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1. Introduction

Time-varying distributed optimization (TVDO) has gained increasing attention due to its practical
advantages over time-invariant distributed optimization (TIDO) in dynamic environments where the
objective function or constraints may evolve over time. TVDO has been applied in various fields,
including power systems [1], traffic system [2], and robotics [3], with further applications in energy
management [4]. In TVDO, the optimal solution changes over time, making traditional algorithms
designed for TIDO, which aim to reach a static optimizer, unsuitable for direct application. To address
TVDO, several discrete-time algorithms (DTAs) have been developed [5–8]. For instance, prediction-
correction methods are employed in [6, 7] to solve TVDO with a specific sampling period, where the
tracking error is linked to the size of the sampling period. A comprehensive review of DTAs and related
work can be found in the survey [9]. However, due to factors like sampling period, step size, or errors
in local optimization, continuous-time algorithms (CTAs) generally face challenges in asymptotically
tracking the time-varying optimal trajectory.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20241325


27273

Given the extensive use of digital computing and sensing units [10, 11], we focus on a discrete-
time framework. Specifically, we sample the objective functions F(x; t) at discrete time instances tk,
where k = 0, 1, 2, . . . and the sampling period is defined as h , tk+1 − tk. Instead of addressing the
time-varying problem directly, we solve a series of time-invariant problems. If the sampling period h
is made sufficiently small, the resulting solution trajectory F(tk) can be obtained with high accuracy.
However, in most practical applications, solving these problems for each time sample is impractical,
as the computation time required to find each optimizer often surpasses the rate at which the solution
trajectory evolves, unless F(t) remains nearly stationary.

The batch method is one traditional approach for addressing the problem sequence, where the
objective function is sampled at specified intervals, solving each resultant static problem within
given periods. However, this method often fails to align with real-time processing demands,
particularly when computational resources are limited and sampling intervals are short. This limitation
becomes more pronounced with larger problem sizes, preventing convergence within the required
timeframe [12]. Consequently, attention has shifted towards online optimization techniques. These
methods update the optimization problem continuously throughout the algorithm’s iterations, allowing
for the extraction of suboptimal solutions at any stage, regardless of convergence status [1, 13]. Over
time, these solutions increasingly approximate the optimal solution. In pursuit of improving this
approach, various strategies have been developed. For example, a method based solely on correction
operations was introduced, achieving an asymptotic error bound on the order of O(h) [14]. Another
strategy involves a prediction-correction algorithm tailored for time-varying parameter optimization,
though it requires an initial optimal solution, limiting its practical application [15]. Nonetheless, these
methods have facilitated some theoretical advances in reducing the computational load, especially
in convex optimization scenarios. Further, the interior point method has been applied to solve
constrained convex optimization problems characterized by time-varying elements, utilizing a log-
barrier penalty function and a dynamic system comprising predictive and corrective components
based on Newton’s method [16]. For unconstrained time-varying optimization, a suite of algorithms
deploying prediction-correction strategies has been proposed. These include Gradient Trajectory
Tracking (GTT) and Approximate Gradient Tracking (AGT), which achieve an O(h2) asymptotic error
range. Moreover, Newton Trajectory Tracking (NTT) and Approximate Newton Tracking (ANT) are
shown to offer superior error bounds [10]. Building on this framework, a decentralized prediction-
correction algorithm for time-varying network optimization challenges has been developed, employing
novel matrix splitting techniques and approximating matrix inverses using the Taylor series [6, 17].

Prediction-correction algorithms [18], utilizing nonstationary optimization techniques [15,19,20],
have been developed to iteratively solve convex programs that change over time. These algorithms
function by predicting, at time tk, the optimal solution for the next time step tk+1, using an
approximation of how the objective function F varies during this interval. The initial prediction is
then refined through gradient or Newton descent methods. However, these algorithms are tailored
for centralized systems. In our work, we address time-varying convex programs in decentralized
environments, where nodes can communicate only with their immediate neighbors. Therefore, the
prediction-correction methods proposed in [18] are not directly applicable in this decentralized context.

In the discussed algorithms that incorporate a prediction step, while achieving tighter error
bounds, these methods necessitate the computation or approximation of the inverse of the Hessian
matrix. In certain scenarios, this process also involves calculating mixed partial derivatives. It is
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established that computing the inverse of a matrix is computationally intensive, with the complexity
typically represented as O(p3), where p is the matrix’s dimension. This complexity escalates further
for objective functions that are more intricate due to the requirement of mixed partial derivative
calculations. In this paper, we outline our major contributions as follows:

1) We introduce a backward Euler prediction step tailored for the unconstrained time-varying
optimization problem. This approach eliminates the need for calculating matrix inverses and
computing mixed partial derivatives, resulting in reduced computational complexity. The corrective
aspect of the algorithm is derived from a Newton step.

2) We establish the convergence of our proposed algorithm and detail its convergence rate. The
asymptotic error associated with our algorithm depends on the sampling period h, ranging from a
worst-case scenario of O(h2) to an optimal scenario of O(h4).

The structure of this paper is as follows: In Section II, we provide the mathematical foundations
essential for the development of the major results. In Section III, we detail the algorithms incorporating
the backward Euler prediction step. The performance of these algorithms is examined in Section IV. A
numerical example demonstrating the practical application of our theoretical findings is presented in
Section V. We conclude in Section VI.

2. Preliminaries

We focus on a connected, undirected graph G = (V, E), where the vertex set V consists of n nodes,
and the edge set E consists of m edges. Distributed optimization algorithms are employed to address the
problem of minimizing a global smooth, strongly convex cost function across a set of nodes, where the
objective function is expressed as a sum of local functions. We intend to solve the following problem
raised in [6]

x∗(t) : = arg min
x∈Rnp

F(x; t) : = f (x; t) + g(x; t), t ≥ 0, (2.1)

where x ∈ Rnp represents the stacked vector of decision variables for all nodes, and xi ∈ Rp denotes
the decision variable for node i, and x = (x1T

; . . . ; xnT
)T . The function f (x; t) : =

∑
i∈V

f i(xi; t) is the

sum of the locally available functions at each node, while g(x; t) : =
∑
i∈V

gi,i(xi; t) +
∑

(i, j)∈E
gi, j(xi, x j; t)

incorporates terms induced by the network structure G, necessitating coordination and information
exchange across the network. Before introducing distributed protocols to solve the problem in (2.1),
we present an example to clarify the problem setting.

