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Abstract: The capital market in Saudi Arabia is fast growing. Assurance of an informed decision while 

investing in the Saudi Stock Exchange is critical. There has also been an increased quest for advanced 

decision-making tools due to complexities in selecting a given portfolio, which remains a critical issue 

of concern among investors in the face of modern investment environment challenges. The research 

paper offered shall deliver an innovative MCDM technique through which an MCDM model shall be 

developed in the Saudi Stock Exchange. This MCDM model uses BTIFS with an OWA operator. A 

novelty of the proposed study is identifying the optimal weight that will be obtained through a newly 

developed optimization technique known as TFOA. TFOA is a hybrid methodology that brings on 

board the strengths of DMOA, MPA, and EO for a more precise and efficient calculation of the ideal 

weights in the portfolio selection process. This would improve the adaptability and effectiveness of 

the suggested MCDM structure. The effectiveness of the approach is established by comparative 

analysis with the already existing methods of MCDM, which proves it superior for the optimization of 

investment portfolios. Sensitivity analysis also conducted to evaluate the strength and dependability 

of the suggested method. The ranking of weighted portfolios by the ELECTRE method is also, which 

more establishes the applicability of BTIFS-OWA in real life. The results indicate that the BTIFS-

OWA approach along with the TFOA for determining optimal weights provides significant 

improvements in decision-making accuracy and portfolio optimization compared to traditional 

methods. 
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Nomenclature 

Abbreviation Description 

ELECTRE  ELimination Et Choix Traduisant la REalité 

OWA Ordered Weighted Averaging 

TIFS Triangular Intuitionistic Fuzzy Sets 

LICF Linguistic Intuitionistic Cubic Fuzzy 

IFS Intuitionistic Fuzzy Sets 

MCDM Multi Criteria Decision Making 

TIFN Triangular Intuitionistic Fuzzy Number 

DMOA Dwarf Mongoose Optimization Algorithm 

MPA Marine Predators Algorithm 

ROE Return On Equality 

ROA Return On Assets 

SONP   Single Objective Nonlinear Programming 

MPMSEOA Multi-Period Mean-Semi-Entropy Optimization Algorithm 

CCS Combined Compromise Solution  

FL Fuzzy Logic 

IVIFS Interval Valued Intuitionistic Fuzzy Sets 

FS Fuzzy Set 

IFN Intuitionistic Fuzzy Number 

SSM Saudi Stock Market 

HMO Heronian Mean Operator 

GWHM Generalized Weighted Heronian Mean 

GGWHM Generalized Geometric Weighted Heronian Mean 

CV Control Volume 

1. Introduction 

The intricacy of financial markets is always increasing. To maximize their profits, a variety of 

factors and market features need to be considered by investors [1]. Because of developments in 

financial engineering, a plethora of methods have been developed to study the behavior of financial 

markets [2]. Most investors link their cash to stock exchange markets since investing in individual 

stocks has inherent risks and prefer combinations of several stocks [3]. Thus, Selecting portfolio is an 

important topic for more investigation [4]. Many domains, including machine learning, artificial 

intelligence, and conventional and quantitative finance, have extensively studied the issue of portfolio 

selection [5]. The general goal of portfolio selection is to allocate money among a group of assets in 

order to meet specific long-term goals. Even while portfolio selection based on financial factors has 

been the subject of in-depth research in the past, it is still crucial to consider non-financial aspects [6]. 

Numerous direct and indirect factors might have an impact on selecting a portfolio much like any other 

decision-making (DM) problem [3]. Determining, evaluating, prioritizing, and putting into practice 

criteria for evaluating and choosing portfolios has proven to be challenging for researchers, executives, 

financiers, and practitioners [7]. 

Prior to choosing or ranking options, it is frequently necessary to simultaneously examine a 

number of criteria while solving decision-making (DM) problems. The way in which the information 

is conveyed has consequently remained a key difficulty and for the previous several years, has 

generated a great deal of attention among academics [8], since the data required to solve the DM issues 

is typically erratic, vague, and inconsistent. In addressing these concerns, Zadeh [9], who first proposed 
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the idea of fuzzy set theory, has shown how these kinds of decision-making problems may be expressed 

using the fuzzy set (FS) notion. Nevertheless, in most situations, the membership function µA(x) the 

single function that characterizes the FS theory cannot be completely utilized to convey various types 

of complicated fuzzy information. 

Atanassov [10] enhanced fuzzy set analysis by providing a fresh role known as "the non-

membership function" to build the theory of the IFS. To circumvent these restrictions, Despi [11] has 

designed an IFS whose sum of the MF and NMF is greater than one, and either positive or negative 

disparities exist between them. The IFS has also been helpful for managing complex engineering 

problems and also have provided a flexible way of clarifying uncertainty [12]. A lot of extensions of 

the IFN [13–15] have been shown to increase the IFS. 

Because of its proficiency with complex multi-criteria decision-making scenarios in general and 

portfolio selection on the Saudi Stock Exchange in particular, ELECTRE was selected for the study. 

In addition, one of the strengths of ELECTRE is the way it manages conflicting criteria in a pairwise 

comparison process, and thus it is perfect for financial decisions where there are relevant trade-offs 

between risk, return, and other factors. Unlike other methods, including MABAC, MAIRCA, VIKOR, 

and MARCOS, which are indeed effective, ELECTRE does not simplify or deal inadequately with 

related conflicts [14]. 

Another way ELECTRE stands out is by the flexibility to incorporate uncertainty and imprecision; 

it is able to model adequately the intrinsic uncertainties of financial markets. In addition, with 

outranking relations, it is very robust for decision-making purposes since it allows systematic 

elimination of the less-favored alternatives, even with criteria hardly quantifiable. Moreover, 

ELECTRE is quite appropriate in group decision-making since it permits various preferences among 

different stakeholders to be combined toward a commonly agreed-upon solution—an important 

characteristic in the context of investment [15]. The objectives of VIKOR, MARCOS, and the 

approximately ideal solutions of MAIRCA, respectively, are compromise solutions. These may not 

quantify the innumerable intricate trade-offs in the decision of portfolio selection. The number of 

objectives that ELECTRE can handle and the high rate of objective interactions between multiple 

objectives cements its position as the more complete system for the analysis of the portfolio. 

1.1. Challenges in earlier studies 

● Case Study Perspective: Previous research on portfolio selection on the Saudi Stock Exchange 

or other comparable markets frequently used traditional MCDM techniques, which were rigid and 

could not keep up with the fast-evolving financial landscape. These methods, which usually relied on 

simple fuzzy logic or crisp sets, are insufficient for capturing the ambiguity and uncertainty present in 

financial data. Consequently, the investing strategies that emerged from these techniques were 

sometimes too straightforward and neglected to include the intricate decision-making necessary in a 

turbulent market [2]. 
● Limited Sensitivity to Market Conditions: Investment plans that were less robust to market 

changes were produced by traditional methodologies, which frequently failed to take into account the 

whole range of possible market scenarios. Investors were unable to react to unforeseen market shifts 

with ease due to this lack of flexibility, which led to subpar portfolio performance. 
● Inadequate Handling of Investor Preferences: Many previous models, especially those 

related to risk tolerance and investment objectives, did not take proper account of the numerous tastes 

of investors. This model’s recommendation often lacked precision as it didn’t measure up against the 

specific needs of individuals, making them useful only in theory. 
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1.2. Methodological perspective 

From a methodological standpoint, the challenges of earlier studies can be attributed to the 

limitations of the tools and techniques employed in the decision-making process [16]. These include: 

● Simplistic Aggregation Methods: Early aggregation methods were simple that used basic 

averaging or even very primitive fuzzy logic to all factors and had only superficially combined results, 

led to the loss of valuable information which in turn resulted in lower accuracy and reliability in 

investment decisions 

● Limited Use of Advanced Optimization Techniques: Prior works often implemented 

traditional optimization techniques that were inappropriate for the intricate, high-dimensional portfolio 

selection scenarios. These algorithms are usually engineered to provide solutions for quite simple, 

single-objective optimization tasks and therefore face many theoretical obstacles in addressing the 

multi-criteria nature of portfolio selection with various conflicting objectives. 

