2), (3.45)

where β2 is a positive designable constant and Vo
2 (z2) = −β2z2

2(t) + V∗2(z2) is a scalar-valued function.
According to both (3.43) and (3.45), the HJB equation of the second step is

H2

(
z2, α

∗
2,
∂V∗2
∂z2

)
= z2

2(t) + α∗22 (z2) +
(
2β2z2(t) +

∂Vo
2 (z2)
∂z2

)(
f2(x̄2) + g2α

∗
2(z2) − ˙̂α1(z1)

)
= 0. (3.46)

Assuming that there is a solution and that it is unique, then by solving ∂H2/∂α
∗
2 = 0, the optimal virtual

control α∗2 is

α∗2(z2) = g2

(
− β2z2(t) −

1
2
∂Vo

2 (z2)
∂z2

)
. (3.47)

Utilizing an NN approximator to estimate ∂Vo
2 (z2)/∂z2 yields that

∂Vo
2 (z2)
∂z2

= W∗T
2 Γ2(z2) + ε2(z2), (3.48)

where W∗T
2 ∈ Rm2 signifies the ideal weight in the NN, and the item Γ2(z2) ∈ Rm2 represents the basis

function, and ε2(z2) denotes the approximation error that is bounded. The gradient term ∂V∗2(z2)/∂z2

and the optimal virtual control α∗2(z2) become

∂V∗2(z2)
∂z2

= 2β2z2(t) +W∗T
2 Γ2(z2) + ε2(z2), (3.49)

α∗2(z2) = g2

(
− β2z2(t) −

1
2
(
W∗T

2 Γ2(z2) + ε2(z2)
))
. (3.50)

The optimal virtual control (3.50) cannot be used directly because the ideal weight vector W∗T
2

is unknown. To achieve an effective and optimized control strategy, we implement an RL based on
actor-critic NNs for deriving practical optimization

∂V̂∗2
∂z2
= 2β2z2(t) + ŴT

c2(t)Γ2(z2), (3.51)
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α̂2(z2) = g2
(
− β2z2(t) −

1
2

ŴT
a2(t)Γ2(z2)

)
, (3.52)

where V̂∗2 is the estimation of V∗2 , Ŵc2 ∈ Rm2 represents the weight of critic NN, and Ŵa2 ∈ Rm2 denotes
the actor NN weight. Upon inserting Eqs (3.51) and (3.52) into (3.46), we obtain the HJB equation

H2
(
z2, α̂2, Ŵc2

)
= z2

2(t) +
(
−β2g2z2(t) −

g2

2
ŴT

a2(t)Γ2(z2)
)2

+
(
2β2z2(t) + ŴT

c2(t)Γ2(z2)
)(

f2(x̄2) − β2g2
2z2(t) −

g2
2

2
ŴT

a2(t)Γ2(z2) − ˙̂α1(z1)
)
.(3.53)

Remark 3.4. To ensure the boundedness of the HJB function H2, here we prove the boundedness of
˙̂α1(z1).

The expression for α̇1(z1) is as follows:

˙̂α1(z1) = −β1
(
ẋ1(t) − ẏr(t)

)
−

1
2

( ˙̂WT
a1Γ1(z1) + ŴT

a1Γ̇1(z1)
)
.

Because the term ẋ1 satisfies Lipschitz continuity, it is bounded. Obviously, ẏr(t) and ˙̂WT
a1Γ1(z1) +

ŴT
a1Γ̇1(z1) are also bounded. Consequently, the function α̇1(z1), which consists of these bounded terms,

is also bounded. Furthermore, α̇i(zi), i = 1, . . . , 3 is bounded at each step, although this will not be
shown hereafter.

To optimize the function E2(t) = e2
2(t)/2, we employ the gradient descent methodology. Then we

can derive the subsequent update law for the critic NN weight Ŵc2(t),

˙̂Wc2(t) = −
µc2

∥ω2∥
2 + 1

ω2(t)
(
ωT

2 (t)Ŵc2(t) −
(
β2

2g2
2 − 1

)
z2

2(t)

+2β2z2
(
f2(x̄2) − ˙̂α1(z1)

)
+

g2
2

4
ŴT

a2Γ2(z2)ΓT
2 (z2)Ŵa2

)
, (3.54)

where µc2 > 0 is the learning rate and ω2 = Γ2(z2)
(
f2(x̄2)− β2g2

2z2(t)− (g2
2/2)ŴT

a2Γ2(z2)− ˙̂α1(z1)
)
∈ Rm2 .

