
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 27308–27329.
DOI: 10.3934/math.20241327
Received: 29 July 2024
Revised: 07 September 2024
Accepted: 14 September 2024
Published: 20 September 2024

Research article

On finding a satisfactory partition in an undirected graph: algorithm design
and results

Samer Nofal*

Department of Computer Science, German Jordanian University, Amman, Jordan

* Correspondence: Email: samer.nofal@gju.edu.jo.
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has only two nonempty parts, and every vertex has at least as many adjacent vertices in its part as
it has in the other part. Generally, the problem of determining whether a given undirected graph
has a satisfactory partition is known to be np-complete. In this paper, we show that for a given
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partition for those undirected graphs with recursion tree depth meeting the expectation can be computed
in time O(n32O(ln n)).
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1. Introduction

We denote by
G = (V,E)

an undirected graph with a set,V, of n vertices, and a set, E, of m edges such that E is a set of 2-vertex
subsets ofV. We say that u ∈ V is adjacent to v ∈ V in G if and only if {u, v} ∈ E.We denote by u ∼ v
an edge {u, v} ∈ E. LetA and B be disjoint nonempty subsets ofV. We call {A,B} a partition of G if
and only if

A∪B = V.

We call {A,B} a satisfactory partition of G if and only if {A,B} is a partition of G such that for every
vertex u ∈ A,

|{v ∈ A : u ∼ v}| ≥ |{v ∈ B : u ∼ v}|,
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and for every vertex x ∈ B,
|{y ∈ B : x ∼ y}| ≥ |{y ∈ A : x ∼ y}|.

See, for example, the graph in Figure 1, where {1, 2, 3, 4, 5, 6} and {7, 8, 9, 10, 11, 12} are a satisfactory
partition of the depicted graph.

Figure 1. An undirected graph with its satisfactory partition.

The satisfactory partition problem (spp for short) is the problem of deciding whether an undirected
graph G has a satisfactory partition. The spp was introduced in a paper [1], where an
integer-programming formulation of the spp was given, and a heuristic procedure was employed for
solving the spp. For an interpretation of the spp, consider the problem of organizing a sightseeing tour
on two boats where it is required to separate the participants into two groups and to satisfy everyone.
A participant is satisfied if he knows at least as many people on his boat as on the other. This problem
can be seen as an instance of the spp on a graph where the participants are the vertices, and two
vertices are adjacent if the corresponding persons know each other (see the article [1]). Research [2]
showed that the spp can be solved in polynomial time on graphs with bounded clique width. An
article [3] studied the complexity of different variants of the spp. A work [4] proved that the spp is
np-complete. However, an article [5] showed that for graphs with maximum degree at most 4, the spp
is polynomially solvable. Additionally, a paper [6] presented several parameterized algorithms for
solving the spp.

In this paper, we give new results on the time complexity of computing satisfactory partitions. We
prove that for a given undirected graph with n vertices, a satisfactory partition (if any exists) can be
computed recursively with a recursion tree of depth O(ln n) in expectation. Subsequently, we show that
a satisfactory partition for those undirected graphs with recursion tree depth matching the expectation
can be computed in time O(n32O(ln n)).

The article is structured as follows: Section 2 discusses related work in a broader scope of graph
partitioning literature. Section 3 illustrates a recursive algorithm to compute a satisfactory partition of
a given undirected graph. Section 3 shows that the algorithm’s recursion tree has a depth of O(ln n)
in expectation. In Section 4, we give further arguments on the correctness of our results. Section 5
discusses our results, limitations, and future directions, while section 6 concludes the article.

2. Related work

In the introduction, we discussed closely related work to the study presented in this article. This
section gives a glimpse of broader literature overviewing diverse works on various graph processing
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and applications in recent years. Thus, a study [7] employed RNA graph partitioning to discover RNA
modularity. A work [8] studied subgraphs of pair vertices. An article [9] presented a novel edge
detection algorithm based on a hierarchical graph-partition approach. A paper [10] exploited a genetic
algorithm for graph partition in a heterogeneous cluster. A study [11] presented a large-scale graph
partition algorithm with redundant multi-order neighbor vertex storage. An article [12] investigated
forbidden subgraphs in reduced power graphs of finite groups. A work [13, 14] discussed an ant-local
search algorithm for the partition graph coloring problem. An article [15] analyzed an efficient and
balanced graph partition algorithm for the subgraph-centric programming model on large-scale
power-law graphs. A work [16] introduced an improved spectral graph partition intelligent clustering
algorithm for low-power wireless networks. A study [17] presented an artificial intelligence
knowledge graph for dynamic networks. A paper [18] used a graph partition sampling algorithm in
medical intelligent systems and orthopedic clinical nursing. A study [19] proposed a robust spectral
clustering algorithm based on grid partition and decision graph. An article [20] argued about
improving a graph-based label propagation algorithm with group partition for fraud detection. A
study [21] presented results on monochromatic vertex disconnection of graphs. A paper [22] analyzed
a task partition algorithm based on grid and graph partition for distributed crowd simulation. An
article [23] introduced a novel sports video background segmentation algorithm based on graph
partition. A work [24] discussed a property graph partition algorithm based on improved barnacle
mating optimization. A study [25] put forward a text mining method of dispatching operation ticket
systems based on graph partition spectral clustering algorithms. A work [26] discussed distinguishing
colorings of graphs and their subgraphs. A paper [27] proposed an implementation of a parallel graph
partition algorithm to speed up computations. A work [28] presented a memetic algorithm with two
distinct solution representations for the partition graph coloring problem. A paper [29] studied the
informational entropy of B-ary trees after a vertex cut. A work [30] discussed the existence of a graph
whose vertex set can be partitioned into a fixed number of strong domination-critical vertex sets. An
article [31] examined network bipartitioning in the anti-communicability Euclidean space. The
interested reader may find further citations in the reviewed literature to other studies within the broad
domain of graph processing algorithms.