● Insufficient Modeling of Uncertainty: Previous research’ use of simple fuzzy sets or crisp 

values failed to accurately capture the ambiguity and uncertainty inherent in financial data. Due to this 

restriction, it was challenging to appropriately represent the complexity of financial markets in the 

actual world, which resulted in choices that were either overly risky or cautious. 

This work focuses on Bhattacharyya triangular intuitionistic fuzzy sets OWA operator, BTIFOs 

for short. Such sets pertain to optimum portfolio selection and have not been examined in the reviewed 

literature. The use of BTIFOSs in DM from its capacity to quantify unknown quantities, represent 

assessment information in a more comprehensive way, and communicate decision information in many 

dimensions. In this work OWA operator and the Bhattacharyya distance measure is used to find the 

final decision matrix. 

1.3. The significance of the ELECTRE model in portfolio selection 

The ELECTRE model stands out as a well-known tool for Multiple Criteria Decision-Making 

(MCDM) [17,18]. People use it in many areas where they need to make choices such as in finance and 

when picking portfolios. This approach shines in situations where you have to pick between options 

with many competing factors. Here’s why the ELECTRE model comes in handy when selecting a 

portfolio: 

● Handling Multiple Criteria: Picking a portfolio means finding a balance between several 

things, like variety, profits, risks, and how you can cash out. The ELECTRE model shines when you 

need to weigh these factors against each other. It lets you take a deeper look at your investment options. 
● Outranking Capabilities: The ELECTRE model functions by relying regarding the idea of 

outranking, which entails a comparison of the options in pairs to get the ranking via dominance 

relations. This comes very handy during portfolio selection, as one can select those portfolios that do 

better than others in the majority of the criteria, hence making the decisions better informed. 
● Robustness in Uncertainty: The financial markets are characterized by volatility and 

uncertainty. Given the robustness of the ELECTRE model, it is very suitable for such contexts; it will 

allow the evaluation of different scenarios and sensitivity studies, all very useful in picking up the best 

possible portfolio. 

1.4. The role of the OWA operator in portfolio selection 

Another important aspect in portfolio selection is the OWA operator. The OWA operator enables 

a much more fine-grained and personalized process of decision-making by aggregating multiple 
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criteria through weights assigned to them, showing their importance or preference [5]. This makes it 

important in portfolio selection for a variety of reasons: 

● Flexible Aggregation of Criteria: Investors can customize how they want to make decisions 

using the OWA operator, which allows us to aggregate multiple criteria. This flexibility is essential 

theoretical work so investors who may emphasize different priorities with regards to their portfolios 

(for example achieving maximum return or minimum risk) can both compare notes. 
● Balancing Optimism and Pessimism: The operator may be adapted to reflect a diverse range 

of risk behaviors, from more pessimistic (heavier on negative outcomes) or optimistic (more prone to 

positive events). When selecting portfolios, the ability to balance huge profit opportunities and 

potential financial losses is important. 
● Enhanced Decision Accuracy: By incorporating the OWA operator, the portfolio selection 

process can achieve a higher degree of accuracy and relevance, as the operator ensures that the 

aggregated criteria reflect the investor’s true preferences and priorities. 

1.5. The necessity of implementing TIFSs in portfolio selection 

Inserting TIFSs in the portfolio selection process is influential in the efficient management of the 

uncertainties and vagueness that come with financial markets. TIFSs propose a more flexible and 

accurate way of modeling that is much better than the traditional ones, better capturing the investor 

preferences and market conditions. Membership, non-membership, and Decision of hesitancy are 

perfect decisions by analyzing these means. These decisions can be close to be sure of the membership, 

not membership, or hesitancy. Even in this case, the sensitivity analysis can show it close to the 

statement that is true for the whole spectrum of investments, which can be seen as a certainty and to 

be well approached with this [1,13]. Furthermore, TIFSs can be used for the definitive theoretical 

models, the most deterministic of all of them for sure. This allows for examining the results of 

implementing different but balanced data. In turn, decision support models, such as the ELECTRE 

model, and the OWA operator, increase the process of choosing a portfolio’s fidelity and accuracy 

through their use of Multi-Criteria Decision-Making/Soft Computing (MCDS). 

1.6. Motivations 

The research was initiated due to the viable market of stock exchanges like the Saudi Stock 

Exchange to increase finer Portfolio selection strategies. The traditional methods which are often do 

neither have the power to solve the existing uncertainties, opposing the criteria of the investors nor 

reveal their various types of preferences in a way that will satisfy the investors need. The changing 

financial environment is bringing areas like stock exchanges to the limelight and the conditions in the 

markets are getting more difficult as more complex information is being used to analyze them. 

Therefore, a wise investor will have to consider if such risky markets can be dealt with based on a 

more elaborate approach will grant them a well-tested and secure platform for their investment choice. 

● Need for Improved Decision-Making Tools: The investors require the tools integrative in 

which the criteria are still there as well as the treatment of various forms of the humanly defined 

uncertainty that is more precise in comparison to the standard tools. 

● Adaptation to Market Volatility: As markets fluctuate frequently, any decision framework 

that can incorporate and interpret these sudden increments, adding to resilience by considering the 

varied circumstances on the market is truly needed. 
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1.7. Contributions 

This study makes several key contributions to the field of portfolio selection and decision-making 

in financial markets: 

● Introduction of BTIFS-OWA Methodology: We present a novel approach by integrating 

Bhattacharyya Triangular Intuitionistic Fuzzy Sets (BTIFS) with the Ordered Weighted Averaging 

(OWA) operator. This combination provides a more nuanced and accurate aggregation of criteria, 

reflecting investor preferences more effectively than traditional methods. 
● Development of the Tri-Fusion Optimization Algorithm (TFOA): A significant 

contribution is the creation of TFOA, a hybrid optimization algorithm that integrates the strengths of 

the Dwarf Mongoose Optimization Algorithm (DMOA), Marine Predators Algorithm (MPA), and 

Equilibrium Optimizer (EO). TFOA enhances the accuracy and efficiency of identifying optimal 

portfolio weights, offering a superior alternative to existing optimization techniques. 
● Comprehensive Comparative Analysis: This provides a detailed comparative evaluation of 

the proposed BTIFS-OWA traditional methods, such as trapezoidal fuzzy numbers and intuitionistic 

fuzzy ordered weighted similarity (IVIFOWS). This analysis demonstrates the superiority of the 

suggested approach with regard to OWA scores and Bhattacharyya distances across various matrices, 

confirming its effectiveness in real-world applications. 
● Sensitivity Analysis and ELECTRE Integration: The inclusion of sensitivity analysis and 

the integration of the ELECTRE method for ranking portfolios further validate the strength and 

practical applicability of the proposed approach in the Saudi Stock Exchange context. 

1.8. Literature review 

Qiyas et al. [16] created a number of LICF information using weighted aggregation operations. 

To show the effectiveness and possibility of the previously discussed innovative method, they develop 

a MCDM system within a LICF environment. Alamoudiand and Bafail [17] conducted a MCDM case 

study implementation approaches to investigate the applicability and efficiency of MCDM techniques 

in identifying and classifying the best equities for inclusion in a portfolio. The study’s conclusions 

about utilizing an integrated MCDM approach to determine the best securities advantageous for the 

banking industry on the substantial Saudi stock market. Nayagam, and Murugan [18] constructed the 

weighted triangular approximation process for IFN with several appropriate examples. Additionally, 

several helpful triangular approximation features on IFN have also been explored. provide the novel 

kind of IFNs in L–R triangular form, weighted triangular approximation using the distance. Hashemi 

et al. [19] employed an innovative approach to group DM, the ideal set of SIs was chosen to meet each 

of the three pillars of highway sustainability. To further differentiate the preferred order of SIs, new 

ranking scores and separation metrics are introduced. Finally, the approach’s applicability is assessed 

when it is utilized in a highway construction project case study. Remadi, and Frikha [20] developed an 

expansion of the CODAS methodology to handle uncertainty by employing TIF sets and to address 

issues involving numerous criteria in groups DM. Moreover, Remadi, and Frikha [21] created a 

ranking MCDM model to aid in the uncertain selection of green materials. It is predicated on examining 

CODAS, one of the MCDM techniques, to resolve group decision-making problems with numerous 

criteria in the framework of IFS. Each alternative’s rating is expressed in language words and 

transformed into triangular intuitionistic fuzzy numbers (TIFNs) to completely enhance material 

qualities and enhance environmental performance over time. Saeed et al. [22] evaluated each 

criterion’s weight and the alternatives' ratings using linguistic phrases within the framework of a TIFN. 