The renewal law of actor NN weight Ŵa2(t) is designed as

˙̂Wa2(t) =
g2

2

2
Γ2(z2)z2(t) − µa2Γ2(z2)ΓT

2 (z2)Ŵa2(t)

+
µc2g2

2

4
(
∥ω2∥

2 + 1
)Γ2(z2)ΓT

2 (z2)Ŵa2(t)ωT
2 (t)Ŵc2(t), (3.55)

where µa2 > 0 is the learning rate of the actor NN.
By introducing the error variable in the third step as z3(t) = x3(t) − α̂2(z2), we can rewrite (3.43) as

ż2(t) = f2(x̄2) + g2
(
z3(t) + α̂2(z2)

)
− ˙̂α1(z1). (3.56)

Design the Lyapunov function as

L2(t) = L1(t) +
1
2

z2
2(t) +

1
2

W̃T
c2(t)W̃c2(t) +

1
2

W̃T
a2(t)W̃a2(t), (3.57)
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where W̃c2(t) = Ŵc2(t) −W∗
2 and W̃a2(t) = Ŵa2(t) −W∗

2 . Its derivative is as follows:

L̇2(t) = L̇1(t) + z2(t)ż2(t) + W̃T
c2(t) ˙̂Wc2(t) + W̃T

a2(t) ˙̂Wa2(t). (3.58)

Inserting (3.52), (3.54), (3.55), and (3.56) into (3.58), we have

L̇2(t) = L̇1(t) + g2z2(t)z3(t) + f2(x̄2)z2(t) − β2g2
2z2

2(t) − z2(t) ˙̂α1(z1)

+
µc2

4
(
∥ω2∥

2 + 1
)W̃T

a2(t)Γ2(z2)ΓT
2 (z2)Ŵa2(t)ωT

2 Ŵc2(t)

−
g2

2

2
z2(t)ŴT

a2(t)Γ2(z2) +
g2

2

2
W̃T

a2(t)Γ2(z2)z2(t) − µa2W̃T
a2(t)Γ2(z2)ΓT

2 (z2)Ŵa2

−
µc2

∥ω2∥
2 + 1

W̃T
c2(t)ω2

(
ωT

2 Ŵc2(t) −
(
β2

2g2
2 − 1

)
z2

2(t) + 2β2z2(t)
(
f2(x̄2) − ˙̂α1

)
+

g2
2

4
ŴT

a2(t)Γ2(z2)ΓT
2 (z2)Ŵa2(t)

)
. (3.59)

Analogous to the first step, we can obtain the inequality shown as follows:

L̇2(t) ≤ L̇1(t) + z2
3(t) − (β2g2

2 − g2
2 − 1)z2

2(t)

−

(
µa2

2
−
µ2

c2g4
2

2
−

1
32

W∗T
2 ω2ω

T
2 W∗

2

)
W̃T

a2(t)Γ2(z2)ΓT
2 (z2)W̃a2(t)

−
1

∥ω2∥
2 + 1

(
µc2

2
−

1
32

W∗T
2 Γ2(z2)ΓT

2 (z2)W∗
2

)
W̃T

c2(t)ω2ω
T
2 W̃c2(t)

−

(
µa2

2
−
µ2

c2g4
2

2

)
ŴT

a2(t)Γ2(z2)ΓT
2 (z2)Ŵa2(t) +

1
2

f 2
2 (x̄2) +

1
2

˙̂α2
1

+
µa2 + g2

2

2

(
W∗T

2 Γ2(z2)
)2
+
µc2

2
ϵ22 (t). (3.60)

Rewrite (3.60) as follows:

L̇2(t) ≤
(
− a1 ∥ ξ1(t)∥2 + c1

)
− ξT

2 (t)A2(t)ξ2(t) +C2(t) + z2
3(t)

−

(
µa2

2
−
µ2

c2g4
2

2

)
ŴT

a2(t)Γ2(z2)ΓT
2 (z2)Ŵa2(t), (3.61)

with the matrix ξ2(t) = [z2(t), W̃T
a2(t), W̃T

c2(t)]T and the term C2(t) = 1
2 f 2

2 (x̄2) + 1
2

˙̂α2
1 +

µc2
2 ϵ

2
2 (t) +

µa2+g2
2

2

(
W∗T

2 Γ2(z2)
)2

.