3. The algorithm

We formalize the structures of our exact process of finding a satisfactory partition, {A,B}, of a given
undirected graph

G = (V,E).

Hence, let γ: V → N0, α:V → N0, and β: V → N0 be total mappings such that

γ(v) = |{u | u ∼ v}|, α(v) = 0 and β(v) = 0

for all v. During our process of finding a satisfactory partition, {A,B}, of the given graph G, for every
vertex v ∈ V, we use α(v) to track the number of v’s adjacent vertices that are in part A, and we
use β(v) to track the number of v’s adjacent vertices that are in part B. Since initially we have empty
parts, i.e., A = ∅ and B = ∅, we initialize α(v) and β(v) with 0 for all v. On the other hand, for all
vertices v, we employ γ(v) to track the number of v’s adjacent vertices that are not assigned to a part
yet. Subsequently, for every v, γ(v) is started with |{u | u ∼ v}|.
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Additionally, we utilize another total mapping µ: V → {0, 1, 2} such that for all vertices v, µ(v) is
initialized with 0 to indicate that v is not assigned to either A nor B. Thus, assigning 1 to µ(v) means
that the vertex v now is a member ofA, while assigning 2 to µ(v) implies that v now is a member of B.
Whenever a vertex v joins some part, we update the status of the adjacent vertices of v as follows: If v
joinsA, then we increment

α(u)← α(u) + 1

for all u ∼ v. Likewise, if a vertex v joins part B, then we update

β(u)← β(u) + 1

for all u ∼ v. Whenever we assign a vertex to some part, we verify that this assignment adheres to the
satisfactory partition specification. That is, we check that for every vertex v ∈ A (i.e., µ(v) = 1),

α(v) + γ(v) ≥ β(v);

likewise, we ensure that for every vertex v in part B (i.e., µ(v) = 2),

β(v) + γ(v) ≥ α(v).

Consequently, whenever we put a vertex in some part, if for some vertex v ∈ V, µ(v) = 1 with

β(v) > α(v) + γ(v),

or, µ(v) = 2 with
α(v) > β(v) + γ(v),

then a contradiction with the satisfactory-partition specification is found; hence we return to a previous
stage of the search process where the satisfactory-partition specification is unviolated by revoking one
or more vertices from partA (or from part B) as we elaborate throughout this section.

Further, in finding a satisfactory partition, we perform the following routine every time we put a
vertex in some part. For every vertex v in the graph,

(i) If v ∈ A (i.e., µ(v) = 1) and half of the adjacent vertices of v are in part B, then we assign to part
A the adjacent vertices of v that are not assigned to any part yet;

(ii) If v ∈ B (i.e., µ(v) = 2) and half of the adjacent vertices of v are in part A, then we assign to
part B the adjacent vertices of v that are not assigned to any part yet. This routine is repeated every
time we put a vertex in some part. We stress that assigning a vertex to some part may require other
vertices, which are not assigned to any part yet, to join a specific part to fulfill the satisfactory partition
requirement.

Our exact process for constructing a satisfactory partition of a given graph

G = (V,E)

is rigorously described in Algorithm 1. The algorithm finds a satisfactory partition (if any exists)
immediately after Σ(∅,V, µ, α, β, γ) is invoked with µ, α, β, and γ being initialized such that every
vertex y ∈ V has

µ(y) = 0, γ(y) = |{z : z ∼ y}|, α(y) = 0 and β(y) = 0.
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We shortly explain the first parameter (i.e., ∅) passed to the algorithm. The second parameter of our
procedure Σ is initially the whole set, V, of the graph vertices. Referring to lines 30–31, a call for
a new instance, k, of the algorithm (i.e., the procedure Σ) entails creating a new copy of the passed
structures such that the last copy of the structures (belonging to the caller instance, k − 1, of Σ) are not
affected by the updates carried on during the execution of instance k. In other words, all the calls for
the procedure Σ are done by passing a copy of the parameters.

Algorithm 1: Σ(∆,V, µ, α, β, γ).
1 while ∆ , ∅ do
2 Extract a vertex v from ∆;
3 if µ(v) = 1 then
4 if β(v) > α(v) + γ(v) then return;
5 if α(v) + γ(v) − 1 ≤ β(v) ≤ α(v) + γ(v) then
6 foreach u ∼ v with µ(u) = 0 do
7 µ(u)← 1;V ← V \ {u}; ∆← ∆ ∪ {u};
8 foreach u ∼ v do
9 α(u)← α(u) + 1; γ(u)← γ(u) − 1;

10 if µ(u) = 2 ∧ α(u) > β(u) + γ(u) then return;
11 if µ(u) = 2 ∧ β(u) + γ(u) − 1 ≤ α(u) ≤ β(u) + γ(u) then
12 foreach s ∼ u with µ(s) = 0 do
13 µ(s)← 2;V ← V \ {s}; ∆← ∆ ∪ {s};
14 if µ(v) = 2 then
15 if α(v) > β(v) + γ(v) then return;
16 if β(v) + γ(v) − 1 ≤ α(v) ≤ β(v) + γ(v) then
17 foreach u ∼ v with µ(u) = 0 do
18 µ(u)← 2;V ← V \ {u}; ∆← ∆ ∪ {u};
19 foreach u ∼ v do
20 β(u)← β(u) + 1; γ(u)← γ(u) − 1;
21 if µ(u) = 1 ∧ β(u) > α(u) + γ(u) then return;
22 if µ(u) = 1 ∧ α(u) + γ(u) − 1 ≤ β(u) ≤ α(u) + γ(u) then
23 foreach s ∼ u with µ(s) = 0 do
24 µ(s)← 1;V ← V \ {s}; ∆← ∆ ∪ {s};
25 if V = ∅ then
26 if {v | µ(v) = 1} , ∅ ∧ {v | µ(v) = 2} , ∅ then
27 µ is a satisfactory partition; end the execution of the algorithm;
28 else
29 Extract (a randomly selected) v fromV;
30 select randomly i from {1, 2}; µ(v)← i; Σ({v},V, µ, α, β, γ);
31 Let j ∈ {1, 2} but j , i; µ(v)← j; Σ({v},V, µ, α, β, γ).