For example, in a wireless sensor network, each sensor node must adhere to channel capacity
and interference constraints, which can be formulated as a resource allocation problem. The time-
varying utility function for sensor i is defined as f i : Rp × R+ → R, with the decision variable xi ∈ Rp

representing the resources allocated to node i in a network G consisting of n sensors. This leads to the
formulation of the time-varying resource allocation problem.

min
xi∈Rp,...xn∈Rp

∑
i∈V

f i(xi; t) subject to Ax = b(t), (2.2)

where the matrix A ∈ Rlp×np is the augmented graph edge incidence matrix. This matrix is composed
of l × n square blocks, each of dimension p. For an edge e = ( j, k), where j < k, that connects node j
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to node k, the block (e, j) in A is given by [A]e j = Ip, and the block [A]ek = −Ip, where Ip denotes the
identity matrix of dimension p. All other blocks in A are zeros. The time-varying vectors b(t) ∈ Rlp

are determined by channel capacity and rate transmission constraints.
In our work, we consider the nodes to be consumer devices aiming to solve decentralized

approximations of the problem defined in (2.2). Specifically, we explore the approximate augmented
Lagrangian relaxation of (2.2), and solve

min
xi∈Rp,...xn∈Rp

∑
i∈V

f i(xi; t) +
1
β2 ‖Ax − b(t)‖2, (2.3)

where the parameter β > 0 acts as a regularization term, encouraging consistency among all nodes.
In (2.3), the matrix A ∈ Rlp×np is the graph edge incidence matrix. It is straightforward to observe
that the first term in (2.3) is identical to the first term in (2.1). Moreover, given the definition
of the augmented graph edge incidence matrix A, we can simplify the second term in (2.3) to∥∥∥(xi − x j) − bi(t)

∥∥∥2
, which corresponds to the functions gi, j(xi, x j; t) in (2.1).

Notation: Let ‖ · ‖ represent the Euclidean norm. The gradient of the function F(x; t) with respect
to x is denoted by ∇xF(x; t). The partial derivatives of ∇xF(x; t) with respect to x and t are indicated
by ∇xxF(x; t) and ∇txF(x; t), respectively. The third-order derivative of F(x; t) with respect to x is
denoted as (∇xxxF(x; t). The time derivative of the Hessian of F(x; t) with respect to t is expressed as
∇txxF(x; t) = ∇xtxF(x; t). Finally, the second derivative of ∇xF(x; t) with respect to t is represented by
∇ttxF(x; t).

3. Algorithm

3.1. The dynamical system

If x∗ represents the optimal solution for the objective function F(x; t), then the gradient of F(x; t)
with respect to x must satisfy

∇xF(x∗; t) ≡ 0, ∀t ≥ 0. (3.1)

As a consequence, the time derivative of this expression must also be zero, leading to

d∇xF(x∗; t)
dt

= ∇xxF(x∗; t)ẋ∗(t) + ∇txF(x∗; t)

= 0,
(3.2)

where ẋ∗(t) represents the time derivative of x∗(t). If the Hessian of F(x; t) is invertible, we can deduce
from the above equation that

ẋ∗(t) = −∇xxF(x∗; t)−1∇txF(x∗; t). (3.3)

We can apply either the gradient descent method or the Newton method to optimize F(x; t),
leading to the formulation of a continuous-time dynamical system as follows:

ẋ(t) = −γ∇xxF(x; t)−1∇xF(x; t), (3.4)
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where γ represents a control gain with the constraint 0 < γ ≤ 1. When γ = α∇xxF(x; t), where α > 0 is
a constant, this corresponds to the gradient term in Eq (8). Conversely, when γ = 1, Eq (8) represents
the Newton term. The trajectory x(t) generated by Eq (8) will approach a vicinity of x∗(t), but due to
the time-varying nature of the solution, it does not converge precisely to x∗(t) [21].

If the optimal solution x∗(t) was known for some t0 ≥ 0, the system (3.3) could be used to track the
evolution of x∗(t), since (3.3) guarantees the optimality condition ∇xF(x∗; t) = 0 for all t ≥ t0. If x∗(t)
is not accessible at any time, we can combine the dynamics (3.3) and (3.4) and devise the following
dynamical system:

ẋ(t) = F (x; t), (3.5)

where F (x; t) is defined as

F (x; t) = − ∇xxF(x; t)−1∇txF(x; t) − γ∇xxF(x; t)−1∇xF(x; t). (3.6)

The dynamics described in (3.6) consist of two components: A prediction component and a correction
component. The prediction component, given by −∇xxF(x; t)∇txF(x; t), aims to forecast the change
in the optimal solution (refer to (3.3)). The correction component, −γ∇xxF−1(x; t)∇xF(x; t), serves to
steer x(t) toward the optimum.

3.2. Discretization calculation

For any time interval [t0, t0 + T ], where 0 < T < +∞, we can partition the interval into N sub-
intervals such that tk+1 = tk + h, for k = 0, 1, 2, . . . ,N − 1, where h is the discretization step size. Let
x(tk) represent the solution of F(x; t) at time tk. For simplicity, we may denote x(tk) as xk throughout
this paper.

A numerical method for approximating (3.5) is considered a one-step method if, for all k ≥ 0, xk+1

depends solely on xk. Two examples of such one-step methods are presented in [22].
(1) The forward Euler calculation method

xk+1 ≈ xk + hF(xk, tk). (3.7)

(2) The backward Euler calculation method

xk ≈ xk+1 − hF(xk+1, tk+1). (3.8)

The primary distinction between the forward and backward methods is found in their treatment of
the first-order approximation term for F(x; t). It follows from (3.8) that

xk−1 ≈ xk − hF(xk, tk), (3.9)

yielding

F(xk, tk) ≈
xk − xk−1

h
. (3.10)
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Substituting (3.10) into (3.7) gives

xk+1 ≈ xk + h
xk − xk−1

h
= 2xk − xk−1. (3.11)

According to (3.11), we formulate the prediction step as follows:

xk+1|k = 2xk − xk−1. (3.12)

The prediction step can be computed only depend on the state information at time k and
k − 1. Compared with the prediction step in [6, 17], the prediction step in our algorithm can reduce
the computation complexity significantly.