In order to satisfy that the matrix A2(t) is positive definite, the parameters are designed as follows:

β2 >
1
g2

2

+ 1, µc2 >
1

16
λ2, µa2 > µ

2
c2g4

2 +
ζ2
16

W∗T
2 W∗

2 , (3.62)

where λ2 is the maximal eigenvalue of matrix Λ2 = W∗T
2 Γ2(z2)ΓT

2 (z2)W∗
2 . Consequently, we have

L̇2(t) < z2
3(t) − a1∥ξ1(t)∥2 + c1 − a2∥ξ2(t)∥2 + c2, (3.63)
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where a2 is the minimum eigenvalue of A2(t) and c2 is the maximum value of C2(t).
Step 3: Define the tracking error between x3(t) and α̂2(z2) for the third step as z3(t) = x3(t) − α̂2(z2).

Its time derivative along the pure-feedback system (2.3) is

ż3(t) = x4(t) − ˙̂α2(z2). (3.64)

In the process, we first define the virtual control term α3(z3) and further introduce its optimal
counterpart, denoted as α∗3(z3). Describe the performance index function V∗3(z3) as

V∗3(z3) = min
α3∈Ψ(Ωz3 )

(∫ ∞

t
r3

(
z3(τ), α2(z3(τ))

)
dτ

)
=

∫ ∞

t
r3

(
z3(τ), α∗3(z3(τ))

)
dτ, (3.65)

where r3 = z2
3(t) + α2

3(z3) is the cost function, and the set Ωz3 represents a compact domain that
encompasses the origin of the system. Rewrite the optimal value function V∗3 as

V∗3(z3) = β3z2
3(t) + Vo

3 (z3), (3.66)

where β3 is a positive designable constant and Vo
3 (z3) = −β3z2

3(t) + V∗3(z3) is a scalar-valued function.
Then, we can derive the HJB equation as follows:

H3

(
z3, α

∗
3,
∂V∗3
∂z3

)
= α∗23 (z3) +

(
2β3z3(t) +

∂Vo
3 (z3)
∂z3

) (
α∗3(z3) − ˙̂α2(z2)

)
= 0. (3.67)

By solving ∂H3/∂α
∗
3 = 0, the optimal virtual control α∗3 is

α∗3(z3) = −β3z3(t) −
1
2
∂Vo

3 (z3)
∂z3

. (3.68)

By applying NN, the part ∂Vo
3 (z3)/∂z3 can be approximated as

∂Vo
3 (z3)
∂z3

= W∗T
3 Γ3(z3) + ε3(z3), (3.69)

where W∗T
3 ∈ Rm3 represents the ideal weight, Γ3(z3) ∈ Rm3 denotes the basis function in the NN, and

ε3(z3) signifies the bounded approximation error. With (3.69), the gradient term ∂V∗3(z3)/∂z3 and the
optimal virtual control α∗3(z3) are obtained:

∂V∗3(z3)
∂z3

= 2β3z3(t) +W∗T
3 Γ3(z3) + ε3(z3), (3.70)

α∗3(z3) = −β3z3(t) −
1
2
(
W∗T

3 Γ3(z3) + ε3(z3)
)
. (3.71)

Since W∗
3 is not directly available, an RL based on the actor-critic architecture is employed as

∂V̂∗3
∂z3
= 2β3z3(t) + ŴT

c3(t)Γ3(z3), (3.72)
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α̂3(z3) = −β3z3(t) −
1
2

ŴT
a3(t)Γ3(z3), (3.73)

where V̂∗3 is the estimation of V∗3 , Ŵc3 is the weight of critic NN, and Ŵa3 is the weight of actor NN.
Substituting (3.72) and (3.73) into (3.67), we can rewrite the HJB equation as

H3

(
z3, α̂3, Ŵc3

)
= z2

3(t) +
(
−β3z3(t) −

1
2

ŴT
a3(t)Γ3(z3)

)2

+
(
2β3z3(t) + ŴT

c3(t)Γ3(z3)
)(
− β3z3(t) −

1
2

ŴT
a3(t)Γ3(z3) − ˙̂α2(z2)

)
. (3.74)