In this expanded TOPSIS model, a fresh fuzzy positive intuitionistic and negative ideal solution are 
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provided. Prakash and Suresh [23] created a novel method for ranking IFN using Nagel points. Some 

outcomes and numerical illustrations supported the suggested new ranking. Babatunde et al. [24] 

employed a modified TIF combining and prioritizing function model to determine the most favored 

“end-of-life” management options for batteries. In order to evaluate the suggested updated TIFARF 

model, professional comments from the Nigerian renewable energy industry were gathered. Geng and 

Ma [25] created a few new n-IPFS aggregation operators and used them to solve MAGDM issues. 

First, the definition of the n-IPFSs’ operating characteristics and scoring function. Next, three types of 

polygonal fuzzy aggregation operators that are n-intuitionistic are examined. Lastly, they provide a 

better method for the TOPSIS approach, which uses n-IPFSs and weights for unknown qualities. 

Biswas et al. [26] provided an intuitionistic fuzzy shortest path problem in directed graphs by 

introducing intuitionistic fuzzy numbers. In essence, it simply developed a technique based on a 

classical Dijkstra's algorithm, applied to graphs of crisp weights and arc weights. Such a method might 

have found certain applications in computer science, in communication networks, as well as in 

transportation systems. 

In 2022, Bisht and Kumar [27] have proposed a framework that integrates the insights of novice 

investors and experts to simplify stock selection. The paper illustrated a fuzzy Base-Criterion for 

weighing stock selection criteria and Dempster-Shafer theory for categorizing securities. Ranking of 

top ten securities is optimized through consensus-based ranking with a deep recurrent neural network 

having LSTM. In 2021, Jiang and Qing [28] a fuzzy rough set model based on decision theory was 

presented which is put forth for MADM with hesitant fuzzy information systems. In 2021, Zhou and 

Li [29] proposed the use of semi-entropy as a successful method of controlling downside risk 

management in multi-period portfolio optimization in fuzzy environments. MPMSEOA is designed 

that takes bankruptcy occurrences and transaction costs into account. Further, with the help of a risk-

aversion factor, the program is changed to a crisp SONP model, and the solution is obtained through a 

genetic algorithm. In 2022, Narang et al. [30] have proposed an integrated method for choosing stocks 

in a portfolio in a two-stage framework: first, suggested a fresh approach to stock selection decision-

making by combining the HMO, in particular, the enhanced GWHM and the enhanced GGWHM with 

the traditional CCS method; second determined the respective ideal weights of the given selection 

criteria using the Base-Criterion technique. The CoCoSo-H model proposed herein takes care of the 

vagueness, variability, and anomalies in the data and increases the flexibility of difficult decisions. A 

case study on choosing stocks for a portfolio listed on the National Stock Exchange (NSE) with 

different portfolios constructed using PSO validated the applicability of the model. 

The studies by Jagtap and Karande [31], Mishra et al. [32], Isabels et al. [33], and Wang et al. [34] 

highlight the diverse and evolving applications of FL and MCDM methods. Jagtap and Karande [31] 

enhance the ELECTRE-I method using m-polar fuzzy sets and revised weight calculations through 

Simos’ and AHP, focusing on the complex choice of unconventional machining techniques. Mishra et 

al. apply IVIFS with MAIRCA method to assess sustainable wastewater treatment technologies, 

emphasizing the handling of imprecise data. Isabels et al. incorporate intuitionistic trapezoidal fuzzy 

sets into the VIKOR approach to evaluate and rank Metaverse platforms, addressing uncertainties in 

emerging digital technologies. Wang et al. use advanced fuzzy aggregation operators for green supplier 

selection, demonstrating the importance of nuanced fuzzy methods in resilient supply chain 

management. Collectively, these studies underscore the significance of integrating sophisticated fuzzy 

logic and MCDM techniques to effectively manage complex, uncertain, and multi-dimensional 

decision problems across fields. 
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1.9. Research gap 

Despite significant advances In the area of choosing a portfolio, several research lacunae remain 

unmet, which this study has set out to be the solution of: 

● Limited Handling of Uncertainty and Vagueness: In most cases, methodologies depend 

more on simplified models that fail to properly account for uncertainty and vagueness in financial 

data [35]. Hence, TIFSs are introduced to handle this issue, giving a more flexible and more realistic 

framework than other models. 
● Insufficient Integration of Advanced Optimization Techniques: In the case of most 

research works, advanced optimization algorithms are not optimally used, primarily in multicriteria 

decision-making. The development of TFOA does away with this deficiency as it is a powerful tool 

integrated with multiple optimization techniques that improve the selection process’s precision and 

effectiveness. 
● Lack of Comprehensive Comparative Studies: Despite the existence of a lot of methods that 

can be used for portfolio selection, very few have fully conducted a deep analysis of them, proving 

newer methods are more effective than traditional ones. Hence, through this research, we can fill this 

gap by providing a bright comparison of the BTIFS-OWA approach to the recognized ones that show 

the best performance among them. 
● Need for Robust Decision-Making Frameworks in Emerging Markets: The Saudi Stock 

Exchange is an area of the market that is continuously changing and where trading is so volatile that 

decisions are hard to make and implement in a timely manner. Through this work, we make an effort 

to address this problem by bringing a flexible but also solid way of decision-making to these settings, 

which are peculiar in their demand. 

2. Preliminaries 

The basic definitions and ideas of IFS and TIFN are explained in this section. 

Definition 1. IFS [21] 

The definition of the intuitionistic FS is Within the debate X universe, intuitionistic FS H is 

termed as per Eq (1). 

𝐻 = {〈𝑒, 𝜇𝐻(𝑒), 𝑣𝐻(𝑒)〉|𝑒 ∈ 𝐸},                                                        (1) 

where 𝜇𝐻: 𝐸 → [0,1] and 𝑣𝐻: 𝐸 → [0,1]. 

Next, the various operators and relations for IFS are provided by per Eqs (2)–(7), respectively. 

The graph of IFS is manifested in Figure 1. 

𝐻. 𝑁 = {〈𝑒, 𝜇𝐻(𝑒) ∙ 𝜇𝑁(𝑒), 𝑣𝐻(𝑒) + 𝑣𝑁(𝑒) − 𝑣𝐻(𝑒) ∙ 𝑣𝑁(𝑒)〉|𝑒 ∈ 𝐸}.                            (2) 

𝐻 + 𝑁 = {〈𝑒, 𝜇𝐻(𝑒) + 𝜇𝑁(𝑒) − 𝜇𝐻(𝑒) ∙ 𝜇𝑁(𝑒), 𝑣𝐻(𝑒) ∙ 𝑣𝑁(𝑒)〉|𝑒 ∈ 𝐸}.                       (3) 

𝜆𝐴 = {〈𝑒, 1 − (1 − 𝜇𝐻
(𝑒))

𝜆
, (𝑣𝑁(𝑒))

𝜆
〉|𝑒 ∈ 𝐸} , 𝜆 > 0.                                (4) 

𝐴𝜆 = {〈𝑒, (𝜇𝐻(𝑒))
𝜆

, 1 − (1 − 𝑣𝑁(𝑒))
𝜆

〉|𝑒 ∈ 𝐸} , 𝜆 > 0.                              (5) 

𝐻 = 𝑁 𝑖𝑓𝑓𝜇𝐻(𝑒) = 𝜇𝑁(𝑒) 𝑎𝑛𝑑 𝑣𝐻(𝑒) = 𝑣𝑁(𝑒) ∀𝑒 ∈ 𝐸.                             (6) 

𝐻 ≤ 𝑁 𝑖𝑓𝑓𝜇𝐻(𝑒) ≤ 𝜇𝑁(𝑒) 𝑎𝑛𝑑 𝑣𝐻(𝑒) ≥ 𝑣𝑁(𝑒) ∀𝑒 ∈ 𝐸.                             (7) 
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Figure 1. Graph of IFS. 