To address the time-varying optimization problem in (2.1), we sample the continuous time-
varying objective function F(x; t) at discrete times tk, where k = 0, 1, 2, . . .. This transformation
turns the continuous time-varying optimization problem into a sequence of time-invariant
optimization problems.

x∗(tk) : = arg min
x∈Rnp

F(x; tk), k ≥ 0. (3.13)

In network, the prediction step can be written as (3.12). For node i, the predicted variable xi
k+1|k is

just upon the information of the node itself which given by

xi
k+1|k = 2xi

k − xi
k−1, (3.14)

the xi
k+1|k is computed through local operations, but for the correction step in our algorithm, the Newton

term involving the calculate of the inverse of the matrix, which requires the global communication.
To develop a decentralized protocol to correct the prediction variable xk+1|k [18], here we apply the
decentralized Newton method proposed by [6]. The decentralized Newton method is formulated
as follow

xk+1 = xk+1|k − γck+1,(K), (3.15)

where ck+1,(K) ∈ R
np is called correction direction, its definition is

ck+1,(K) = D−
1
2

k+1|k

K∑
τ=0

(
D−

1
2

k+1|kBk+1|kD
− 1

2
k+1|k

)τ
D−

1
2

k+1|k × ∇xF(xk+1|k; tk+1). (3.16)

For D−
1
2

k+1|k

K∑
τ=0

(
D−

1
2

k+1|kBk+1|kD
− 1

2
k+1|k

)τ
D−

1
2

k+1|k, it is the K-th order approximate of ∇xxF(xk+1|k; tk+1)−1, which

is derived from truncations of the series [6, 21]

∇xxF(xk+1|k; tk+1)−1 = D−
1
2

k+1|k

∞∑
τ=0

(
D−

1
2

k+1|kBk+1|kD
− 1

2
k+1|k

)τ
D−

1
2

k+1|k, (3.17)

where matrices Dk+1|k and Bk+1|k are defined as

Dk+1|k := ∇xx f (xk+1|k; tk+1) + diag[∇xxg(xk+1|k; tk+1)],
Bk+1|k := diag[∇xxg(xk+1|k; tk+1)] − ∇xxg(xk+1|k; tk+1),

(3.18)
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where the diag[∇xxg(xk+1|k; tk+1)] denotes the block diagonal matrix, which contains the diagonal blocks
of the matrix ∇xxg(xk+1|k; tk+1). The matrix

Dii
k+1|k = ∇xixi f i(xi

k+1|k; tk+1) + ∇xixigi,i(xi
k+1|k; tk+1) +

∑
j∈Ni

∇xixigi, j(xi
k+1|k, x

j
k+1|k; tk+1) (3.19)

is computed at node i. The second term in (3.19) links the decisions of node i with those of its
neighboring nodes j ∈ N i. The structure of the matrix Bk+1|k is determined by the graph topology,
with null diagonal blocks Bi,i

k+1|k and non-zero off-diagonal blocks Bi, j
k+1|k given by −∇xix jgi, j(xi, x j; t)

whenever nodes i and j are connected. The calculation of Bi j
k+1|k is as follows:

Bi j
k+1|k = −∇xix jgi, j(xi

k+1|k, x
j
k+1|k; tk+1). (3.20)

Lemma 1. According to [21], as per the definition of the correction direction in (3.16) the sequence
of correction directions satisfies

ck+1,(τ+1) = D−1
k+1|k

(
Bk+1|kck+1,(τ) + ∇xF(xk+1|k; tk+1)

)
, (3.21)

define ci
k+1,(K) and ∇xF i(xk+1|k; tk+1) as the i-th component of the vector ck+1,(K) and ∇xF(xk+1|k; tk+1), the

recursion of (3.21) can be decomposed into local components

ci
k+1,(τ+1) = − (Dii

k+1|k)
−1

(∑
j∈Ni

Bi j
k+1|kc

j
k+1,(τ) + ∇xF i(xk+1|k; tk+1)

)
. (3.22)

The gradient component in (3.22)

∇xF i(xk+1|k; tk+1) = ∇xi f i(xi
k+1|k; tk+1) + ∇xigi,i(xi

k+1|k; tk+1) +
∑
j∈Ni

∇xigi, j(xi
k+1|k, x

j
k+1|k; tk+1) (3.23)

is also computed at node i, Lemma 1 asserts that the component ci
k+1,(K) can indeed be calculated using

local operations, which means that the iterative application of (3.15) can be executed in a distributed
fashion. Consequently, node i computes xi

k+1 by implementing the following local descent:

xi
k+1 = xi

k+1|k − γci
k+1,(K). (3.24)

We call DeNSP as the decentralized Newton method with a backward Euler prediction that uses
descent method [cf.,(3.24)] and the prediction step [cf.,(3.14)]. The algorithm is summarized as
Algorithm 1.
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Algorithm 1: Decentralized newton method with a simple prediction (DeNSP) at node i.

Input: The local variable xi
k, the approximation level K, the step size γ.

1: for tk(k = 0, 1, 2, ...) do
2: Predict the next trajectory using the prior information
3: if k > 0

xi
k+1|k = 2xi

k − xi
k−1

else
xi

k+1|k = xi
0

4: end if
5: Initialize the sequence of corrected variables x̂i,0

k+1 = xi
k+1|k

6: Exchange the variable x̂i,η
k+1 with neighbors j ∈ N i

7: Observe F i(.; tk+1), compute ∇xF i(xk+1|k; tk + 1) [cf.,(3.23)]
8: Compute matrices Dii

k+1|k and Bi j
k+1|k, j ∈ N i as

Dii
k+1|k := ∇xixi f i(xi

k+1|k; tk+1)
+∇xixigi,i(xi

k+1|k; tk+1)
+

∑
j∈Ni
∇xixigi, j(xi

k+1|k, x
j
k+1|k; tk+1)

Bi j
k+1|k = −∇xix jgi, j(xi

k+1|k, x
j
k+1|k; tk+1)

9: Compute:
ci

k+1,(0) = −(Dii
k+1|k)

−1∇xF i(xk+1|k; tk + 1)
10: for τ = 0, 1, 2, ...,K − 1 do
11: Exchange correction step ci

k,(τ) with neighboring nodes j ∈ N i

ci
k+1,(τ+1) = −(Dii

k+1|k)
−1

( ∑
j∈Ni

Bi j
k+1|kc

j
k+1,(τ) + ∇xF i(xk+1|k; tk+1)

