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Keywords: fixed point; controlled metric-type spaces; double-controlled metric-type spaces;
double-composed metric spaces; double-composed metric-like spaces
Mathematics Subject Classification: 47H10, 54E50, 54H25

1. Introduction

Fixed-point theorems are one of the most intriguing aspects of nonlinear analysis with wide-ranging
applications, and they have grown in popularity among researchers. Initially, Banach [1] established the
existence and uniqueness of a fixed point in 1922 through an empirical concept known as the “Banach
contractive principle” in the metric spaces. It was the beginning point in the area, leading to further
expansion of his theorem through the generalization of metric spaces or the refinement of contractions.
Significant generalizations of metric space include b-metric spaces, introduced by Bakhtin [2] and
Czerwik [3]. Harandi, Amini [4] extended the concept of partial metric space by defining a metric-like
space. Additionally, Hitzler et al. [5] introduced the notion of dislocated metric spaces. Whereas, the
most comprehensive generalization, the b-metric-like space, was introduced by Alghamdi et al. [6].
Numerous fixed-point theorems have focused on b-metric spaces (see; for extended b-metric spaces [7,
8], b-rectangular metric spaces [9] and b-metric-like spaces [10–12]). Recently, several generalizations
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of b-metric spaces and b-metric-like spaces have been presented, such as extended b-metric spaces
introduced by Kamran et al. [13] and controlled metric-type spaces initiated by Mlaiki et al. [14].
Subsequently, in 2018, Abdeljawad et al. [15] redefined the notion under the name of double-controlled
metric-type spaces. In 2020, Mlaiki [16] presented a generalization of double-controlled metric-type
spaces as known by double-controlled metric-like spaces. In 2022, Karami et al. [17] proposed the
concept of the fascinating generalized controlled metric-type spaces and named it an expanded b-
metric spaces. In 2023, Ayoobi et al. [18, 19] proposed a new generalization of the previous types of
metric spaces called double-composed metric spaces, which depend on two composed functions with
triangular inequality. For more details, see [20–22].

This paper is derived from [16, 18, 21] and serves as a generalization of all various types of the
previously mentioned metric spaces. It introduces a new class, known as double-composed metric-
like spaces (for short, DCML-space). The primary goal is to present fixed-point results involving
Banach, Kannan, Reich, and Hardy–Roger-type contractions, concentrate on the results within DCML-
spaces, along with examples. Additionally, it explores certain relationships involving convergence of
sequences. Finally, the paper introduces an application of a nonlinear integral equation, which supports
our fixed-point theorems within these new spaces.

2. Preliminaries

This section gives definitions of controlled metric-type spaces according to Nabil Mlaiki et al. [14].

Definition 2.1. [14] Assume Γ is a nonempty set via ω : Γ × Γ → [1,∞). The mapping dω : Γ × Γ →

[0,∞) is said to be a controlled metric type on Γ if for all a, b, c ∈ Γ satisfied:

(C1) dω(a, b) = 0 if and only if a = b,
(C2) dω(a, b) = dω(b, a),
(C3) dω(a, b) ≤ ω(a, c)dω(a, c) + ω(c, b)dω(c, b).

The pair (Γ, dω) is called a controlled metric type space. Obviously, when taking ω(a, c) = ω(c, b), we
obtain that extended b-metric space according to Kamran et al. [13], if ω(a, c) = ω(b, c) = s, we go to
the b-metric space desired by Czerwik [3].

Abdeljawad et al. [15] presented an extension of controlled metric-type spaces, referred to as
double-controlled type-metric spaces. Furthermore, Mlaiki et al. [16] given double-controlled metric-
like spaces (DCMLS), which is a generalized to double-controlled metric-type space (for short,
DCMTS).

Definition 2.2. [16] Let Γ be a nonempty set andω1, ω2 : Γ×Γ→ [1,∞). A function ρ : Γ×Γ→ [0,∞)
is a double-controlled metric-like if for all a, b, c ∈ Γ, satisfied:

(D1) ρ(a, b) = 0 implies a = b,
(D2) ρ(a, b) = ρ(b, a),
(D3) ρ(a, b) ≤ ω1(a, c)ρ(a, c) + ω2(c, b)ρ(c, b).

The pair (Γ, ρ) is said to be a double-controlled-metric-like space (for short, DCMLS). Clearly, every
DCMTS is a DCMLS, but the converse is not necessarily true (e.g., [15, 20]).
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Next, Ayoob et al. [18] introduced the below-mentioned several generalizations of DCMTS, as
known in that double-composed-metric space.