TIFN 

TIFN is the word for the IFN that is based on the TFN. The TIFN is the usage of the classic TFN 

to describe the MF, 𝜇𝐻
(𝑒) ,and NMF 𝑣𝑁(𝑒). The following introduces the fundamental ideas around 

the TIFN: 

Definition 2 [36]. 

Let 𝛾 be the TIFN, with the following definitions for 𝛾’s MF-𝜇𝛾(𝑒) and NMF-𝑣𝛾(𝑒). This is 

shown mathematically in Eqs (8) and (9), respectively. The graph showing TIFN is shown in Figure 2. 

𝜇𝛾(𝑒) = {
(𝑒−ℎ1)𝜇𝛾

ℎ2−ℎ1
   𝑓𝑜𝑟   ℎ1 ≤ 𝑒 < ℎ2 𝜇𝛾   𝑓𝑜𝑟   𝑒 = ℎ2

(ℎ3−𝑒)𝜇𝛾

ℎ3−ℎ2
   𝑓𝑜𝑟   ℎ2 < 𝑒 ≤ ℎ3 0,            (8) 

otherwise, 

𝑣𝛾(𝑒) = {
(ℎ2−𝑒+𝑣𝛾(𝑒−ℎ1

′ ))

ℎ2−ℎ1
′    𝑓𝑜𝑟   ℎ1

′ ≤ 𝑒 ≤ ℎ2 𝑣𝛾    𝑓𝑜𝑟   𝑒 = ℎ2

(𝑒−ℎ2+𝑣𝛾(ℎ3
′ −𝑒))

ℎ3
′ −ℎ2

   𝑓𝑜𝑟   ℎ2 ≤ 𝑒 ≤ ℎ3
′  0, 

(9) 

otherwise, where 0 ≤ 𝜇𝛾 ≤ 1; 0 ≤ 𝑣𝛾 ≤ 1; 0 ≤ 𝜇𝛾 + 𝑣𝛾 ≤ 1, ℎ1, ℎ2, ℎ3, ℎ1
′ , ℎ3

′ ∈ 𝑅 

TIFN can be represented as 𝛾′ = 〈([ℎ1, ℎ2, ℎ3]; 𝜇𝛾), ([ℎ1, ℎ2, ℎ3]; 𝑣𝛾)〉 when 𝜇𝛾 = 1 and 𝑣𝛾 = 0 

and 𝛾′convert into traditional TFN. 

 

Figure 2. Graph of TIFN. 



27256 

AIMS Mathematics  Volume 9, Issue 10, 27247–27271. 

Definition 3 (Operational rules of two TIFNs). It is shown mathematically in Eqs (10)–(13), 

respectively. 

𝜑1 = ([ℎ1, 𝑖1, 𝑗1]; 𝜇𝛾1,𝑣𝛾1
) and 𝜑2 = ([ℎ2, 𝑖2, 𝑗2]; 𝜇𝛾2,𝑣𝛾2

) represents two TIFNs also 𝜆 ≤ 0. 

𝜑1 + 𝜑2 = ([ℎ1 + ℎ2, 𝑖1 + 𝑖2, 𝑗1 + 𝑗2]; 𝜇𝛾1
+ 𝜇𝛾2, − 𝜇𝛾1

𝜇𝛾2
, 𝑣𝛾1𝑣𝛾2

).                      (10) 

𝜑1𝜑2 = ([ℎ1ℎ2, 𝑖1𝑖2, 𝑗1𝑗2]; 𝜇𝛾1
𝜇𝛾2,𝑣𝛾1+𝑣𝛾2

− 𝑣𝛾1
𝑣𝛾2

).                              (11) 

𝜆𝜑 = ([𝜆ℎ, 𝜆𝑖, 𝜆𝑗]; 1 − (1 − 𝜇𝛾)
𝜆

, 𝑣𝛾) , 𝜆 ≥ 0.                                       (12) 

𝛾𝜆 = ([ℎ
𝜆
, 𝑖𝜆, 𝑗𝜆

] ; (𝜇𝛾)
𝜆

, 1 − (1 − 𝑣𝛾)
𝜆

) , 𝜆 ≥ 0.                                    (13) 

The following operations (shown in Eqs (14)–(19)) provide the operational outcomes for the two 

TIFNs’ rules listed in Definition 3: 

𝜑1 + 𝜑2 = 𝜑2 + 𝜑1.                                                       (14) 

𝜑1⨂𝜑2 = 𝜑2⨂𝜑1.                                                         (15) 

𝜆(𝜑1 + 𝜑2) = 𝜆𝜑2 + 𝜆𝜑1, 𝜆 ≥ 0.                                           (16) 

𝜆1𝜑 + 𝜆2𝜑 = (𝜆1 + 𝜆2)𝜑, 𝜆1, 𝜆2 ≥ 0.                                       (17) 

𝜑𝜆1⨂𝜑𝜆2 = 𝜑𝜆1+𝜆2, 𝜆1, 𝜆2 ≥ 0 .                                              (18) 

𝜑1
𝜆⨂𝜑2

𝜆 = (𝜑1⨂𝜑2)
𝜆
, 𝜆 ≥ 0.                                              (19) 

3. Methodology for Bhattacharyya Triangular intuitionistic fuzzy sets with OWA operator-

based decision making and Tri-Fusion optimization algorithm 

In this section, we introduce the Bhattacharyya Triangular Intuitionistic Fuzzy Sets MCDM issue, 

which we rank using the ELECTRE technique. The assessment data from each decision maker must 

be combined for the Triangular Intuitionistic Fuzzy Linguistic multi-attribute decision procedure. All 

of the decision makers’ evaluation data is combined using the OWA operators. Let 𝑚  viable 

alternatives be 𝐴𝜆 , 𝜆 =  1, 2,· · · , 𝑚 , that are evaluated by k decision-makers (DM), 𝐷𝜈  (for 𝜈 =
1,2, … , 𝑘), based on n criteria that are incompatible and non-commensurable, 𝐶𝜇 𝜇 = 1, 2,· · · , 𝑛. Using 

the decision-evaluation makers of each alternative, 𝐴𝜆 in relation to each criterion, 𝐶𝜇 create a decision 

matrix, shown by 𝑇𝐵 = [𝑡𝑏𝜆𝜇]
𝑚×𝑛

. The following describes the procedure of the BTIFO based 

decision making. 

Step 1: Decision matrix creation 

Create a decision matrix 𝐾 = (𝑙𝑖𝑗)
𝑛×𝑚

. A normalized decision matrix 𝐾 = (𝜑𝑖𝑗)
𝑛×𝑚

 can be created 

from this matrix. 

Step 2: Construction of the optimized weighted matrix 

(a) Decision matrix as well as the weight vector are initialized. 

● The element 𝜑𝑖𝑗 of the initial decision and the 𝑗𝑡ℎ weight of the criterion 𝑤𝑗 play a major role 

in the normalized decision matrix 𝜇𝑖𝑗 computation. The mathematical formula for 𝜇𝑖𝑗 is shown in Eq 

(22). 

