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1. Introduction 

The maximum entropy principle, familiarized by Jaynes [7], is an extensively espoused 

methodology for allocating values to probability distributions grounded on fractional information. In 

most concrete circumstances, the accessible information is delivered by a set of well-maintained 

quantities connected with the probability dissemination, which is why this principle is principally 

secondhand in statistical thermodynamics. The principle warrants the exclusivity and uniformity of 

probability obligations resultant from numerous approaches, evidently delineating the elasticity in 

exhausting dissimilar procedures of previous data. Simply put, the principle advocates for maximum 

uncertainty, choosing a distribution that makes the fewest assumptions beyond the given prior data. 

This principle is crucial for the effective goal-oriented modeling of evaluation systems. For 

instance, Zhang et al. [26] applied a selection measure and concluded that using the principle of 

maximum entropy allows for the rational distribution of limited resources, thereby enhancing overall 

economic efficiency. Other significant contributions to this field have been made by researchers such 

as Kapur [10]; Kapur, Baciu, and Keasavan [9]; Jizba and Korbel [8]; Xin et al. [14]; and 

Contreras-Reyes [3]. 

Shannon [20] established the furthermost significant perception of entropy accompanied

( )1 2, , ...., nP p p p=  by means of subsequent quantitative measure: 
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After Shannon’s [22] entropy, numerous entropic measures were discussed and explored. 

Moreover, by understanding the submission region of entropic measures in probability universes, 

numerous researchers projected their own measures of entropy to extend their applications. 

Additionally, to supplement the literature, the subsequent information speculative entropic measures 

for the prolongation of research have been investigated. One such measure is 
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Equation (1.2) represents Shannon's entropy measure, a fundamental measure of uncertainty in 

information theory. 
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Equation (1.3) denotes the discrete parametric entropic measure introducing a parameter for the 

flexible weighting of probabilities. 
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Equation (1.4) represents the exponential measure of uncertainty. 
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Equation (1.5) represents another exponential measure of uncertainty, where 𝛼 and 𝛽 are 

parameters indicating the order of entropy model, 𝑝𝑖 represents the probabilities, and n denotes the 

number of observations. 

Wan and Guo [24] provided significant insights into the long-standing use of information 

perception in exploring a vast array of physical phenomena. They elucidated the connections 

between observation, sudden changes in Shannon entropy, information conversion, and robust 

arrangement collaboration, grounded on the up-to-date intention of energy configurations. 

Following the identification of this measure, researchers have conducted extensive 

investigations to develop various entropic measures for diverse applications. These measures have 

been effectively employed in disciplines such as statistics. Recently, Elgawad et al. [1] made notable 

advancements related to prevailing information measures, extensively studying various distinguished 

distributions. They highlighted the impact of their study on random order statistics, which serve as a 

critical classification method for ordering bivariate data within this comprehensive framework. Their 

work also extended the application of these measures in reliability theory. 

Mondaini and Neto [16] emphasized that Khinchin-Shannon generalized inequalities, derived 

from entropy measures, are instrumental in exploring the synergy of probability distributions in 

physical systems. Segura et al. [2] discussed entropy in the context of the second law of 

thermodynamics, explaining that entropy increases in isolated systems, leading to greater disorder 

over time. In closed systems, entropy tends to increase without energy exchange with the 

environment, whereas in open systems, entropy can decrease due to energy exchange with the 

surroundings. This dissimilarity highlights that more closed structures are disposed to cumulative 

entropy, whereas more open structures can acclimate enhanced to fluctuating surroundings. 

Rastegin [18] recently highlighted that complementary relationships among the various 

descriptions of a probability distribution are central to information theory. He focused on providing 

lower and upper bounds for the entropic function, which is essential in applied settings where certain 

probability constraints are known. Rastegin proposed a family of polynomials for estimating 

Shannon entropy from below, leading to more accurate evaluations in specific areas and generating 

uncertainty and inevitability relationships for positive operator-valued processes. 

There is a gigantic accumulation of measures but still possibility ascends to articulate 

amplification in their versions. Additionally, there materializes a distinguishable strong association of 

interacting entropy and chi-square distribution. To carry this out, Parkash, Sharma and Singh [17] 

demarcated an innovative measure by the consequent manifestation: 
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In recent studies, Zhang and Shi [25] provided remarkable insights into Shannon's entropy, 

emphasizing its foundational role and its indispensable application in machine learning procedures. 