Let us go through the algorithm’s actions in further detail, line by line. Referring to the caption of
Algorithm 1, note that our procedure Σ is recursive (see lines 30 and 31). As noted earlier, we initially
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run Σ with ∆ = ∅, the whole vertex set of the given graphV, and the total mappings µ, α, β, γ such that

µ(v) = α(v) = β(v) = 0

while
γ(v) = |{u : u ∼ v}|

for all v ∈ V. Thus, because ∆ is initially empty, we delay discussing the purpose of ∆ and the
while loop at line 1 in the algorithm. Likewise, since V is initially nonempty, let us skip line 25
and go to line 29, where we take a vertex v out of V. Referring to line 30 (respectively line 31),
supposing i = 1 (respectively j = 2), we assign v to partA (respectively part B) by applying µ(v)← 1
(respectively µ(v) ← 2). Subsequently, we run the algorithm again by invoking Σ({v},V, µ, α, β, γ)
trying to construct a satisfactory partition with v ∈ A (see line 30). If this attempt is unsuccessful, we
try constructing a satisfactory partition with v in B (see line 31).

Note that during the very first call for the procedure Σ, there is no need to try constructing a
satisfactory partition by assigning v (the extracted vertex from V in line 29) to part B, as this is
symmetric to the scenario where v ∈ A. Suppose no satisfactory partition is possible with v ∈ A. In
that case, there is no satisfactory partition possible with v ∈ B, which means that in the initial call for
Σ, we can omit to execute line 31. We leave this tiny detail out of Algorithm 1. However, suppose one
wants to include such detail. In that case, the algorithm should be started with
Σ({x},V \ {x}, µ, α, β, γ), where the first parameter (i.e., {x}) indicates that the process of constructing
a satisfactory partition is started by assigning some vertex x to some part. As said earlier, it does not
matter whether x is set to part A or B. Hence, one might start the algorithm by assigning x to part A.
Therefore, x must be removed from the vertex set as indicated by V \ {x}, the second parameter
passed to the algorithm. For the rest of the parameters (i.e., µ, α, β, and γ), we mentioned earlier that
these structures are usually initialized such that for every vertex y ∈ V,

µ(y) = 0, γ(y) = |{z : z ∼ y}|, α(y) = 0 and β(y) = 0.

But since we start the algorithm with some vertex x being included in part A, we must initially set
µ(x)← 1.

Back to the description of Algorithm 1, now assume that the algorithm has been recursively invoked
with Σ({v},V, µ, α, β, γ) where v is assigned to either part A or part B (see lines 30 and 31). At this
point, we note that ∆ = {v}. So, we run the while loop (line 1) and extract v from ∆ according to line 2.
The purpose of ∆ is to temporarily hold those vertices that are newly assigned to some part until we
accordingly update the total mappings (employed by the algorithm) as we elaborate next. Referring to
line 3, we check if v was assigned to part A (i.e., µ(v) = 1), and if so, the following actions need to
be performed. In line 4, we examine if the number, β(v), of v’s adjacent vertices that are in part B is
greater than the sum of the number, α(v), of v’s adjacent vertices contained in partA plus the number,
γ(v), of v’s adjacent vertices that are not assigned to any part yet; if it is the case that

β(v) > α(v) + γ(v),

then the algorithm returns to the previous instance of Σ. In line 5, we verify if the number, β(v), of v’s
adjacent vertices that are in part B has reached the maximum allowed value of ⌊ |{w:w∼v}|

2 ⌋ by examining
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the inequality laid down in line 5; if this inequality is true then the v’s adjacent vertices that are not
assigned to any part yet must join partA (the part of v); see lines 6 and 7 where for every u adjacent to
v with µ(u) = 0, we assign u to partA, remove u fromV, and then put u in ∆. To see that the inequality
in line 5 is true if

β(v) = ⌊
|{w : w ∼ v}|

2
⌋,

let
k = |{w : w ∼ v}|.

Recall that throughout the algorithm it is the case that

β(v) + α(v) + γ(v) = |{w : w ∼ v}|.

If k is even, then the inequality is
k
2
− 1 ≤

k
2
≤

k
2
.

If k is odd, then the inequality is
k + 1

2
− 1 ≤

k − 1
2
≤

k + 1
2
.

Now we show that if the inequality (in line 5) is true, then it is the case that

β(v) = ⌊
|{w : w ∼ v}|

2
⌋.

Given that
β(v) + α(v) + γ(v) = |{w : w ∼ v}|,

the inequality can be rewritten as

α(v) + γ(v) − 1 ≤ |{w : w ∼ v}| − α(v) − γ(v) ≤ α(v) + γ(v),

which is
2α(v) + 2γ(v) − 1 ≤ |{w : w ∼ v}| ≤ 2α(v) + 2γ(v).

Divide all sides by two and then take the floor value. The inequality becomes⌊
α(v) + γ(v) −

1
2

⌋
≤

⌊
|{w : w ∼ v}|

2

⌋
≤ ⌊α(v) + γ(v)⌋ .

Hence,

α(v) + γ(v) − 1 ≤
⌊
|{w : w ∼ v}|

2

⌋
≤ α(v) + γ(v).

That is,

β(v) =
⌊
|{w : w ∼ v}|

2

⌋
.