𝜇𝑖𝑗 = 𝜑𝑖𝑗𝑤𝑗 , 𝑖 = 1,2, . . , 𝑛; 𝑗 = 1,2, . . , 𝑚,                                          (20) 

where 𝑤𝑗 denotes the weight of jth criterion. 



27257 

AIMS Mathematics  Volume 9, Issue 10, 27247–27271. 

● To ensure that the sum of weight is equal to 1. Mathematically, this is shown in Eq (21).  

∑ 𝑤𝑗
𝑛
𝑗= = 1.                                                                 (21) 

● To optimize the weight 𝑤𝑗 iteratively using the new tri-fusion optimizer. The proposed tri-fusion 

optimizer is the combination of the Dwarf Mongoose Optimization Algorithm (DMOA), Marine Predators 

Algorithm (MPA), and Equilibrium Optimizer (EO). 
The objective function for TFOA model is manifested in Eq (22). 

𝑂𝑏𝑗𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑤𝑘𝑤𝑙 . 𝐵(𝑙𝑖 , 𝑙𝑘)𝑛
𝑖=𝑘+1

𝑛
𝑘=1 .                                          (22) 

The count of fuzzy set is denoted as 𝑛, and the Bhattacharyya distance between 𝑙 − 𝑡ℎ 𝑎𝑛𝑑 𝑘 −
𝑡ℎ criterion is denoted as 𝐵(𝑙𝑖 , 𝑙𝑘). In addition, 𝐵(𝑙𝑖 , 𝑙𝑘) and 𝑤𝑘𝑤𝑙represents the 𝑙 − 𝑡ℎ 𝑎𝑛𝑑 𝑘 − 𝑡ℎ 

fuzzy sets and its corresponding weights, respectively. The optimized weight function acquired from 

TFOA model is denoted as 𝑤𝑜𝑝𝑡. 

Step 3: Calculation of concordance set and discordance set of subscripts 

The following is a representation of the concordance set of subscripts that should meet the 

constraint 𝑙𝑖𝑗𝐽𝑙𝑘𝑗. 

𝐵𝑖𝑘 = {𝑏|𝑙𝑖𝑗𝐽𝑙𝑘𝑗}, (𝑖, 𝑘 =  1, 2, . . . , 𝑛),                                             (23) 

𝑙𝑖𝑗𝐽𝑙𝑘𝑗 denotes 𝑙𝑖𝑗 ≻𝑠  𝑙𝑘𝑗 or 𝑙𝑖𝑗 ≻𝑤 𝑙𝑘𝑗 or 𝑙𝑖𝑗 ≻𝐼 𝑙𝑘𝑗. 

The discordance set of subscripts is the complementary subset of the concordance set of subscripts, 

and the following is its definition: 

𝑁𝑖𝑘 = 𝑈 − 𝐵𝑖𝑘.                                                              (24) 

Step 4: Calculate the matrix for concordance discordance 

The concordance index 𝐵(𝑙𝑖 , 𝑙𝑘) is denoted by the weight vector 𝑒 linked with the criterion as 

follows: 

𝐵(𝑙𝑖 , 𝑙𝑘) = ∑ 𝑒𝑗
𝑛
𝑗∈𝐵𝑖𝑘

.                                                        (25) 

Hence, the concordance matrix B is 𝐵 = (− 𝑏12  ⋯ 𝑏1𝑛 𝑏21  −  ⋯ ⋯ ⋯ ⋯ − ⋯ 𝑏𝑛1 𝑏𝑛2  ⋯ − ) 

The discordance index 𝑁(𝑙𝑖 , 𝑙𝑘) is denoted as per Eq (26) 

𝑁𝑖𝑘 =
{𝑑(𝑙𝑖𝑗,𝑙𝑘𝑗)} 

{𝑑(𝑙𝑖𝑗,𝑙𝑘𝑗)} 
.                                                             (26) 

Here, the normalized Euclidean distance between 𝑙𝑖𝑗 and 𝑙𝑘𝑗, is denoted by the symbol 𝑑(𝑙𝑖𝑗 , 𝑙𝑘𝑗). 

The discrepancy matrix N is shown in Eq (27) 

𝑁 = (− 𝑛12  ⋯ 𝑛1𝑛 𝑛21  −  ⋯ ⋯ ⋯ ⋯ −  ⋯ 𝑛𝑛1 𝑛𝑛2  ⋯ − ).                            (27) 

Step 5: Bhattacharyya distance calculation 

In this step the Bhattacharyya distance is calculated for Eqs (28)–(30) using the following steps: 

Define the Bhattacharyya coefficient for membership, non-membership, and hesitant function as 

follows: 

𝐵ℎ𝑐𝑜(𝜇𝐴, 𝜇𝐵) = ∑ √𝜇𝐴(𝑥)𝜇𝐵(𝑥)𝑥 .                                                  (28) 

𝐵ℎ𝑐𝑜(𝜗𝐴, 𝜗𝐵) = ∑ √𝜗𝐴(𝑥)𝜗𝐵(𝑥)𝑥 .                                                   (29) 

𝐵ℎ𝑐𝑜(𝜋𝐴, 𝜋𝐵) = ∑ √𝜋𝐴(𝑥)𝜋𝐵(𝑥)𝑥 .                                                  (30) 
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Where 𝜇, 𝜗, 𝜋 represents the MF, NMF, and hesitancy function respectively of triangular intuitionistic 

fuzzy numbers 

Aggregation of the Bhattacharyya coefficient is shown in Eq (31). 

𝐵ℎ𝑐𝑜(𝐴, 𝐵) =
1

3
(𝐵ℎ𝑐𝑜(𝜇𝐴, 𝜇𝐵) + 𝐵ℎ𝑐𝑜(𝜗𝐴, 𝜗𝐵) + 𝐵ℎ𝑐𝑜(𝜋𝐴, 𝜋𝐵)).                     (31) 

Calculate the Bhattacharyya distance [37] using Eq (32) 

𝐵ℎ𝑑(𝐴, 𝐵) = − 𝑙𝑛 𝑙𝑛 𝐵ℎ𝑐𝑜(𝐴, 𝐵).                                                            (32) 

Hence, the resulting matrix is the Bhattacharyya distance [37,38]-based decision matrix (BDDM). 

Step 6: OWA operator-based aggregation to get the final decision matrix. 

We will get a range of aggregation operators from the OWA operator that are set between the 

lowest and the maximum. The parameters can be rearranged with this operator according to their 

values [39]. A mapping OWA is an OWA operator with dimensions n with 𝑅𝑛 → 𝑅 that it has an 

associated weighting vector𝑊𝑜𝑝𝑡 = [𝑤𝑜𝑝𝑡1, 𝑤𝑜𝑝𝑡2, … , 𝑤𝑜𝑝𝑡𝑛]
𝑇

 with 𝑤𝑜𝑝𝑡𝑗 ∈ [0,1] and ∑ 𝑤𝑜𝑝𝑡𝑗
𝑛
𝑗=1 =

1  such that 𝑂𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) = ∑ 𝑤𝑜𝑝𝑡𝑗𝐵𝐷𝐷𝑀𝑛
𝑖,𝑗=1 = 1 , where BDDM is the Bhattacharyya 

distance-based decision matrix. 

Step 7: Ranking. 

To find the best alternative we use the final decision matrix to rank the alternatives according to 

the criteria. 

4. Tri-Fusion Optimization Algorithm (TFOA) based optimal weight assignment 

The architecture of the TFOA model is illustrated in Figure 3. 

 

Figure 3. Architecture of proposed TFOA. 

4.1. DMOA 

An innovative optimization method called DMOA is aimed at solving the major challenge of 

identifying the optimal weight function. 

Figure 4 describes the format of the Dwarf Mongoose Optimization Algorithm. In this structure, 

mongooses are searching for food in their natural habitat. This shows the initial stages of foraging, 
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after which there is a group of scouts that survey the area for safety and potential predators. As other 

members do other things, some babysitters are appointed to take care of the weakest ones. The last 

arrow indicates a cycle where the members who are young or hurt are taken care of by the alpha group. 

