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Abstract: In today's rapidly evolving digital landscape, secure data transmission and exchange are 

crucial for protecting sensitive information across personal, financial, and global infrastructures. 

Traditional cryptographic algorithms like RSA and AES face increasing challenges due to the rise of 

quantum computing and enhanced computational power, necessitating innovative approaches for data 

security. We explored a novel encryption scheme leveraging the quadratic chaotic map (QCM) 

integrated with the Fibonacci sequence, addressing key sensitivity, periodicity, and computational 

efficiency. By employing chaotic systems' inherent unpredictability and sensitivity to initial conditions, 

the proposed method generates highly secure and unpredictable ciphers suitable for text and image 

encryption. We incorporated a combined sequence from the Fibonacci sequence and QCM, providing 

enhanced complexity and security. Comprehensive experimental analyses, including noise and 

occlusion attack simulations, demonstrate the scheme's robustness, resilience, and practicality. The 

results indicated that the proposed encryption framework offers a secure, efficient, and adaptable 

solution for digital data protection against modern computational threats. 
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1. Introduction 

In the rapidly advancing landscape of modern society, the significance of secure digital data 
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transmission and exchange is paramount. From personal communications and financial transactions to 

critical infrastructure management and global business operations, the seamless flow of information 

underpins virtually every aspect of contemporary life. Ensuring the security of this data is essential, as 

breaches can lead to personal privacy violations, economic disruptions, and national security threats. 

Conventional cryptographic algorithms, such as RSA, AES, and DES, have long been the cornerstone of 

data security, relying on complex mathematical principles and large key sizes for robust protection 

against unauthorized access. However, they face challenges as computational power grows exponentially, 

making brute force attacks more viable, and the emergence of quantum computing poses a significant 

risk, potentially allowing quantum algorithms to decrypt data much faster than classical computers. 

Considering these challenges, the relationship between chaos theory and cryptography offers a 

promising avenue for enhancing data security. Chaos theory, a branch of mathematics focused on 

complex and dynamic systems that are highly sensitive to initial conditions, provides a novel 

framework for encryption. The inherent unpredictability and sensitivity in chaotic systems make them 

extraordinarily difficult to decipher without the correct key. These systems are deterministic yet appear 

random, making it nearly impossible to predict their behavior without precise knowledge of the initial 

conditions. This deterministic chaos ensures that even minor changes in input can lead to vastly 

different outputs, providing a high level of security against attempts to reverse-engineer the encryption 

process. The behavior of chaotic systems, characterized by their sensitivity to initial conditions, 

topological mixing, and dense periodic orbits, aligns well with the requirements for secure encryption 

and digital content exchange. 

Researchers have highlighted several advancements in chaos-based cryptosystems, including 

Logistic Map with DNN, Henon Map with ANN, Arnold Cat Map, JPEG Compatible Encryption, 

Reverse Zigzag, DNA Diffusion, and Hyperchaotic Attractors. The following are detailed overviews 

of these methods and their challenges: 

• Logistic Map with DNN: The integration of logistic maps with DNNs for image encryption 

leverages the chaotic properties of logistic maps and the adaptive learning capabilities of DNNs to 

enhance encryption robustness. Logistic maps generate pseudo-random sequences that are highly 

sensitive to initial conditions, making them suitable for creating encryption keys. These keys are then 

processed by a DNN, which has been trained on image data to understand and transform chaotic 

sequences effectively. This combination ensures that the encryption keys are both unpredictable and 

complex, significantly improving the security of the encrypted images [1]. Several researchers have 

demonstrated improved encryption quality, key sensitivity, and robustness against several attacks 

through various deep learning and neural networks based intelligent mechanisms [2,3,4,5]. However, 

the integration of logistic maps with DNNs also presents challenges. Training the DNN requires 

substantial computational resources and large datasets, which can hinder practical implementation. 

Additionally, the system's security must be rigorously tested against various cryptographic attacks to 

ensure its robustness. The computational overhead introduced by the DNN processing phase must be 

balanced with the encryption's efficiency to make the method viable for real-time applications. 

Researchers are focused on optimizing the balance between security and computational efficiency to 

fully realize the potential of this innovative encryption approach [6,7]. 

• Henon Map with ANN: The integration of the Henon map with ANN in image encryption 

leverages the chaotic nature of the Henon map and the pattern recognition capabilities of ANN to 

enhance security. In this approach, the Henon map generates chaotic sequences that shuffle pixel 

positions in the image, introducing a high level of randomness. The ANN is trained with these 
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transformed images to learn and replicate the complex encryption patterns. During encryption, the 

ANN uses the chaotic sequences from the Henon map to encrypt new images dynamically, ensuring 

that each encryption instance is unique and secure [1,8,9]. However, these method faces several 

challenges, including key sensitivity, computational complexity, and robustness against attacks. Small 

variations in the Henon map's initial parameters can lead to significant differences in the encrypted 

output, complicating synchronization between encryption and decryption [10]. Additionally, training 

the ANN to accurately learn and apply chaotic transformations requires substantial computational 

resources and time. Ensuring the system's robustness against modern cryptographic attacks and finding 

optimal parameters for both the Henon map and ANN are crucial for practical implementation [11,12]. 

• Arnold Cat Map: The Arnold Cat Map is widely used in image encryption due to its ability to 

thoroughly shuffle pixel positions, creating a seemingly random distribution that enhances security. 

Statistically, it transforms pixel coordinates using a specific matrix operation, and when iterated 

multiple times, it effectively disrupts spatial correlations in the image, making it difficult to decode 

without the correct key [13,14]. However, the map's periodic nature, where the image can revert to its 

original state after a certain number of iterations, poses a security risk if the number of iterations is 

known. To mitigate this, it is often combined with other chaotic systems or neural networks, enhancing 

the complexity and unpredictability of the encryption process [1,15]. Despite its advantages, the 

Arnold Cat Map faces challenges such as limited key space and statistical predictability due to its 

deterministic nature [16]. The periodicity can be exploited by attackers to reverse the encryption. 