Back to the algorithm. In line 8, we process the adjacent vertices of v as follows: For every vertex
u ∼ v, we update

α(u)← α(u) + 1 and γ(u)← γ(u) − 1 (line 9).
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Subsequently, we check whether the specifications of satisfactory partition are violated as a
consequence of v being included in part A. More specifically, referring to line 10, if a vertex u (such
that u ∼ v) is in part B, then we verify that α(u), the number of adjacent vertices of u that are in part
A, is still less than or equal to β(u) + γ(u), which is the number of adjacent vertices of u that are either
in the part of u (i.e., B) or not assigned to any part. Otherwise, again referring to line 10, the
algorithm returns to the previous state (i.e., the algorithm returns to the caller instance of Σ). Moving
on to line 11, the algorithm tries to find out if any adjacent vertices of u must join a specific part,
according to the definition of satisfactory partition. Therefore, in line 11, we check that if u is in part
B and that the number of u’s adjacent vertices in partA has reached the maximum allowed value, i.e.,

α(u) = ⌊
|{w : w ∼ u}|

2
⌋,

then for every vertex s ∼ u such that s is not assigned to any part yet (lines 11 and 12), s must join part
B, and consequently s is removed fromV and then included in ∆ (line 13).

The rest of the while loop, lines 14–24 in Algorithm 1, deal with the case where the vertex v
(extracted from ∆ in line 2) is assigned to part B. This is analogous to the scenario of v being assigned
to part A (lines 3–13). However, we trace lines 14–24 for the reader’s convenience. Referring to
line 15, if the number, α(v), of v’s adjacent vertices that are in part A is greater than the sum of the
number, β(v), of v’s adjacent vertices that are in part B plus the number, γ(v), of v’s adjacent vertices
that are not assigned to any part, then the algorithm returns to the previous stage (i.e., to the caller
instance of Σ). As to line 16, if the number, α(v), of v’s adjacent vertices that are in partA has reached
the maximum allowed value, i.e.,

α(u) = ⌊
|{w : w ∼ u}|

2
⌋,

then, in lines 17 and 18, we put into part B every u ∼ v with µ(u) = 0 (i.e., every u ∼ v not assigned a
part yet). In line 18, we move u fromV to ∆ so that u is processed in a subsequent round of the while
loop. In lines 19–20, we update

β(u)← β(u) + 1

and
γ(u)← γ(u) − 1

for every u ∼ v. In line 21, if a vertex u ∼ v is in part A and the number, β(u), of u’s adjacent vertices
that are in part B exceeds the sum of the number, α(u), of u’s adjacent vertices that are in part A plus
the number, γ(u), of u’s adjacent vertices that are not assigned to any part, then the algorithm returns
to the previous state (i.e., the algorithm returns to the caller instance of the procedure Σ). In line 22,
we check whether there is a vertex u ∼ v such that u ∈ A (i.e., µ(u) = 2), but the number, β(u), of u’s
adjacent vertices belonging to part B, has reached the maximum allowed value, i.e.,

β(u) = ⌊
|{w : w ∼ u}|

2
⌋;

if this is true, then we put each s ∼ u into part A, provided that s is not already included in any part;
see lines 23 and 24. In line 24, we move s from V to ∆ so that s is processed further in a later round
of the while loop.
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Thereby, the while loop continues as long as ∆ has some vertices that need to be processed. In
summary, we note that the while loop’s actions ensure that the current part assignment of graph vertices
is consistent with the satisfactory partition specifications. Going beyond the while loop, in line 25, the
algorithm checks if all the graph vertices are included in some part; if not, i.e., if V , ∅, then we
repeat the same process as discussed above by re-applying lines 29–31, and so forth. Referring to the
lines 25–27, ifV = ∅ (line 25) withA andB being nonempty (line 26), then we stop the search process
for a satisfactory partition since A and B is a satisfactory partition of the given graph. Referring to
line 26, recall that the set

{v | µ(v) = 1}

designates partA, whereas the set
{v | µ(v) = 2}

denotes part B. By this, we completed a description of Algorithm 1 and its structures. The next section
discusses the algorithm’s running time (and running space).

Example 1. Let us demonstrate the operation of Algorithm 1 on the graph depicted in Figure 2.

Figure 2. An undirected graph.

Initially, we invoke Σ(∆,V, µ, α, β, γ) with

∆ = ∅,

V = {w, x, y, z},

µ = {(w, 0), (x, 0), (y, 0), (z, 0)},
α = {(w, 0), (x, 0), (y, 0), (z, 0)},
β = {(w, 0), (x, 0), (y, 0), (z, 0)},
γ = {(w, 2), (x, 2), (y, 2), (z, 2)}.

Assume that w is extracted from the vertex set (in line 29). Then, in line 30, suppose w is assigned to
the first partA by labeling it with µ(w)← 1. Then, we invoke Σ(∆,V, µ, α, β, γ) with

∆ = {w},

V = {x, y, z},

µ = {(w, 1), (x, 0), (y, 0), (z, 0)},
α = {(w, 0), (x, 0), (y, 0), (z, 0)},

AIMS Mathematics Volume 9, Issue 10, 27308–27329.
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β = {(w, 0), (x, 0), (y, 0), (z, 0)},
γ = {(w, 2), (x, 2), (y, 2), (z, 2)}.

Now, line 2 is operated to extract w from ∆, which makes ∆ empty; then, line 9 is executed twice for
w’s adjacent vertices x and z such that

α(x) = 1, γ(x) = 1, α(z) = 1 and γ(z) = 1.

Thus, after execution of this round of the while loop, the state is

∆ = ∅,

V = {x, y, z},

µ = {(w, 1), (x, 0), (y, 0), (z, 0)},
α = {(w, 0), (x, 1), (y, 0), (z, 1)},
β = {(w, 0), (x, 0), (y, 0), (z, 0)},
γ = {(w, 2), (x, 1), (y, 2), (z, 1)}.