Definition 2.3. [18] Assume Γ is a nonempty set, and θ, ϑ : [0,∞) → [0,∞) be a non-constant
function. A mapping ρc : Γ × Γ → [0,∞) is said to be a double-composed metric if for all a, b, c ∈ Γ,
it satisfies the following conditions:

(P1) ρc(a, b) = 0 if and only if a = b,
(P2) ρc(a, b) = ρc(b, a),
(P3) ρc(a, b) ≤ θ

(
ρc(a, c)

)
+ ϑ

(
ρc(c, b)

)
.

Then pair (Γ, ρc) is said to be a double-composed metric space (briefly, DCMS). For more details,
see [18, 21].

Now, we present our generalization of the DCMS as follows.

Definition 2.4. Let Γ be a nonempty set. A mapping L : Γ×Γ→ [0,∞) is said to be a double-composed
metric-like, if for each a, b, c ∈ Γ, there exists two non-constant functions f , g : [0,∞) → [0,∞)
satisfying the following conditions:

(L1) L(a, b) = 0, then a = b,
(L2) L(a, b) = L(b, a),
(L3) L(a, b) ≤ f

(
L(a, c)

)
+ g

(
L(c, b)

)
.

The pair (Γ, L) is called a double-composed metric-like space (DCML-space).

Notice that every DCMS is a DCML-space. But the converse is not necessarily always true.

Example 1. Suppose Γ = {0, 1, 2}, and let L : Γ × Γ → [0,∞) be defined by L(0, 0) = L(1, 1) =

0, L(2, 2) = 1
2 , L(0, 1) = 1, L(0, 2) = 4, L(1, 2) = 5

4 .
Define two functions f , g : [0,∞) → [0,∞) by f (t) = 2t and g(t) = 2

√
t. Clearly, (Γ, L) is a

DCML-space. In other words, we see that, L(2, 2) = 1
2 , 0. Thus (Γ, L) is not a DCMS.

Example 2. Let (Γ, ρ) be a double-controlled metric-like space with two controlled functions ω1, ω2 :
Γ × Γ → [1,∞), and let L(a, b) = sinh(ρ(a, b)). We demonstrate that L is a DCML-space with two
functions, f (t) = sinh

(
2ω1(a, c)t

)
and g(t) = sinh

(
2ω2(c, b)t

)
, t ∈ [0,∞).

First, we demonstrate (L1): Since sinh(0) = 0 and by property (D1), we have L(a, b) = 0, then a = b.
(L2) is evident. Since sinh(t) is an increasing function, for all a, b ≥ 0, sinh(a+b) ≤ sinh(2max{a, b}) ≤
sinh(2a) + sinh(2b). Therefore, for each a, b, c ∈ Γ, we obtain:

L(a, b) = sinh ρ(a, b) ≤ sinh
(
ω1(a, c)ρ(a, c) + ω2(c, b)ρ(c, b)

)
≤ sinh

(
ω1(a, c) sinh(ρ(a, c)) + ω2(c, b) sinh(ρ(c, b))

)
≤ sinh(2ω1(a, c)L(a, c)) + sinh(2ω2(c, b)L(c, b))
= f (L(a, c)) + g(L(c, b))

Thus, condition (L3) of Definition 2.4 holds, and (Γ, L) is DCML-space. Moreover, note that if a = b,
it implies that ρ(a, a) , 0 in general, so that L(a, a) , 0, which distinguishes this space from DCMS.

In the following, we proposed the topology of the DCML-space.
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Definition 2.5. Let (Γ, L) be a DCML-space in respect of f and g, and let {κn}(n≥0) be a sequence in Γ.
Then:

1) {an} is said to converge to a0 in Γ, if and only if lim
n→∞

L(an, a0) = L(a0, a0). We denote this as
lim
n→∞

an = a0.
2) {an} is said to be L-Cauchy if and only if lim

m,n→∞
L(am, an) exists and is finite.

3) The space (Γ, L) is said to be complete if every L-Cauchy in Γ is convergence in Γ. That is,
lim
n→∞

L(an, a0) = L(a0, a0) = lim
m,n→∞

L(am, an).

Definition 2.6. Let (Γ, L) be a DCML-space via f and g. For a0 ∈ Γ and ε > 0. Then:

1) An open ball B(a0, ε) = {ω ∈ Γ, |L(a0, ω) − L(a0, a0)| < ε}.
2) The mapping T : Γ → Γ is said to be continuous at a0 ∈ Γ if for all ε > 0, there exists δ > 0

such that T (B(a0, δ)) ⊆ B(T (a0), ε). Thus, if T is continuous at a0, then for all sequence {an}

converging to a0, we deduce lim
n→∞

T (an) = T (a0). That is, lim
n→∞

L(Tan,Ta0) = L(Ta0,Ta0).

In general, the limit of a convergent sequence in DCML-space may not be unique.