Combining the Arnold Cat Map with other chaotic maps or cryptographic techniques can address these 

issues, offering a more secure and robust encryption solution. For instance, integrating it with the 

Henon map or Logistic map adds additional layers of security, while hybrid systems incorporating 

neural networks can further enhance resistance to attacks. 

• JPEG Compatible Encryption: JPEG compatible encryption integrates encryption directly into the 

JPEG compression process, leveraging techniques such as modifying Discrete Cosine Transform (DCT) 

coefficients and permuting AC and DC coefficients. These methods ensure that the encrypted image retains 

its JPEG format while enhancing security [17]. For instance, permuting the DCT coefficients or scrambling 

the blocks of an image based on chaotic sequences disrupts the image content while maintaining the 

compression efficiency and image quality standards set by JPEG. This approach reduces computational 

overhead by combining encryption with compression, making it suitable for practical applications [18]. 

Key management and distribution are critical, as keys must be protected to ensure unauthorized users 

cannot decrypt the images. Balancing security and compression efficiency is also a concern, as encryption 

should not degrade the compression ratio or image quality. Additionally, maintaining computational 

efficiency while providing robust security and ensuring that encrypted images remain compatible with 

standard JPEG decoders are essential for the practical application of these methods [19]. These challenges 

necessitate ongoing research to optimize JPEG compatible encryption techniques. 

• Reverse Zigzag and DNA Diffusion: The reverse zigzag and DNA diffusion method for image 

encryption combines advanced traversal and encoding techniques to significantly enhance security. 

The reverse zigzag algorithm modifies the traditional pixel traversal order, making the scrambling 

process more unpredictable and resistant to attacks that exploit predictable patterns. Once the pixels 

are scrambled, DNA diffusion is applied, wherein pixel values are converted into DNA sequences and 

manipulated using biological operations, such as complementary pairing [20,21]. This adds a layer of 

complexity and nonlinearity, making the encryption robust against differential and chosen-plaintext 

attacks. This dual approach leverages the strengths of both methods to provide a high level of security 
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in image encryption. Despite its strengths, the reverse zigzag and DNA diffusion method faces 

challenges such as increased computational complexity and resource requirements. The 

implementation of DNA operations and managing the encryption keys can be intricate and demanding, 

potentially affecting scalability and compatibility with existing systems [22]. Moreover, the 

computational overhead might limit its applicability in real-time or large-scale image processing 

scenarios. These challenges highlight the need for further research and optimization to fully realize the 

potential of this advanced encryption technique [1]. 

• Hyperchaotic attractors: Hyperchaotic multi-wing attractors enhance image encryption by 

leveraging their complex dynamics and high sensitivity to initial conditions, which create highly 

unpredictable and secure encryption keys. These systems can generate larger key spaces compared to 

simpler chaotic systems, making them robust against brute-force attacks. The encryption process 

involves shuffling pixel positions and modifying pixel values based on the key stream derived from 

the hyperchaotic attractor, ensuring each pixel's value is intricately linked to the entire image content, 

thus complicating differential attacks [23,24]. However, the implementation of hyperchaotic multi-

wing attractors in image encryption faces significant challenges, such as computational intensity and 

sensitivity to initial parameter variations, which can hinder real-time applications and cause decryption 

failures if not precisely managed. Additionally, the complexity of accurately solving the associated 

differential equations and ensuring robustness against noise adds to the implementation challenges 

[25]. Despite these hurdles, ongoing research aims to optimize these systems to fully leverage their 

potential for secure image encryption. 

In addition to the above several challenges, chaos-based systems also face key sensitivity, 

periodicity, computational complexity, and resistance to modern attack issues. Although integrating 

chaotic systems with machine learning techniques, such as Logistic Map with DNN or Henon Map 

with ANN, offers promising encryption robustness, it introduces significant computational complexity 

and resource demands. These methods require substantial computational power and large datasets for 

training, posing a barrier to practical implementation, especially for real-time applications. Achieving 

a balance between security and computational efficiency remains a key challenge in the development 

of chaos-based cryptographic systems. While chaos-based encryption methods like the Arnold Cat 

Map effectively shuffle pixel positions to enhance security, their periodic nature poses a risk. If the 

periodicity of these systems is known, attackers can exploit it to reverse the encryption.  

To address the challenges faced by chaos-based systems, such as key sensitivity, periodicity, 

computational complexity, and resistance to modern attacks, we propose using a Quadratic Chaotic 

Map (QCM) with an initial condition generated by the Fibonacci series as a promising solution. Unlike 

methods that require substantial computational power and large datasets, such as Logistic Map with 

DNN or Henon Map with ANN, QCM provides robust encryption with lower computational overhead. 

The QCM generates pseudo-random sequences with high sensitivity to initial conditions, making the 

encryption phenomenon difficult to predict or decipher, thus defending against brute force and 

quantum-based decryption attempts [26]. Additionally, QCM mitigates the periodicity issue found in 

methods like the Arnold Cat Map by ensuring even minor changes in initial conditions lead to vastly 

different outcomes, reducing the risk of periodicity exploitation. This continuous, non-repetitive 

behavior enhances the overall security and makes QCM significantly more resistant to reverse-

engineering attempts. Therefore, integrating QCM into cryptographic systems addresses key security 

challenges and offers a more secure, efficient, and robust framework for digital data encryption in the 

face of modern computational threats. 
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The article is structured as follows: In Section 2, we cover the preliminaries necessary for 

understanding the research. In Section 3, we detail the proposed encryption algorithm. We present the 

experimental results for text and image encryption in Section 4. In Section 5, we discuss the 

performance analysis, comparing it with existing cryptographic methods. Finally, we with the key 

findings and implications of the study in Section 6. 

2. Preliminaries 

This section provides essential derivations that will be utilized in various sections of this article. 

We compare the chaotic properties of the classical quadratic chaotic map with our proposed one. 

Additionally, we explore the Fibonacci sequence, key space, and the relationship between the chaotic 

map and the Fibonacci sequence. 