To minimize E3(t) = e2
3(t)/2, design the following updating laws for the weights in the critic and

actor NNs

˙̂Wc3(t) = −
µc3

∥ω3∥
2 + 1

ω3(t)
(
ωT

3 (t)Ŵc3(t) −
(
β2

3 − 1
)
z2

3(t) − 2β3z3 ˙̂α2(z2)

+
1
4

ŴT
a3Γ3(z3)ΓT

3 (z3)Ŵa3

)
, (3.75)

˙̂Wa3(t) =
1
2
Γ3(z3)z3(t) − µa3Γ3(z3)ΓT

3 (z3)Ŵa3(t)

+
µc3

4
(
∥ω3∥

2 + 1
)Γ3(z3)ΓT

3 (z3)Ŵa3(t)ωT
3 (t)Ŵc3(t), (3.76)

where µa3 > 0 and µc3 > 0 represent the designable learning rates of the actor NN and critic NN,
respectively, and ω3 = Γ3(z3)

(
− β3z3(t) − (1/2)ŴT

a3Γ3(z3) − ˙̂α2(z2)
)
∈ Rm3 .

The tracking error in the step 4 is written as z4(t) = x4(t) − α̂3(z3), then (3.64) is replaced as

ż3(t) = z4(t) + α̂3(z3) − ˙̂α2(z2). (3.77)

The Lyapunov function can be formulated as described below:

L3(t) =
2∑

k=1

Lk(t) +
1
2

z2
3(t) +

1
2

W̃T
c3(t)W̃c3(t) +

1
2

W̃T
a3(t)W̃a3(t), (3.78)

where W̃c3(t) = Ŵc3(t)−W∗
3 represents the estimation error of the critic NN, while W̃a3(t) = Ŵa3(t)−W∗

3
is the actor NN estimation error. The derivative of the Lyapunov quadratic scalar function (3.78) is

L̇3(t) =
2∑

k=1

L̇k(t) + z3(t)ż3(t) + W̃T
c3(t) ˙̂Wc3(t) + W̃T

a3(t) ˙̂Wa3(t). (3.79)

The equation along with (3.73), (3.75), (3.76), and (3.77) is

L̇3(t) =
2∑

k=1

L̇k(t) + z3(t)z4(t) − β3z2
3(t) − z3(t) ˙̂α2(z2) −

1
2

z3(t)Ŵa3(t)Γ3(z3)

+
1
2

W̃T
a3(t)Γ3(z3)z3(t) − µa3W̃T

a3(t)Γ3(z3)ΓT
3 (z3)Ŵa3(t)
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+
µc3

4
(
∥ω3∥

2 + 1
)W̃T

a3(t)Γ3(z3)ΓT
3 (z3)Ŵa3(t)ωT

3 (t)Ŵc3(t)

−
µc3

∥ω3∥
2 + 1

W̃T
c3(t)ω3

(
ωT

3 Ŵc3(t) −
(
β2

3 − 1
)
z2

3(t) − 2β3z3(t) ˙̂α2

+
1
4

ŴT
a3(t)Γ3(z3)ΓT

3 (z3)Ŵa3(t)
)
. (3.80)

Applying the control (3.73), (3.75), and (3.76), similar with step 1, we have the result

L̇3(t) ≤
2∑

k=1

L̇k(t) + z2
4(t) −

(
β3 − 2

)
z2

3(t)

−

(
µa3

2
−
µ2

c3

2
−

1
32

W∗T
3 ω3ω

T
3 W∗

3

)
W̃T

a3(t)Γ3(z3)ΓT
3 (z3)W̃a3(t)

−
1

∥ω3∥
2 + 1

(
µc3

2
−

1
32

W∗T
3 (z3)ΓT

3 (z3)W∗
3

)
W̃T

c3(t)ω3ω
T
3 W̃c3(t)

−

(
µa3

2
−
µ2

c3

2

)
ŴT

a3(t)Γ3(z3)ΓT
3 (z3)Ŵa3(t) +

1
2

˙̂α2
2

+
µa3 + 1

2
(
W∗T

3 Γ3(z3)
)2
+
µc3

2
ϵ23 (t). (3.81)

Rewrite (3.81) as follows:

L̇3(t) ≤
2∑

k=1

(
− ak ∥ξk(t)∥2 + ck

)
− ξT

3 (t)A3(t)ξ3(t) +C3(t) + z2
4(t)

−

(
µa3

2
−
µ2

c3

2

)
ŴT

a3(t)Γ3(z3)ΓT
3 (z3)Ŵa3(t), (3.82)

where ξ3(t) = [z3(t), W̃T
a3(t), W̃T

c3(t)]T , C3(t) = 1
2

˙̂α2
2 +

µa3+1
2

(
W∗T

3 Γ3(z3)
)2
+
µc3
2 ϵ

2
3 (t).