)
12: end for
13: Correct the trajectory prediction

xi
k+1 = x̂i

k+1|k + γci
k+1,(K′)

14: end for
15: Output: The corrected variable xi

k+1

4. Convergence analysis

In this section, we examine the convergence of the algorithms introduced in Section III. Our
convergence analysis demonstrates that the discrepancy between the optimal solution x∗(tk) and the
computed solution xk is ultimately upper bounded. Specifically, the error is predominantly influenced
by the sampling time h. Throughout this paper, we adopt the following assumption regarding the
objective function:

Assumption 1. Each node’s own function f i is twice differentiable, and the eigenvalues of the local
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Hessians matrix ∇xixi f i(xi; t) are bounded with positive constants [m1,M1], i.e.,

m1I � ∇xixi f i(xi; t) � M1I. (4.1)

Assumption 2. Functions gi,i(xi; t) and gi, j(xi, x j; t) are twice differentiable and the eigenvalues of the
aggregate function Hessian are bounded [0, L1], the constant L1 < ∞,

0 � ∇xxg(x; t) � L1I. (4.2)

Assumption 3. The function F(x; t) regarding all the derivatives of x ∈ Rnp and t ≥ 0 are bounded,

‖∇txF(x; t)‖ ≤ D0, ‖∇xxxF(x; t)‖ ≤ D1,

‖∇xtxF(x; t)‖ ≤ D2, ‖∇ttxF(x; t)‖ ≤ D3, ‖∇xF‖ ≤ D4.
(4.3)

From the abounds of Hessians ∇xx f (x; t) and ∇xxg(x; t) in Assumptions 1 and 2 respectively, the
Hessian of global cost ∇xxF(x; t) uniformly satisfies

m1I � ∇xxF(x; t) � (L1 + M1)I. (4.4)

These conditions ensure that the problem formulated in (2.1) is strongly convex, and they also ensure
the invertibility of the Hessian matrix. To refine the contribution of our paper, we impose bounds on
the higher-order derivatives of F, as stated in Assumption 3. A similar assumption has been utilized in
previous works [6, 10, 18].

We turn to analyzing the DeNSP algorithm. As per the definition of Dk+1|k and Bk+1|k in (3.18), the
matrix D−1/2

k+1|kBk+1|kD−1/2
k+1|k is positive semidefinite, and its eigenvalues are upper-bounded by a constant

ρ < 1, as shown in Proposition 2 of [17].

0 � D−1/2
k+1|kBk+1|kD−1/2

k+1|k � ρI, (4.5)

where ρ = (1 + 2m1
L1

)−1 < 1.
In the following theorem, we establish that the sequence generated by the DeNSP algorithm

asymptotically converges to a neighborhood of the optimal trajectory whose radius depends on the
sampling period h.

Proposition 1. The norm of the difference between prediction xk+1|k and the optimal solution x∗k+1 is
upper bounded by

‖xk+1|k − x∗k+1‖ ≤ δ‖xk − x∗k‖ + h2∆, (4.6)

where δ := 1 + h
(

D1(D0+γD4)
m2

1
+

D2+γ(L1+M1)
m1

)
, and ∆ =

D1(D0+γD4)+(D0+γ(L1+M1))
m3

1
+

(D0+γD4)(2D2+γm1)
m2

1
+

γD0+D3
m1

.

Proof. See Supplementary A. �

Theorem 1. Under Assumptions 1–3, fixing K as the level of Hessian inverse approximation for the
correction step, there exist bounds K̄, h̄, and R̄, such that if the sampling period h is selected to satisfy
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h ≤ h̄, K is chosen to be K ≥ K̄, and the initial optimality gap fulfills ‖x0 − x∗(t0)‖ ≤ R̄, then xk+1

converges to the optimal trajectory x∗(tk+1) within a bounded error.

lim
k→∞

sup ‖xk+1 − x∗(tk+1)‖ = O(h2ρK+1(1 − γ)) + O(h4), (4.7)

specially, when approximation level K is chosen sufficiently large and γ = 1 , then the

lim
k→∞

sup ‖xk+1 − x∗(tk+1)‖ = O(h4). (4.8)

Proof. See Appendix B. �

Theorem 1 indicates that the error bound described in (4.7) for the DeNSP algorithm is primarily
influenced by the sampling period h. In the worst-case scenario, the asymptotic error floor is expected
to be on the order of O(h2). However, according to the result limk→∞ sup ‖xk+1 − x∗(tk+1)‖ = O(h4),
it is evident that under certain conditions, the error bound can be further improved. Specifically, if
the approximation level K is chosen to be sufficiently large, the DeNSP algorithm has the potential to
achieve a much tighter tracking performance, reducing the asymptotic error to the order of O(h4).
This suggests that by carefully selecting the parameter K, the algorithm can provide significantly
better accuracy in tracking the optimal solution over time. Meanwhile, reducing the sampling interval
provides greater assistance in improving convergence accuracy. Furthermore, since the DeNSP
algorithm omits the calculation of the Hessian matrix inverse in the prediction step, the computational
complexity of the prediction step is O(p), while other algorithms such as DPC-N and DAPC-N require
the calculation of the Hessian inverse in the prediction step, ignoring the complexity of gradient
calculation, resulting in a computational complexity of O(p3). In the correction step, the computational
complexity of several algorithms is consistent.

5. Simulation

In this section, we provide a numerical example to demonstrate the effectiveness of the DeNSP
algorithm. We consider a resource allocation problem in a network of interconnected devices, as
discussed in Section II.

We solve the problem described by (2.2) using an approximate augmented Lagrangian method, as
outlined in (2.3). The local objective functions associated with sensor i are defined as follows:

f i(xi; t) :=
1
2

(
xi − cos (wt)

)2
+ k

p∑
l=1

log[1 + exp bi,l(xi,l − d(t))]. (5.1)

In our simulation, we consider the case where decisions are the variables xi ∈ Rp, p = 10 , and set the
scalar parameters as w = 0.2π, k = 0.1, bi,l ∼ U1

[−2,2] and d(t) = cos(ωt). We consider there are n = 50
nodes in a wireless network which the nodes are randomly distributed in the square [−1, 1]2 and they
can only communicate with each other if they are closer than a range of r = 2.5

√
2/
√

n. Then the
nodes generate a network with l links. We set the b = 0 in (2.3) and the tuning parameter β =

√
20.