2.1. Quadratic chaotic map 

QCMs are used to generate sequences that exhibit sensitive dependence on initial conditions, 

making them useful for applications requiring pseudo randomness, such as in cryptography and 

optimization algorithms. These are critical in enhancing evolutionary algorithms by avoiding local 

optima and speeding up convergence. The classical quadratic chaotic map is given by 𝑋𝑛+1 = 𝑟 − 𝑋𝑛
2, 

whereas the proposed modified quadratic chaotic map in this article is: 

                        𝑋𝑛+1 = 𝑟 + (1 − 𝑎𝑋𝑛
2),                            (1) 

where n represents the number of iterations, r is the chaotic parameter, and a is a scaling factor that 

introduces a nonlinearity in the map, enabling finer control over the chaotic behaviour, which can be 

tuned to fit specific requirements in applications where varied levels of unpredictability might be 

desired. We evaluated several analyses, such as iteration property, bifurcation analysis, and the 

Lyapunov exponent, for both maps as follows: 

2.1.1. Iteration property 

These properties highlight how the sequence evolves over iterations at different parameter values, 

illustrating the map's dynamics graphically. This visualization benefits in understanding the practical 

implications of the theoretical parameters. For a specific value of X0, the iteration plot defines the 

relationship between the number of iterations and the chaotic map at different values of r. The behavior 

of the classical and proposed quadratic maps can be categorized into three regions based on r, as 

follows: 

• Classical QCM 

Non-chaotic region: For 𝑟 ∈ [0,0.74], values converge to the same result after several iterations, 

Figure 1 (a). 

Periodic: For 𝑟 ∈ [0.74,1.4], system exhibits periodic behaviour, Figure 1 (b). 

Chaotic region: For 𝑟 ∈ [1.4,2], system exhibits chaotic behaviour, Figure 1 (c). 

• Proposed modified QCM 

For a = 2 

Chaotic region: For 𝑟 ∈ {[0,0.15], [0.55,1.15], [1.55,2.15], . . . } , system exhibits chaotic 

behaviour, Figure 1 (d). 

Periodic: For 𝑟 ∈ {[0.15,0.27], [1.15,1.27], [2.15,2.27], . . . }, system exhibits periodic behaviour, 

Figure 1 (e).  
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Non-chaotic region: For 𝑟 ∈ {[0.27,0.55], [1.27,1.55], [2.27,2.55], . . . }, values converge to the 

same result after several iterations, Figure 1 (f). 

For a=4 

Chaotic region: For 𝑟 ∈ {[0,0.11], [0.27,1.11], [1.27,2.11], . . . } , system exhibits chaotic 

behaviour, Figure 1 (g).  

Periodic: For 𝑟 ∈ {[0.11,0.2], [1.11,1.2], [2.11,2.2], . . . } , system exhibits periodic behaviour, 

Figure 1 (h). 

Non-chaotic region: For 𝑟 ∈ {[0.2,0.27], [1.2,1.27], [2.2,2.27], . . . }, same result produced after 

several iterations, Figure 1 (i). 

   

(a) (b) (c) 

   
(d) (e) (f) 

 
  

(g) (h) (i) 

Figure 1. Iteration analyses of classical and proposed QCM at 𝑋0 = 0.02: (a-c) Iteration 

analysis of classical map at 𝑟 = 0.25, 0.8, and 1.9; (d-f) Iteration analysis of proposed QCM 

at a = 2 and r = 0, 0.25, and 0.4; (g-i) Iteration analysis of proposed QCM at 

a = 4 and r = 0, 0.18, and 0.2. 
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2.1.2. Bifurcation analyses 

By systematically varying r and observing changes in the system's dynamics, we can identify 

regions of stability, periodicity, and chaos. This analysis is critical for tuning the parameters in 

applications to ensure the desired behavior is achieved consistently. The observed behaviors for 

parameter r were as follows: 

• Classical QCM 

In a classical map, as presented in Figure 2 (a); for the convergence region 𝑟 ∈ [0, 0.74], 

Bifurcation region 𝑟 ∈ [0.74,1.4], and Chaos region at 𝑟 ∈ [1.4,2]. 

• Proposed modified QCM 

The modified quadratic map with scaling factor a = 2 produces convergence region 𝑟 ∈

{[0.27,0.55], [1.27,1.55], [2.27,2.55], . . . } , bifurcation region 𝑟 ∈ {[0.15,0.27], [1.15,1.27],

[2.15,2.27], . . . } and chaos region 𝑟 ∈ {[0,0.15], [0.55,1.15], [1.55,2.15], . . . }, as presented in Figure 

2 (b). 

The modified quadratic map with scaling factor a = 4 produces convergence region 𝑟 ∈

{[0.2,0.27], [1.2,1.27], [2.2,2.27], . . . }, bifurcation region 𝑟 ∈ {[0.11,0.2], [1.11,1.2], [2.11,2.2], . . . } 

and chaos region 𝑟 ∈ {[0,0.11], [0.27,1.11], [1.27,2.11], . . . } , as presented in Figure 2 (c). 

2.1.3. Lyapunov exponent 

The Lyapunov exponent, λ, quantifies the rate of separation of infinitesimally close trajectories, 

providing a measure of the chaotic nature of the map. It measures sensitive dependence for initial 

conditions as follows [15,16]: 

                        𝜆(𝑥0) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝑙𝑛|𝑓′(𝑥𝑖)|∞

𝑖=1 .                           (2) 

where 𝑓′ is the derivative of the function 𝑓. A positive 𝜆 indicates chaos, 𝜆 = 0 indicates stability, 

and a negative 𝜆  indicates non-chaotic behavior. The maximal Lyapunov exponent (MLE) is the 

largest 𝜆. 

• Classical QCM 

Positive and chaotic behavior for 𝑟 ∈ [1.4,2], with MLE = 0.67, Figure 2 (d). 

• Proposed modified QCM 

Positive and chaotic behavior for 𝑟 ∈ {[0,0.15], [0.55,1.15], [1.55,2.15], . . . }, with MLE = 0.673 

at a given value of 𝑎 = 2, Figure 2 (e). 