Select parameters within the following intervals:

β3 > 2, µc3 >
1
16
λ3, µa3 > µ

2
c3 +
ζ3
16

W∗T
3 W∗

3 , (3.83)

where λ3 is the maximal eigenvalue of matrix Λ3 = W∗T
3 Γ3(z3)ΓT

3 (z3)W∗
3 . We have

L̇3(t) < z2
4(t) +

3∑
k=1

(−ak∥ξk(t)∥2 + ck), (3.84)

where a3 is the lower bound on the minimum eigenvalue of A3(t) and c3 is the maximum value of C3(t).
Step 4: The actual input u is obtained in the final step. The tracking error is z4(t) = x4(t) − α̂3(z3),

then

ż4(t) = f4(x̄4) + g4u − ˙̂α3(z3). (3.85)

AIMS Mathematics Volume 9, Issue 10, 27330–27360.



27349

The performance index function in the final step is described as

V∗4(z4) = min
u∈Ψ(Ωz4 )

( ∫ ∞

t
r4(z4(τ), u(z4(τ))dτ

)
=

∫ ∞

t
r4

(
z4(τ), u∗(z4(τ))

)
dτ, (3.86)

where u∗ is the optimal actual input and r4 = z2
4(t) + u2(z4) represents the cost function.

Without prejudice to generality, the actual controller u(z4) can be obtained as follows:

u(z4) = g4
(
− β4z4(t) −

1
2

ŴT
a4(t)Γ4(z4)

)
, (3.87)

where Ŵa4 is the weight of actor NN. With the critic and actor updating law

˙̂Wc4(t) = −
µc4

∥ω2∥
2 + 1

ω4(t)
(
ωT

4 (t)Ŵc4(t) −
(
β2

4g2
4 − 1

)
z2

4(t)

+2β4z4
(
f4(x̄4) − ˙̂α3(z3)

)
+

g2
4

4
ŴT

a4Γ4(z4)ΓT
4 (z4)Ŵa4

)
, (3.88)

˙̂Wa4(t) =
g2

4

2
Γ4(z4)z4(t) − µa4Γ4(z4)ΓT

4 (z4)Ŵa4(t)

+
µc4g2

4

4
(
∥ω4∥

2 + 1
)Γ4(z4)ΓT

4 (z4)Ŵa4(t)ωT
4 (t)Ŵc4(t), (3.89)

where µc4 > 0 and µa4 > 0 are the critic and actor learning rate, separately, and ω4 = Γ4(z4)
(
f4(x̄4) −

β4g2
4z4(t) − (g2

4/2)ŴT
a4Γ4(z4) − ˙̂α3(z3)

)
∈ Rm4 .

In the final step, the Lyapunov quadratic scalar function is chosen as

L4(t) =
3∑

k=1

Lk(t) +
1
2

W̃T
c4(t)W̃c4(t) +

1
2

z2
4(t) +

1
2

W̃T
a4(t)W̃a4(t), (3.90)

where W̃c4(t) = Ŵc4(t) −W∗
4 is the critic NN estimation error, and W̃a4(t) = Ŵa4(t) −W∗

4 is estimation
error of the actor NN. The derivative of (3.90) is

L̇4(t) =
3∑

k=1

L̇k(t) + z4(t)ż4(t) + W̃T
a4(t) ˙̂Wa4(t) + W̃T

c4(t) ˙̂Wc4(t). (3.91)

According to (3.87), (3.88), and (3.89), we have

L̇4(t) =
3∑

k=1

L̇k(t) + f4(x̄4)z4(t) − β4g2
4z2

4(t) − z4(t) ˙̂α3 −
g2

4

2
z4(t)Ŵa4(t)Γ4(z4)

+
g2

4

2
W̃T

a4(t)Γ4(z4)z4(t) − µa4W̃T
a4(t)Γ4(z4)ΓT

4 (z4)Ŵa4(t)