We compare the DeNSP algorithm with DPC-N algorithm and DAPC-N algorithm mentioned in [6].
The constant step size of DPC-N and DAPC-N algorithm is set to γ = 1.

AIMS Mathematics Volume 9, Issue 10, 27272–27292.



27282

From convergence result (4.7), it can be seen that the convergence accuracy is affected by the
number of iterations and sampling intervals in the correction step. In order to compare the advantages
with other algorithms, we set a fixed and commonly used sampling interval h = 0.1. Further observe the
impact of the number of iterations in the calibration process on convergence accuracy. In Figure 1, we
run different algorithms and show the convergence performance between different algorithms. When
the approximation level or the number of communication rounds K is set to 3, the tracking performance
of these algorithms is comparable, showing little to no significant difference in their effectiveness.
However, as K is increased to 5, the DeNSP algorithm demonstrates a clear advantage, achieving
superior tracking accuracy and responsiveness. This suggests that the DeNSP algorithm benefits more
from additional communication rounds, which enhances its ability to track the time-varying optimal
solution more precisely, making it particularly effective in scenarios where higher precision is required.
Further more, the DPC-N algorithm and the DAPC-N algorithm need to calculate of the inverse of the
Hessian matrix, with the complexity typically represented as O(p3), where p is the matrix’s dimension,
and calculate mixed partial derivatives in the prediction step by communicating with neighbor nodes. In
contrast, our algorithm can simply complete the prediction step using the previous information which
can reduce computation time greatly.

100 101 102 103 104
10-10

10-8

10-6

10-4

10-2

100

DPC-N, K=K'=3
DAPC-N, K=K'=3
DeNSP, K=3
DPC-N, K=K'=5
DAPC-N, K=K'=5
DeNSP, K=5

Figure 1. Error with respect to the sampling time tk for different algorithms.

Although the prediction correction algorithm proposed in this article simplifies the prediction
steps, the correction steps still require a large amount of computation on Hessian matrix. Furthermore,
for some optimization problems involving integer decision variables, the algorithm proposed in this
paper is difficult to solve and requires further research.

6. Conclusions

In this paper, we propose the backward Euler prediction step for the problem of the unconstrained
distributed optimization. Though the theoretical analysis , the convergence accuracy of the proposed
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algorithm can reach O(h2) ∼ O(h4). And compared with the DPC-N algorithm and DAPC-N algorithm,
our algorithm need not compute the inverse of the Hessian of the cost function, which can save
computing time. Finally, we verify the theoretical results via a numerical example. In future research,
we will further simplify the calculation of the Hessian matrix in the calibration step.
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Supplementary

6.1. Proof of Prosition 1

In order to facilitate the presentation in the proof process, we define the following abbreviations

∇xF = ∇xF(xk+1|k; tk+1), ∇xF∗ = ∇xF(x∗k+1; tk+1),
∇xxF = ∇xxF(xk+1|k; tk+1), ∇xxF∗ = ∇xxF(x∗k+1; tk+1),
∇txF = ∇txF(xk+1|k; tk+1), ∇txF∗ = ∇txF(x∗k+1; tk+1).

(6.1)

We define the dynamical system ẋ(t) = F (x; t), observing the continuous dynamical system in (3.6),
we know that F (x; t) is given by

F (x; t) = −∇xxF(x; t)−1∇txF(x; t) − γ∇xxF(x; t)−1∇xF(x; t). (6.2)

For xk−1, use Taylor expansion at xk

xk−1 = xk − hF (x; tk) +
h2

2
d
dt
F (x; s1), s1 ∈ [tk−1, tk]. (6.3)

According to (6.3), we have

F (x; tk) =
xk − xk−1

h
+

h
2

d
dt
F (x; s1). (6.4)

According to (6.4), the prediction step (3.12) can be written as

xk+1|k = xk + hF (x; tk) −
h2

2
dF (x; s1)

dt
. (6.5)

Taylor expansion of x∗k+1 have

x∗k+1 =x∗k + hF (x∗; tk) +
h2

2
dF (x∗; s2)

dt
s2 ∈ [tk, tk+1]. (6.6)

Subtracting (6.6) from (6.5) yields

‖xk+1|k − x∗k+1‖ = ‖xk − x∗k‖ + h
(
F (x; tk) − F (x∗; tk)

)
−

h2

2

(dF (x∗; s1)
dt

+
dF (x∗; s2)

dt

)
. (6.7)

Applying the triangle inequality to (6.7) gives

‖xk+1|k − x∗k+1‖ ≤ ‖xk − x∗k‖ + h ‖F (x; tk) − F (x∗; tk)‖ +
h2

2

∥∥∥∥∥dF (x∗; s1)
dt

+
dF (x∗; s2)

dt

∥∥∥∥∥ . (6.8)

For the second term of (6.8), combined with the formula (6.2), we have

‖F (x; tk) − F (x∗; tk)‖ = ‖ − ∇xxF−1∇txF − γ∇xxF−1∇xF −
(
−[∇xxF∗]−1∇txF∗ − γ[∇xxF∗]−1∇xF∗

)
‖

≤ ‖[∇xxF∗]−1∇txF∗ − ∇xxF−1∇txF‖ + γ‖[∇xxF∗]−1∇xF∗ − ∇xxF−1∇xF‖.
(6.9)
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For the first term of (6.9), add and subtract [∇xxF∗]−1∇txF at the same time, and use the triangle
inequality that

‖[∇xxF∗]−1∇txF∗ − ∇xxF−1∇txF‖ ≤ ‖∇xxF−1∇txF − [∇xxF∗]−1∇txF‖

+‖[∇xxF∗]−1∇txF − [∇xxF∗]−1∇txF∗‖.
(6.10)

The RHS of (6.10) can be bounded as

‖[∇xxF∗]−1∇txF∗ − ∇xxF−1∇txF‖ ≤ D0‖∇xxF−1 − [∇xxF∗]−1‖ +
1

m1
‖∇txF − ∇txF∗‖, (6.11)

where Assumption 3 is used.
Additionally, the bound on ‖∇xxF−1 − [∇xxF∗]−1‖ can be given as

‖∇xxF−1 − [∇xxF∗]−1‖ = ‖[∇xxF∗]−1(∇xxF − ∇xxF∗
)
∇xxF−1‖

≤
1

m2
1

‖∇xxF − ∇xxF∗‖.
(6.12)