Positive and chaotic behavior for 𝑟 ∈ {[0,0.11], [0.27,1.11], [1.27,2.11], . . . }, with MLE = 2.025 

at a given value of 𝑎 = 4, Figure 2 (f). 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Figure 2. Bifurcation and Lyapunov exponent analyses for classical and proposed QCM 

at 𝑋0 = 0.02: (a) Bifurcation analysis of classical QCM, (b-c) Bifurcation analysis of 

proposed QCM at 𝑎 = 2 and 𝑎 = 4, (d) Lyapunov exponent of classical QCM, and 

(e-f) Lyapunov exponent of proposed QCM at 𝑎 = 2 and 𝑎 = 4. 
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2.2. Fibonacci sequence and key space integration 

Utilizing Fibonacci numbers as part of the key space provides a mathematical and natural 

sequential foundation that can enhance the complexity and security of the key generation process. In 

cryptography, selecting indications from the Fibonacci sequence based on portions of a key can 

generate a sequence that is less predictable than linear congruential generators or simple pseudorandom 

number generators. 

In practical implementation, we split a binary key into two parts where one governs the starting 

point in the Fibonacci sequence and the other adjusts the parameters in the chaotic map, offering a high 

degree of unpredictability and customization in cryptographic applications. However, the Fibonacci 

sequence is defined as 𝑋𝑛 = 𝑋𝑛−1 + 𝑋𝑛−2 . The initial numbers are 0 and 1, and each subsequent 

number is the sum of the previous two. 

The key space involves using the Fibonacci sequence and the sequence generated by the proposed 

chaotic map. For a 16-bit key, the first 8 bits select the Fibonacci series, and the remaining 8 bits select 

the range of the proposed quadratic chaotic map. For example, the key '35884' converts to binary 

'1000110000101100'. Splitting it into '10001100' and '00101100’ and converting to decimals gives 140 

and 44, respectively. The Fibonacci series starts from m140 and the quadratic map from n44 up to the 

required range. 

3. Methodology 

We proposed the structure in Figure 3 and explained the methodology steps, which integrate the 

Fibonacci sequence and the quadratic chaotic map for encryption purposes as follows: 

Input Key: The process starts with a cryptographic key, which is used to initialize the system. The 

key is split into two parts: one for the Fibonacci sequence and the other for the quadratic chaotic map, 

enhancing the unpredictability and complexity of the system. 

Sequence Generation: Using part of the key, a starting point is selected in the Fibonacci sequence. 

The sequence acts as a source of pseudorandom numbers that are less predictable than traditional linear 

congruential generators. 

Map Initialization: The other part of the key is used to set the parameters of the quadratic chaotic 

map. The map's equation generates a chaotic sequence based on the initial condition and parameters. 

The chaotic sequence provides randomness needed for cryptographic security by exploiting the map's 

sensitivity to initial conditions. 

Combining Sequences: The Fibonacci sequence and the quadratic chaotic map sequence are 

multiplied. This operation combines the characteristics of both sequences to generate a new sequence 

with enhanced chaotic properties. 

Modulo Operation: The modulo operation ensures that the numbers are within the valid range for 

the specific data type (alphabet for text, color values for images). For text data, the resulting sequence 

is reduced modulo 26 (the number of letters in the English alphabet) to produce numerical equivalents 

of letters. For image data, the sequence is reduced to modulo 256 to fit the 8-bit range of RGB color 

values. 

Text and Image Input: The system accepts both text and image inputs for encryption. Text is 

converted to numerical form based on its alphabet position, while images are broken down into their 

RGB components. 
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Figure 3. Proposed methodology for data encryption. 

Encryption Process: The bitwise XOR operation is performed between the modulo result and the 

numerical representation of the input data (text or image). XOR is a common cryptographic technique 

due to its reversibility. It scrambles the data, making it difficult to retrieve without the correct key. 

Result: The final output is the encrypted version of the input data, whether it is text or image. This 

encrypted data is secure and can be decrypted using only the correct key. 

The combination of the Fibonacci sequence and the quadratic chaotic map ensures that the 

encryption is robust, leveraging both mathematical sequences and chaotic dynamics for enhanced 

security. Moreover, by adjusting the key and map parameters, the system can be tailored to meet 

specific security requirements or constraints; this methodology is also applicable to both text and 

image data, making it suitable for various cryptographic applications. 

4. Experimental results 

The experimentation section evaluates the robustness and sensitivity of the proposed encryption 

scheme by analyzing its behavior when there is a 1-bit change in the key. The experiments are 

performed on both texts, in Table 1, and images, in Table 2, by applying the proposed scheme, with 

key 1000110000101100, 𝑋0 = 0.02, 𝑟 = 0, and 𝑎 = 4, to illustrate the effectiveness and security of 

the encryption and decryption processes. 
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4.1. Text analysis 

The encryption of text using the defined key and examining the effects of a 1-bit change in the 

key during decryption are determined as follows: 

• Two different texts are encrypted using the same key, as presented in Table 1, resulting in different 

cipher texts. The encryption process utilizes the combined sequences generated from the quadratic 

chaotic map and Fibonacci sequence to create a cipher text that is highly dependent on the initial key. 

This demonstrates the sensitivity of the chaotic map and Fibonacci sequence integration in generating 

unique outputs. 

• The decryption process is attempted with a 1-bit change in the original key, either affecting the 

quadratic chaotic map or the Fibonacci sequence. Each 1-bit change results in a new cipher that bears 

no resemblance to the original cipher text or the original plain text, illustrating the scheme's sensitivity 

to initial conditions. This highlights the security features of the scheme, as a minor alteration in the 

key significantly alters the decryption output, preventing unauthorized access to the original message. 

Successful decryption back to the original text is achieved only when the same key used for encryption 

is applied, ensuring that the encryption and decryption processes are perfectly reversible and secure 

with the correct key. 

Table 1. Encryption and decryption analysis of a proposed scheme at text. 