Despite its importance, Shannon's entropy is solitary demarcated for disseminations with rapidly 

decomposing tails on a countable alphabet. Due to the unbounded nature of Shannon's entropy over 
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the universal category of disseminations, this limitation restricts its full potential utility. Zhang and 

Shi [25] conducted an extensive study on the asymptotic properties of the plug-in estimator for 

countable symbols, demonstrating that these properties hold without requiring any assumptions about 

the underlying distribution. 

Additional studies of isolated entropy measures have been completed by numerous investigators, 

including Kapur [11], Elgawad et al. [1], Sholehkerdar et al. [21], Fowler and Heckman [4], Gao and 

Deng [5], Li et al. [12], Suguro [22], and Legchenkova et al. [13]. 

One notable application area of entropy measures is in queueing theory, which has remained a 

vital and active field of research in recent years. The applications of queueing theory provides a 

theoretical foundation for designing and analysing numerous stochastic systems across various 

disciplines. These systems typically operate under random conditions, and congestion often arises 

from the discrepancy between variable service capacity and random service demand. Due to 

increasing complexities in these stochastic systems, traditional queueing theory, which was once 

highly effective in modelling telephone systems, has become inadequate. 

While delivering solicitations in modest birth-death progression, if 𝑝𝑛(𝑡)) is the possibility of n 

individuals at a particular time t, 𝑛0 to be individuals at a specific time t=0, and we designate the 

probability-generating function by 
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
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=
on

n

n stpts, ,         (1.7) 

then, we acquire the subsequent outcome of the above appearance: 
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where 

exp( )x t = − .         (1.10) 

By constructing an enlargement 𝜑(𝑠, 𝑡), an individual can ascertain 𝑝𝑛(𝑡). The following, where  

and  are the arrival and service rates, respectively, is prevalent in the discipline of queueing theory: 

(1 ) n

np  = − ,  0,1,2.3,....;  n





= = .       (1.11) 

Our entropic measure is designed to analyze and quantify uncertainties within queueing systems, 

providing a novel approach to understanding how uncertainty behaves under different conditions. 

Specifically, the model allows us to do the following: 
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(1) Analyze steady-state processes: In steady-state queueing systems, the measure helps quantify 

how uncertainty increases with traffic intensity, offering a clearer picture of system behaviour 

as it approaches capacity. 

(2) Examine non-steady-state processes: For non-steady-state processes, the measure captures the 

dynamic nature of uncertainty, which initially increases, reaches a maximum, and then 

decreases over time. This provides valuable insights into transient behaviours in queueing 

systems. 

(3) Apply the maximum entropy principle: The measure uses the maximum entropy principle to 

derive the probability distribution that maximizes entropy under given constraints, such as 

system capacity and mean queue size. This application is particularly useful for predicting 

queue lengths and wait times in various scenarios. This paper aims to generate 

comprehensive knowledge of a new discrete entropic measure and its applications to 

queueing theory, facilitating the study of uncertainty variations. 

In Section 2, we have wrought a newfangled entropic measure for the isolated probability 

distributions. Section 3 provides transactions with the learning of dissimilarities of uncertainty in the 

steady state and non-steady state queueing processes by commissioning the newly developed 

generalized entropic measure. Section 4 delivers an arrangement of solicitations of the maximum 

entropy principle by employing our specific discovered measure. 

2. An innovative discrete entropic measure in possibility universes 

In the discipline of information theory, the Rényi’s [19] entropy is a quantity that generalizes 

innumerable designs of entropy including Shannon’s [20] entropy and can be looked for the most 

universal approach to quantify information while maintaining additivity property for independent 

events. On the other hand, Tsallis [23] entropy quiet identical to Havrada-Charvat’s [6] entropy also 

participates through fundamental responsibility in deriving Tsallis distribution in statistical physics. 

The connection between the two (i.e., Rényi’s [19] entropy and Tsallis [23] entropy) has been 

delivered by Mariz [15]. 

We now construct the consequent quantifiable isolated parametric entropic measure identified by 
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We observe the subsequent communication in the limiting appearance: 

1
1

lim ( ) log
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i i

i

H P p p
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=

= − . 

We examine that measure (2.1) is a generalization of the well-accepted Shannon’s [22] 

entropy measure. 