Now, line 29 is executed. Assume that x is extracted from V. Then, in line 30, suppose x is assigned
to part B by labeling it with µ(x)← 2. Afterwards, in line 30, we invoke Σ(∆,V, µ, α, β, γ) with

∆ = {x},

V = {y, z},

µ = {(w, 1), (x, 2), (y, 0), (z, 0)},
α = {(w, 0), (x, 1), (y, 0), (z, 1)},
β = {(w, 0), (x, 0), (y, 0), (z, 0)},
γ = {(w, 2), (x, 1), (y, 2), (z, 1)}.

Now, we track the actions taken in a round of the while loop. Line 2 is operated to extract x from
∆, which makes ∆ empty. Lines 17 and 18 are executed such that

µ(y) = 2, V = {z}, ∆ = {y}.

Lines 19 and 20 are operated such that

β(w) = 1, γ(w) = 1, β(y) = 1, γ(y) = 1.

Then, lines 23 and 24 are executed such that

µ(z) = 1, V = ∅, ∆ = {y, z}.

In summary, after execution of this round of the while loop, the state is

∆ = {y, z},

AIMS Mathematics Volume 9, Issue 10, 27308–27329.
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V = ∅,

µ = {(w, 1), (x, 2), (y, 2), (z, 1)},
α = {(w, 0), (x, 1), (y, 0), (z, 1)},
β = {(w, 1), (x, 0), (y, 1), (z, 0)},
γ = {(w, 1), (x, 1), (y, 1), (z, 1)}.

The following actions are taken in the next round of the while loop. Line 2 is run to extract y from ∆,
so

∆ = {z}.

Lines 19 and 20 are executed such that

β(x) = 1, γ(x) = 0, β(z) = 1, γ(z) = 0.

The state after execution of the second round is

∆ = {z},

V = ∅,

µ = {(w, 1), (x, 2), (y, 2), (z, 1)},
α = {(w, 0), (x, 1), (y, 0), (z, 1)},
β = {(w, 1), (x, 1), (y, 1), (z, 1)},
γ = {(w, 1), (x, 0), (y, 1), (z, 0)}.

In the following round of the while loop, line 2 is run to extract z from ∆, so

∆ = ∅.

Lines 8 and 9 are executed such that

α(w) = 1, γ(w) = 0, α(y) = 1, γ(y) = 0.

Now, the state is

∆ = ∅,

V = ∅,

µ = {(w, 1), (x, 2), (y, 2), (z, 1)},
α = {(w, 1), (x, 1), (y, 1), (z, 1)},
β = {(w, 1), (x, 1), (y, 1), (z, 1)},
γ = {(w, 0), (x, 0), (y, 0), (z, 0)}.

Since ∆ is empty now, there are no more rounds of the while loop. Hence, line 27 is executed to
terminate the algorithm as a satisfactory partition {{x, y}, {w, z}} is found.
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4. Algorithm complexity

We first discuss the implementation ofV in Algorithm 1. We implementV as a variable-size array,
R, of |V| pairs where each pair has a vertex v and a boolean value b reflecting whether v is deleted
fromV or not such that

b = true

means that the vertex v is still inV. Now, deleting v fromV is implemented by firstly locating v in R
using another fixed-size array I[v] that holds the current position of v in R. Note that throughout the
algorithm’s execution, the size of I constantly equals the number of vertices of the originally inputted
graph. Hence, by applying

R[I[v]].b← f alse,

we delete v from V. Therefore, deleting one vertex from V costs constant time, which implies that
line 29 in the algorithm runs in constant time.

However, observe that before we randomly select a vertex to be extracted fromV (line 29), we must
shrink theV’s underlying array R due to vertex removal fromV (that happened in lines 7, 13, 18, 24,
and 29 since the last time we ran line 29). To this end, we create an array, R′, of pairs (v, b) with a
size of |R| − d, where d is the number of vertex deletions that occurred since the last time we shrank R.
Then, we check all R[k]; if

R[k].b = true,

then we copy R[k] into R′[m] and perform

I[R[k].v]← m.

After processing all R[k], we cancel R and replace it with R′ to represent the currentV.
Now, we show that the recursion tree of Algorithm 1 has a logarithmic depth in expectation.

Theorem 1. For a given undirected graph with n vertices, the recursion tree of Algorithm 1 has a depth
O(ln n) in expectation.

Proof. Whenever we make a non-terminal recursive call to the algorithm, we extract a randomly
selected vertex v from the current vertex setV; see line 29 in the algorithm. So, the expected depth of
the recursion tree of Algorithm 1 is

n∑
v=1

Ev(X),

where Ev(X) is the expected number of times a vertex v is selected and extracted within a simple,
complete path of the recursion tree starting from the root call until a terminal call where V is empty
(see line 25 in the algorithm).

Considering line 29, let V = {1, ..., i} such that 1 ≤ i ≤ n. Recall that throughout the algorithm’s
execution,V is a subset of the vertex set of the originally inputted graph. At the start of the execution,
V contains n vertices. But as we go on with the algorithm’s execution, V is reduced to i ≤ n vertices
as an effect of executing lines 7, 13, 18, 24, and 29 in the algorithm. The algorithm keeps reducingV
across multiple recursive calls untilV is empty; see line 25 in Algorithm 1.
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To calculate the expected number of times a given vertex v is selected and extracted within a simple,
complete path of the recursion tree, let

X : {({1, 2, ..., i}, v) | 1 ≤ i ≤ n} → {0, 1}

be a random variable that represents the number of times we select and extract a given vertex v from a
set of i vertices. For every i, it is the case that

X(({1, 2..., i}, v)) = 1

if 1 ≤ v ≤ i and otherwise
X(({1, 2..., i}, v)) = 0.