Algorithm Text Key Result 

Encryption 
UNDIFFERENTIATED 1000110000101100 CDXFTRTYWEQDCVXS 

CHARACTERIZATION 1000110000101100 KHJELBMLHMBFERJG 

Decryption 

CDXFTRTYWEQDCVXS 1000110000101110 XXTUYBGFFPIDQWQL 

CDXFTRTYWEQDCVXS 1100110000101100 RTNGBHJUEDVCCXOH 

KHJELBMLHMBFERJG 1000110000101101 RHNILKJOSDITGGMI 

KHJELBMLHMBFERJG 1000010000101100 UNHGMYTRSDFEVGER 

CDXFTRTYWEQDCVXS 1000110000101100 UNDIFFERENTIATED 

KHJELBMLHMBFERJG 1000110000101100 CHARACTERIZATION 

4.2. Image analysis 

The image encryption analysis is performed on samples from the SIPI image database [27], 

specifically focusing on “pepper’’ and “airplane” images. The process analyzes the impact on the RGB 

layers as follows: 

• Each pixel's RGB value is processed through the chaotic map and Fibonacci sequence-modulated 

key to produce an encrypted image. The method encrypts the image by applying the modulo operation 

(mod 256) to ensure pixel values remain within the valid color range. Different RGB layers are 

separately encrypted, resulting in scrambled images that reveal no visible information about the 

original images, depicted in Figure 4. 

• Decryption of images is analyzed by altering the key and using the original key to compare results. 

This process involves testing the sensitivity by altering the 2nd, 5th, 15th, and 16th bits of the key, 

presented in Table 2. Each alteration results in an image cipher that shows no resemblance to the 

original image, producing a distinct and scrambled image each time. This test confirms the encryption's 

resistance to slight changes in the key, ensuring security against brute-force attacks that might attempt 
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to guess the key. Accurate decryption to the original image is achieved only when the original key is 

used, confirming that the encryption process is fully reversible and secure when the correct key is 

employed. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

(i) (j) (k) (l) 

    

(m) (n) (o) (p) 

Figure 4. Plain and Encrypted layer-wise Pepper and Airplane images: (a-d) Plain Pepper 

image and its corresponding RGB content, (e-h) Encrypted Pepper image and its 

corresponding RGB content; (i-l) Plain Airplane image and its corresponding RGB content; 

and (m-p) Encrypted Pepper image and its corresponding RGB content. 



27232 

AIMS Mathematics  Volume 9, Issue 10, 27220–27246. 

Table 2. Decryption analyses for images with original and 1-bit change in key. 

 

Algorithm Image Key Result 

Encryption 
 

1000110000101100 

 

 

1000110000101100 

 

 

Decryption 

 

1000110000101110 

 

 

1100110000101100 

 

 

1000110000101101 

 

 

1000010000101100 

 

 

1000110000101100 

 

 

1000110000101100 

 

The experiments for both text and images demonstrate sensitivity, security, robustness, and 

practicality. The encryption scheme exhibits high sensitivity to changes in the key. Even a single-bit 

modification leads to significantly different outcomes, which is a desirable trait in cryptographic 

applications for preventing unauthorized access. Moreover, the combined use of a quadratic chaotic 

map and Fibonacci sequence ensures that the encryption process generates highly secure and 

unpredictable ciphers. The methodology shows robustness in encryption, maintaining data integrity 

and security even under attempts to use incorrect keys, as well as the ability to apply the same 

encryption process to both text and images. This highlights the versatility and practical application 
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potential of the proposed scheme in various domains that require secure data transmission and storage. 

5. Discussions 

To evaluate the performance and sensitivity of the proposed encryption scheme, we conducted a 

series of tests focusing on encryption and decryption processes. The tests include factual examinations, 

inconsistency detection, and sensitivity analyses on encrypted images using our developed approach. 

Various analytical techniques, such as histogram, entropy, correlation, differential attack, pixel 

similarity and difference, and noise and occlusion attack analyses, were employed to measure the 

algorithm's performance and resilience against real-world conditions. 

5.1. Entropy analysis 

Entropy analysis measures the randomness or uncertainty in the pixel distribution of an encrypted 

image, quantifying the average information content derived from the histogram [28–30]. It can be 

evaluated as: 

                   𝐻 = − ∑ 𝑝(𝑥) 𝑙𝑜𝑔2(𝑝(𝑥)),                          (3) 

where p(x) is the probability of a pixel having value x. Higher entropy values suggest a more random 

pixel distribution and greater security. Ideally, the entropy should be close to 8 for images with 256 

gray levels. Table 3 shows entropy values of encrypted images near 8, indicating a high level of 

randomness and security in the encryption. 

Table 3. Layer wise entropies of plain and encrypted content with the proposed 

methodology and comparison with SOTA approaches. 

Content  
Plain 

(Grey) 

Encrypted 

(Red) 

Encrypted 

(Green) 

Encrypted 

(Blue) 

Encrypted 

(Grey) 
 Ref. [29] Ref. [30] 

Pepper  7.7253 7.9979 7.9981 7.9989 7.9991  7.9990 7.9993 

Airplane  7.6879 7.9980 7.9984 7.9978 7.9993  7.9991 7.9993 

Lena  7.7502 7.9984 7.9985 7.9982 7.9992  7.9990 7.9975 

Baboon  7.7666 7.9984 7.9981 7.9980 7.9991  7.9991 7.9890 

House  7.5112 7.9984 7.9980 7.9982 7.9992  − − 

Sailboat  7.7675 7.9981 7.9983 7.9980 7.9991  7.9989 − 

5.2. Histogram analysis 

Histogram analysis provides insights into the statistical properties of an image by examining the 

distribution of pixel intensity values. This analysis detects irregularities, assesses uniformity, and 

identifies potential weaknesses in the encryption procedure [31,32]. We observed the histograms of 

the encrypted Pepper and Airplane images (Figure 5) show no discernible patterns or information about 

the original content, confirming the encryption scheme's robustness against statistical attacks. 