For the second term of (6.11) and (6.12), applying the mean value theorem gives

‖∇txF − ∇txF∗‖ = ‖∇xtxF(x̃1; tk)(xk − x∗k)‖
≤ ‖∇xtxF(x̃1; tk)‖‖xk − x∗k‖
≤ D2‖xk − x∗k‖,

(6.13)

‖∇xxF−1 − [∇xxF∗]−1‖ ≤
1

m2
1

‖∇xxxF(x̃2; tk)
(
xk − x∗k

)
‖

≤
1

m2
1

‖∇xxxF(x̃2; tk)‖‖xk − x∗k‖

≤
D1

m2
1

‖xk − x∗k‖,

(6.14)

where x̃2 and x̃2 are variables between xk and x∗k.
Substituting (6.13) and (6.14) into (6.11), get

‖[∇xxF∗]−1∇txF∗ − ∇xxF−1∇txF‖ ≤
(D0D1

m2
1

+
D2

m1

)
‖xk − x∗k‖. (6.15)

For the second term of (6.9), add and subtract [∇xxF∗]−1∇xF at the same time, get

‖[∇xxF∗]−1∇xF∗ − [∇xxF∗]−1∇xF + [∇xxF∗]−1∇xF − ∇xxF−1∇xF‖

≤
1

m1
‖∇xF∗ − ∇xF‖ + D4‖[∇xxF∗]−1 − ∇xxF−1‖.

(6.16)

For the first term of (6.16), apply the mean value theorem gives

‖∇xF∗ − ∇xF‖ = ‖∇xxF(x̃3; t)(xk − x∗k)‖
≤ ‖∇xxF(x̃3; t)‖‖xk − x∗k‖
≤ (L1 + M1)‖xk − x∗k‖,

(6.17)
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where x̃3 is a variable between xk and x∗k.
Substituting (6.14) and (6.17) into (6.16) gives

‖[∇xxF∗]−1∇xF∗ − ∇xxF−1∇xF‖ ≤
(L1 + M1

m1
+

D1D4

m2
1

)
‖xk − x∗k‖. (6.18)

Substituting (6.15) and (6.18) into (6.9) gives

‖F (x; tk) − F (x∗; tk)‖ ≤
(D1(D0 + γD4)

m2
1

+
D2 + γ(L1 + M1)

m1

)
‖xk − x∗k‖. (6.19)

Substituting (6.19) into (6.8) leads to

‖xk+1|k − x∗k‖ =
[
1 + h

(D1(D0 + γD4)
m2

1

+
D2 + γ(L1 + M1)

m1

)]
‖xk − x∗k‖ +

h2

2

∥∥∥∥∥dF (x∗; s1)
dt

+
dF (x∗; s2)

dt

∥∥∥∥∥ .
(6.20)

For the second term of (6.20), applying the triangle inequality, leads to

h2

2

∥∥∥∥∥ d
dt
F (x; s1) +

d
dt
F (x; s2)

∥∥∥∥∥ ≤ h2

2

∥∥∥∥∥ d
dt
F (x∗; s1)

∥∥∥∥∥ +
h2

2

∥∥∥∥∥ d
dt
F (x∗; s2)

∥∥∥∥∥ . (6.21)

The derivative of F (x; t) is given by

dF (x(t); t)
dt

= ∇tF (x; t) + [∇xF (x; t)]ẋ

= ∇tF (x; t) + [∇xF (x; t)]F (x; t).
(6.22)

Applying the triangle inequality to (6.2) yields

‖F (x; t)‖ ≤ ‖[∇xxF(x; t)]−1‖‖∇txF(x; t)‖ + γ‖[∇xxF(x; t)]−1‖‖∇xF(x; t)‖

≤
D0 + γD4

m1
,

(6.23)

and to (6.22) yields ∥∥∥∥∥dF (x; t)
dt

∥∥∥∥∥ ≤ ‖∇tF (x; t)‖ + ‖[∇xF (x; t)]F (x; t)‖. (6.24)

It follows from (6.2) that

∇tF (x; t) = ∇t[−∇xxF(x; t)−1∇txF(x; t) − γ∇xxF(x; t)−1∇xF(x; t)], (6.25)

where

∇t

[
−∇xxF(x; t)−1∇txF(x; t) − γ∇xxF(x; t)−1∇xF(x; t)

]
= ∇xxF(x; t)−2∇txxF(x; t)∇txF(x; t) − ∇xxF(x; t)−1∇ttxF(x; t)
+ γ∇xxF(x; t)−2∇txxF(x; t)∇xF(x; t) − γ∇xxF(x; t)−1∇txF(x; t).

(6.26)
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Using the triangle inequality for (6.26)

‖∇tF (x; t)‖ = ‖∇t[−∇xxF(x; t)−1∇txF(x; t) − γ∇xxF(x; t)−1∇xF(x; t)]‖
≤ ‖∇xxF(x; t)−2∇txxF(x; t)∇txF(x; t)‖
+ ‖∇xxF(x; t)−1∇ttxF(x; t)‖
+ γ‖∇xxF(x; t)−2∇txxF(x; t)∇xF(x; t)‖
+ γ‖∇xxF(x; t)−1∇txF(x; t)‖

≤
D0(D2 + γD4)

m1
2 +

γD0 + D3

m1
,

(6.27)

and we also can get

‖[∇xF (x; t)]F (x; t)‖ =
∥∥∥∥( − ∇xxF(x; t)−1∇xtxF(x; t) − γ

+ ∇xxF(x; t)−2∇xxxF(x; t)∇txF(x; t)

+ γ∇xxF(x; t)−2∇xxxF(x; t)∇xF(x; t)
)
F (x; t)

∥∥∥∥
≤

(D1(D0 + γ(L1 + M1))
m2

1

+
D2 + γm1

m1

)(D0 + γD4

m1

)
.

(6.28)

It follows from (6.27) and (6.28), the (6.24) can be written as∥∥∥∥dF (x; t)
dt

∥∥∥∥ ≤ ‖∇tF (x; t)‖ + ‖[∇xF (x; t)]F (x; t)‖

≤
D1(D0 + γD4) + (D0 + γ(L1 + M1))

m3
1

+
(D0 + γD4)(2D2 + γm1)

m2
1

+
γD0 + D3

m1
.