For a given i ≤ n, it is the case that

P(X(({1, 2, ..., i}, v)) = 1) =
(
1
i

) (
1
n

)
,

where 1
i is the probability of selecting v from i ≤ n vertices and, 1

n is the probability of having i ≤ n
vertices. Hence, the expected depth of the recursion tree of Algorithm 1 is

n∑
v=1

Ev(X) =
n∑

v=1

n∑
i=1

X(({1, 2, ..., i}, v))P(X(({1, 2, ..., i}, v)) = 1)

=

n∑
v=1

n∑
i=1

(1)
(
1
i

) (
1
n

)
=

n∑
v=1

(
1
n

) n∑
i=1

(
1
i

)
=

n∑
i=1

(
1
i

)
.

Thus,
n∑

v=1

Ev(X) ∈ O(ln n).

This ends the proof. □

In the following theorem, we illustrate the overall time complexity of Algorithm 1 for cases where
the recursion tree of the algorithm has a logarithmic depth.

Theorem 2. Let G be an undirected graph with n vertices such that the Algorithm 1’s recursion tree
depth matches the expectation, i.e., O(ln n). Then, Algorithm 1 runs in time O(n32O(ln n)).

Proof. Observe that the algorithm’s running time is bounded by the number of Σ calls multiplied by
the running time of the while loop (in line 1 in the algorithm). However, the while loop requires at most
O(n3) time due to the three nested loops that have no more than n rounds each. Referring to lines 29–31
in the algorithm, assume two Σ calls are made for every graph vertex. Then, the algorithm’s running
time in this extreme scenario is bounded by O(n32n). Nevertheless, as the depth of the recursion tree of
Algorithm 1 is O(ln n), the recursion tree size is O(2O(ln n)). Consequently, the overall running time of
Algorithm 1 is estimated by the running time of the while loop (i.e., O(n3)) multiplied by the recursion
tree size (i.e., O(2O(ln n))). This means Algorithm 1 runs in time O(n32O(ln n)). □

AIMS Mathematics Volume 9, Issue 10, 27308–27329.



27321

Regarding the space complexity of Algorithm 1, we note that the input graph requires O(n2) space.
In the following theorem, we discuss the additional space needed by Algorithm 1 other than the space
required to hold the input graph. Next, we show that the additional space of Algorithm 1 is linearithmic
in expectation.

Theorem 3. For a given undirected graph with n vertices, Algorithm 1 runs in additional space
O(n ln n) in expectation.

Proof. We note that the maximum size of any structure employed by the algorithm is O(n) and the
expected depth of the recursion of the algorithm is O(n), which implies that the maximum number of
copies of any structure employed by the algorithm is O(n). Thus, the additional space of Algorithm 1
is O(n2). But since the expected depth of the recursion of the algorithm is logarithmic, as established
earlier, the expected additional space is O(n ln n). □

5. Algorithm correctness

The following technical lemmata together solidify the validity of Algorithm 1. Recall that the
algorithm finds (if any exists) a satisfactory partition {A,B} for a given undirected graph G. In the
following lemma, we state that throughout the execution of our algorithm, the algorithm (line 3) checks
every vertex assigned to partA; likewise, the algorithm (line 14) checks every vertex put in part B.

Lemma 1. Throughout the execution of Algorithm 1 on a graph G, for all vertices y of G, whenever y
is put into part A or part B, then the algorithm examines the adjacent vertices, z, of y to update the
mappings α(z), β(z), and γ(z) accordingly.

Proof. Recall that assigning µ(x) to 1 means that x is included in partA, while µ(x) getting 2 indicates
that x is assigned to part B. Now, it suffices to note that whenever the algorithm assigns a vertex to a
part, it immediately adds the vertex to ∆; see lines 7, 13, 18, 24, 30, and 31. Subsequently, the algorithm
processes every vertex v in ∆; see line 2; and later, the algorithm examines all v’s adjacent vertices, u,
to update the mappings α(u), β(u), and γ(u) accordingly; see lines 3, 8, 9, 14, 19, and 20. □

The following three lemmata show the correct usage of the mappings α, β, and γ, respectively.

Lemma 2. Throughout the execution of Algorithm 1 on a graph G, for any vertex y in G, α(y) indicates
exactly the number of y’s adjacent vertices that are in partA.

Proof. Recollect that our algorithm is started with

α(y) = 0

for every vertex y in G. Likewise, the algorithm is started with

µ(y) = 0

for all y in G, which means that the algorithm is started with part A being empty. Throughout its
execution, the algorithm performs

α(y)← α(y) + 1

for any vertex y whenever an adjacent vertex of y is assigned to part A, see lines 3, 8, and 9. Recall
that, by definition, assigning µ(x)← 1 for any vertex x is equivalent to assigning x to partA. □
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Lemma 3. Throughout the execution of Algorithm 1 on a graph G, for any vertex y in G, β(y) indicates
exactly the number of y’s adjacent vertices that are in part B.

Proof. Recall that our algorithm is started with

β(y) = 0

for every vertex y in G. Additionally, the algorithm is started with

µ(y) = 0

for all y in G, which implies that part B is initially empty. The algorithm updates

β(y)← β(y) + 1

for any vertex y whenever the algorithm assigns an adjacent vertex of y to part B, see lines 14, 19,
and 20. By definition, assigning µ(x)← 2 for any vertex x implies putting x into part B. □

Lemma 4. Throughout the execution of Algorithm 1 on a graph G, for any vertex y in G, γ(y) indicates
exactly the number of y’s adjacent vertices that are not assigned to any part.