Moreover, uniform histograms of encrypted images indicate strong resistance to statistical attacks, 

as they differ significantly from those of plain images, demonstrating the effectiveness of the proposed 

algorithm. 
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(n) (o) (p) 

Figure 5. Histograms of plain and encrypted Pepper and Airplane images: (a-b) 

Histograms of Gray content for pepper image; (c-h) Histograms of RGB content for the 

pepper image; (i-j) Histograms of Gray content for the Airplane image; and (k-p) 

Histograms of RGB content for the Airplane image. 

5.3. Correlation analysis 

Correlation analysis evaluates the statistical relationships between pixel values within an 

encrypted image, focusing on how changes in one pixel affect adjacent pixels [33–35]. It can be 

evaluated as: 

             𝜌 =
𝐶𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
,                               (4) 

where 𝐶𝑜𝑣(𝑋, 𝑌)  is the covariance, and 𝜎𝑋  and 𝜎𝑌  are the standard deviations of X and Y. 

Correlation coefficients for adjacent pixels in encrypted images are close to zero (Table 4), indicating 

that the encryption scheme effectively disrupts patterns present in the original images. Scatter plots of 

pixel values in encrypted images (Figure 6 (d–f, j–l)) show no convergence towards a line, 

demonstrating the encryption's strength. 

Table 4. Correlation coefficients for the plain and encrypted contents and comparison with SOTA. 

Content Plain image  Encrypted image (proposed)  Ref. [33] 

 Horizontal Vertical Diagonal  Horizontal Vertical Diagonal  Horizontal Vertical Diagonal 

Pepper 0.9757 0.9779 0.9635  -0.0111 -0.0133 0.0052  −0.0236 −0.0084 −0.0351 

Airplane 0.9662 0.9639 0.9368  -0.0092 -0.0141 0.0052  −0.0057 −0.0246 −0.0034 

Lena 0.9719 0.9850 0.9593  -0.0083 -0.0140 0.0023  −0.0054 −0.0236 −0.0535 

Baboon 0.8534 0.7598 0.7300  -0.0091 -0.0122 0.0025  −0.0166 −0.0243 −0.1016 

House 0.9479 0.957 0.9132  -0.0082 -0.0032 -0.0026  −0.0187 −0.0038 −0.0356 

Sailboat 0.9737 0.9700 0.9569  -0.0029 -0.0014 0.0002  −0.0166 −0.0035 −0.0189 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Figure 6. Correlation analysis of horizontal, vertical, and diagonal adjacent pixels for 

Pepper and Airplane images. (a-f) Correlation analysis for the plain and encrypted content 

of Pepper image, (g-l) Correlation analysis for the plain and encrypted content of Airplane 

image. 
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5.4. Differential attack analysis 

Differential attack analysis assesses the encryption scheme's resistance to minor changes in the 

plaintext, using metrics such as NPCR (Number of Pixel Change Rate) and UACI (Unified Average 

Change Intensity) [36–38]. NPCR and UACI can be evaluated as: 

                           𝑁𝑃𝐶𝑅 =
𝑁−𝑀

𝑁
× 100%                          (5) 

𝑈𝐴𝐶𝐼 =
1

𝑁
∑

|𝐶𝑖−𝐶𝑖
′|

𝐿

𝑁
𝑖=1 × 100%      (6) 

where N is the total number of pixels, and M is the number of unchanged pixels, Ci and Ci′ are pixel 

values in the original and modified ciphertexts, respectively, and L is the maximum pixel value. High 

NPCR and UACI values (Table 5) indicate strong resistance to differential attacks, with significant 

changes in ciphertext resulting from minor changes in plaintext. 

Table 5. Differential analysis for the encrypted contents with the proposed methodology 

and comparison with SOTA. 

 Proposed Ref. [36] Ref. [37] Ref. [38]     

Content NPCR UACI NPCR UACI NPCR UACI NPCR UACI 

Pepper 99.89 33.48 99.60 33.48 99.57 33.26 99.89 33.38 

Airplane 99.92 33.47 99.61 33.50 99.63 33.58 99.95 33.34 

Lena 99.91 33.49 − − − − 99.91 33.41 

Baboon 99.91 33.42 99.60 33.42 99.62 33.26 99.88 33.36 

House 99.88 33.43 99.61 33.43 − − 99.86 33.31 

Sailboat 99.92 33.41 99.60 33.45 99.62 33.39 99.89 33.37 

5.5. Pixels’ similarity analyses 

Pixel similarity analysis quantifies the resemblance of correlated pixel values across different 

image regions. This analysis helps to assess how well the encryption scheme obscures the original 

image information [39]. The following measures were used: 

5.5.1. Structural Similarity Index Matrix (SSIM) 

SSIM evaluates the similarity between two images based on luminance, contrast, and structure. 

It provides a comprehensive measure of image quality by considering changes in structural information 

[40]. It can be evaluated as: 

       SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
,                       (7) 

where 𝜇𝑥 and 𝜇𝑦 are means of images x and y, 𝜎𝑥 and 𝜎𝑦 are standard deviations of x and y, 𝜎𝑥𝑦 

is covariance of x and y, and C1 and C2 are Constants for stability. 
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5.5.2. Normalized Cross-Correlation (NCC) 

NCC measures the similarity between two images by assessing the cross-correlation of their pixel 

values. It is effective for detecting shifts and correlations in the image structure [41]. It can be evaluated 

as: 

NCC(𝑥, 𝑦) =
∑(𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)

√∑(𝑥𝑖−𝜇𝑥)2 ∑(𝑦𝑖−𝜇𝑦)
2
,                             (8) 

where 𝑥𝑖 and 𝑦𝑖 are pixel values at corresponding positions, and 𝜇𝑥 and 𝜇𝑦 represent means of 

images x and y. 

5.5.3. Gradient Similarity Index (GSI) 

GSI evaluates the structural content by comparing image gradients [42]. It is particularly useful 

for assessing edge preservation in the encryption process and can be evaluated as: 

                           GSI(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+𝐶3

𝜎𝑥
2𝜎𝑦

2+𝐶3
,                             (9) 

where 𝜎𝑥 and 𝜎𝑦 are standard deviations of gradients of images x and y, and 𝐶3 is a constant for 

stability. 