(6.29)

According to the (6.20) and (6.29), the (6.30) follows

‖xk+1|k − x∗k+1‖ ≤
[
1 + h

(D1(D0 + γD4)
m2

1

+
D2 + γ(L1 + M1)

m1

)]
‖xk+1|k − x∗k+1‖

+ h2
(

D1(D0 + γD4) + (D0 + γ(L1 + M1))
m3

1

+
(D0 + γD4)(2D2 + γm1)

m2
1

+
γD0 + D3

m1

)
,

(6.30)

which can be written as

‖xk+1|k − x∗k+1‖ ≤ δ‖xk − x∗k‖ + h2∆, (6.31)

where δ := 1 + h
(

D1(D0+γD4)
m2

1
+

D2+γ(L1+M1)
m1

)
, and ∆ =

D1(D0+γD4)+(D0+γ(L1+M1))
m3

1
+

(D0+γD4)(2D2+γm1)
m2

1
+

γD0+D3
m1

.

The proof is completed.

6.2. Proof of Theorem 1

According to the Proposition 1, the norm of the difference between prediction xk+1|k and optimal
solution x∗k+1 is upper bounded by

‖xk+1|k − x∗k+1‖ ≤ δ‖xk − x∗k‖ + h2∆, (6.32)
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where δ := 1 + h
(

D1(D0+γD4)
m2

1
+

D2+γ(L1+M1)
m1

)
, and ∆ =

D1(D0+γD4)+(D0+γ(L1+M1))
m3

1
+

(D0+γD4)(2D2+γm1)
m2

1
+

γD0+D3
m1

.
For ‖xk+1 − x∗k+1‖, according to (3.15), get

‖xk+1 − x∗k+1‖ = ‖xk+1|k − γck+1,(K) − x∗k+1‖. (6.33)

For convenience, we define

H−1
k+1|k,(K) = D−

1
2

k+1|k

K∑
τ=0

(
D−

1
2

k+1|kBk+1|kD
− 1

2
k+1|k

)τ
D−

1
2

k+1|k. (6.34)

According to the definition of ck+1,(K) in (3.16), and substitute (6.34) into (6.33), (6.33) can be
rewritten as

‖xk+1 − x∗k+1‖ = ‖xk+1|k − γH−1
k+1|k,(K)∇xF − x∗k+1‖. (6.35)

Add and subtract γ∇xxF−1∇xF at the same time and use the triangle inequality, obtained

‖xk+1 − x∗k+1‖ ≤ ‖xk+1|k − x∗k+1 − γ∇xxF−1∇xF‖

+ γ‖(∇xxF−1 −H−1
k+1|k,(K))∇xF‖.

(6.36)

For the first term on the RHS of (6.36), left multiply by ∇xxF and its inverse, and left factor out the
Hessian inverse ∇xxF−1. Making use of the Cauchy-Schwartz inequality, the first term of RHS of (6.36)
is bounded above as

‖xk+1|k − x∗k+1 − γ∇xxF−1∇xF‖

≤ (1 − γ)‖xk+1|k − x∗k+1‖ + γ‖∇xxF−1‖‖∇xxF(xk+1|k − x∗k+1) − ∇xF‖.
(6.37)

From Assumption 3, we know the upper bound of ‖∇xxF−1‖ is 1/m1. Additionally, according to the
optimal condition ∇xF∗k+1 = 0, then the (6.37) can be written as

‖xk+1|k − x∗k+1 − γ∇xxF−1∇xF‖ ≤ (1 − γ)‖xk+1|k − x∗k+1‖

+
γ

m1
‖∇xxF(xk+1|k − x∗k+1) − (∇xF − ∇xF∗k+1)‖.

(6.38)

Defining rk+1 = xk+1|k − x∗k+1 and make x := ξ(τ) = x∗k+1 + τ(xk+1|k − x∗k+1), then

γ

m1
‖∇xxF(xk+1 − x∗k+1) − (∇xF − ∇xF∗k+1)‖

=
γ

m1
‖∇xxFrk+1 − (∇xF − ∇xF∗k+1)‖

=
γ

m1
‖∇ξ(τ)ξ(τ)Frk+1 − (∇ξ(τ)F − ∇ξ(τ)F∗k+1)‖.

(6.39)

Because

∇ξ(τ)F − ∇ξ(τ)F∗k+1 =

∫ xk+1|k

x∗k+1

∇ξ(τ)ξ(τ)F(ξ(τ); tk+1)dξ(τ)

=

∫ 1

0
∇ξ(τ)ξ(τ)F(ξ(τ); tk+1)rk+1dτ.

(6.40)
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Substituting (6.40) into (6.39), derive

γ

m1
‖∇ξ(τ)ξ(τ)F(xk+1|k − x∗k+1) − (∇ξ(τ)F − ∇ξ(τ)F∗k+1)‖

=
γ

m1
‖∇ξ(τ)ξ(τ)Frk+1 −

∫ 1

0
∇ξ(τ)ξ(τ)F(ξ(τ); tk+1)rk+1dτ‖

=
γ

m1
‖rk+1

∫ 1

0
∇ξ(τ)ξ(τ)F − ∇ξ(τ)ξ(τ)F(ξ(τ); tk+1)dτ‖

≤
γ

m1
‖rk+1‖

∫ 1

0
‖∇ξ(τ)ξ(τ)F − ∇ξ(τ)ξ(τ)F(ξ(τ); tk+1)‖dτ.

(6.41)

For ‖∇ξξF − ∇ξξF(ξ(τ); tk+1)‖, applying the mean value theorem and according to the
assumption 1, derive

‖∇ξ(τ)ξ(τ)F − ∇ξ(τ)ξ(τ)F(ξ(τ); tk+1)‖
≤ D1‖xk+1|k − ξ(τ)‖
≤ D1‖(1 − τ)(xk+1|k − x∗k+1)‖
≤ D1(1 − τ)‖rk+1‖.