Lemma 2.7. Let (Γ, L) be a DCML-space via non-constant functions f , g : [0,∞) → [0,∞) satisfying
f (0) = g(0) = 0, and let {an} be a sequence in Γ such that lim

n→∞
L(an, a0) = 0. Then every sequence

convergence has a unique limit.

Proof. The proof is omitted. �

Lemma 2.8. Let (Γ, L) be a DCML-space with functions f , g : [0,∞) → [0,∞). Suppose that the
inverse mappings of f and g exist.

1) Let {an} is convergent to a, and for any w ∈ Γ, we obtain that

f −1(L(a,w) − ∆2) + g−1(L(a,w) − ∆1)
2

≤ lim
n→∞

in f L(an,w) ≤ lim
n→∞

supL(an,w)

≤ ∆ +
f (L(a,w)) + g(L(a,w))

2
,

where ∆1 = f (L(a, a)),∆2 = g(L(a, a)) and ∆ = ∆1+∆2
2 .

2) Let {an} and {sn} be convergent to a and s, respectively. Suppose that f , g are continuous and
non-decreasing functions, and g is a sub-additive. Then:

g−2(L(a, s) − M) ≤ lim
n→∞

in f L(an, sn) ≤ lim
n→∞

supL(an, sn) ≤ M + g2(L(a, s)),

where M = ∆1 + ∆3, and ∆3 = g
(
f (L(s, s))

)
.

Proof. First, utilizing (L3) of definition 2.4, we deduce

L(a,w) ≤ f (L(a, an)) + g(L(an,w)).

Taking the lower limit as n→ ∞ in the above inequality, we have

L(a,w) ≤ f
(

lim
n→∞

in f L(a, an)
)

+ g
(

lim
n→∞

in f L(an,w)
)
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= f (L(a, a)) + g( lim
n→∞

in f L(an,w)).

Hence,
g−1(L(a,w) − ∆1) ≤ lim

n→∞
in f L(an,w). (2.1)

Similarly, with L(w, a), we obtain that

f −1(L(w, a) − ∆2) ≤ lim
n→∞

in f L(an,w). (2.2)

By definition 2.4, (L2), which implies that (by additive (2.1) and (2.2)),

f −1(L(a,w) − ∆2) + g−1(L(a,w) − ∆1)
2

≤ lim
n→∞

in f L(an,w). (2.3)

While,
L(an,w) ≤ f (L(an, a)) + g(L(a,w)).

Making the upper limit as n tends to∞, in the inequality, we reach that

lim
n→∞

supL(an,w) ≤ ∆1 + g(L(a,w)).

Similarly, with L(w, an), and by definition 2.4 of (L3), we obtain

lim
n→∞

supL(an,w) ≤ f (L(a,w)) + ∆2.

This implies that,

lim
n→∞

supL(an,w) ≤ ∆ +
f (L(a,w)) + g(L(a,w))

2
, (2.4)

where ∆ = ∆1+∆2
2 . Therefore, we obtain from (2.3) and (2.4) the desired result.

Second, by means of (L3) in the DCML-space, it is easy to see that

L(a, s) ≤ f (L(a, an)) + g(L(s, an))
≤ f (L(a, an)) + g

[
f (L(s, sn)) + g(L(an, sn))

]
, (2.5)

and
L(an, sn) ≤ f (L(an, a)) + g

[
f (L(sn, s)) + g(L(a, s))

]
. (2.6)

Taking the lower limit as n → ∞ in (2.5) and using the same approach as in (2.1), given that g is a
sub-additive, we obtain that

L(a, s) ≤ f (L(a, a)) + g( f (L(s, s))) + g2( lim
n→∞

in f L(an, sn)).

Hence,
g−2(L(a, s) − M) ≤ lim

n→∞
in f L(an, sn).

Similarly, taking the upper limit as n→ ∞ in the (2.6), we obtain that

lim
n→∞

supL(an, sn) ≤ M + g2(L(a, s)),

where M = ∆1 + ∆3, and ∆3 = g
(
f (L(s, s))

)
. �
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In DCMTS, the result above extends as follows, in the corollary below.

Corollary 2.9. Let (Γ, L) be a DCMTS with functions θ, ϑ : [0,∞) → [0,∞). Suppose that the inverse
mappings of θ and ϑ exist.

1) Let {an} be convergent to a, and w ∈ Γ is arbitrary. Then

θ−1(L(a,w)) + ϑ−1(L(a,w))
2

≤ lim
n→∞

in f L(an,w) ≤ lim
n→∞

supL(an,w) ≤
θ(L(a,w)) + ϑ(L(a,w))

2
.

2) Let {an} and {sn} be convergent to a and s, respectively. Suppose that θ, ϑ are continuous and
non-decreasing functions, and ϑ is a sub-additive. Then

ϑ−2(L(a, s)) ≤ lim
n→∞

in f L(an, sn) ≤ lim
n→∞

supL(an, sn) ≤ ϑ2(L(a, s)).