Table 6 provides an overview of the similarity analysis results, revealing notable distinctions in 

structural attributes between original and encrypted content. The anticipated values for NCC and GSI 

approach zero, indicating significant dissimilarity among content variations. 

Table 6． Pixels’ similarity analysis for the plain-encrypted contents with the proposed 

methodology and comparison with SOTA. 

Content 
Proposed  Ref. [40]  Ref. [41] 

SSIM NCC GSI  SSIM NCC GSI  SSIM NCC GSI 

Pepper 0.00224 0.0028 0.0025  0.00113 0.0035 0.0029  0.3406 0.3039 0.2570 

Airplane 0.00121 00.32 0.0029  − − −  0.3429 0.2858 0.2708 

Lena 0.00132 0.0029 0.0028  0.00192 0.0027 0.0023  0.3016 0.3074 0.3098 

Baboon 0.00142 0.0034 0.0021  0.00161 0.0038 0.0016  0.4008 0.3495 0.3496 

House 0.00128 0.0022 0.0019  0.00124 0.0018 0.0019  0.2795 0.3200 0.2487 

Sailboat 0.00124 0.0031 0.0023  0.00126 0.0035 0.0018  0.3586 0.3681 0.3622 

5.6. Pixels’ difference analyses 

Pixel disparity analysis investigates differences between corresponding pixels in two images, 

providing insights into the performance of various image processing techniques, including encryption 

methods using three common measures, outlined in Table 7, as follows: 
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Table 7． Pixels’ difference analysis for the plain-encrypted contents with the proposed 

methodology and comparison with SOTA. 

Content 
Proposed  Ref. [43]  Ref. [44] 

MAE MSE PSNR  MAE MSE PSNR  MAE MSE PSNR 

Pepper 85.24 10189.31 7.62  75.25 8334 8.92  82.01 10074.0 8.098 

Airplane 79.81 10207.17 7.58  85.41 10,933 7.74  − − − 

Lena 81.75 9985.43 7.56  78.89 9290 8.45  77.40 8890.05 8.641 

Baboon 84.55 10048.52 7.68  76.48 8643 8.76  75.33 8345.25 8.916 

House 78.89 9991.82 7.72  − − −  75.31 8361.44 8.907 

Sailboat 82.73 10119.24 7.79  − − −  82.01 10063.3 8.103 

5.6.1. Mean absolute error (MAE) 

MAE determines the average absolute difference between corresponding pixels in two images. It 

provides a straightforward measure of the average magnitude of errors [43]. It can be computed as: 

MAE(𝑥, 𝑦) =
1

𝑁
∑ |𝑥𝑖 − 𝑦𝑖|𝑁

𝑖=1 ,                             (10) 

where 𝑁  signifies the total number of pixels, and 𝑥𝑖  and 𝑦𝑖  are pixel values at corresponding 

positions. 

5.6.2. Mean squared error (MSE) 

MSE estimates the average squared differences between corresponding pixels, emphasizing larger 

discrepancies compared to MAE [44]. It can be computed as: 

MSE(𝑥, 𝑦) =
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖)2𝑁

𝑖=1 .                             (11) 

5.6.3. Peak Signal-to-Noise Ratio (PSNR) 

PSNR assesses the ratio between the maximum possible signal value and the introduced noise, 

providing a measure of the quality of the encrypted image [45]. It can be evaluated as: 

PSNR(𝑥, 𝑦) = 10 ∙ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸(𝑥,𝑦)
),                      (12) 

where MAX represents the maximum possible pixel value (e.g., 255 for 8-bit images). Table 7, affirms 

substantial variance in pixel values between the source and encrypted images. MSE and PSNR 

variations indicate improved encryption quality with higher MSE and lower PSNR or vice versa. 

5.7. Pixels’ fidelity analyses 

Pixels’ fidelity analyses determine the quality of encryption by maintaining image fidelity, 

ensuring encrypted images retain their integrity and are resistant to unauthorized access and tampering. 

We computed the fidelity among pixels in source and encrypted images using three common measures 

[46], outlined in Table 6, as follows: 
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5.7.1. Normalized absolute error (NAE) 

NAE quantifies the average relative difference between corresponding pixels in the original and 

encrypted images, providing a normalized view of errors. It can be evaluated as: 

NAE =
1

𝑁

∑|𝑥𝑖−𝑦𝑖|

(𝐿−1)
,                              (13) 

where N is the total number of pixels, x and y are pixel values at corresponding positions in the original 

and encrypted images, and L is the range of possible pixel values (e.g., 256 for an 8-bit image). 

5.7.2. Average difference (AD) 

AD calculates the average absolute difference between plaintext and ciphertext pixel values, 

providing a measure of overall discrepancy. It can be computed as: 

                                    AD =
1

𝑁
∑|𝑥𝑖 − 𝑦𝑖|.                        (14) 

5.7.3. Maximum difference (MD) 

MD quantifies the maximum absolute difference between corresponding pixel values, 

highlighting the most significant variation. It can be computed as follows: 

MD = 𝑚𝑎𝑥|𝑥𝑖 − 𝑦𝑖|.                                (15) 

Lower NAE and AD, in Table 8, indicate minimal relative differences, maintaining close alignment 

of pixel values between the original and encrypted images. 

Table 8． Pixels’ fidelity analysis for the plain-encrypted contents with the proposed 

methodology and comparison with SOTA. 