(6.42)

Substituting (6.42) into (6.41), we have

γ

m1
‖∇xxF(xk+1|k − x∗k+1) − (∇xF − ∇xF∗k+1)‖

≤
γ

m1
‖rk+1‖

∫ 1

0
D1(1 − τ)‖rk+1‖dτ

≤
D1

2m1
‖rk+1‖

2,

(6.43)

substituting (6.43) into (6.37), we have

‖xk+1|k − x∗k+1 − γ∇xxF−1∇xF‖ ≤
D1

2m1
‖xk+1|k − x∗k+1‖

2. (6.44)

For ‖(∇xxF−1 − H−1
k+1|k,(K))∇xF‖ which the second term in (6.36), we extract the Hessian inverse

from it and use the triangle inequality, resulting in

‖(∇xxF−1 −H−1
k+1|k,(K))∇xF‖ ≤ ‖∇xxF−1(I − ∇xxFH−1

k+1|k,(K))∇xF‖

≤
1

m1
‖I − ∇xxFH−1

k+1|k,(K)‖‖∇xF‖.
(6.45)

According the Assumption 3, the norm ‖∇xF‖ ≤ D4, but we further reduce the upper bound of the
norm, according to the optimality condition ∇xF∗ = 0, get

‖∇xF‖ = ‖∇xF − ∇xF∗‖

≤ (L1 + M1)‖xk+1|k − x∗k+1‖,
(6.46)

where we have used the Lipschitz property of the gradients.
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According the Lemma 3 in [17], the matrix I − ∇xxFH−1
k+1|k,(K) can be simplified as

I − ∇xxFH−1
k+1|k,(K) = (Bk+1|kD−1

k+1|k)
K+1. (6.47)

Since matrices D−1/2
k+1|kBk+1|kD−1/2

k+1|k and Bk+1|kD−1
k+1|k are similar, the sets of eigenvalues of these two

matrices are identical. Therefore, according to (4.5), we can get

0 � Bk+1|kD−1
k+1|k � ρI. (6.48)

The bound of (6.47) is

‖I − ∇xxFH−1
k+1|k,(K)‖ ≤ ρ

K+1. (6.49)

Substitute the (6.46) and (6.49) into (6.45), we can derive the (6.45) is bounded as

‖(∇xxF−1 −H−1
k+1|k,(K))∇xF‖ ≤

(L1 + M1)ρK+1

m1
‖xk+1|k − x∗k+1‖. (6.50)

Applying the bounds (6.44) and (6.50) to the RHS of (6.36), get

‖xk+1 − x∗k+1‖ ≤
γD1

2m1
‖xk+1|k − x∗k+1‖

2 + ψ‖xk+1|k − x∗k+1‖n (6.51)

where ψ =
γ(L1+M1)ρK+1

m1
+ 1 − γ.

Substituting the (6.32) into the (6.51) yields

‖xk+1 − x∗k+1‖ ≤ α2‖xk − x∗k‖
2 + α1‖xk − x∗k‖ + α0n (6.52)

where α2 =
γD1δ

2

2m1
, α1 = h2 D1δ∆

m1
+ ψδ, α0 = h4 D1∆2

2m1
+ h2ψ∆.

Let 0 < τ1 < 1 be a positive scalar such that

α2‖xk − x∗k‖
2 + α1‖xk − x∗k‖ + α0 ≤ τ1‖xk − x∗k‖ + α0. (6.53)

To guarantee the convergence of the error ‖xk − x∗k‖ and (6.53) holds true for all k we require

α1 < τ1, (6.54a)

‖x0 − x∗0‖ ≤ (τ1 − α1)/α2 = R̄, (6.54b)

τ1(τ1 − α1)/α2 + α0 ≤ (τ1 − α1)/α2. (6.54c)

We proceed to check the validity of (6.52). When k = 0, and condition (6.54a), (6.54b) is satisfied, we
multiply ‖x0 − x∗0‖ on both sides of (6.54b), we have

‖x0 − x∗0‖
2 ≤

τ1 − α1

α2
‖x0 − x∗0‖. (6.55)
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Multiplying both sides of (6.55) by α2 and add α0, get

α2‖x0 − x∗0‖
2 + α1‖x0 − x∗0‖ + α0 ≤ τ1‖x0 − x∗0‖ + α0

≤ τ1(τ1 − α1)/α2 + α0.
(6.56)

Combining (6.52) and (6.56), get

‖x1 − x∗1‖ ≤ τ1(τ − α1)/α2 + α0. (6.57)

When condition (6.54c) is met, we have

‖x1 − x∗1‖ ≤ (τ1 − α1)/α2. (6.58)

Repeating the above process [cf.,(6.55)–(6.58)], we can derive

‖xk − x∗k‖ ≤ (τ1 − α1)/α2, (6.59)

multiplying ‖xk − x∗k‖ on both sides of (6.59) and adding α0 , we can derive (6.53).
Therefore, when (6.54a)–(6.54c) is satisfied, the (6.53) is hold true for all k. The terms α0 and α1

are polynomial functions of sampling period h and the approximation levels K of the inverse of Hessian.
Specially, when h→ 0 and K → ∞, α0, α1 and α2 can be made 0, 1−γ and γD1

2m1
, respectively. Formally

lim
h→0

α0 = 0, lim
K→∞

α1 = 1 − γ, lim
h→0

α2 =
γD1

2m1
, (6.60)

then conditions (6.54b) and (6.54c) hold with τ1−α1
α2

=
2m1(τ1+γ−1)

D1
and τ1(τ1−α1)

α2
=

2m1τ1(τ1+γ−1)
D1

.
According (6.52) and (6.53), the upper bound of ‖xk+1 − x∗k+1‖ can be rewritten as

‖xk+1 − x∗k+1‖ ≤ τ1‖xk − x∗k‖ + α0. (6.61)

By recursively applying (6.61) backward in time, we obtain

‖xk − x∗k‖ ≤ τ
k
1‖x0 − x∗0‖ + α0

(
1 − τk

1

1 − τ1

)
, (6.62)

which τ1 < 1, after the expansion of the coefficients, we can derive

‖xk − x∗k‖ ≤ τ
k
1‖x0 − x∗0‖ +

(
1 − τk

1

1 − τ1

) (
h4 D1∆

2

2m1
+ h2ψ∆

)
, (6.63)

where ψ =
γ(L1+M1)ρK+1

m1
+ 1 − γ, when K → ∞, we can derive (4.7).

Due to 0 < ρ < 1, then when the approximate level K of the inverse Hessian matrix is chosen
sufficiently large, i.e., K → ∞, then the ρK → 0, result ψ = 0, when K → ∞, derive

lim
K→∞

sup ‖xk+1 − x∗(tk+1)‖ = h4 D1∆
2

2m1(1 − τ1)
+ h2(1 − γ)∆. (6.64)

The proof is completed.
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