In particular, if θ(t) = ϑ(t) = t, t ≥ 0, then, go to lim
n→∞

L(an, sn) = L(a, s).

Proof. Immediately, of Lemma 2.8, notice that the condition (P1) holds in DCMTS. �

Let Ψ be the family of all onto mappings ψ : [0,∞)→ [0,∞) satisfying the conditions: t ≤ ψ(t) for
each t ∈ [0,∞), and ψ

′

(the derivative of ψ) is increasing [17]. Next, in the corollary, we show that a
strong formula with DCML-space is f (t) = g(t) = ψ(t), t ≥ 0.

Corollary 2.10. Let (Γ, L) be a DCML-space with auxiliary function ψ : [0,∞)→ [0,∞) in Ψ.

1) Let {an} be convergent to a, and w ∈ Γ is arbitrary, then

ψ−1(L(a,w) − ~) ≤ lim
n→∞

in f L(an,w) ≤ lim
n→∞

supL(an,w) ≤ ~ + ψ(L(a,w)),

where ~ = ψ(L(a, a)).
2) Let {an} and {sn} be convergent to a and s, respectively, then

ψ−2(L(a, s) − M) ≤ lim
n→∞

in f L(an, sn) ≤ lim
n→∞

supL(an, sn) ≤ M + ψ2(L(a, s)),

where M = ~ + `, and ` = ψ2(L(a, a)).

Proof. Immediately, of Lemma 2.8, and notice that f (t) = g(t) = ψ(t), t ≥ 0. �

Let (Γ, L) be a DCML-space. Define L̂ : Γ2 → [0,∞) by

L̂(a, b) = |2L(a, b) − L(a, a) − L(b, b)|,∀a, b ∈ Γ.

Obviously, L̂(a, a) = 0,∀a ∈ Γ.

Lemma 2.11. Let ψ ∈ Ψ, then for all x ∈ [0, 1], we conclude:

1) ψ(xp) ≤ ψp(x) and
(
ψ−1(x)

)p
≤ ψ−1(xp), p ≥ 1.

2) ψ(xq) ≥ ψq(x) and
(
ψ−1(x)

)q
≥ ψ−1(xq), 0 < q ≤ 1.
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3. Main results

This section presents some fixed point results in the framework of double-composed metric-like
space. Our first theorem is corresponding to the Hardy–Roger-contraction of a fixed point theorem.

Before stating our theorems, we introduce the auxiliary functions involved in Hardy–Rogers
contraction.

Let Ω be a set of all mapping $ : [0,∞)→ [0,∞) satisfying,

i) $ is non-decreasing,
ii) $(a) < a,∀a > 0, and for all a < b implies $(a) < $(b),

iii) lim
t→a+

$(t) < a,∀a > 0, that is, $n(t)→ 0 as n→ ∞, t > 0.

Recall this function a comparison function. While if the axiom (ii.) a < $(a) for all a > 0 is known as
an in-comparison function, see [12, 21].

Lemma 3.1. [23] Let $ ∈ Ω and {an} be a sequence such as an → 0 as n → ∞. Then $(an) → 0 as
n→ ∞, and $(0) = 0.

Theorem 3.2. Suppose (Γ, L) is a complete DCML-space with f , g : [0,∞) → [0,∞). Let T : Γ → Γ

be a mapping satisfying,

L(Ta,Tb) ≤ ξ1L(a, b) + ξ2L(a,Ta) + ξ3L(b,Tb) + ξ4L(a,Tb) + ξ5L(b,Ta), (3.1)

for all a, b ∈ Γ, ξi ∈ [0, 1), i = 1, 2, · · · , 5, and
∑5

j=1 ξ j < 1. For a0 ∈ Γ, take that an = T na0. Suppose
that,

1) f , g are continuous, non-decreasing and g is sub-additive a comparison function, and f in-
comparison function.

2)
∑n−2

i=m gi−m f
(
K i f i(L(a0, a1)

))
+ gn−m−1

(
Kn−1 f n−1(L(a0, a1)

))
→ 0, (as n,m→ ∞),

where K =
ξ1+ξ2+ξ4+2ξ5

1−ξ3−ξ4
.

Then, T has fixed point. Further, if ξ2 = ξ3 = 0 (or for any fixed point a, satisfied L(a, a) ≤ L(a,w),w ∈
Γ), then T has a unique fixed point.