2.1. Numerical illustration 

Let p1 = 0.1,  p2 = 0.2,  p3 = 0.3 and p4 = 0.4. Thus, we have ∑ pi = 14
i=1 , which confirms 

the soundness of the above probability distribution. 

https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Shannon_entropy
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The value of Shannon entropy measure is H(X) = 1.279854225833667. 

By taking γ = 2, 3, 4,5, we have calculated the value of entropy measure shown in Eq (2.1) for 

different values of γ as shown in Table 1. 

Table 1. Entropy values for different γ in comparison with Shannon entropy measure. 

p1 p2 p3 p4 γ Hγ(P) 

0.1 0.2 0.3 0.4 2 1.4631752829607056 

0.1 0.2 0.3 0.4 3 1.5188401252811239 

0.1 0.2 0.3 0.4 4 1.5386491522103345 

0.1 0.2 0.3 0.4 5 1.544551674453902 

Comparing it with the Shannon entropy measure, we observe that the entropy values of our 

measure are greater than the Shannon entropy measure. This clearly indicates that the entropy is 

getting maximum in accordance with the principle of maximum entropy. 

Next, to authenticate that the discrete measure (2.1) is a considerable entropy measure, we make 

transactions with its central properties as follows: 

(i) For n degenerate disconnected allocations 

( )1 1,0,0,...,0 = , ( )2 0,1,0,...,0 = ,…, ( )0,0,0,...,1n = , 

we acquire 

( ) 0H P = . 

Meanwhile, entropy stretches the smallest assessment intended for degenerate disseminations and the 

smallest value is 0, so it is obligatory to have 𝐻𝛾(𝑃) ≥ 0. This corroborates the non-negativity 

property of the projected measure. 

(ii) 𝐻𝛾(𝑃) conforms symmetry. 

(iii) 𝐻𝛾(𝑃) monitors continuity. 

(iv) Concavity: To establish the concavity property of the proposed measure, we carry on with 

subsequent straightforward computations: We have 

( ) 1
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i i
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Also, 
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22
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
= − − 
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Thus, 𝐻𝛾(𝑃) monitors a continuous function. 

In addition, with the support of mathematical statistics displayed in the succeeding Table 1 

through 2=n  and 2 = , we have made manageable the anticipated isolated entropy measure 

𝐻𝛾(𝑃) counter to 𝑝 by way of exposition in the succeeding Figure 1. This table is unquestionably 
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accommodating for enlightening the information towards the concavity belongings of the 

anticipated measure. 

 

Figure 1. Concavity of ( )H P  with respect to P . 

Figure 1 unequivocally demonstrates that the anticipated measure (2.1) maintains concavity, 

establishing its credibility as an entropy measure. Consequently, it can be deemed an acceptable 

entropy measure in terms of concavity property for various values of n and α. 

(v) Maximization: We apply Lagrange’s technique to exploit (2.1) subject to the acknowledged 

constraint conveyed by 

1

1
n

i

i

p
=

= . 

The necessary Lagrange’s function is communicated through 
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Upon differentiating (2.2) we obtain the following mathematical communications: 
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mathematical expression in relationships of probabilities: 
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Accordingly, we perceive that absolute assessment of 𝐻𝛾(𝑃)  ascends for the uniform 

distribution 𝑈=(1/𝑛, 1/𝑛,...,1/𝑛), and this consequence is principally attractive one on the justification 

of the statement that there survives merely uniform distribution at which any entropy function ought 

to possess supreme value. 

(vi) The maximum assessment 𝑓(𝑛) of the entropy function is prearranged by subsequent accurate 

communication: 

( )  
1 log

log log ( 1) log
1 1

f n n n n n n



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 = + + − − − − −
. 

Thus, we arrive at the final result, f'(n) > 0, indicating that f(n) is an increasing function of n. This is 

a significant finding, as it supports the notion that the maximum value of entropy should consistently 

increase, aligning with the principle of maximum entropy. 

3. Solicitations of isolated entropic measure in the theory of queues 

At this stage, we have accomplished the knowledge of discrepancies of entropy in unlike states 

in the succeeding belongings. 

3.1. Case I: Discrepancies of the entropic measure in steady state 

To study such dissimilarities, we have reflected upon the entropy measure previously shaped in (2.1). 