+
µc4

4
(
∥ω4∥

2 + 1
)W̃T

a4(t)Γ4(z4)ΓT
4 (z4)Ŵa4(t)ωT

4 (t)Ŵc4(t)
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−
µc4

∥ω4∥
2 + 1

W̃T
c4(t)ω4

(
ωT

4 Ŵc4(t) −
(
β2

4g2
4 − 1

)
z2

4(t) + 2β4z4(t)
(
f4(x̄4

)
− ˙̂α3)

+
g2

4

4
ŴT

a4(t)Γ4(z4)ΓT
4 (z4)Ŵa4(t)

)
. (3.92)

Similar to the first step, we can also deduce the following result

L̇4(t) ≤
3∑

k=1

L̇k(t) − (β4g2
4 − g2

4 − 1)z2
4

−

(
µa4

2
−
µ2

c4g4
4

2
−

1
32

W∗T
4 ω4ω

T
4 W∗

4

)
W̃T

a4(t)Γ4(z4)ΓT
4 (z4)W̃a4(t)

−
1

∥ω4∥
2 + 1

(
µc4

2
−

1
32

W∗T
4 Γ4(z4)ΓT

4 (z4)W∗
4

)
W̃T

c4(t)ω4ω
T
4 W̃c4(t)

−

(
µa4

2
−
µ2

c4g4
4

2

)
ŴT

a4(t)Γ4(z4)ΓT
4 (z4)Ŵa4(t) +

1
2

f 2
4 (x̄4) +

1
4

˙̂α2
3(t)

+
µa4 + g2

4

2
(
W∗T

4 Γ4(z4)
)2
+
µc4

2
ϵ24 (t). (3.93)

Rewrite (3.93) as follows:

L̇4(t) ≤
3∑

k=1

(
− ak ∥ξk(t)∥2 + ck

)
− ξT

4 (t)A4(t)ξ4(t) +C4(t)

−

(
µa4

2
−
µ2

c4g4
4

2

)
ŴT

a4(t)Γ4(z4)ΓT
4 (z4)Ŵa4(t), (3.94)

with the matrix ξ4(t) = [z4(t), W̃T
a4(t), W̃T

c4(t)]T , and the term C4(t) = 1
2 f 2

4 (x̄4)+ 1
2

˙̂α2
3+
µa4+g2

4
2

(
W∗T

4 Γ4(z4)
)2
+

µc4
2 ϵ

2
4 (t).
To ensure system stability, the design parameters β4, µc4, and µa4 must satisfy

β4 >
1
g2

4

+ 1, µc4 >
1

16
λ4, µa4 > µ

2
c4g4

4 +
ζ4
16

W∗T
4 W∗

4 , (3.95)

where λ4 is the maximal eigenvalue of matrix Λ4 = W∗T
4 Γ4(z4)ΓT

4 (z4)W∗
4 .

The selection of a4 as the infimum over t ≥ 0 of the minimum eigenvalue of A4(t) and c4 as the
supremum over t ≥ 0 of C4(t) allows Eq (3.94) to be reformulated as follows:

L̇(t) <
4∑

k=1

(−ak∥ξk(t)∥2 + ck). (3.96)

Based on the above derivation, we can achieve the objectives:

1) Within the closed-loop control framework, all error signals, designated as zi(t) for i = 1, · · · , 4
and the weight estimation errors, expressed as W̃ci(t) and W̃ai(t) for i = 1, · · · , 4, are assured to be
SGUUB in anpredictable and desirable fashion;
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2) The single-link manipulator joint angular position q1(t) exhibits the capability to follow the
desired trajectory yr in a predictable and desirable manner.

Prove as follows:

1) The inequality (3.96) can be

L̇(t) < −aL(t) + c,

where a is the minimal of ak, k = 1, 2, · · · , 4 and c is the sum of ck, k = 1, 2, · · · , 4. According to
Lemma 2.1, we can clearly get the following result:

L(t) < e−atL(0) +
c
a

(1 − e−at),

which can prove that that control objective 1 is valid.
2) Define Lz(t) = (1/2)

∑4
k=1 z2

k(t). According to the Eqs (3.18), (3.56), (3.77), and (3.85), we have

L̇z(t) = z1(t)
(
α̂1(z1) + z2(t) − ẏr(t)

)
+ z2(t)

(
f2(x̄2) + g2

(
α̂2(z2) + z3(t)

)
− ˙̂α1(z1)

)
+z3(t)