Proof. Let a0 ∈ Γ. By hypothesis a sequence {an} in Γ form an = T na0 or an+1 = Tan,∀n ∈ N.
Assuming a = an−1 via b = an in the Hardy–Roger contraction, then,

L(an, an+1) = L(Tan−1,Tan) ≤ξ1L(an−1, an) + ξ2L(an−1,Tan−1) + ξ3L(an,Tan) + ξ4L(an−1,Tan) (3.2)
+ξ5L(an,Tan−1)
≤ξ1L(an−1, an) + ξ2L(an−1, an) + ξ3L(an, an+1) + ξ4L(an−1, an+1) + ξ5L(an, an).

In general, in DCML-space, we observe that, L(an, an) , 0. So, by (L3) in definition 2.4, we undergo

L(an−1, an+1) ≤ f
(
L(an−1, an)

)
+ g

(
L(an, an+1)

)
,

and
L(an, an) ≤ f

(
L(an, an−1)

)
+ g

(
L(an−1, an)

)
.
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Therefore,

(1 − ξ3)L(an, an+1) − ξ4g
(
L(an, an+1)

)
≤ (ξ1 + ξ2)L(an−1, an) + (ξ4 + ξ5) f

(
L(an−1, an)

)
+ ξ5g

(
L(an−1, an)

)
.

By fact of condition 1, such that g(t) < t, for all t ≥ 0, we obtain

(1 − ξ3)L(an, an+1) − ξ4g
(
L(an, an+1)

)
≤ (ξ1 + ξ2 + ξ5)L(an−1, an) + (ξ4 + ξ5) f

(
L(an−1, an)

)
,

thus, implies via condition 1, we lead to

(1 − ξ3)L(an, an+1) − ξ4L(an, an+1) ≤ (1 − ξ3)L(an, an+1) − ξ4g
(
L(an, an+1)

)
≤ (ξ1 + ξ2 + ξ5)L(an−1, an) + (ξ4 + ξ5) f

(
L(an−1, an)

)
≤ (ξ1 + ξ2 + ξ4 + 2ξ5) f

(
L(an−1, an)

)
.

Hence,
L(an, an+1) ≤ K f

(
L(an−1, an)

)
,

where K =
ξ1+ξ2+ξ4+2ξ5

1−ξ3−ξ4
. By repeatedly this process becomes

L(an, an+1) ≤ Kn f
(
L(a0, a1)

)
. (3.3)

For each n,m ∈ N, where m > n, we deduce

L(am, an) ≤ f
(
L(am, am+1)

)
+ g

(
L(am+1, an)

)
≤ f

(
L(am, am+1)

)
+ g

[
f
(
L(am+1, am+2)

)
+ g

(
L(am+2, an)

)]
≤ f

(
L(am, am+1)

)
+ g f

(
L(am+1, am+2)

)
+ g2(L(am+2, an)

)
...

≤

n−2∑
i=m

gi−m f
(
L(ai, ai+1)

)
+ gn−m−1(L(an−1, an)

)
. (3.4)

We utilize conditions 1, 2 to establish the inequality (3.3) in (3.4), we undergo

L(am, an) ≤
n−2∑
i=m

gi−m f
(
K i f i(L(a0, a1)

))
+ gn−m−1

(
Kn−1 f n−1(L(a0, a1)

))
.

Letting m, n → ∞ and applying condition 2 of Theorem 3.2, we obtain L(am, an) for each n,m ∈ N.
Thus, the sequence {an} is L-Cauchy in Γ. That is,

lim
n,m→∞

L(am, an) = 0. (3.5)

Since the sequence {an} is L-Cauchy in Γ, which is a complete DCML-space, there exists an element
a ∈ Γ such that, {an} → a. Consider

lim
n→∞

L(an, a) = L(a, a) = lim
n,m→∞

L(am, an) = 0.
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Thus, L(a, a) = 0. Now, we prove that Ta = a. With the help of (L3) in DCML-space implies that

L(a, an+1) ≤ f
(
L(a, an)

)
+ g

(
L(an, an+1)

)
.

Utilizing condition 1, and (3.5), we notice that

lim
n→∞

L(a, an+1) = 0. (3.6)

By (L3) in definition 2.4, we deduce that

L(a,Ta) ≤ f
(
L(a, an)

)
+ g

(
L(an,Ta)

)
= f

(
L(a, an)

)
+ g

(
L(Tan−1,Ta)

)
. (3.7)

Taking the limit as n→ ∞ in (3.7), by (3.6) and condition 1, such that g(t) < t, for all t ≥ 0, we obtain
L(a,Ta) = 0, so that Ta = a.

Lastly, assume that T has two fixed points, say a and s. Then

L(a, s) = L(Ta,T s) ≤ ξ1L(a, s) + ξ2L(a,Ta) + ξ3L(s,T s) + ξ4L(a,T s) + ξ5L(s,Ta)
= ξ1L(a, s) + ξ2L(a, a) + ξ3L(s, s) + ξ4L(a, s) + ξ5L(s, a).