This measure is prearranged by the following manifestation: 
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In steady state, we make the following modification in the above measure as 
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Taking 𝑝𝑛 = (1 − 𝜌)𝜌𝑛, we obtain the following exterior: 
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Indeed, we consider the second and third positions of (3.3) as 
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Taking the limit as 𝛾 → 1, the above calculation gives the following: 
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2 3(1 ) (1 ) (1 ) (1 ) ... 1       = − + − + − + − + −   
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Thus, Eq (3.3) delivers the following limiting expression: 
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Upon differentiation, (3.4) explores the following consequence: 
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which indicates that while dealing with the steady-state process, the uncertainty escalates from 0 to 

∞ as 𝜌 escalates from 0 to 1. Consequently, in the present case, we identify that the uncertainty 

increases if the traffic intensity increases. 

3.2. Case II: Disparities of entropy in the non-steady state 

Kapur [8] has revealed that Eqs (3.2) and (3.3) deliver the expressions for probabilities. Thus, 

we have the following manifestation for the possibility of n individuals at some period t: 
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        (3.4) 

Now, we study the dissimilar discrepancies by captivating into contemplation the probabilistic 

entropic measure (3.1). 

In the non-steady state, Eq (3.1) can be rewritten as 
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To ascertain the elucidation, let us contemplate the first term of (3.5) as 

0 0

1

  ( ) log ( )

( ) log ( ) ( ) log ( )

n n

n o

n n

n

p t p t

p t p t p t p t



=



=

−

= − −




 

 0 0 1 1 2 2 3 3( ) log ( ) ( ) log ( ) ( ) log ( ) ( ) log ( ) ...p t p t p t p t p t p t p t p t= − − + + +  

           
2 2 3 3 4 4

1 1 1 1 1 1
log log log log ...

1 1 1 1 1 1 1 1

t t

t t t t t t t t

 

       

  
= − − + + + 

+ + + + + + + +  

 

   

 

2 1 log 1 log

1

t t t t

t

   



 + + − =
+

. 

Thus, Eq (3.5) becomes 
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+ − −

 .  (3.6) 

Now, the captivating limit as 𝛾 → 1, the second term of the above Eq (3.6) stretches the 

subsequent limiting manifestation: 

 
     

2 2

1 2 3 4
0

1 1
log 1 ( 1) ...                      

1 1 1 1 1
i

n

t t t
Lt p

t t t t


  


    



→

=

+ − = + + + +
− + + + +


   

2 2

2 2

1
                             1 ... 1

1 11 1

t t t

t tt t

  

  

 
= + + + + = 

+ ++ +  

.  (3.7) 

Likewise, the entrancing limit as 𝛾 → 1, the third term of the above Eq (3.7) stretches 

𝐿𝑡𝛾→1
𝑙𝑜𝑔 𝛾

𝛾−1
= 1. 

Consequently, in the limiting situation, (3.7) gives us the following exterior: 

( )
   

 1

2 1 log 1 log
,

1

t t t t
Lt S

t





   
 


→

 + + − =
+

.     (3.8) 

Now, 
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This manifestation suggests that improbability increases if t <1 and declines if t 1.  

Also, from Eq (3.8), the maximum uncertainty occurs when t =1, and in this case we obtain 

the following logarithmic exterior: 

( , ) 2log2S tMax   = . 

Further, once 𝑡 = 0, the improbability is 0, and once 𝑡 → ∞, we obtain 

( , ) 0.
t
Lt S t 
→

=  

Consequently, in this circumstance, we analyze that improbability instigates with assessment 0 at 

time 𝑡 = 0  and varnishes through assessment 0 as time 𝑡 → ∞,  and sandwiched between, it 

undertakes extreme assessment at t=
1

.


 

4. Solicitations of maximum entropy principle to the persuasion of queueing theory 

To intricate this maximum entropy standard in the persuasion of queueing theory, we 

contemplate the succeeding measure. 

4.1. Model: Optimization attitude exhausting parametric measure once the space capacity is limited 

and the mere evidence accessible is around the mean size of the arrangement 

In this fragment, to deliver advancement headed for the optimization principle, we employ the 

entropy measure (3.1) previously familiarized in the above subdivision. Accordingly, our problem 

converts to capitalize on (3.1) under the succeeding set of surroundings: 

1

1
n

i

i

p
=

=          (4.1) 

and 

1

n

i

i

ip m
=

= .         (4.2) 

The conforming Lagrangian function is prearranged by the consequent appearance: 

 
1 1 1 1

1 log
log log 1 ( 1) 1

1 1

n n n n

i i i i i

i i i i

L p p p p ip m


  
 = = = =

   
= − + + − − − − − −   

− −    
    . 