Proof. Consider that our algorithm is started with

γ(y) = |{x : x ∼ y}|

for every vertex y in G. Similarly, the algorithm is started with part A and part B being empty. The
algorithm updates

γ(y)← γ(y) − 1 (lines 9 and 20)

for any vertex y whenever the algorithm assigns an adjacent vertex of y to either partA (see lines 3, 8,
and 9) or part B (see lines 14, 19, and 20). □

Now, we emphasize the integrity of line 4, where Algorithm 1 might return to a previous point of
the search process under some conditions, as detailed in the following lemma:

Lemma 5. For any graph G, at any stage of the execution of Algorithm 1, if there is v ∈ A (i.e.,
µ(v) = 1) with

β(v) > α(v) + γ(v),

then there is no
A′ ⊇ A, B′ ⊇ B

such that {A′,B′} is a satisfactory partition of G.

Proof. This follows directly from the definition of satisfactory partition. But we mean here to highlight
that the premise of this lemma corresponds to the conditions of lines 3 and 4. Likewise, we stress that
the consequence of this lemma agrees with the action of Algorithm 1 as declared in line 4, where
the algorithm returns to a previous instance of the procedure Σ, which holds the previous copy of an
under-construction satisfactory partition. □

AIMS Mathematics Volume 9, Issue 10, 27308–27329.



27323

Next, we show the soundness of line 10, where Algorithm 1 goes back to a previous point of the
search process under some conditions, as illustrated in the following lemma:

Lemma 6. For any graph G, at any stage of the execution of Algorithm 1, if there is a vertex v ∈ A
(i.e., µ(v) = 1) with a vertex u ∼ v such that u ∈ B (i.e., µ(u) = 2) and

α(u) > β(u) + γ(u),

then there is no
A′ ⊇ A, B′ ⊇ B

such that {A′,B′} is a satisfactory partition of G.

Proof. This lemma follows directly from the definition of satisfactory partition. Observe that the
premise of this lemma corresponds to the conditions of lines 3, 8, and 10 in Algorithm 1. Similarly,
the consequence of this lemma is consistent with the action of Algorithm 1 as stated in line 10, where
the algorithm returns to the previous instance of the procedure Σ that holds the previous copy of an
under-construction satisfactory partition. □

In the following lemma, we focus on the correctness of line 15, where Algorithm 1 might return to
a previous point of the search process under some conditions, as detailed next.

Lemma 7. For any graph G, at any stage of the execution of Algorithm 1, if there is v ∈ B (i.e.,
µ(v) = 2) with

α(v) > β(v) + γ(v),

then there is no
A′ ⊇ A, B′ ⊇ B

such that {A′,B′} is a satisfactory partition of G.

Proof. This follows directly from the definition of satisfactory partition. Note that the premise of this
lemma corresponds to the conditions of lines 14 and 15 in Algorithm 1. Likewise, the consequence of
this lemma agrees with the action of Algorithm 1 as declared in line 15, where the algorithm returns
to the previous instance of the procedure Σ, which holds the previous copy of an under-construction
satisfactory partition. □

Now, we underline the correctness of line 21, where Algorithm 1 returns to a previous stage of the
search process when some conditions hold, as stated in the following lemma:

Lemma 8. For any graph G, throughout the execution of Algorithm 1, if there is a vertex v ∈ B (i.e.,
µ(v) = 2) such that there exists u ∼ v with u ∈ A (i.e., µ(u) = 1) and

β(u) > α(u) + γ(u),

then there is no
A′ ⊇ A, B′ ⊇ B

such that {A′,B′} is a satisfactory partition of G.
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Proof. This lemma is in line with the definition of satisfactory partition. Observe that the premise of
this lemma corresponds to the condition of lines 14, 19, and 21 in Algorithm 1. Further, the
consequence of this lemma is consistent with the action of Algorithm 1 as stated in line 21, where the
algorithm returns to the previous instance of the procedure Σ that holds the previous copy of an
under-construction satisfactory partition. □

Next, we prove the correctness of lines 11–13 and 16–18, where Algorithm 1 decides to assign part
B for some vertex provided that some conditions hold, as demonstrated by the following lemma:

Lemma 9. For any graph G, at any stage of the execution of Algorithm 1, if there is x ∈ B (i.e.,
µ(x) = 2) such that

β(x) + γ(x) − 1 ≤ α(x) ≤ β(x) + γ(x)

and, there is a satisfactory partition, {A′,B′}, of G such thatA′ ⊇ A with B′ ⊇ B, then for every y ∼ x
with y < A∪B, y ∈ B′.

Proof. The premise of this lemma corresponds to lines 11, 14, and 16. The consequence of this lemma
is guaranteed by Algorithm 1 according to the actions in lines 12, 13, 17, and 18. However, let us
show the correctness of these actions (i.e., this lemma) by contradiction. Suppose there is y ∼ x with
y < A∪B such that y < B′. This means y ∈ A′ \ A. Hence, this requires

β(x) + γ(x) − 2 ≤ α(x) + 1 ≤ β(x) + γ(x) − 1.

Therefore, it holds that
β(x) + γ(x) − 3 ≤ α(x) ≤ β(x) + γ(x) − 2.

Consequently,
α(x) = β(x) + γ(x) − 2

or
α(x) = β(x) + γ(x) − 3.

This contradicts the inequality given in the premise of this lemma

β(x) + γ(x) − 1 ≤ α(x) ≤ β(x) + γ(x),

that means
α(x) = β(x) + γ(x) − 1

or
α(x) = β(x) + γ(x).

This completes the proof of this lemma. □

Now, we aim to show the correctness of lines 5–7 and 22–24, where Algorithm 1 decides to assign
partA for some vertex provided that some conditions hold, as we elaborate in the following lemma:

Lemma 10. For any graph G, at any stage of the execution of Algorithm 1, if there is x ∈ A (i.e.,
µ(x) = 1) such that

α(x) + γ(x) − 1 ≤ β(x) ≤ α(x) + γ(x)

and if there is a satisfactory partition, {A′,B′}, of G with A′ ⊇ A and B′ ⊇ B, then for every y ∼ x
with y < A∪B, y ∈ A′.