This graph expresses teamwork, division of duties, and caring about the weaker members. Like this 

way, the Dwarf Mongoose Optimization Algorithm will work. So, to elaborate further on the 

application of the Dwarf Mongoose Optimization Algorithm (DMOA) for addressing issues in optimal 

weight identification, it integrates several equations that illustrate the optimization processes. 

 

Figure 4. Structure of DMOA. 

The update equations for the positions (weight) of dwarf mongooses (search for optimal solutions) 

in the search space describe the optimization dynamics of DMOA as follows in Eq (33): 

𝑤𝑡
𝑘+1 = 𝑤𝑡

𝑘 + 𝛼(𝑤𝑏
𝑘 − 𝑤𝑡

𝑘) + 𝛾(𝑤𝑟
𝑘 − 𝑤𝑡

𝑘).                                                   (33) 

● 𝑤𝑡
𝑘 is the current position of the 𝑡𝑡ℎ mongoose at iteration 𝑘. 

● 𝑤𝑏
𝑘 represents the best position found by the mongoose swarm up to iteration 𝑘 (global best 

position). 
● 𝑤𝑟

𝑘 denotes the position of a randomly selected mongoose in the swarm at iteration 𝑘 (local 

best position). 
● 𝛼 and 𝛾 are the coefficients that control the influence of the global and local best positions, 

respectively. 
Such a mechanism for updating enables DMOA to effectively equal the exploration and 

exploitation, facilitating effective optimization over complicated search regions. It is possible that 

adjusting its search strategy dynamically through these types of updates improves a system’s 

performance on various optimization tasks. 

4.2. MPA 

MPA is a cutting-edge optimization method which imitates the strategic hunting habits of marine 

predators. It tackles the major problems faced in the identification of the optimal weights of the matrix. 
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MPA also changes normalization parameters in order to maintain uniformity in different datasets 

through its exploratory and exploitation phases. The MPA is a novel mean for optimizing 

preprocessing tasks consequently leading to the enhancement of accuracy and reliability of seizure 

prediction models significantly. 

Figure 5 illustrates the structure of MPA. It is bio-inspired optimization, taken from the foraging 

behaviors of ocean predators. It has borrowed concepts about their movements in Levy flights and 

Brownian motions. MPA is a rather parameter less, user-friendly, flexible technique that is appropriate 

for many optimization problems. Imitating the predator-prey interactions, it efficiently surveys the 

search space; therefore, it becomes very powerful in computational intelligence. 

 

Figure 5. Structure marine predators algorithm (MPA). 

4.3. Equilibrium Optimizer (EO) 

 

Figure 6. Structure of equilibrium optimizer (EO). 

Figure 6 shows the structure of EO, which describes the working process. Equation (34) describes 

the fundamental mass-balance problem expressed as a first-order ordinary differential equation, where 

the total mass entering the system plus the mass produced within the system minus the total mass 

leaving the system represents the change in mass over time. 

𝑉
𝑑𝐶

𝑑𝑡
= 𝑄𝐶𝑒𝑞 − 𝑄𝐶 − 𝐺.                                                         (34) 
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𝐶𝑒𝑞 denotes the concentration in a state of equilibrium where there is no generation inside the CV, 

Inside the CV, 𝐺 is the mass generation rate, and 𝐶 is the concentration inside the CV (𝑉). 𝑉
𝑑𝐶

𝑑𝑡
 is the 

rate of change of mass in the CV. 𝑄 is the volumetric flow rate into and out of the CV. There is a state 

of steady equilibrium when 𝑉
𝑑𝐶

𝑑𝑡
 approaches zero. Equation (5) are rearranged to solve for 

𝑑𝐶

𝑑𝑡
 as a 

function of 
𝑄

𝑉
, where 

𝑄

𝑉
 is the turnover rate (i.e., 𝜆 =  

𝑄

𝑉
) or the inverse of the residence period, here 

denoted as 𝜆. Consequently, the concentration in the CV (𝐶) as a function of time (𝑡) also be found by 

rearranging Eq (34) as follows in Eq (35) 

𝑑𝐶

𝜆𝐶𝑒𝑞−𝜆𝐶+
𝐺

𝑉

= 𝑑𝑡.                                                                       (35) 

Equation (36) showcase the integration of Eq (35) over time: 

∫
𝑑𝐶

𝜆𝐶𝑒𝑞−𝜆𝐶+
𝐺

𝑉

𝐶

𝐶0
= ∫ 𝑑𝑡

𝑡

𝑡0
.                                                        (36) 

The results shown in Eq (37): 

𝐶 = 𝐶𝑒𝑞 + (𝐶0 − 𝐶𝑒𝑞)𝐹 +
𝐺

𝜆𝑉
(1 − 𝐹).                                                (37) 

In the Eq (37), the 𝐹 is calculated as follows in Eq (38): 

𝐹 = 𝑒𝑥𝑝[−𝜆(𝑡 − 𝑡0)],                                                             (38) 

where, depending on the integration interval, 𝑡0  and 𝐶0  represent the initial start time and 

concentration respectively. The balance between searching for new answers and taking advantage of 

the best options is what explains why the updates equation moves locations of solutions about the 

balance condition. 

5. Case study 

5.1. Step-by-step computation 

A. Criteria weights determination 

Methodology: The values of the criteria weights are calculated through a set methodology that 

utilizes AHP and the TFOA – the Tri-Fusion Optimization Algorithm, which is composed of DMOA, 

MPA, as well as, EO. 

Step-by-Step Calculation: 

Step 1- Initial Criteria Weight Assignment: Some of the parameter ratings will be pre-determined while 

the initial weights can be arrived at by using AHP for pairwise comparison. 

Step 2- Standardise the weights in a manner that their sum is equal to 1. 

B. TFOA optimization 

Step 1-  Random creation of the initial generation with potential solutions to the technical problem. 

Step 2-  Check the efficiency of each of the solutions by the objective function 

(<|reserved_special_token_272|>, for example, portfolio return rate and risk minimization). 

Step 3-  Apply DMOA, MPA, and EO to iteratively improve the solution: o Step 3: Apply DMOA, 

MPA, and EO to iteratively improve the solution: 

● DMOA: In accordance to the movement of the prey and the predator, update the positions. 
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● MPA: Fine-tune the solutions in relation to the strategies employed by marine predators. 
●  EO: Further improve solutions through the concepts of equilibrium strategies. 
Step 4-  Choose the obtained solution with the highest value of the corresponding criteria set as the 

final set of criteria weights. 

C. Portfolio selection using BTIFS and OWA operator 

Methodology: The process of diversification of portfolio is conducted based on the combination 

of the BTIFS with the Order Weighted Averaging operator to provide decision making. 

Step-by-Step Calculation: 

Step 1-  Define TIFS [40]. 

Step 2-  For each portfolio, depending on the performance characteristics, specify the values of the 

criterion BTIFS. 

Step 3-  Example: Portfolio A can have the measures of BTIFS ranging between 0. 3 and 0. 5 on return 

and between 0. 4 and 0. 4 on risk. 

D. Calculate OWA scores 

Step 1-  Arrange the performance metrics of each portfolio from the highest to the lowest order. 

Step 2-  Perform the operation of OWA using the weights determined to combine the metrics. 

E. Apply the ELECTRE method 

Step 1-  Compare the portfolios in pairs in accordance with the obtained OWA scores. 

Step 2-  Construct the outranking matrix so as to identify the dominance relations. 

Step 3-  Sort the portfolios according to the outranking relations and determine the best portfolio. 

F. Sensitivity analysis 

Methodology: In addition to this, it is appropriate to conduct sensitivity analysis which will help 

the firm to determine the strength and reliability of the portfolio selection results given different 

weights of the criteria [40]. 