Now, in regulating cases as 𝛾 → 1, 
𝜕𝐿

𝜕𝑝𝑖
= 0 stretches the consequent communication: 

i i

ip e e ab − −= = .         (4.3) 
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where 𝑎 = 𝑒−(1+𝜆), 𝑏 = 𝑒−𝜇. 

The subsequent set of equalities will determine the parameters 𝑎 and 𝑏. 

1 1

1
n n

i i

i i

a b and a ib m
= =

= =  .        (4.4) 

Now, 

2 3 4

1

...
n

i n

i

a b a b b b b b
=

 = + + + + + 
1

1

nb
ab

b

 −
=  

− 
. 

Also, 

2 3 4

1

2 3 4 ...
n

i n

i

a ib a b b b b nb
=

 = + + + + +  2

1

(1 ) 1

n nb nb
ab

b b

 −
= − 

− − 
. 

Engaging these standards the equivalences (4.4) obtain the following: 

1 1
1

1 1 1

n n

n

b nb
ab and m

b b b

−
= − =

− − −
.       (4.5) 

Through identified standards 𝑚  and 𝑛 , equivalences (4.5) stretch standards of 𝑎  and 𝑏  and 

henceforth equivalence (4.3) decide a mandatory set of possibilities. Accordingly, we witness that 

exploiting entropy likelihood distribution is a “geometric distribution”. 

The exceeding technique has been embodied through the assistance of succeeding 

mathematical sketch. 

4.2. Numerical illustration 

We maximize (3.1) satisfying the constraints (4.1) and (4.2) for 𝑛 = 11 and for diverse values 

of 𝑚  predominantly, for 𝑛 = 11  and 𝑚 = 1.5,  (4.5) and (4.3) provide the subsequent 

probabilities: 

1 0.5843,p =  2 0.1265,p =  3 0.0709p = , 4 0.0493,p =  5 0.0377,p =  6 0.0306,p =  

7 0.0257,p =  8 0.0223p = , 9 0.0195,p =  10 0.0174,p =  11 0.0157p = . 

We have 
11

1

1i

i

p
=

= , which confirms the soundness of the above probability distribution. 

The above- modus operandi is made continual for diverse standards of 𝑚 when 𝑛 = 11. The 

significance of functioning has been uncovered in Table 2. 
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Table 2. Probabilities for different values of 𝑚 fixed 11n = . 

m  
1p  

2p  
3p  

4p  
5p  

6p  
7p  

8p  
9p  

10p  
11p  

1.5 0.5843 0.1265 0.0709 0.0493 0.0377 0.0306 0.0257 0.0223 0.0195 0.0174 0.0157 

2.5 0.3579 0.1646 0.1068 0.0791 0.0628 0.0521 0.0445 0.0388 0.0344 0.0309 0.0289 

3.5 0.2039 0.1504 0.1192 0.0987 0.0843 0.0735 0.0653 0.0585 0.0531 0.0486 0.0448 

4.5 0.1175 0.1103 0.1040 0.0983 0.0933 0.0887 0.0845 0.0807 0.0773 0.0742 0.0712 

5.5 0.0000 0.0000 0.1511 0.1371 0.1253 0.1155 0.1071 0.0998 0.0934 0.0879 0.08210 

6.5 0.0000 0.0000 0.0000 0.0000 0.2093 0.1765 0.1525 0.1343 0.1110 0.1084 0.0989 

7.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.32811 0.2299 0.1769 0.1438 0.1212 

8.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6372 0.2257 0.1372 

9.5 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 

5. Conclusions 

In the literature of entropic measures, there are many well approved representations with their 

individual rewards and limitations but every model may fit in every condition. This statement suggests 

and subsequently induces the researchers to outline numerous newfangled measures from applicability 

argument of understanding. With the growth of advanced entropy, we have reflected learning of 

dissimilarities of improbability and witnessed that improbability continually increases in the steady 

state while in the non-steady state, improbability originally increases and collects supreme value and 

then reduces reduction and obtains its minima. The significance of our discoveries lies in their inherent 

authenticity, making our conclusions both compelling and credible. 

We have also employed the maximum entropy principle using our own entropy measure and 

concluded that such maximizing entropy probability distributions can be originated with the assistance 

of other entropic measures. Inspecting the solicitation extents, the present work can be made to produce 

multiplicity of isolated and uninterrupted innovative information measures for their communication 

with coding theory. 
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