We further let ξ2 = ξ3 = 0, which leads that

L(a, s) ≤ (ξ1 + ξ4 + ξ5)L(a, s). (3.8)

With ξ1 + ξ4 + ξ5 < 1, the inequality 3.8, we obtain L(a, s) = 0, then a = s. �

Example 3. Let Γ = {1, 2, 3}. Define a map L : Γ × Γ→ [0,∞) by

L(1, 1) = L(2, 2) = 0, L(3, 3) = 2,

and
L(1, 2) = L(2, 1) = 11, L(1, 3) = L(3, 1) = 6, L(2, 3) = L(3, 2) = 3.

Take f , g : [0,∞)→ [0,∞), which is defined by f (t) = sinh
(12

11 t
)
; and g(t) =

( 3
11 t

)
.

Evidently, to verify that (Γ, L) is a complete DCML-space with respect to f , g, and L(3, 3) , 0.
Therefore (Γ, L) is not a DCMS.

Also, define a map T : Γ→ Γ as

T (a) =

3 if a = 1
2 if a ∈ {2, 3}.

Then, T has a fixed point.

Proof. Let us choose ξ1 = 1
4 , ξ2 = 1

3 , ξ3 = 1
12 , ξ4 = 1

13 , and ξ5 = 1
20 . Next, consider the following cases

to show that the Hardy–Rogers contraction in Theorem 3.2 holds:
Case 1. a = 1, b = 2, L(T1,T2) = L(3, 2) = 3 ≤ 747

130 = 1
4 L(1, 2) + 1

3 L(1, 3) + 1
12 L(2, 2) + 1

13 L(1, 2) +
1
20 L(2, 3).
Case 2. a = 1, b = 3, L(T1,T3) = L(3, 2) = 3 ≤ 1221

260 = 1
4 L(1, 3) + 1

3 L(1, 3) + 1
12 L(3, 2) + 1

13 L(1, 2) +
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1
20 L(3, 3).
Case 3. a = 2, b = 3, L(T2,T3) = L(2, 2) = 0 ≤ 23

20 = 1
4 L(2, 3) + 1

3 L(2, 2) + 1
12 L(3, 2) + 1

13 L(2, 2) +
1
20 L(3, 2).
Since L(3, 3) , 0, we further take
Case 4. a = 1, b = 1, L(T1,T1) = L(3, 3) = 2 ≤ 212

65 = 1
4 L(1, 1) + 1

3 L(1, 3) + 1
12 L(1, 3) + 1

13 L(1, 3) +
1
20 L(1, 3).

Consider at k0 = 2 ∈ Γ. Thus, kn = T nk0 = 2 for each n ≥ 1. For a condition 1 in Theorem 3.2, we
deduce that, t < f (t) = sinh

(12
11 t

)
, and

( 3
11 t

)
= g(t) < t, t > 0. Moreover, we see that

lim
n→∞

(
ξ1 + ξ2 + ξ4 + 2ξ5

1 − ξ3 − ξ4

)n

= lim
n→∞

(593
655

)n

= 0.

So, already condition 2 of Theorem 3.2 holds. Then, all the conditions of Theorem 3.2 hold, so has a
fixed point given as k = 2. �

Afterwards, we propose some specific cases of our Theorem 3.2.

Corollary 3.3. Suppose (Γ, L) is a complete DCML-space with f , g : [0,∞) → [0,∞). Let T : Γ → Γ

be a mapping satisfying the Banach contraction,

L(Ta,Tb) ≤ ξL(a, b),∀a, b ∈ Γ, where ξ ∈ [0, 1). (3.9)

For a0 ∈ Γ, take an = T na0. Assume that

1) f , g are continuous, non-decreasing functions, and g is a sub-additive function.
2)

∑n−2
i=m gi−m f

(
ξiL(a0, a1)

)
+ gn−m−1

(
ξn−1L(a0, a1)

)
→ 0, as n,m→ ∞.

Then T has a unique fixed point.

Proof. It suffices to observe that, if ξ = ξ1, and ξ2 = ξ3 = ξ4 = ξ5 = 0 in Theorem 3.2, we obtain
the desired result. Moreover, notice that in condition 1, g does not necessarily belong to Ω. The same
applies to function f . �

Corollary 3.4. Suppose (Γ, L) is a complete DCML-space via f , g : [0,∞) → [0,∞). Let T : Γ → Γ

be a mapping satisfying Kannan’s contraction,

L(Ta,Tb) ≤ ξ1L(a,Ta) + ξ2L(b,Tb), for all a, b ∈ Γ, ξ1, ξ2 ∈ [0, 1), and ξ1 + ξ2 < 1. (3.10)

For a0 ∈ Γ, take an = T na0. Assume that

1) f , g are continuous, non-decreasing functions and g is a sub-additive comparison function.
2)

∑n−2
i=m gi−m f

(
K iL(a0, a1)

)
+ gn−m−1

(
Kn−1L(a0, a1)

)
→ 0, as n,m→ ∞, where K =

ξ1
1−ξ2

.