Content 
Proposed  Ref. [39]  Ref. [41] 

NAE AD MD  NAE AD MD  NAE AD MD 

Pepper 0.0349 0.0186 221  0.6306 7.9524 226  0.0494 0.0195 143 

Airplane 0.0334 0.0136 234  0.4639 5.1054 231  0.0375 0.0236 127.5 

Lena 0.0354 0.0154 223  0.5926 4.1009 235  0.0480 0.0198 110.3 

Baboon 0.0312 0.0164 219  0.5870 5.9597 210  0.0231 0.0516 138.9 

House 0.0310 0.0149 231  − − −  0.0296 0.0170 124.3 

Sailboat 0.0325 0.0162 233  − − −  0.0617 0.0239 112.2 

5.8. Noise and occlusion attack analyses 

The noise and occlusion attack analyses are crucial for evaluating the resilience of the proposed 

encryption scheme against real-world disruptions, such as random noise interference and partial image 

obstructions. These analyses help determine the effectiveness of the scheme in maintaining image 

integrity and ensuring secure data transmission. 
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5.8.1. Noise attack analysis 

Noise attacks simulate random disturbances in images, often introduced by environmental factors 

or data corruption during transmission. The analysis assesses the algorithm's ability to withstand these 

disturbances without significant degradation of the encrypted image. Gaussian noise, which is 

commonly used to simulate real-world noise, is added to the original image [47]. The noise model is 

defined as: 

𝐼𝑛𝑠 = 𝐼𝑜𝑟𝑔 + 𝐺,                                       (16) 

where 𝐼𝑛𝑠  is the noisy image, 𝐼𝑜𝑟𝑔  is the original image, and 𝐺  is the Gaussian noise with a 

specified mean and variance. The objective is to evaluate the encryption scheme's robustness by 

measuring the impact of noise on the encrypted image. This involves assessing how well the algorithm 

preserves the image's integrity despite noise interference. 

Gaussian noise with normalized power levels of 0.000001, 0.000003, 0.000005, and 0.000007 

was introduced to the images. The analysis, presented in Table 9, demonstrates that the proposed 

encryption framework exhibits strong resilience against noise attacks. The PSNR values remain 

relatively high, indicating that the encryption scheme effectively mitigates the impact of noise, 

maintaining the integrity and quality of the encrypted image. 

Table 9. Noise and Occlusion Analysis. 

   Noise intensity  Occlusion analysis 

Content Trial  0.000001 0.000003 0.000005  1/4 1/2 3/5 

          

Pepper 
MSE  9987.16 9678.8 9104.6  6421.17 4784.18 3445.27 

PSNR  7.78 7.86 7.99  10.61 12.22 13.41 

Airplane 
MSE  9884.7 9452.7 9122.8  6552.54 4881.02 3398.13 

PSNR  7.71 7.82 7.94  10.56 12.64 13.94 

Lena 
MSE  9675.4 9428.8 9212.5  6514.19 5101.25 3568.74 

PSNR  7.68 7.79 7.92  11.05 13.12 13.48 

Baboon 
MSE  9882.7 9613.4 9302.5  6445.56 4478.32 3524.15 

PSNR  7.77 7.89 7.98  10.54 12.46 13.24 

House 
MSE  9718.7 9505.7 9298.4  5998.54 4495.48 3488.34 

PSNR  7.79 7.88 7.98  11.45 12.85 13.79 

Sailboat 
MSE  9798.7 9598.2 9346.2  6325.45 4615.45 3152.41 

PSNR  7.86 7.97 8.01  11.33 12.81 13.37 

5.8.2. Occlusion attack analysis 

Occlusion attacks involve concealing parts of an image, simulating scenarios where portions of 

the data are obstructed or missing. This analysis tests the algorithm's ability to recover and decrypt the 

original image despite partial data loss [48]. Occlusion is modeled by applying a binary mask to the 

original image, creating regions of complete or partial data loss: 

𝐼𝑜𝑐 = 𝐼𝑜𝑟𝑔 ⊙ 𝐵,                           (17) 
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where 𝐼𝑜𝑐 is the occluded image and 𝐵 is a binary mask indicating the occluded regions. 

The goal is to assess the encryption scheme's robustness in retrieving the original image when 

faced with occlusion. The analysis evaluates how effectively the algorithm can reconstruct the image 

and restore lost information. Occlusion attack analysis was performed on images with occluded areas 

representing fractions of 1/4, 1/2, and 3/5 of the total image area. These varying levels of occlusion 

simulate different degrees of data loss. The outcomes, summarized in Table 9 and illustrated in Figure 

7, indicate that the proposed algorithm demonstrates a strong capacity to recover the original image 

even when up to 60% of the image is occluded. Despite significant data loss, the algorithm maintains 

the ability to reconstruct the essential features of the original image, highlighting its effectiveness in 

overcoming occlusion attacks. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Figure 7. Occlusion analysis for the encrypted Pepper and Airplane images. (a, d; g, 

j) Occluded by fraction of 1/4 and corresponding recovered images; (b, e; h, k) 

Occluded by fraction of 1/2 and corresponding recovered images; and (c, f; i, l) 

Occluded by fraction of 3/5 and corresponding recovered image. 
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6. Conclusions 

We present an innovative encryption scheme that integrates the quadratic chaotic map (QCM) 

with the Fibonacci sequence, addressing critical challenges in contemporary cryptographic systems. 

The proposed method effectively leverages chaotic dynamics to enhance security and unpredictability 

in encryption processes for both text and image data. By utilizing the inherent sensitivity and 

nonlinearity of chaotic maps, the scheme provides robust protection against brute-force and quantum-

based decryption attempts while mitigating the risks of periodicity found in traditional methods like 

the Arnold Cat map. Comprehensive experimentation confirms the encryption scheme's sensitivity to 

key variations, ensuring that even minimal changes in the key produce significantly different 

encryption outputs. This characteristic, combined with the robustness demonstrated in noise and 

occlusion attack analyses, highlights the method's resilience against real-world disruptions and 

unauthorized access attempts. Furthermore, the methodology's adaptability across various data types 

underscores its practical application potential in diverse domains requiring secure data transmission 

and storage. Overall, the proposed QCM-based encryption framework offers a promising solution for 

modern cryptographic challenges, providing a secure, efficient, and versatile approach to digital data 

protection. Future research may focus on optimizing computational efficiency and exploring additional 

applications to further strengthen the scheme's utility in emerging technological landscapes.  
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