AIMS Mathematics Volume 9, Issue 10, 27308–27329.



27325

Proof. The premise of this lemma corresponds to lines 3, 5, and 22. The consequence of this lemma is
guaranteed by Algorithm 1 according to the actions in lines 6, 7, 23, and 24. However, let us show the
correctness of these actions (i.e., this lemma) by contradiction. Suppose there is y ∼ x with y < A∪B
such that y < A′. Thus, y ∈ B′ \ B. This requires that

α(x) + γ(x) − 2 ≤ β(x) + 1 ≤ α(x) + γ(x) − 1.

Therefore, it holds that
α(x) + γ(x) − 3 ≤ β(x) ≤ α(x) + γ(x) − 2.

Consequently,
β(x) = α(x) + γ(x) − 2

or
β(x) = α(x) + γ(x) − 3.

This contradicts the inequality given in the premise of this lemma

α(x) + γ(x) − 1 ≤ β(x) ≤ α(x) + γ(x),

that implies
β(x) = α(x) + γ(x) − 1

or
β(x) = α(x) + γ(x).

This completes the proof of this lemma. □

In the following, we show the correctness of lines 25–27 in Algorithm 1.

Lemma 11. For any graph G, if line 27 of Algorithm 1 is executed, then the reported set

{{x | µ(x) = 1}, {x | µ(x) = 2}},

which denotes the set {A,B}, is truly a satisfaction partition of the inputted graph G.

Proof. We need to show that the set {A,B} reported by the algorithm in line 27 satisfies the definition
of satisfactory partition. Thus, we first show that

A , ∅ and B , ∅,

which is guaranteed by line 26. Likewise, we need to show that

A∩B = ∅.

This is ensured using our total mapping µ throughout the algorithm. Additionally, we need to show
that

A∪B = V,
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which is certain by the actions of the algorithms that whenever a vertex joins part A or part B, v is
removed from the vertex setV, see lines 7, 13, 18, and 24. Further, the algorithm reports {A,B} being
a partition of the inputted graph if and only ifV = ∅; see line 25. Equally, we need to show that

∀x ∈ A, α(x) ≥ β(x),

which is warranted by lines 4 and 21; note that whenever line 27 is executed, it is the case that γ(x) = 0
for all vertices x. Lastly, we need to prove that

∀y ∈ B, β(y) ≥ α(y),

which is maintained by lines 10 and 15. □

In our last theorem, we stress that Algorithm 1 is correct.

Theorem 4. Algorithm 1 finds a satisfactory partition (if any exists) of a given undirected graph.

Proof. Lemmas 1–11 altogether show this claim. □

6. Discussion

Literature demonstrating applications of “satisfactory partitions” is scarce. Hence, a natural
direction to extend this research line in the future is to conduct case studies in domains that can
benefit from the “satisfactory partitions” notion. Nonetheless, identifying a satisfactory partition of a
graph may play a vital role in understanding the social structure of communities. Take, for example, a
community of voters; one might be interested in discovering networks of electors or coalitions that are
internally cohesive. Likewise, consider a human management case where the company aims to create
two teams to implement different projects. The company desires teams with minimal conflict,
minimal communication across teams, and maximal collaboration within each team. Represent
employees as vertices and put links between the vertices to denote interactions between the
employees. A satisfactory partition of the resulting graph will be an optimal solution to the team
formation problem. However, further work might examine diverse potential applications in other
specialized domains, such as studying fullerenes (see, e.g., [32, 33]).

Limitations of our study lie in that we calibrate the design of our algorithm (i.e., Algorithm 1) to
optimize its expected recursion depth. Specifically, we incorporate the process of the “while” loop,
which runs in cubic time. However, for the general worst-case, the running time of Algorithm 1 is
O(n32n). Suppose we drop the while loop and modify the if statement (at line 25) to check for the
conditions of a satisfactory partition. In that case, the algorithm becomes literary a “generate and test”
procedure that runs always (in all cases) in exponential time O(2n). Compare this to the running time
of Algorithm 1 O(n32O(ln n)) under the assumption that the recursion depth of the algorithm does not
exceed the expected depth O(ln n). As discussed earlier in this article, this upper bound of the expected
recursion depth is reached by approximating the sum

n∑
i=1

1
i
.
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In fact,

ln n +
1
n
≤

n∑
i=1

1
i
≤ ln n + 1.

This means if the recursion depth of Algorithm 1 does not exceed the expectation, then the running
time of Algorithm 1 is in

O(n32ln n) ∈ O(n3nln 2) ∈ O(n3.7)

Therefore, there is an obvious trade-off between achieving a logarithmic expected depth of the
recursion of the algorithm versus an all-case exponential time of O(2n). Future research might
investigate whether the amortized running time of the while loop is better than cubic time to mitigate
this trade-off.

7. Conclusions

We studied an algorithm for computing a satisfactory partition of an undirected graph and showed
that for a given undirected graph with n vertices, a satisfactory partition (if any exists) can be
computed recursively with a recursion tree of depth O(ln n) in expectation. Likewise, we showed that
a satisfactory partition for those undirected graphs, with recursion tree depth meeting the expectation,
can be computed in time O(n32O(ln n)). However, in the general case, we note that the algorithm runs in
time O(n32n), as it is known that the problem of computing a satisfactory partition is np-complete.
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32. S. D. Bolboacă, L. Jäntschi, Nanoquantitative structure-property relationship modeling on c42

fullerene isomers, J. Chem., 2016 (2016), 1791756. https://doi.org/10.1155/2016/1791756
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