(
z4(t) + α̂3(z3) − ˙̂α2(z2)

)
+ z4(t)

(
f4(x̄4) + g4u(t) − ˙̂α3(z3)

)
. (3.97)

Substituting (3.11), (3.52), (3.73), and (3.87) into (3.97), we have the following result:

L̇z(t) = −β1z1(t)2 + z1(t)z2(t) − z1(t)ẏr −
1
2

z1(t)ŴT
a1Γ1

−g2
2β2z2(t)2 + g2z2(t)z3(t) − z2(t) ˙̂α1 −

g2
2

2
z2(t)ŴT

a2Γ2 + z2(t) f2(x̄2)

−β3z3(t)2 + z3(t)z4(t) − z1(t) ˙̂α2 −
1
2

z3(t)ŴT
a3Γ3

−g2
4β4z4(t)2 − z4(t) ˙̂α3 −

g2
4

2
z4(t)ŴT

a4Γ4 + z4(t) f4(x̄4). (3.98)

Using Young’s inequality, it is clear that we can get the following result:

L̇z(t) ≤ −(β1 − 2)z2
1(t) − (β2g2

2 − g2
2 − 1)z2

2(t)

−(β3 − 2)z2
3(t) − (β4g2

4 − g2
4 − 1)z2

4(t) + D(t), (3.99)

where D(t) = (1/2) f 2
2 (x̄2) + (1/2) f 2

4 (x̄4) + (1/2)
∑3

k=1
˙̂α2

k + (1/2)˙̂y2
r (t) + (1/2)(ŴT

a1(t)Γ1(z1))2 +

(1/2)(ŴT
a3(t)Γ3(z3))2 + (g2

2/2)(ŴT
a2(t)Γ2(z2))2 + (g2

4/2)(ŴT
a4(t)Γ4(z4))2 is bounded. A constant ρ

exists, bounding |D(t)|. Hence, the above result can be described as

L̇z(t) < −βLz(t) + ρ,

where β is the minimal of {β1 − 2, β2g2
2 − g2

2 − 1, β3 − 2, β4g2
4 − g2

4 − 1}. Obviously, we can get the
following result:

Lz(t) < e−βtLz(0) +
ρ

β
(1 − e−βt).

It implies that increasing β sufficiently ensures desired tracking accuracy and control performance.
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Ultimately, according to (3.11), (3.52), (3.73), and (3.87), we design an adaptive tracking control
strategy for the flexible-joint manipulator. The details of this control method are illustrated in Figure 2.

𝑿𝑿𝟏𝟏 (𝒒𝒒𝟏𝟏)

𝑿𝑿𝟐𝟐 ( ̇𝒒𝒒𝟏𝟏)
…

actor

critic

HJB

Optimized 
virtual 

control (3.11)

Reinforcement 
Learning

actor

critic

HJBReinforcement 
Learning

actor

critic

HJB
Reinforcement 

Learning

𝑿𝑿𝟑𝟑 (𝒒𝒒𝟐𝟐)

𝑿𝑿𝟒𝟒 ( ̇𝒒𝒒𝟐𝟐)

…
Reference 
input 𝒚𝒚𝒓𝒓

Error
Dynamic

Tracking
Error

Error
Dynamic

Optimized 
virtual 

control (3.52)

Optimized 
actual 

input (3.87)

Flexible-joint manipulator 
system (2.3)

�̇�𝑥1 𝑡𝑡 = 𝑥𝑥2 𝑡𝑡
�̇�𝑥2 𝑡𝑡 = 𝑓𝑓2(�̅�𝑥2 𝑡𝑡 ) + 𝑔𝑔2𝑥𝑥3 𝑡𝑡
�̇�𝑥3 𝑡𝑡 = 𝑥𝑥4 𝑡𝑡
�̇�𝑥4 𝑡𝑡 = 𝑓𝑓4 �̅�𝑥4 𝑡𝑡 + 𝑔𝑔4𝑢𝑢 𝑡𝑡
𝑦𝑦 𝑡𝑡 = 𝑥𝑥1 𝑡𝑡

Figure 2. The control block diagram (the dotted line indicates back propagation and training
the NNs).