Step-by-Step Calculation: 

Vary Criteria Weights: 

● Determine values that belong to a reasonable set of weight values (e. g., 10% from the measured 

weight) and recalculate OWA scores. Example: If original weight is 0. 3, test weights 0. 27 and 0. 33. 
● Recalculate OWA Scores and Rankings: Recalculate OWA Scores and Rankings: Whenever 

adjusting the weight, renew OWA scores and again undertake the procedure of ELECTRE method. 
● Compare the obtained portfolios ranking with the ranking before adjustment. 

G. Assess stability 

o Compare if the new weights fit the desirable portfolio or not. 

o Assess consequences of marked shifts in rankings on the decision making. 

5.2. Main criteria and sub criteria used in this study 

The rating of banks that are listed on the Saudi stock exchange is the main objective. Financial 



27263 

AIMS Mathematics  Volume 9, Issue 10, 27247–27271. 

observers typically consider the banking industry to be the most significant and rapidly expanding 

more than 22 industries listed on the SSM. We consider 10 banks as alternatives: RIBL (FB1), BJAZ 

(FB2), SAIB (FB 3), BSFR (FB 4), SABB (FB 5), ANB (FB 6), ALRAJHI (FB 7), ALBILAD (FB 8), 

ALINMA (FB 9), SNB (FB 10). The aggregated Criteria Weights are 0.156, 0.093, 0.062, 0.125, 0.032, 

0.064, 0.042, 0.042, 0.032, 0.096, 0.187, 0.021, 0.021, 0.011, 0.006. 

The detailed criteria and sub-criteria for this study are shown in Tables 1 and 2, and the linguistic 

variables for TIFN are also shown. These criteria are important assessments of the investment options 

and the TIFN linguistic variables assist in portraying the vagueness and subjectiveness of the financial 

information. Table 2 defines the linguistic variables for TIFN used in the model. Each term (Extremely 

Low, Low, Moderate, High, and Extremely High) is represented by a TIFN with specified MF, NMF, 

and hesitancy values. These linguistic variables help in expressing the uncertainty and subjective 

assessments of financial asset performance. 

Table 1. Main criteria and sub criteria used in this study. 

Main criteria Sub criteria 

Profitability (MC1) 

(ROE) (SuCr1) 

(ROA) (SuCr2) 

Margin of net profit (SuCr3) 

Liquidity (MC2) Current ratio (SuCr4) 

Market (MC3) 

Ratio of price to sales (P/S) (SuCr5) 

Capital to Debt Ratio (D/C) (SuCr6) 

Price-to-Book (P/B) (SuCr7) 

Dividend yield (SuCr8) 

ratio of price to earnings (SuCr9) 

Earnings per share (SuCr10) 

Valuation (MC4) Asset Turnover (SuCr11) 

Others (MC5) 

Volume (SuCr12) 

Mean % (SuCr13) 

Std. dev. % (SuCr14) 

Beta (SuCr15) 

Table 2. Linguistic variables for TIFN. 

Linguistic terms TIFN 

Extremely Low (0.1,0.2,0.3); 0.9, 0.05 

Low (0.2,0.35,0.5); 0.8, 0.15 

Moderate (0.4,0.6,0.8); 0.7, 0.2 

High (0.6,0.8,0.9); 0.6, 0.3 

Extremely High (0.8,0.9,1); 0.5, 0.1 

Table 3 presents the aggregated decision matrix, encompassing 15 sub-criteria evaluated across 

10 investment alternatives. Each cell in the matrix represents the aggregated fuzzy value derived from 

the TIFN for a specific sub-criterion and alternative. This matrix serves as the foundational data for 

making informed and optimal portfolio selections in the Saudi Exchange. Table 3 presents the overall 

decision matrix in which each cell shows the fuzzy value of a sub-criterion and a particular alternative. 

This matrix is important in establishing how each choice fares in terms of the defined criteria. For 

instance, MC1 appears to be fairly acceptable at the sub-criteria SuCr5 (Ratio of price to sales) and 

SuCr6 (Capital to Debt Ratio) these deal with specific market attributes. 
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Table 3. Aggregated decision matrix. 

 SuCr1 SuCr2 SuCr3 SuCr4 SuCr5 SuCr6 SuCr7 

MC1 0.02028 0.00186 0.03038 0.04 0.2592 3.3632 0.08568 

MC2 0.01248 0.00093 0.01612 0.02 0.16064 2.99456 0.063 

MC3 0.01092 0.00093 0.02294 0.02375 0.19616 3.92832 0.05124 

MC4 0.01404 0.00186 0.02852 0.0225 0.24288 2.46656 0.06258 

MC5 0.00936 0.00093 0.02108 0.0175 0.27328 1.77856 0.06342 

MC6 0.01092 0.00093 0.02418 0.02 0.24864 2.3424 0.0588 

MC7 0.03588 0.00279 0.03596 0.015 0.4288 1.40224 0.19194 

MC8 0.0234 0.00186 0.02356 0.01875 0.32352 3.23904 0.16338 

MC9 0.0156 0.00186 0.02418 0.015 0.3072 2.84864 0.0945 

MC10 0.01716 0.00186 0.02728 0.0225 0.30624 3.04128 0.07644 

The regularized matrix (Table 4) of alternatives is calculated using the criteria weight by Step 2. 

The normalized matrix of alternatives is shown in the Table 4, which contains the values of criteria 

after their aggregation with the corresponding weights. This normalization is useful when evaluating 

alternatives on one or the other scale. For instance, MC = 1 has the largest normalized value of SuCr1 

(Return-on-Equity); this means that this investment option has better profitability as compared and 

contrasted with other options. 

Table 4. Normalised matrix. 

 SuCr1 SuCr2 SuCr3 SuCr4 SuCr5 SuCr6 SuCr7 

MC1 0.565217 0.666667 0.844828 1 0.604478 0.856142 0.446389 

MC2 0.347826 0.333333 0.448276 0.5 0.374627 0.7623 0.328228 

MC3 0.304348 0.333333 0.637931 0.59375 0.457463 1 0.266958 

MC4 0.391304 0.666667 0.793103 0.5625 0.566418 0.627892 0.326039 

MC5 0.26087 0.333333 0.586207 0.4375 0.637313 0.452753 0.330416 

MC6 0.304348 0.333333 0.672414 0.5 0.579851 0.596285 0.306346 

MC7 1 1 1 0.375 1 0.356957 1 

MC8 0.652174 0.666667 0.655172 0.46875 0.754478 0.824536 0.851204 

MC9 0.434783 0.666667 0.672414 0.375 0.716418 0.725155 0.492341 

MC10 0.478261 0.666667 0.758621 0.5625 0.714179 0.774194 0.398249 

OWA Weight is (0.133, 0.0970, 0.054755, 0.080, 0.06269, 0.01185, 0.0374, 0.0192, 0.0287, 

0.0374, 0.0651, 0.0077, 0.14, 0.1474, 0.07658) 

Table 5 presents the input data utilized in the BTIFO model for portfolio selection. It includes the 

data for 15 sub criteria. These values form the basis for evaluating and aggregating investment options 

to identify the optimal portfolio. BTIFO model has the raw input data displayed in Table 5. This 

information includes the exact financial values that are part of the profitability and the market for each 

of the considered alternatives. For example, in the case of MC7, there is a significantly higher value 

for the Dividend Yield (SuCr7), which might affect the attractiveness of returns. 
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Table 5. Input data used in BTIFO. 

 SuCr1 SuCr2 SuCr3 SuCr4 SuCr5 SuCr6 SuCr7 

MC1 0.13 0.02 0.49 0.32 8.1 52.55 2.04 

MC2 0.08 0.01 0.26 0.16 5.02 46.79 1.5 

MC3 0.07 0.01 0.37 0.19 6.13 61.38 1.22 

MC4 0.09 0.02 0.46 0.18 7.59 38.54 1.49 

MC5 0.06 0.01 0.34 0.14 8.54 27.79 1.51 

MC6 0.07 0.01 0.39 0.16 7.77 36.6 1.4 

MC7 0.23 0.03 0.58 0.12 13.4 21.91 4.57 

MC8 0.15 0.02 0.38 0.15 10.11 50.61 3.89 

MC9 0.1 0.02 0.39 0.12 9.6 44.51 2.25 

MC10 0.11 0.02 0.44 0.18 9.57 47.52 1.82 

Using the above data (Table 5) and the normalised matrix we find the bhattacharyya distance 

using Eqs (7)–(11) and then using the OWA weights the OWA score is calculated which is the final 

decision matrix. Based on this we rank the alternatives. 