Then T has a fixed point. Furthermore, if for any fixed point a, such that L(a, a) = 0, then T has a
unique fixed point.

Proof. Whenever ξ1 = ξ4 = ξ5 = 0 in Theorem 3.2, we obtain the desired result. In condition 1, f is
not necessarily an in-comparison function. Furthermore, inspired by [16], we deduce that for any fixed
point a, L(a, a) = 0, which implies the uniqueness of the fixed point. �
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Remark 3.5. In Theorem 3.2, we can take a special case, when ξ4 = ξ5 = 0, namely Riech contraction.

In the following, we introduce the nonlinear case.

Theorem 3.6. Suppose (Γ, L) is a complete DCML-space with respect to functions f , g : [0,∞) →
[0,∞). Consider a mapping T : Γ→ Γ for which there exists a continuous $ ∈ Ω such that

L(Ta,Tb) ≤ $
(
M(a, b)

)
, M(a, b) = Max{L(a, b), L(a,Ta), L(b,Tb)}, (3.11)

for all a, b ∈ Γ. Furthermore, assume that for each a0 ∈ Γ, take an = T na0, n ∈ N, and

1) f , g are continuous and non-decreasing functions, and g is a sub-additive function.
2)

∑n−2
i=m gi−m f

(
$i(L(a0, a1)

))
+ gn−m−1

(
$n−1(L(a0, a1)

))
→ 0, as n,m→ ∞.

Then T has a unique fixed point.

Proof. Let a0 ∈ Γ, and define sequence {an} in Γ via an = T na0 so that an+1 = Tan,∀n ∈ N. Assume
that there is r ∈ N such that ar = ar+1 = Tar, hence ar is a fixed point. Then let an , an+1, n ≥ 0. From
inequality 3.11, we conclude

L(an, an+1) = L(Tan−1,Tan) ≤ $
(
M(an−1, an)

)
, (3.12)

where M(an−1, an) = Max{L(an−1, an), L(an, an+1)}. If for some n, we let M(an−1, an) = L(an, an+1),
therefore, by 3.12 and by condition (ii) $(t) < t for all t > 0, which lead to

L(an, an+1) ≤ $
(
L(an, an+1)

)
< L(an, an+1). (3.13)

This is a contradiction. Thus, for all n ∈ N, which implies M(an−1, an) = L(an−1, an). So, L(an, an+1) ≤
$

(
L(an−1, an)

)
. By induction, we deduce that, for each n ≥ 0

L(an, an+1) ≤ $n(L(a0, a1)
)
.

By axiom of $ we conclude that

L(an, an+1)→ 0, as n→ ∞. (3.14)

By the same process in the proof of Theorem 3.2, for n,m ∈ N,m < n, we obtain that

L(an, am) ≤
n−2∑
i=m

gi−m f
(
$i(L(a0, a1)

))
+ gn−m−1

(
$n−1(L(a0, a1)

))
.

With condition (2) in Theorem 3.6, as n,m→ ∞, we can easily deduce that {an} is L-Cauchy. (Γ, L) is
a complete DCML-space, so that, if an → a ∈ Γ as n → ∞, then by condition 3.14 and utilizing the
argument in the proof of Theorem 3.2, lim

n→∞
L(an, a) = 0, we obtain Ta = a. Lastly, assuming that a and

s are two fixed, distinct fixed points of T , by inequality 3.11, we consider

L(a, s) = L(Ta,T s) ≤ $
(
M(a, s)

)
= $

(
L(a, s)

)
< L(a, s).

Thereby a = s, as required. �

Remark 3.7. Clearly, if $(t) = ξt, 0 < ξ < 1, then the inequality 3.11 in Theorem 3.6 becomes

L(Ta,Tb) ≤ ξMax{L(a, b), L(a,Ta), L(b,Tb)}.

AIMS Mathematics Volume 9, Issue 10, 27205–27219.



27216

4. Applications

The concepts of existence and uniqueness have become attractive for researchers in nonlinear
analysis, particularly for solving differential equations, integral equations, and fractional differential
equations, etc. This has led to improvements in the applications of fixed-point techniques.

Let us examine the existence of solutions for the nonlinear integral equation:

a(τ) =

∫ 1

0
S(τ, µ, a(µ))dµ, for τ ∈ [0, 1], (4.1)

where S(τ, µ, a(µ)) is a continuous function from [0, 1]3 into R.
Let Γ = C([0, 1]) be the set of all continuous functions defined on [0, 1]. We endow Γ with DCML-

space as follows:

L(a, b) = supτ∈[0,1] sinh
((
|a(τ)| + |b(τ)|

)q

2

)
,

for each a, b ∈ Γ, and q ≥ 1.
Clearly, (Γ, L) is a complete DCML-space, where f (τ) = g(τ) = sinh(2q−1τ).