4. Simulation

To enhance the validation of the method’s effectiveness in controlling a flexible-joint robotic
manipulator, numerical simulations were conducted. Table 1 provides the key parameters relevant
to the single-link manipulator. The initial conditions are set to q1(0) = 8deg, q̇1(0) = 0deg/s,
q2(0) = 10deg, and q̇2(0) = 0deg/s, and we choose the desired trajectory as yr(t) = 28 sin(3t/4),
shown in Figure 3.

To achieve the tracking objectives, the design of the virtual controller for the first three steps and
the input signal for the final step correspond to (3.11), (3.52), (3.73), and (3.87), respectively, where
the designable parameters are set as [β1, β2, β3, β4] = [6.00, 2.04, 11.00, 2.01]. The NN at each step
has 36 neurons with centers uniformly distributed in the range [−6, 6], and the widths φi, i = 1, · · · , 4
of the Gaussian functions of the basis functions Γi are all chosen to be 2. The update rate of the
critic weights at each step corresponds to (3.15), (3.54), (3.75), and (3.88), respectively, and the
designable parameters learning rate and initial weights are [µc1, µc2, µc3, µc4] = [0.4, 0.4, 0.4, 0.4],
Wci(0) = [0.5]36×1, i = 1, · · · , 4. The update rate of the actor weights at each step corresponds
to (3.17), (3.55), (3.76), and (3.89), respectively, where the designable parameters learning rate and
initial weights are [µa1, µa2, µa3, µa4] = [300, 300, 300, 300], Wai(0) = [0.4]36×1, i = 1, · · · , 4.
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Table 1. Parameters of the single-link manipulator.

Parameters Description Values Unit
I the mass inertia 20 kg ·m2

J the actuator inertia 0.1 kg ·m2

M the link mass 0.1 kg
g gravity acceleration 9.8 m/s2

l the link’s center of gravity position 0.1 m
k the joint flexible 100 N ·m/rad

Simulation result: The individual figures depict the results of the simulation process. The actual
output y(t) and the expected trajectory yr(t) are demonstrated in Figure 3, which it is clear to see that the
actual output is able to better align with the desired output. Figure 4 shows the states xi, i = 1, · · · , 4.
The weight’s norm of critic NN Wci(t), i = 1, · · · , 4 is presented in Figure 5 and the weight’s norm of
actor NN Wai(t), i = 1, · · · , 4 is presented in Figure 6, which it is clear that all weights are bounded
and converge to a certain value. The input u(t) is illustrated in Figure 7, which observes that the input
converges to the range of [−5, 5]. In addition, Figures 8 and 9 illustrate the tracking error z1(t) as
k varies within the range of [100, 200] and i varies within the range of [15, 30], demonstrating the
robustness of this control method. In conclusion, it is observed that our control strategy enables the
actual output y(t) to track well on the expected trajectory yr(t) while optimizing the controller energy
consumption. In order to better demonstrate the optimization of the energy consumption in this control
scheme for a flexible robotic manipulator, we conduct a comparative experiment with the control
scheme referenced in [19]. As illustrated in Figures 10 and 11, under conditions of similar tracking
effectiveness, the control energy consumption of our scheme is significantly improved compared to
that of the scheme in [19].

Figure 3. Tracking performance.
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Figure 4. The trajectories of xi, i = 2, 3, 4.
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Figure 5. The weight’s norm of critic NN in each step.

Figure 6. The weight’s norm of actor NN in each step.

Figure 7. The control input u(t).
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Figure 8. Tracking error z1(t) in the case of the joint flexible k.

Figure 9. Tracking error z1(t) in the case of the mass inertia I.

Figure 10. Tracking performance (this paper on the top and [19] on the bottom).
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Figure 11. Control input (this paper on the top and [19] on the bottom).

5. Conclusions

In this paper, an optimal backstepping control scheme is proposed for trajectory tracking of a
flexible manipulator by integrating optimal control into backstepping control. In this control scheme,
each virtual controller, as well as the actual controller, is designed as an optimized solution in the
corresponding inverse step. This approach achieves performance optimization for the entire flexible
robotic manipulator system. RL is built on a critic-actor architecture, where the critic assesses
performance then provides feedback to the actor. The actor then controls the system, and the two
NNs collaborate to learn. Since the RL update law is derived from the negative gradient of a simple
function, we simplify the design of the controller compared to existing optimal control methods for
flexible robotic manipulators. Finally, the effectiveness of the control method for solving the trajectory
tracking problem of flexible robotic manipulators is demonstrated through both theoretical analysis
and simulation studies.
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