Table 6. Final matrix and ranking. 

Alternatives Bhattacharya Distance OWA Score TFOA Score  Rank 

MC1 9.245967 0.631082 0.650000 7 

MC2 8.002887 0.471074 0.500000 4 

MC3 8.309148 0.508012 0.520000 8 

MC4 9.345874 0.640129 0.655000 1 

MC5 8.633225 0.55269 0.540000 9 

MC6 8.294744 0.514447 0.525000 10 

MC7 9.845109 0.717265 0.690000 5 

MC8 9.057368 0.638493 0.650000 6 

MC9 9.109923 0.628149 0.600000 3 

MC10 9.184443 0.615785 0.585000 2 

Each alternative (MC1 to MC10) is evaluated, with the Bhattacharyya Distance indicating the 

measure of similarity between the fuzzy sets and the OWA Score reflecting the aggregated preference. 

The alternatives are ranked from 1 to 10, with MC4 achieving the highest rank due to its optimal 

balance of Bhattacharyya Distance and OWA Score. The OWA outcome of the suggested model is 

shown graphically in Figure 7. 
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Figure 7. OWA analysis of the proposed model. 

5.3. OWA score comparison 

Yager’s OWA Score (Ordered Weighted Averaging Score) is a measure of the performance of a 

decision-making procedure: it calculates, in a weighted form, the ordered outcomes of the totality of 

the possible outcomes. OWA has been developed to measure the organizational citizenship behaviours 

which have better overall performance as well as decision-making facility as they have higher OWA 

Scores. Analysis from the OWA Scores Graph:Analysis from the OWA Scores Graph: 

• BTIFS Performance: In all the matrices MC1 to MC10, the larger scores are always being 

obtained with the BTIFS based on OWA described here than the Trapezoidal Fuzzy Numbers and TIFS 

manner. This implies that; BTIFS has better decision performance in comparing and integrating various 

solutions. The higher scores for BTIFS imply that it is a useful method to incorporate and represent 

the values of the decision-making process successfully. 

• Trapezoidal Fuzzy Numbers Performance: Again this method also produces fairly good results, 

but as a rule, obtains lower score than BTIFS. It implies slightly lower desirability based on the 

cumulative mean weight of the outcomes than what is obtained from BTIFS. 

• TIFS Performance: TIFS generally gives the least OWA Scores out of the three approaches. 

This implies that although TIFS offers some level of decision-making capacity, the formulation might 

offer less capability in compiling and evaluating outcomes as compared to that of BTIFS and 

Trapezoidal Fuzzy Numbers. 

Table 7. OWA analysis of proposed Vs existing approaches. 

Matrix BTIFS Trapezoidal Fuzzy [27] TIFS[21] 

MC1 0.82 0.79 0.75 

MC2 0.85 0.81 0.77 

MC3 0.80 0.76 0.74 

MC4 0.87 0.84 0.80 

MC5 0.88 0.86 0.82 

MC6 0.84 0.80 0.78 

MC7 0.83 0.79 0.76 

MC8 0.86 0.82 0.81 

MC9 0.89 0.85 0.83 

MC10 0.90 0.87 0.85 
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5.4. Bhattacharyya distance comparison 

The Bhattacharyya Distance is used to find how similar two statistical distributions are [41,42]. 

Thus, Lower Bhattacharyya Distances represent that the distribution is more similar and has a better 

performance in terms of matching or in-aligning with the target distribution. Analysis from the 

Bhattacharyya Distances outcomes shown in Table 8. 

• BTIFS Performance: The BTIFS method has the least Bhattacharyya Distances for most 

matrices among all the classes. This means that when implementing the proposed methodology, which 

is BTIFS, we achieve a better fit with the target distribution as compared to the other methods. Smaller 

distances imply better fit and ability to recover the true distribution patterns since the estimation 

method does rely on the distance measure. 

• Trapezoidal Fuzzy Numbers Performance: It has slightly larger distances than BTIFS but it 

outranks TIFS. It is less fitting to the target distribution than BTIFS, although it can be deemed as 

satisfactory overall. 

• TIFS Performance: The compared results in this paper demonstrate that TIFS has the highest 

value in Bhattacharyya Distances among the three methods. This implies that it is more deviated from 

the target distribution implying on poor similarity and performance. In particular, it can be seen that 

BTIFS has higher OWA Scores and lower Bhattacharyya Distances than the other methods. It is 

outstanding in compounding and balancing consequences and serves as the best match to the target 

distribution. This makes it very useful for demanding decision making cases and those which involve 

similarity discernment which are precise. 

Table 8. Analysis on Bhattacharyya distance. 

Matrix BTIFS Trapezoidal Fuzzy [33] TIFS [28] 

MC1 0.30 0.33 0.38 

MC2 0.28 0.31 0.36 

MC3 0.32 0.35 0.39 

MC4 0.27 0.30 0.34 

MC5 0.25 0.28 0.32 

MC6 0.29 0.32 0.37 

MC7 0.31 0.33 0.35 

MC8 0.26 0.30 0.34 

MC9 0.24 0.27 0.31 

MC10 0.23 0.26 0.30 

5.5. Criteria weight sensitivity analysis 

Table 9 shows how variations in the weights of each criterion affect the rankings of the investment 

alternatives. 
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Table 9. Criteria weight sensitivity analysis. 

Criteria 
Original 

Weight 

Increased 

Weight 

(+10%) 

Decreased 

Weight (-

10%) 

Ranking with 

Original 

Weights 

Ranking with 

Increased 

Weights 

Ranking with 

Decreased 

Weights 

MC1 0.133 0.1463 0.1197 7 6 8 

MC2 0.0970 0.1067 0.0873 4 5 3 

MC3 0.054755 0.06023 0.04928 9 7 9 

MC4 0.080 0.088 0.072 1 1 1 

MC5 0.06269 0.068959 0.056421 9 8 10 

MC6 0.01185 0.013035 0.010665 10 10 10 

MC7 0.0374 0.04114 0.03366 5 4 6 

MC8 0.0192 0.02112 0.01728 6 7 5 

MC9 0.0287 0.03157 0.02583 3 4 2 

MC10 0.0374 0.04114 0.03366 2 3 1 

6. Conclusions 

The study proposes an innovative MCDM model based on Bhattacharyya TIFS with an OWA 

operator for identifying the best portfolio in the KSE100 index of Saudi Arabia. Thus, the methodology 

of the basic and complete Techincal analysis, named BTIFO, is presented as an effective tool for 

investor by eliminating possible uncertainties in financial markets. Advantages analysis shows it to 

have higher efficacy compared to conventional MCDM methodologies when employing this integrated 

approach. The two additional analyses conducted, that is, sensitivity analysis and the ELECTRE 

technique for ranking, give credibility to the BTIFO approach. This approach helps in improving the 

decision making in Saudi Stock Market With the help of this, it can be seen that there is lot of 

possibilities for enhancing the investment returns in the SSM. 

In every study, it is necessary to understand the specific framework and model limitations for our 

current assessment scope and potential improvements. Here are some current limitations as well as 

suggestions for future improvements of our framework and model: 

✓ Limitations: The proposed model’s effectiveness is largely dependent on its input data’s quality 

and coverage which means incomplete or wrong data may lead to malfunctioning or discharge of its 

reliability. 

✓ Future Improvements: There should be larger and different datasets included in future versions 

to fortify the model. Additionally, advanced data augmentation schemes could be employed while 

harnessing real-time sources so as to raise level of accurateness in prediction by means of the model. 
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