Theorem 4.1. Suppose that for each a, b ∈ Γ,

1) There is a continuous % : [0, 1]2 → R, and 0 < ξ < 1, such that,

|S
(
τ, µ, a(µ)

)
| + |S

(
τ, µ, b(µ)

)
| <

(
ξ

2

)1/q

%(τ, µ)
(
|a(µ)| + |b(µ)|

)
. (4.2)

2) supτ∈[0,1]

∫ 1

0
%(τ, µ)dµ ≤ 1.

Then the integral equation (4.1) has a unique solution.

Proof. Let T : Γ→ Γ be a continuous defined by Ta(τ) = sinh−1
( ∫ 1

0
S(τ, µ, a(µ))dµ

)
. Then

L(Ta,Tb) = supτ∈[0,1] sinh
((
|Ta(τ)| + |Tb(τ)|

)q

2

)
.

We have

sinh
((
|Ta(τ)| + |Tb(τ)|

)q

2

)
= sinh

1
2

(∣∣∣∣ sinh−1
( ∫ 1

0
S(τ, µ, a(µ))dµ

)∣∣∣∣ +
∣∣∣∣ sinh−1

( ∫ 1

0
S(τ, µ, a(µ))dµ

)∣∣∣∣)q

≤ sinh
1
2

(
sinh−1

(∣∣∣∣ ∫ 1

0
S(τ, µ, a(µ))dµ

∣∣∣∣) + sinh−1
(∣∣∣∣ ∫ 1

0
S(τ, µ, a(µ))dµ

∣∣∣∣))q

,

utilizing Lemma 2.11, we conclude that

≤

(
sinh

(
sinh−1

(∣∣∣∣ ∫ 1

0
S(τ, µ, a(µ))dµ

∣∣∣∣)) + sinh
(

sinh−1
(∣∣∣∣ ∫ 1

0
S(τ, µ, a(µ))dµ

∣∣∣∣)))q
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≤

( ∫ 1

0

∣∣∣∣S(τ, µ, a(µ))
∣∣∣∣dµ +

∫ 1

0

∣∣∣∣S(τ, µ, a(µ))
∣∣∣∣dµ)q

=

( ∫ 1

0

∣∣∣∣S(τ, µ, a(µ))
∣∣∣∣ +

∣∣∣∣S(τ, µ, a(µ))
∣∣∣∣dµ)q

≤

( ∫ 1

0

(
ξ

2

)1/q

%(τ, µ)
(
|a(µ)| + |b(µ)|

)
dµ

)q

= ξ

( ∫ 1

0
%(τ, µ)

((
|a(µ)| + |b(µ)|

)q

2

)1/q

dµ
)q

≤ ξ

( ∫ 1

0
%(τ, µ)

(
sinh

((
|a(µ)| + |b(µ)|

)q

2

))1/q

dµ
)q

≤ ξ

( ∫ 1

0
%(τ, µ)L1/q(

a(τ), b(τ)
)
dµ

)q

= ξL
(
a(τ), b(τ)

)( ∫ 1

0
%(τ, µ)dµ

)q

≤ ξL
(
a(τ), b(τ)

)
,

yields that L
(
Ta(τ),Tb(τ)

)
≤ $

(
L(a(τ), b(τ))

)
. Moreover, all the hypotheses of Theorem 3.6 are

satisfied with $(t) = ξt, 0 < ξ < 1. Therefore, Eq (4.1) has a unique solution. �

5. Conclusions

This research establishes a novel concept of generalized metric spaces, called double-composed
metric-like spaces, illustrated through several examples. We derived a Hardy–Rogers type contraction
theorem for various contraction mappings in double-composed metric-like spaces and provided several
related results to our theorems. Furthermore, it presents numerous examples to support the main
theorems. The study demonstrates an application of nonlinear integral equations, proving the existence
of solutions. This particular new generalization provides valuable tools for studying fixed-point
theorems.

The following points are suggestions for open problems and future research directions:

• Explore new open generalizations of double-composed metric-like spaces, such as double-
composed cone-metric-like spaces, fuzzy double -composed metric-like spaces, and neutrosophic
double-composed metric-like spaces.
• Establish new fixed-point results in double-composed metric-like spaces for various types of

contractions, including nonlinear rational contractions, weak contractions, almost-contraction,
and (φ, F)-contraction, etc.
• Investigate the application of our results to expansive mappings (see [6]).
• Develop deep and non-trivial applications of our main results.
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